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Abstract. In this work we propose a Reduced Variable Neighborhood
Search (RVNS) algorithm, to handle the gene selection problem in cancer
classification. RVNS is utilized as the search method and gene subsets
obtained are evaluated by three learning algorithms, namely support vec-
tor machine, k-nearest neighbors, and random forest. Experiments are
conducted on five publicly available cancer related datasets, all charac-
terized by a small sample size to dimensionality ratio. Since RVNS seeks
gene subsets that yield accurate predictions for all three aforementioned
classifiers, the obtained results can be considered more reliable. To the
best of our knowledge, the proposed methodology is innovative due to the
fact that, it combines the Recursive Feature Elimination (RFE) heuristic
with a RVNS algorithm. Despite the large size of the problem instances,
the suggested feature selection scheme converges within reasonably short
time, when compared to similar methods. Results indicate high perfor-
mance for RVNS that, is further improved when the RFE method is
applied as a pre-processing step.

Keywords: Reduced Variable Neighborhood Search · Feature Selection
· Cancer Classification.

1 Introduction

Compelling technological advances, along with a well-established existent theo-
retical background, shaped the era of Big Data and Artificial Intelligence. These
terms, usually intertwined, imprint the development of tools capable of collecting
and storing complex data, as well as methods for mining knowledge from them.
Industry and organisations tested and adopted such techniques in a sense that
data-driven decisions and operations carry less bias and are, thus, more reliable.

However, the aforementioned trend results in datasets complicated enough
that it takes great computational effort for machines to analyze and makes im-
possible for human experts to interpret, e.g., microarray datasets. In an attempt
of achieving a fair trade-off between leveraging all the available information and
interpreting an objective’s results, Feature Selection (FS) emerged. On a high
level, FS can be considered as a technique that, ideally, maintains only relevant
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information, i.e., features, of a dataset about the imminent analysis’ scope and
discards the rest as irrelevant. Since the FS problem has been proven to be NP-
hard [19] and, in addition, in [21] it is implied that the choice of an effective
FS method is dataset dependent, various FS techniques have been proposed in
the literature. These can be arranged into four groups, namely Filters, Wrap-

pers, Embedded, and Ensemble. However, following the recent research studies
within the field, an observable shift towards hybridized FS schemes is appar-
ent [1,18,8,3,5]. In the next three paragraphs, all methods are shortly described
within a classification task context.

The Filter methods rely only on the intrinsic data characteristics, i.e., statis-
tical metrics. Such techniques benefit from a low time complexity and limit the
risk of model over-fitting since they do not take the learning algorithm’s perfor-
mance into consideration. The latter can be proven one of their most significant
drawbacks, since the predictive ability of a model is a significant concern for
domain experts.

Wrappers include techniques that continuously search into the feature space,
select a feature subset, evaluate its quality by, usually, one classifier and repeat
this process until some stopping criteria are met. The selection of a feature
subset is typically driven by an intelligent mechanism (e.g., metaheuristics) and
is not randomized. Despite being computationally more expensive than the filter
methods, these techniques yield more accurate results and manageable sized
solutions. Nevertheless, wrappers seem to undergo the risk of model over-fitting.

Trying to balance the pros and cons of the aforementioned FS classes, Em-

bedded methods emerged. As stated in [6], such methods use the core of the clas-
sifier to establish criteria to rank features. Finally, Ensemble techniques, acting
like ensemble of classifiers, combine methods described above on the assump-
tion that combining the output of multiple experts is better than the output of
any single expert [6]. Nonetheless, both of the aforesaid techniques come with
deficiencies. In particular, Embedded methods are generally driven by heuristic
approaches, thus leading to insufficient exploration of the solution space. Ensem-

ble FS schemes, on the other hand, require higher computational time than any
single FS technique they incorporate does. Moreover, the contribution of each FS
scheme to the final feature subset is not obvious and necessitates examination.

