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Abstract

In this paper, we study various parallelization schemes for the Variable Neigh-
borhood Search (VNS) metaheuristic on a CPU-GPU system via OpenMP and
OpenACC. A hybrid parallel VNS method is applied to recent benchmark problem
instances for the multi-product dynamic lot sizing problem with product returns
and recovery, which appears in reverse logistics and is known to be NP-hard. We
report our findings regarding these parallelization approaches and present promising
computational results.
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1 Introduction

Variable Neighborhood Search [4] is a simple, although efficient, metaheuristic
method for the solution of various types of optimization problems. A system-
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atic change of neighborhoods consists the core function of VNS, in order to
intensify the search for better solutions and also to diversify local optimum
solutions. VNS obtains a neighbor solution from the current solution and runs
a local search procedure to reach a local optimum. If an improved solution
is obtained through any of the neighborhood structures, then it is the new
current solution. Otherwise, the perturbation (shaking) procedure searches
for another neighboring solution to perform a new local search.

All the state-of-the-art optimization solvers are already parallelized for
exploiting the modern multiprocessor hardware systems. Similarly, researchers
are motivated to parallelize their heuristic methods for performance tuning.
Thus, one can find either parallel VNS heuristic implementations using either
CPU parallelization schemes (MPI VNS [2], OpenMP / threads VNS [3,5]),
or even hybrid CPU-GPU VNS parallelization schemes [1].

This paper considers a hybrid CPU-GPU parallelization of a variable neigh-
borhood search method that was recently presented in [6,7] for the solution
of the uncapacitated multi-item economic lot-sizing problem with remanufac-
turing. The remainder of this note is organized as follows. Section 2 briefly
describes the uncapacitated multi-item economic lot sizing problem with prod-
uct returns and recovery. In Section 3, we present the research methodology
and the limitations of our study. The experimental results are shown in Sec-
tion 4. Finally, conclusions and future work are discussed in Section 5.

2 Inventory optimization problem

The uncapacitated multi-item economic lot-sizing problem with remanufac-
turing aims to compute i) the number of new xM (k, t) and/or remanufactured
products xR(k, t) and also ii) the inventory level of serviceable items yM(k, t)
and/or items that can be remanufactured yR(k, t), per period. The objective
of the problem is to minimize the total cost due to i) manufacturing and/or
remanufacturing setup cost, and also due to ii) holding cost for the serviceable
items and/or recoverable items per unit time. The number of periods (T ), dif-
ferent products (K), setup/holding costs (kM(k), kR(k), hM(k), hR(k)), the
demand for each time period and product (D(k, t)) and also the number of
returned items per period and product (R(k, t)) that can be completely re-
manufactured and sold as new, constitute the parameters of this problem. The
mathematical formulation of this problem is analytically presented in [7].



3 Research methodology and limitations

The initialization method, and also the neighborhood structures of the pro-
posed variable neighborhood search method are the same as those presented in
[7] and are, thus, omitted in this short paper. Due to the construction of the
neighborhood structures [7], a strong data dependency was noticed by using
the NVIDIA Visual Profiler. Thus, it was not possible to parallelize the “find
the best neighbor” function (see Algorithm 1) of the VND method. Therefore,
the products-period loop was rather parallelized so that for each product we
can, in parallel, calculate the new objective value (the problem is uncapaci-
tated, and thus no link exist between the products). The only drawback is
that the “find the best neighbor” function requires to be serially executed.

