
A variable neighborhood search approach for solving a
real-world hierarchical multi-echelon vehicle routing

problem involving HCT Vehicles

Marduch Tadarosa,b, Angelo Sifalerasc,∗, Athanasios Migdalasa

aQuality Technology and Logistics, Lulea University of Technology, Lulea, 97187, Sweden
bCommunications and Transport Systems Department of Science and Technology 60174

Norrkping Sweden
cDepartment of Applied Informatics, School of Information Sciences, University of

Macedonia, 156 Egnatia Str., Thessaloniki 54636, Greece

Abstract

This paper studies the Hierarchical Multi-Switch Multi-Echelon VRP (HMSME-
VRP), a newly introduced VRP variant based on a real-world case involving
High Capacity Vehicles (HCV). The problem originates from the policies of
a distribution company in the Nordic countries where HCVs of up to 34.5
meters and up to 76 tons are allowed. The HMSME-VRP offer a new way
to model distribution problems to cover large geographical areas without
substantial costs in infrastructure. Furthermore, it adds complexity to the
standard VRP and, as such, remains NP-hard and difficult to solve to opti-
mality. Indeed, it has been demonstrated that only very small instances can
be solved to optimality by a commercial solver. Thus, in order to handle
instances of real-world size, we propose two General Variable Neighborhood
Search (GVNS) procedures, the second of which is adaptive, utilizing an
intelligent reordering mechanism. In order to evaluate the proposed proce-
dures, 48 benchmark instances of various sizes and characteristics are gen-
erated and made publicly available, comprising of clustered, random, and
semi-clustered customers. The computational results show that both GVNS
procedures outperform the exact solver. Additionally, the adaptive version
outperforms the conventional version based on both average and best solu-
tions. Furthermore, we present a statistical analysis to verify the superiority
of the adaptive version.

Keywords: Variable Neighborhood Search, Adaptive search, High

∗Corresponding author

Preprint submitted to Computers & Operations Research March 5, 2024



Capacity Transports, Vehicle Routing

1. Introduction

In today’s society, transports are essential to secure the necessary products
and services to maintain our standard of living. However, the transportation
sector is one of the most polluting industries and one of the most significant
contributors to greenhouse gas emissions. Following a decline in emissions
from the transportation sector in the EU between 2019 and 2020, there was
an increase in 2021, establishing it as the sector with the highest greenhouse
gas emissions in the EU (European Commission, 2023). In Nordic coun-
tries, geographically characterized by long distances between major cities,
the quest for efficient, cost-effective, and environmentally friendly trans-
portation of goods necessitated the adaptation of longer vehicles. Finland,
in particular, recognized this need early on and became the first country
in the EU to allow longer and heavier vehicles, that is, vehicles up to 34.5
meters long and up to 76 tons are now permitted. Such transports and
vehicles are referred to as High Capacity Transports (HCT) and High Ca-
pacity Vehicles (HCV) respectively. Sweden, where the length is currently
limited to 25.25 meters, which is, however, longer than in most European
countries, has recently proposed a change to the EU Commission to allow ve-
hicles up to 34.5 meters in length, reflecting thus the growing recognition of
the importance of longer vehicles in this region for efficient and sustainable
transportation.

Compared to conventional vehicles, HCVs consume more fuel and energy
and release more emissions. However, since their loading capacity is larger,
fewer vehicles are needed to deliver the same amount of goods. Therefore,
the cost of transportation and the emissions caused per transported unit is
decreased. Previous studies have shown that substantial savings in cost and
emissions can be obtained by HCVs (Leach and Savage, 2012). The use of
HCVs has been estimated to reduce the total mileage of trucks in Finland by
4% only in 2017 alone (Liimatainen et al., 2020), which represents savings
of approximately 126 million e and at least 0.1 Mt of CO2 emissions.