The purpose of this work is to propose an efficient search mechanism for
gene selection in cancer classification that limits the drawbacks of wrapper FS
techniques, i.e., the risk of model over-fitting and the high computational cost,
while it manages to obtain accurate results. To this end, we implement a Reduced

Variable Neighborhood Search (RVNS) algorithm that searches the solution space
in a systematic, yet computationally light, manner. Solutions provided by the
RVNS are shared across Support Vector Machine (SVM), k-Nearest Neighbor
(k-NN) and Random Forest (RF) classifiers for evaluation and their average
accuracy, along with the solution’s number of selected genes, are taken into
consideration by an appropriate evaluation function. As a result, the final gene
subsets obtained by our algorithm yield accurate predictions for more than one
learning algorithms and findings can be further used with more reliability.
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In the rationale that population-based meta-heuristics have been extensively
studied within the FS field, we provide a single-point search meta-heuristic algo-
rithm (i.e., RVNS) that, performs exceptionally in terms of accuracy, final gene
subset size, and convergence time. By applying the embedded Support Vector
Machine - Recursive Feature Elimination (RFE) technique as a pre-processing
step that significantly reduces the feature space, we suggest the RFE-RVNS hy-
brid method. Both RFE-RVNS and RVNS were tested on five high-dimensional
cancer-related datasets, frequently used in cognate research papers.

The structure of this work is as follows. In Section 2, we discuss similar
approaches within the gene selection problem, focusing on recent research work
and the methods they utilize. Next, we introduce our methodology in Section 3.
Section 4 presents the results of our methods on five datasets and a comparison
with related well-performing algorithms is quoted. Last comes a short summary
of our findings, as well as thoughts for future work and improvements, in Section
5.

2 Related work

Focusing on recently conducted studies, in [1] authors implemented two wrapper
methods, namely a Genetic Algorithm (GA) and a Geometrical Particle Swarm
Optimization (GPSO) to address the gene selection problem. The proposed FS
schemes use SVM as their learning algorithm which obtains noteworthy results,
after evaluating 4,000 solutions.

Another population-based approach is presented in the work of Alshamlan
et al. [3]. A Genetic Bee Colony (GBC) optimization algorithm is applied on a
reduced solution space, provided by the Maximum Relevance Minimum Redun-
dancy (MRMR) filter method. SVM’s accuracy is again selected as the primary
optimization parameter. The overall performance of the hybridized technique
is considered acceptable in terms of predictive capability and gene subset size.
However, parameter values indicate the requirement of great computational ef-
fort, since more than 8,000 evaluations occur.

In a more recent study [5], two hybrid algorithms are presented combining
both filter and wrapper FS methods. These two proposed approaches consist
of a pre-selection phase, carried out by filter techniques, followed by a search
phase that determines a good subset of genes for the classification. A wrapper
metaheuristic is responsible for the latter. From an accuracy standpoint, results
in eight datasets indicate competitive performance. The computational effort,
though, proves underwhelming, with tens of minutes and even hours of run-
time. Worth noticing, the classifiers utilized in the two methods are SVM and
k-NN, respectively.

Finally, valuable insights come from [18], where authors combine the SVM-
RFE embedded method with the MRMR filter one. The novelty of this research
work is that, genes are ranked by a convex combination of the relevance given by
SVM weights and the MRMR criterion. Results in this case are also acceptable,
even though gene subset sizes can not be considered small enough.
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With all referenced studies being after 2007, a trend towards hybridized FS
schemes becomes apparent. More specifically we note that, filters and embed-
ded methods are in many cases used as a pre-processing step in order to reduce
the vast solution space of the gene subset selection problem. Afterwards, wrap-
pers’ advantages being exploited, producing small and informative gene subsets.
Concerning the learning algorithms used, SVM and k-NN have been the most
popular choices.

3 Research methodology

In this section, we elaborate on all algorithms used within our research, as well as
how they are combined to form the proposed RVNS and RFE-RVNS FS schemes.