Algorithm 1 Parallel VND using OpenACC
1: procedure VNDOpenACC(K, T , R, D, hR, hM , kR, kM , pR, pM , s, kmax)
2: !$acc data copy(< global variables >)
3: repeat
4: improvement← 0
5: for k ← 1, kmax do
6: !$acc parallel loop private(< private variables >) reduction(+ :

diff) gang vector
7: for i← 1,K do
8: !$acc loop
9: for t← 1, T do
10: Find best neighbor s′i of s(s

′
i ∈ Nk(s))

11: end for
12: diff ← diff + s− s′i
13: end for
14: s← s− diff
15: if diff > 0 then
16: improvement← 1
17: end if
18: end for
19: until improvement = 0
20: !$acc end data
21: end procedure

Furthermore, we have tried OpenACC bearing in mind that our program
is not compute-intensive and it has many memory transfers. However, using
the $acc data copy directive several useless memory transfers were avoided
and thus, this version managed to perform better than the four-threaded ver-
sion OpenMP. Also, the parallelization strategy was exactly the same in both
versions.

Finally, the hybrid CPU-GPU version aims to execute in parallel the shak-



ing and VND functions of the General Variable Search (GVNS) algorithm
using OpenMP, on two GPUs (see Algorithm 2). Each thread, which corre-
sponds to a GPU, sends data from host memory to GPU and receives data
from GPU to host memory (see Figure 1). Afterward, the objective values of
each thread are compared with each other, the minimum one is selected and
the process continues until the time limit is reached. The VND function is
using OpenACC as previously explained.

Algorithm 2 GVNS using two GPUs
function HybridGVNS(x, k′max, kmax, tmax)

repeat
k ← 1
repeat

!$omp parallel private(tid)
tid← omp get thread num()
call acc set device num(tid, acc device nvidia)
!$omp critical

x′ ← Shake(x, k)
x′′ ← V ND(x′, k′max)

!$omp end critical
!$omp end parallel

until k = kmax

t← CpuT ime()
until t > tmax

end function

Fig. 1. Fork-join model

Using PGI University Developer License the maximum available OpenMP
threads were limited to four. Thus, it is possible that the OpenMP perfor-
mance with eight OpenMP threads -equal to the processor’s cores- could be
improved than both OpenACC and hybrid solutions.



4 Experimental results

The computational experiments were performed on a computer running Ubuntu
Linux 14.04 64bit with an Intel Core i7 CPU 920 at 2.793 GHz with 8 MB
SmartCache and 6 GB DDR3 400 MHz main memory. Also, the following two
graphic cards were used: an NVIDIA GPU GeForce GTX 980 and an NVIDIA
GPU GeForce GTX 960, on PCI Express x16 Gen2 bus. These GPUs featured
4 GB of memory and 2048 Cuda cores, and 2 GB of memory and 1024 Cuda
cores, respectively. The VND implementation was implemented in Fortran
and compiled using the PGI Accelerator Fortran/C/C++ Workstation for
Linux - University Developer License.

The experimental computational study compared the performances of i)
the serial implementation of VND presented in [7], ii) an OpenMP implemen-
tation of GVNS, iii) an OpenACC implementation of GVNS, and finally iv) a
hybrid OpenMP - OpenACC implementation of GVNS. The results presented
in [7] were based on a VND and due to its serial implementation no shaking
could be succesfully completed in a short amount of time. However, the new
parallel implementations provided us the ability to successfully complete the
shaking phase in the given time period and thus we now present more complete
VNS schemes.

Each implementation was tested using a recent set of large benchmark
instances presented in [7] with 300 products and 52 periods, and executed for
60 secs. The results of the comparative computational study are depicted in
Table 1, where the best values per instance are denoted with bold font.