In this paper, we study the Hierarchical Multi-Switch Multi-Echelon
VRP (HMSME-VRP), a newly introduced variant of the Vehicle Routing
Problem (VRP) based on a real-world case involving HCVs. The problem
originates from the policies of a distribution company in the Nordic countries
that has to cover large geographical areas and where the cost of establishing
facilities is high. An advantage of the problem is its combined use of different

2



fleets of vehicles. In terms of loading capacity, larger vehicles are primarily
used for longer distances, whereas smaller vehicles are only used for shorter
distances and distribution routes. The HMSME-VRP adds complexity to
the standard VRP and, as such, it remains NP-hard and difficult to solve to
optimality. Indeed, only very small instances have been shown to be solved
to optimality by a commercial solver (Tadaros et al., 2023).

In the HMSME-VRP, vehicles carry up to three interchangeable con-
tainers called swap bodies through a non-predetermined network hierarchy,
and deliveries to customers are managed either by routing directly from a
central depot or through intermediate facilities called switch points. At the
switch points, swap bodies can be transferred to other vehicles. The prob-
lem includes two types of vehicles; original vehicles, which originate at a
central depot and can carry up to three swap bodies, and local vehicles,
which originate at a switch point and can only carry one swap body. At
each active switch point, an original vehicle can detach swap bodies which
are then attached to a local vehicle. Each local vehicle starting at a switch
point performs a route serving assigned customers and then returns to the
same switch point. When an original vehicle has detached a swap body at
a switch point, it either performs a customer route similar to a local vehicle
or continues to another switch point to unload further swap bodies. Before
returning to the central depot, the original vehicle visits all the previous
switch points to re-attach previously detached swap bodies. Customers are
geographically dispersed and have individual demands that must be met by
one vehicle carrying only one swap body at a time. The HMSME-VRP con-
siders fixed and variable routing costs for vehicles and swap bodies. Each
vehicle, original or local, can only perform one customer route, which in
turn is constrained by the vehicle and swap body capacity.

The purpose of this paper is to propose an efficient metaheuristic that
can solve larger and more realistic instances. We utilize two General Vari-
able Neighborhood Search (GVNS) procedures and employ several neigh-
borhood structures in the local search’s intensification and diversification
phase. Both algorithms have been evaluated against Gurobi v9.5 on a set of
small instances, and the result shows that the algorithms obtain good qual-
ity solutions in a short time. In almost all instances where Gurobi could
provide bounds, the same result or better than Gurobi is found. The VRP
and VRP variants have previously been solved by Variable Neighborhood
Search with good results (Kalatzantonakis et al., 2020, 2023). This paper
is the first attempt to solve real-life-sized instances of the HMSME-VRP
using metaheuristics. Furthermore, we propose 48 realistic-size benchmark
instances on which the proposed GVNS algorithms are tested and evaluated.

3



The size of the instances spans from 31 to 284 customers and from 2 to 29
switch points.

The remainder of this paper is organized as follows: In Section 3 the
problem is described and discussed. Section 2 reviews related problems and
outlines the difference between these problems and HMSME-VRP. The solu-
tion approach and the proposed GVNS algorithms are described in Section
4, followed by the computational results and statistical tests in Section 5.
We conclude the article in Section 6 with conclusions and suggestions for
future research.

2. Literature Review

As a variant of the VRP, the HMSME-VRP resembles and combines the
features of other extensions and variants of the basic VRP. In this section,
we discuss such variants and contributions related to them. We also discuss
how the HMSME-VRP differs from other variants.

2.1. Truck and Trailer Routing Problem

The Truck and Trailer Routing Problem (TTRP) was formally intro-
duced by Chao (2002) to address real-life constraints, such as limited ma-
neuver space or inaccessible locations. In the TTRP, a limited number of
trucks and trailers serve customers from a central depot. Furthermore, cus-
tomers can be characterized as truck or vehicle customers. Truck customers
require truck-only service, while vehicle customers can be served by a truck
or a complete vehicle, where a complete vehicle is a truck with an additional
trailer. Complete vehicles can detach their trailers at temporary parking
locations, forming three route types: pure truck routes, pure vehicle routes,
and complete vehicle routes. The goal of TTRPs is generally to minimize
total travel costs while ensuring customers are served by suitable vehicles.