3.1 Reduced Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic method based on sys-
tematic changes in the neighborhood structure within a search, for the solution
of various optimization problems. A large number of successful applications of
VNS have already been proposed in the literature, [17,23]. In the years follow-
ing, several variations of VNS emerged, with Reduced VNS (RVNS) being one of
them. The essential difference between VNS and RVNS is that, the latter avoids
any kind of local search within each neighborhood structure, as shown in Algo-
rithm 1. This fact results in RVNS being computationally lighter than the basic
algorithm and, thus; a promising search strategy in large problem instances.

Algorithm 1: RVNS pseudocode for a minimization problem

initialize solution x

while stopping criteria are not met do

k = 1
while k ≤ kmax do

generate x′ a random solution from neighborhood Nk(x)
if evaluate(x′) < evaluate(x) then

x = x′

k = 1

else

k = k + 1
end

end

end

return x;

Each candidate solution s is represented as a binary, 1-dimensional array of
length N , with N denoting the number of genes in each dataset. For instance, a
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candidate solution in a dataset with five genes could be: s = [0, 1, 1, 0, 1] which
means that, the second, third, and the fifth genes of the dataset are selected;
while the first and the fourth are not.

Furthermore, the three following neighborhood structures (i.e., kmax = three)
are used by both RFE-RVNS and RVNS schemes:

1. Replace a selected gene of the incumbent solution with an un-selected one.

2. Replace two selected genes of the incumbent solution with an un-selected one.

If the incumbent solution has only one gene selected, return the incumbent

solution.

3. Add an un-selected gene to the incumbent solution. If there are no more

genes to add, return the incumbent solution.

The neighborhood order, which is also decisive, is as indicated above. In this
manner, RVNS first tries to improve the current solution by keeping the same
number of selected genes and, in case that fails, moves to the second neighbor-
hood that reduces the selected genes by one. It is only when both these strategies
are unsuccessful that the algorithm will seek a new solution with more selected
genes. It should be pointed out that, in all experiments, the initial solution is
generated arbitrarily with two randomly selected genes. Therefore, according to
the neighborhood definitions above, no exception-handling is required for the
case of zero selected genes.

Example 3.1 Assume a microarray dataset with five genes and an incumbent
solution s = [0, 1, 1, 0, 1]. Let us denote with Ni(s), i ∈ {1, 2, 3}, the sets of
neighboring solutions of s. According to the three neighborhood structures as
defined above, three resulting solutions could be s1 = [0, 1, 1, 1, 0] ∈ N1(s),
s2 = [1, 0, 1, 0, 0] ∈ N2(s) and s3 = [1, 1, 1, 0, 1] ∈ N3(s).

3.2 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a heuristic feature ranking approach
that determines the importance of each feature based on a learning model’s
coefficient attribute or a feature importance metric. RFE is capable of yielding
subsets with a specified number of features by repeatedly removing the least
significant one(s).

Appertaining to the embedded FS techniques, RFE needs to be associated
with a learning algorithm in order to be meaningful. Authors in [14], who intro-
duced the RFE algorithm, combined it with an SVM classifier and successfully
tested their SVM-RFE method on two microarray datasets.

In Algorithm 2, the process that SVM-RFE follows to rank all features is
given. More specifically, at each iteration, the least significant feature is removed
from the survivable features vector (i.e., s) and is appended to the ranked list of

features (i.e, r) one. The necessity of each feature is quantified by the extent of
contribution it occupies in the learning model. In the case of SVM, the impor-
tance of each feature is calculated through the w and c vectors, as illustrated in
the aforementioned algorithm.
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Algorithm 2: SVM-RFE pseudocode

Input: X0 = [x1, x2, ..., xk, ..., xl]
T // training examples

Input: y = [y1, y2, ..., yk, ..., yl]
T // class labels

initialize subset of surviving features s = [1, 2, ..., n]
initialize feature ranked list r = [ ]
while s 6= ∅ do

X = X0(:, s) // restrict training examples

α = SVM-train(X,y) // train the classifier

w =
∑

k
αkykxk // compute the weight vector

ci = (wi)
2, ∀i // compute the ranking criteria

f = argmin(c) // find the feature with the smallest ranking

r = [s(f), r] // update feature ranked list

s = s(1 : f − 1, f + 1 : length(s)) /* eliminate the feature with

smallest ranking criterion */

end

return r;