ID Serial VND OpenMP GVNS OpenACC GVNS Hybrid OpenMP - OpenACC GVNS

1 3270282.60 3265686.40 3265686.40 3264458.40

2 3495448.50 3492634.00 3492014.00 3491153.50

3 3748498.80 3746685.40 3745647.80 3745532.00

4 4027173.00 4024427.20 4023575.00 4023025.00

5 4479928.00 4479215.00 4479012.50 4479015.00

6 4875797.60 4875022.40 4874594.40 4874358.80

7 5796958.80 5793979.20 5793966.20 5794314.60

8 6984412.00 6984088.00 6983409.50 6984130.00

9 8081856.80 8080948.00 8080764.00 8080570.40

10 4858495.80 4854200.60 4853070.00 4852411.60

11 5089078.50 5085783.00 5084839.00 5085094.50

12 5278825.40 5276336.80 5275247.00 5275955.80

13 5892350.80 5884471.60 5882872.20 5883021.60

14 6321038.50 6316290.00 6315141.00 6315600.00

15 6704859.60 6701762.60 6700878.60 6702075.60

16 7414346.80 7413521.60 7413521.60 7413161.00

17 8742185.00 8740574.00 8739996.50 8741094.00

18 9880458.40 9875796.80 9875025.60 9877518.00



ID Serial VND OpenMP GVNS OpenACC GVNS Hybrid OpenMP - OpenACC GVNS

19 8930651.80 8924365.80 8924365.80 8925508.20

20 9380007.00 9377330.50 9376535.50 9376771.00

21 9814944.80 9814093.00 9813795.00 9814210.60

22 10142751.40 10137340.00 10135155.80 10134116.20

23 10621326.00 10617706.50 10616418.50 10610939.50

24 11077982.20 11073976.40 11073201.60 11067852.80

25 12404914.80 12397736.20 12397389.40 12396503.20

26 13681913.00 13678359.50 13675401.00 13673100.00

27 14802946.00 14799642.60 14797663.40 14790927.60

28 3194939.60 3190687.20 3190687.20 3191008.80

29 3470471.50 3468225.50 3467825.50 3467885.50

30 3675663.00 3674559.40 3674364.60 3674013.40

31 3989579.00 3987901.00 3987305.40 3987614.20

32 4492250.00 4491343.50 4490783.50 4491223.00

33 4880649.80 4880362.80 4880212.60 4880360.80

34 5828545.20 5828040.40 5827417.00 5822312.80

35 7115807.50 7114859.50 7114010.50 7114766.50

36 8110102.40 8109727.20 8109088.80 8109140.20

37 4837334.80 4835299.20 4832416.20 4832610.20

38 5086428.00 5084549.00 5083203.50 5083190.00

39 5295171.40 5294310.00 5293782.40 5294049.20

40 5824516.80 5821000.20 5818315.80 5819894.00

41 6339034.00 6334971.50 6332707.50 6333348.50

42 6710371.40 6707865.80 6707023.20 6707712.80

43 7442889.60 7439899.40 7439000.20 7439542.80

44 8718339.00 8717943.00 8716292.50 8716846.50

45 9785732.00 9783657.60 9782921.00 9782390.60

46 8952738.60 8947230.60 8945587.60 8947390.40

47 9389338.50 9386929.00 9386828.50 9386696.00

48 9841728.00 9841518.80 9841518.80 9841486.20

49 10120022.20 10113806.60 10113232.60 10111443.20

50 10617420.50 10612812.50 10610442.50 10612478.50

51 11055554.00 11053156.40 11052142.60 11052075.20

52 12410460.80 12398020.20 12396783.80 12397352.60

53 13644827.50 13636869.50 13634787.00 13637640.50

54 14678743.20 14672016.20 14671334.20 14672045.40

55 3276712.20 3272956.00 3272178.20 3272501.20

56 3521771.50 3520417.00 3519533.00 3519718.50

57 3734584.00 3733626.60 3732920.00 3733139.00

58 4030910.60 4028775.20 4028192.00 4028278.80

59 4505687.50 4504917.00 4504624.50 4504865.00

60 4890417.00 4889997.80 4889780.40 4889611.60

61 5719050.40 5717007.00 5716875.00 5716329.60

62 7002678.50 7001739.50 7001623.00 7001599.50

63 8089596.80 8089375.80 8089077.80 8088910.20

64 4858676.40 4854893.80 4853546.80 4852214.40

65 5085849.50 5083797.50 5083342.00 5082806.50

66 5275865.60 5275031.80 5274285.80 5274003.00