Chao (2002) developed a construction method and tabu search heuristic
for solving the TTRP on benchmark instances. Lin et al. (2011) extended the
TTRP to include time windows and employed a simulated annealing-based
heuristic on 54 instances extended from the Solomon (1987) VRPTW bench-
mark, and Mirmohammadsadeghi and Ahmed (2015) considered stochastic
demand and utilized a memetic algorithm with various procedures to en-
hance solutions based on modified instances.

Further TTRP extensions include the Single TTRP with Satellite Depots
by Villegas et al. (2010), which considers transshipment points independent
of customer locations en route. Drexl (2011) introduced the Generalized
TTRP, which incorporates time windows. Additionally, Accorsi and Vigo

4



(2020) considered truck and vehicle customers with and without parking
facilities and parking only locations.

2.2. Swap-Body Vehicle Routing Problem

The VeRoLog solver challenge in 2014 introduced a variant of the TTRP
called the swap-body VRP (SB-VRP), which is a generalization of the
TTRP. It applies to an asymmetric network comprising a depot, swap lo-
cations, customers, and two vehicle configurations: trucks (with one swap
body) and trains (with two swap bodies). Some customers can only be served
by trucks (truck customers), while others can be served by either a truck or
a train (train customers). Additionally, some customers’ demands exceed
the capacity of a single swap-body, making it necessary to serve them with
a train (mandatory train customers). All routes start and end at the de-
pot, and vehicles leaving the depot must return with the same swap-bodies.
However, swap bodies cannot change vehicles during a tour. The objective
is to minimize fixed and variable vehicle costs within a specific time frame,
ensuring every customer is served by an appropriate vehicle. Trains have
the flexibility to visit any swap location within the network, where swap-
bodies can be parked, picked up, swapped, or exchanged, each action taking
a certain amount of time.

The SB-VRP has received little attention in the literature, and most
of the papers derive from the VeRoLog challenge. Most works adopt the
cluster-first route-second approach. Huber and Geiger (2014) combined this
approach with an iterated variable neighborhood search, comparing both
sequential and parallel versions. Results showed competitive performance,
deviating by only 0.36% from the best-known VeRoLog solution, albeit with
the constraint of a single swap location per vehicle. Miranda-Bront et al.
(2017) explored various construction heuristics using a cluster-first route-
second approach, employing a greedy randomized adaptive search procedure.
Absi et al. (2017) introduced a relax-and-repair approach involving a parallel
memetic algorithm for heterogeneous fleet VRP. Todosijević et al. (2017)
presented a mixed-integer programming formulation alongside the cluster-
first route-second approach. Toffolo et al. (2018) devised a stochastic local
search algorithm, which outperformed previous methods and improved best-
known solutions in the VeRoLog Solver Challenge for most instances.

The HMSME-VRP bears resemblance to the SB-VRP in that both prob-
lems involve the use of swap bodies and vehicles departing from a central
depot, with the option to visit intermediate facilities or switch points. How-
ever, the HMSME-VRP encompasses a single customer set, only accessible
by trucks carrying one swap body at a time. In contrast, the SB-VRP deals

5



with three distinct customer sets, each demanding specific vehicle configu-
rations. Moreover, in the SB-VRP, swap bodies remain with their assigned
vehicles throughout service. In the HMSME-VRP, two vehicle fleets are
employed, and swap bodies can change vehicle assignments, resulting in a
non-pre-determined hierarchical structure.