3.3 Learning Algorithms

Support Vector Machine In [9], Cortes and Vapnik proposed a remarkably ef-
fective learning algorithm called Support Vector Machine (SVM). SVM, concep-
tually implemented on a very simple idea, seeks for the surface, i.e., hyper-plane,
that can optimally segregate two-class training data. Predictions are based on
what side of the, already defined, hyper-plane future data are mapped into. Note
that SVMs can also be extended for multi-class classification tasks. Its simplicity,
flexibility, and satisfactory computational complexity render SVMs superior to
many supervised learning algorithms. As a result, several FS methods suggested
in the literature have adopted the aforementioned classifier as their primary
evaluation metric [1,3,5,11,14,18].

k-Nearest Neighbors k-Nearest Neighbors (k-NN) is another powerful super-
vised learning algorithm widely used within the FS process [5,8,22]. It is consid-
ered a lazy learning algorithm, i.e., it does not make any assumptions about the
underlying data distribution. Given a distance metric and a future data point
mapped into the feature space, the class label assigned to the latter depends on
the class labels of its k less-distant records. Leveraging mathematical topology’s
attributes, computation of the k-nearest neighbors can be efficiently achieved.

Random Forest A Decision Tree (DT) is a logical structure consisting of parent
and children nodes. In a high level approach, a splitting criterion is applied
on each parent node in an attempt to yield pure children nodes, i.e., nodes
that contain data points of one class, only. The Random Forest (RF) classifier
improves the predictive capability of a single DT by incorporating many DTs
that are built upon a random subset of data features. The class prediction of
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a future instance is justified by the majority of the partial class predictions
each DT makes. RF is, thus, an ensemble of classifiers and demonstrates high
performance in many machine learning applications, e.g., [4,10].

3.4 Hybrid RFE-RVNS method

In an attempt to enhance RVNS’s performance, we apply the RFE heuristic
approach as a pre-processing step. In that way, a significant number of possibly
redundant genes are eliminated and the resulting solution space is handed over
RVNS to search into. Therefore, a new search strategy is formed that we refer
to as RFE-RVNS. Figure 1 depicts the aforementioned process.

Fig. 1. The RFE-RVNS flowchart. The value of k indicates the neighborhood structure
the algorithm is searching into.
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Each candidate solution is evaluated by four metrics; the accuracy of the
three classifiers and the size of the incumbent gene subset. Consequently, we
define a fitness function that, is described below:

evaluate(s) = α ∗
3

a1(s) + a2(s) + a3(s)
︸ ︷︷ ︸

a(s)

+(1− α) ∗ g(s) (1)

where a1(s), a2(s), and a3(s) denote the accuracy the SVM, k-NN and RF
classifiers yield from solution s, respectively, and g(s) indicates the number of
selected genes. Assuming each predictive model performs at least as good as a
random classification, ai(s) ∈ [0.5, 1.0], ∀i ∈ {1, 2, 3} (binary classification), thus

3∑

i=1,3
ai(s)

∈ [1, 2], while g(s) is a positive integer restricted by the number of

genes in each dataset. Parameter α acts as weight to the average accuracy of the
three classifiers, while 1− α acts similarly to the gene subset size.

The evaluation function in Equation 1 was selected since it can offer a good
trade-off between the overall accuracy and the final number of selected genes.
Experimentation led us to setting α to 0.99; a value that, is consistent both with
our objective of finding informative gene subsets and with the co-domains of 3

a(s)

and g(s) in Equation 1.
A similar fitness function is used in [1] and manages to balance accurate

predictions and small gene subsets, although with different weight values and
using the accuracy of a single learning algorithm.