67 5854389.60 5852421.80 5850146.40 5849751.40

68 6327424.50 6324506.00 6324048.00 6321986.00

69 6704104.20 6701988.40 6701984.40 6700566.20

70 7414142.40 7412435.60 7412435.60 7412131.20



ID Serial VND OpenMP GVNS OpenACC GVNS Hybrid OpenMP - OpenACC GVNS

71 8724241.50 8722788.50 8722052.50 8722781.50

72 9846869.80 9845927.60 9845331.80 9842907.80

73 8917010.20 8910955.40 8910448.00 8909969.40

74 9398291.50 9396151.50 9395864.50 9395172.00

75 9838522.00 9837378.40 9837137.00 9836592.80

76 10116626.20 10112241.20 10110801.20 10105325.20

77 10619852.00 10617052.00 10616872.50 10614811.50

78 11089695.80 11088779.40 11088183.20 11086320.60

79 12375946.80 12372733.20 12369941.00 12369455.40

80 13634882.50 13627465.50 13625726.50 13622603.50

81 14777131.20 14771777.60 14768766.80 14768413.20

82 3214135.80 3210641.40 3210264.40 3209582.60

83 3477940.00 3475430.50 3475217.50 3474652.50

84 3675077.60 3673623.80 3673088.80 3672828.20

85 3982416.40 3980182.60 3979697.40 3979655.60

86 4505007.50 4503753.50 4503380.00 4503516.00

87 4893901.60 4893628.60 4892244.60 4893691.60

88 5721915.80 5720885.00 5720609.80 5720862.00

89 7067795.00 7067129.50 7067017.50 7067166.00

90 8095371.80 8095077.60 8094495.60 8094637.40

91 4832667.00 4830289.40 4828987.40 4827664.60

92 5084756.50 5082263.00 5082076.50 5081173.00

93 5300186.00 5298852.40 5298269.40 5297930.20

94 5815482.80 5811483.40 5809490.60 5809803.80

95 6319621.50 6315565.50 6314004.00 6314236.00

96 6690277.40 6687983.00 6685626.20 6686929.00

97 7413442.20 7412557.80 7411258.80 7411695.40

98 8697765.00 8696213.50 8695934.50 8694725.00

99 9768606.20 9767458.00 9766777.00 9766007.20

100 8930673.60 8925828.80 8922872.20 8924646.00

101 9383498.00 9381106.00 9380728.00 9378242.50

102 9828182.60 9826930.80 9826716.40 9826028.40

103 10121253.40 10117248.80 10113658.20 10114240.40

104 10602131.00 10600187.00 10597353.50 10599748.50

105 11067832.00 11064491.40 11063036.20 11064491.40

106 12396198.40 12394123.40 12392742.00 12391271.20

107 13606139.00 13598050.50 13595986.50 13600035.50

108 14660716.80 14659042.80 14656880.00 14652956.00

These results show that, the parallel versions achieved better quality of
solutions compared to the sequential results of the VND implementation, in
general. Moreover, the hybrid OpenMP - OpenACC version performed slightly
better than the other two parallelization schemes. These results also demon-
strate that, the computational improvement is a viable goal for researchers
even with the addition of certain programming directives into compute inten-
sive loops and not based on a complete rewriting of the code.



5 Conclusions and Future work

In this paper a new hybrid CPU-GPU GVNS metaheuristic algorithm based
on OpenMP and OpenACC programming languages was proposed. The algo-
rithm was applied on a recent set of 108 benchmark instances of a hard in-
ventory optimization problem and produced better quality solutions not only
from the corresponding sequential version but also from other two parallel im-
plementations. Moreover, it would be interesting to use other programming
languages either for CPU parallel programming (i.e., MPI) or for GPU parallel
programming (i.e., CUDA, OpenCL), in order to assess their benefits.
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