2.3. Two-Echelon Vehicle Routing Problem

In the two-echelon vehicle routing problem (2E-VRP) and its extensions,
a two-level network is considered. Deliveries to customers are routed via in-
termediate facilities, known as satellites. The goal is to optimize primary
and secondary routes while fulfilling customer demands. At the depot, a fleet
of primary vehicles is stationed, while secondary vehicles originate from the
satellites. If each satellite has a designated capacity, the problem becomes
the 2E-CVRP, as introduced by Perboli et al. (2011). Additionally, a han-
dling cost is incurred whenever a satellite is used for loading or unloading.
Unlike the HMSME-VRP, vehicles are restricted from moving between the
echelons. The first echelon, linking the depot and the satellites, allows for
split deliveries, where vehicles can visit one or more satellites before return-
ing to the depot. However, split deliveries are not permitted at the second
echelon, connecting satellites to customers, meaning secondary vehicles load
at satellites and then visit one or more customers before returning to the
same satellite, ensuring each customer is visited just once.

The 2E-VRP shares a hierarchical structure and multiple vehicle fleets
with the HMSME-VRP, but it does not allow vehicles to move between eche-
lons in its standard version. In the 2E-VRP, the structure is predetermined,
with dedicated vehicle fleets for each echelon, while the HMSME-VRP has
a hierarchical but non-predefined structure.

There are, however, some examples in the 2E-VRP literature where cus-
tomers can be served directly from the central depot by a first-echelon ve-
hicle. In the context of city logistics, Anderluh et al. (2017) and Anderluh
et al. (2021) address scenarios without swap bodies, involving unloading and
loading operations at intermediate facilities. Deliveries in the second eche-
lon are handled by bikes originating from a city center depot. Customers
are divided into van or bike customers, each with its own predetermined
vehicle fleet, where no such distinction is present in the HMSME-VRP. Fur-
thermore, in the HMSME-VRP, when a customer is visited directly from
the depot, the vehicle cannot proceed to a switch point to detach or attach
any swap bodies. In contrast, Anderluh et al. (2017) and Anderluh et al.
(2021) allow alternating visits to van customers and satellites. Satellites
effectively serve as demand nodes for the first-echelon vehicles. Moreover,

6



a second-echelon vehicle can complete multiple routes in contrast to the
HMSME-VRP, where one swap body corresponds to one customer route.
In Anderluh et al. (2021), a third set of customers, referred to as the grey
zone, is introduced. Unlike the other sets, vehicle types for this set are not
predefined; the optimization process determines suitable vehicles for these
customers.

Further examples include Song et al. (2017) which allows direct service
from the depot by first-echelon vehicles, but a vehicle reaching a satellite
cannot continue to serve customers, unlike the HMSME-VRP. For the crowd
shipping problem with transshipment points, Macrina et al. (2020) only
permits occasional drivers to pick up a single parcel at a transshipment
point, resulting in direct deliveries in the second echelon. The field of 2E-
VRP and its variants is well studied in the literature and the interested
reader is referred to the survey by Cuda et al. (2015) and more recently
Sluijk et al. (2022).

Even if the problems discussed share some characteristics with the HMSME-
VRP, they differ in several distinct features of the problem, such as cus-
tomers, vehicles, and the network. Table 1 further illustrates these differ-
ences.

Table 1: Characteristics of the HMSME-VRP and basic variants of the 2E-VRP, TTRP,
and SB-VRP
Characteristics HMSME-VRP 2E-VRP TTRP SB-VRP
Customers One type of cus-

tomers
One type of cus-
tomers

Two types of cus-
tomers

Three types of cus-
tomers

Vehicles Two types of vehi-
cles

Two types of vehi-
cles

One type of vehi-
cles

One type of vehi-
cles

Same swap-body
capacity

- Differentiated
truck/trailer ca-
pacity

Same swap-body
capacity

All vehicles can
serve any customer

Only secondary
vehicles can serve
customers

Predetermined ap-
plicable vehicle for
each customer

Predetermined ap-
plicable vehicle for
each customer

Network Non-
predetermined
hierarchy

Predetermined hi-
erarchy

Non-hierarchical Non-hierarchical

Intermediate- Switch point Satelite Specific customer
locations

Pre-determined
swap-locations

facilities Swap-body trans-
fer

Loading and un-
loading

Park and pick-up Park, pickup, swap
and exchange

3. Problem Description

In the HMSME-VRP, in addition to a central depot, there is a non-predetermined
hierarchy of intermediate facilities called switch points. Commodities are