4 Experimental results and comparison

All learning algorithms mentioned, the RFE heuristic, as well as the data normal-
ization leverage the Python’s scikit-learn library, developed for data science pur-
poses. Experiments are conducted on an Intel i7-7700k 4-core processor, clocked
at 4.2Ghz, with 16Gb of RAM. Single runs of both RVNS and RFE-RVNS never
exceeded a minute, pre-processing included.

4.1 Parameter Settings

RVNS Along with the neighborhood structures defined in Section 3, an essen-
tial parameter of RVNS that should be specified is the algorithm’s termination
criteria. In our implementation, we set those to be 300 iterations. The latter
indicates that the RVNS algorithm evaluates exactly 300 solutions which is just
as 900 classifications, i.e., three classifications per evaluation.

RFE The RFE heuristic is applied with an SVM classifier. In each dataset, the
SVM-RFE method eliminates 95% of the genes that, are considered irrelevant.
The way of achieving this is by removing nine times a 10% (referring to the
initial number of genes) of the least important genes and, finally, a 5%. Let us
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note that, in a typical RFE execution, such an elimination-step is considered
quite large. In order to maintain the computational complexity low, and since
RFE is not the primary search method, we apply it with the selected parameters
we mentioned above.

Learning Algorithms Core parameters of the learning algorithms are empiri-
cally selected with two ends in mind; accuracy performance and computational
efficiency. Seeking for a balance between these two, we tested k-NN with k in
{1, 3, 5, 7, 9}. Additionally, various RF implementations, with number of DT’s in
{10, 20, 30, 40, 50} and pruning depth value in {10, 15, 20}, helped us proceed to
our final choice.

The number of neighboring classes that k-NN takes into consideration before
classifying an unknown patient is set to five and the RF classifier predicts class
labels by consulting with 20 10-depth pruned decision trees. Moreover, the SVM
classifier is implemented with a linear kernel meaning that, it searches for the
best linear hyper-plane that is able to discriminate the data. The accuracy ob-
tained from each learning algorithm is averaged after a 10-fold cross-validation.

4.2 Data Description and Preprocessing

The proposed methodology is tested on five publicly available cancer-related
datasets; the Leukemia , Lung, Ovarian, Colon, and Breast cancer datasets. The
first four were originally taken from the public Kent Ridge Bio-medical Data
Repository, which is now hosted in the ELVIRA Biomedical Data Repository
(http://leo.ugr.es/elvira/DBCRepository). The Breast Cancer Dataset was
available under https://data.mendeley.com/datasets/v3cc2p38hb/1. Sam-
ple size, dimensionality, and the number of classes of each dataset are depicted
in Table 1.

Table 1. Dataset characteristics

Dataset Sample size Number of genes Number of classes Reference

Leukemia 72 7,129 2 [12]
Lung 181 12,533 2 [13]
Ovarian 253 15,154 2 [20]
Colon 62 2,000 2 [2]
Breast 590 17,814 2 [7]

All data values are normalized and missing ones are replaced by zero’s, i.e.,
their mean. It should be noted that, only in the Breast cancer dataset, a few
missing values are found.

http://leo.ugr.es/elvira/DBCRepository
https://data.mendeley.com/datasets/v3cc2p38hb/1
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4.3 Performance of RFE-RVNS and RVNS

The performance of the proposed algorithms on the selected datasets is depicted
in Tables 2-6. The metrics measured are the Best, Mean, and Worst values
of each of the classifiers’ accuracy, along with the respective number of genes
values (#Genes). The Average accuracy metric, which is measured as the average
accuracy value of SVM, k-NN and RF in a single run, should not be interpreted as
a typical learning algorithm’s accuracy, but rather as the ability of the proposed
algorithms to obtain informative genes for all classifiers.

Table 2. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Leukemia dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 99.58 98.88 97.64 97.44 94.26 89.35
SVM accuracy 100 98.75 94.58 100 95.18 86.67
k-NN accuracy 100 99.58 97.08 97.5 93.84 87.56
RF accuracy 100 98.32 97.08 97.5 93.76 87.2
#Genes 3 3.8 5 2 4.7 8

Table 3. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Lung cancer dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 99.44 98.65 97.22 98.55 95.67 91.88
SVM accuracy 99.44 98.73 97.22 98.36 95.75 91.17
k-NN accuracy 100 98.67 97.22 98.36 95.19 91.14
RF accuracy 100 98.56 97.22 98.92 96.07 93.33
#Genes 2 2.2 3 2 2.5 3

Commenting upon figures in Tables 2, 3, 4, and 6, RFE-RVNS managed to
obtain a maximum, i.e., the maximum of bests, of 100% accuracy and a mini-
mum, i.e., the minimum of worst, of 97.22%, while the corresponding values for
RVNS are 99.10% and 89.35%, respectively. In the case of the Colon dataset, both
RFE-RVNS and RVNS faced some adversities in finding small and informative
gene subsets with a mean accuracy of 91.23% and 87.22%, respectively. Notable
is the fact that, in the Ovarian dataset, RFE-RVNS managed to simultaneously
yield 100% accuracy for all three classifiers.

Concerning the gene subset size, the mean number of selected genes is im-
pressively small under both approaches, with 3.8-gene and 4.7-gene subsets being
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Table 4. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Ovarian cancer dataset after ten independent
runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 100 99.18 97.87 98.67 96.94 94.77
SVM accuracy 100 99.49 97.62 99.6 98.06 95.63
k-NN accuracy 100 99.21 98 98.4 97.04 94.52
RF accuracy 100 98.85 97.6 95.74 95.74 91.39
#Genes 2 2.4 3 3 4.1 7

Table 5. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Colon cancer dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 93.73 91.23 88.57 89.68 87.72 85.24
SVM accuracy 96.90 93.36 88.57 93.33 89.50 84.05
k-NN accuracy 96.90 92.69 89.05 90.00 87.79 84.05
RF accuracy 90.24 87.64 84.05 88.57 85.88 80.48
#Genes 4 5.5 8 3 5.5 8

Table 6. Performance of RFE - RVNS and RVNS algorithms when applied with the
SVM, k-NN and RF classifiers on the Breast cancer dataset after ten independent runs.

RFE-RVNS RVNS

Metric Best Mean Worst Best Mean Worst

Average accuracy 99.27 98.83 98.37 99.1 98.35 97.06
SVM accuracy 99.32 98.83 98.47 99.32 98.39 96.95
k-NN accuracy 99.32 98.97 98.31 99.32 98.39 97.12
RF accuracy 99.32 98.7 98.14 99.16 98.29 97.12
#Genes 1 1.7 2 2 2.5 3
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the largest average ones for RFE-RVNS and RVNS respectively. Again, in the
Colon dataset, the behavior differs a little with slightly larger gene subsets.

While both methods perform worthy, not only in terms of yielding informa-
tive, to all classifiers, gene subsets, but also small sized ones, the dominance of
RFE-RVNS over RVNS cannot be overlooked.

Questioning whether one learning algorithm is favored over the others, or
whether their predictive ability significantly varies, Figure 2 shows that only in
the case of the Colon cancer dataset, the RF model performs somewhat worst.

Fig. 2. SVM, k-NN and RF mean accuracy in each dataset obtained by RFE-RVNS.

Trying to decipher our method’s behavior on the Colon dataset, we depict
the classifiers’ accuracy on current best solutions found every 15 iterations of a
typical RVNS execution. The graphs illustrated in Figure 3 indicate that, gene
subsets obtained often improve one learning algorithm’s performance but worsen
another’s, e.g., iterations 40 and 145. This phenomenon adds to our intention of
implementing a gene selection strategy that returns informative gene subsets for
more than one classifier, in the sense of quality and reliability.