7



loaded on swap-bodies which are carried by vehicles originating at the cen-
tral depot. A swap-body is a carrier that can be detached from a vehicle
and stand on fold-out support legs at the same height as the vehicle or be
loaded on a railway carriage. Switch points can be described as enhanced
parking lots and are predetermined locations with enough space for a swap
body to be detached from one vehicle and attached to another without any
additional equipment.

The HMSME-VRP can be defined on a directed graphG = (N,A), where
N represents the set of nodes and A represents the set of arcs. The set of
nodes includes the central depot (O), switch points (S), and the customers
(C). Thus, N = O ∪ S ∪ C. We further define K = S ∪ C and W = O ∪ S.
Each customer c ∈ C has a corresponding demand dc. A customer can only
be visited by one vehicle with only one attached swap body, and each arc
(i, j) ∈ A has a corresponding cost cij .

A fleet of homogeneous vehicles in terms of capacity belongs to the cen-
tral depot. These vehicles, referred to as original vehicles, can carry up
to three swap bodies, and all swap bodies have the same loading capacity.
At the same time, the set of switch points shares another fleet of homo-
geneous vehicles, local vehicles. Unlike original vehicles, local vehicles can
only carry one swap body at a time. Each type of vehicle has a corre-
sponding fixed cost if used. Therefore, the total vehicle fleet is heteroge-
neous. For a local vehicle to perform a customer route, an original vehicle
must transfer one of the swap bodies it carries to the local vehicle at the
switch-point from which it departs. All customer routes must end at their
starting point, and all swap bodies must be returned to the central depot.
This means that an original vehicle departing from the central depot can
visit customers directly if and only if one swap body is attached; other-
wise, if two or more swap bodies are attached to it, it must visit at least
one switch point. An original vehicle can detach at most two swap bod-
ies, so a second switch point can be visited from a previous switch point.
Therefore, possible delivery arcs are (o, s) ∪ (s, c) o ∈ O, s ∈ S, c ∈ C, or
(o, s) ∪ (s, s′) ∪ (s′, c) o ∈ O, s, s′ ∈ S, c ∈ C and, (o, c) o ∈ O, c ∈ C.

The aim of the problem is to design distribution routes for original vehi-
cles originating at the central depot and for local vehicles originating from
any switch point, determine the number of vehicles, original and local, and
swap bodies required to satisfy demand, and determine which switch points
should be used. We further make the following assumptions:

• The demand of each customer is known and deterministic

• Vehicles and swap-bodies are capacitated

8



• Only one trip can be performed by each vehicle

• The depot and switch points are uncapacitated

• Locations of the depot and switch points are fixed

The objective is to minimize fixed and variable routing costs for vehicles and
swap bodies, which is described mathematically in Equation 1.

minTC =
∑
i∈N

∑
j∈N

∑
v∈Vo

cij · qvij +
∑
i∈K

∑
j∈K

∑
v∈Vs

∑
t∈T

cij · zvtij

+
∑
v∈Vo

fv · c1v +
∑
v∈Vs

fv · c2v +
∑
t∈T

bt · c3t .
(1)

Where qvij is a binary variable equal to 1 if an original vehicle v ∈ Vo

traverses arc (i, j) ∈ A, zvtij is a binary variable equal to 1 if local a vehicle v ∈
Vs with swap-body t ∈ T traverses arc (i, j) ∈ K. Furthermore, fv is a binary
variable indicating if a certain vehicle v ∈ V is used, whereas binary variable
bt indicates if swap-body t ∈ T is used. For the complete mathematical
model, the interested reader is referred to Tadaros et al. (2023). A graphical
representation of a feasible solution to the HMSME-VRP is depicted in
Figure 1.