4.4 Comparison

As stated earlier, the proposed fitness function tries to achieve high performance
on three learning algorithms while maintaining a small gene subset size. How-
ever, most related work was conducted by targeting one or two ends. Thereby,
within the context of a search strategy comparison, the objective function of
RFE-RVNS and RVNS is modified in order to take only the SVM’s accuracy
into consideration, meaning that only a third of the classifications originally
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Fig. 3. SVM, k-NN, RF and average accuracy values from a typical execution of RVNS
on the Colon dataset.

made will occur. That allows us to intensify the search capability of RFE-RVNS
and RVNS by increasing the iterations from 300 to 500 and 1,000 respectively.
Comparatively, in most related studies, wrapper methods tend to evaluate a few
thousands candidate solutions as mentioned in Section 2.

It is also in the same section that we refer to the Genetic Algorithm (GA) [1],
the Geometrical Particle Swarm Optimization (GPSO) [1], the Genetic Bee
Colony (GBC) [3] and the Maximum Relevance Minimum Redundancy - SVM-
RFE (MRMR+SVM) [18] algorithms. Furthermore, in Table 7, performance of
FS schemes like the Multiple Filter Multiple Wrapper (MFMW) [15] and the
Ensemble Neural Network (ENN) [16] is presented. Lastly, it must be pointed
out that, the Feature Selection - Random Projection (FS+RP) [24] method does
not appertain to typical FS techniques presented in this paper; instead, it is as-
sociated with the feature extraction ones. However, we proceed to a comparison
with it since, to the best of our knowledge, no other FS methods tested on the
exact Breast cancer dataset can be found in the literature.

In Table 7, results indicate that RFE-RVNS outperforms well-known gene
selection methods in all datasets except for the Colon one, while RVNS also
obtains notable results. Thus, a small, yet informative, gene subset can be suc-
cessfully obtained under a Variable Neighborhood Search strategy. Compared to
similar methods, our algorithms require less amount of computational time since
they evaluate significantly less candidate solutions.
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Table 7. The performance of RFE-RVNS and RVNS algorithms, when applied only
with the SVM classifier, compared to similar methods.

Reference Leukemia Lung Ovarian Breast Colon

RFE-RVNS 99.86[4] 99.51[3] 99.80[3] 99.12[2] 96.69[5]
RVNS 98.84[5] 98.67[3] 98.55[4] 98.66[2] 93.74[6]
GA [1] 95.86[4] 99.49[4] 98.83[4] - 100[3]
GPSO [1] 97.38[3] 99.00[4] 99.44[4] - 100[2]
GBC [3] 96.43[5] - - - 91.51[5]
MFMW [15] - 98.34[6] - - 95.16[6]
MRMR+SVM [18] 98.35[37] - - - 91.68[78]
ENN [16] - - 99.21[75] - 81.48[-]
FS+RP [24] - - - 98.97[>100] -

5 Conclusions and Future Work

In this paper, our aim was to suggest an efficient wrapper feature selection
method capable of yielding informative gene subsets for cancer classification.
Therefore, we proposed a Reduced Variable Neighborhood Search algorithm as
the primary search strategy. In many cases though, performance of different
learning algorithms may significantly vary, despite learning from the same data
(i.e., gene subsets). Consequently, we evaluated each gene subset by three clas-
sifiers, i.e., support vector machine, k-nearest neighbors and random forest, and
balanced the extra computational effort by enforcing considerably less, compared
to the literature, classification attempts. In addition to that, we applied the Re-
cursive Feature Elimination heuristic method to reduce the feature space which
was then given to RVNS to search into.

Both RFE-RVNS and RVNS performed well despite the large size of problem
instances and the computationally intensive 3-model building. Results on five
well-known publicly available microarray datasets indicate high performance of
RVNS that manages to obtain high accuracy for all three classifiers while still
keeping the gene subset size relatively small. By applying RFE and executing
the RVNS algorithm on a significantly reduced feature space (5% of the initial
size), the total performance is considerably improved. As a result, small-sized
gene subsets obtained can be suggested to experts with higher reliability.

We conclude by acknowledging that, an algorithm’s robustness constitutes
an important performance criterion. The development of an appropriate initial-
ization (construction) method might add to that direction. Further study on the
latter, along with testing our method on more datasets and different domains
(e.g., text classification) will concern us in future work.
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