9



Table 2: Node coordinates
for graphical representa-
tion in Figure 1

D (5, 5)
c1 (0, 0)
c2 (3.5, 8.25)
c3 (5, 8.25)
c4 (7, 9.25)
c5 (8.25, 10.25)
c6 (9.5, 9.5)
c7 (9, 7)
c8 (10.25, 7.75)
c9 (7.75, 5)
c10 (7.75, 3)
c11 (6.5, 3.25)
c12 (4.5, 3)
c13 (3, 2.75)
c14 (0.5, 3.25)
c15 (0.75, 2.25)
c16 (1.75, 3)
c17 (1.75, 6.5)
c18 (0.75, 4.75)
c19 (0.25, 6)
s1 (3.5, 4.5)
s2 (5.5, 6.75)
s3 (7.5, 7.75)

O
V
1

OV
1

OV2

O
V1

LV
2

LV1

OV3

OV2

LV4

LV3

D

s2

s3

c1

c2 c3

c4

c5

c6

c7

c8

c9

c10
c11

s1

c12c13

c14

c15

c16

c18

c19

c17

Figure 1: Graphical representation of a feasible solution for the
HMSME-VRP.

The instance in Figure 1 includes 19 customers, 3 switch points and requires
3 original vehicles, 4 local vehicles, and 7 swap bodies. The original vehicle,
OV1, departs from the depot with three swap bodies; It first approaches the
switch point S2 to detach one swap body before continuing to the switch
point S3 to detach a second swap body. Once the two swap bodies have been
detached, the vehicle continues with a customer tour serving customers c6,
c5, and c4. As soon as the swap bodies have been detached from OV1, local
vehicles attach them and perform customer tours on their own; LV1 starting
from S2 and LV2 starting from S3. When OV1 has finished its customer
tour, it returns first to S3 and then to S2 to re-attach the swap bodies
before returning to the depot. OV2 follows a similar procedure but only
visits S1 where it detaches two swap bodies at once, which are assigned to
local vehicles LV3 and LV 4. Finally, OV3 serves customers directly from
the depot with only one swap body attached. Assuming that the instance
parameters in Eq. 1 have the values 10, 5, and 1 for c1v, c

2
v, and c3t , which

corresponds to the fixed cost of using an original vehicle, local vehicles, and
a swap body, respectively. Furthermore, if cij corresponds to the Euclidean
distance between nodes i and j, the solution depicted in Figure 1 has an

10



objective value of 116.92. Whereas the total distance traveled by all vehicles
equals 59.92, the use of the original vehicles equals 30, and the fixed costs of
the local vehicles and swap bodies used are equal to 20 and 7, respectively,
and hence 116.92 in total.

4. Proposed solution method

It is well known that the VRP is an NP-hard problem (Toth and Vigo,
2002); therefore, as an extension of the VRP, the HMSME-VRP adds fur-
ther complexity and makes it computationally difficult to solve. Previous
attempts have shown that only small instances can be optimally solved us-
ing commercial solvers (Tadaros et al., 2023). Such instances included up
to three switch points and 12 customers. However, slightly larger instances,
including twenty customers and six switch points, could not be solved in
498,000 seconds. Therefore, it is apparent that heuristics or metaheuristics
are needed to solve larger and more realistic-sized instances. To this end, in
this paper, two General Variable Neighborhood Search (GVNS) procedures
are developed and used to solve several instances of the HMSME-VRP.

4.1. Variable Neighborhood Search

VNS, first introduced by Mladenović and Hansen (1997), is a metaheuristic
for solving global and combinatorial optimization problems and has previ-
ously been successfully applied to versions of the VRP. Guo et al. (2022)
developed a VNS algorithm for the VRP with intercity ride sharing. Liu and
Jiang (2022) designed an effective VNS algorithm for the 2E-VRP with si-
multaneous pickup and delivery demands considering constraint relaxation,
expanding the search space to the infeasible region. Smiti et al. (2020)
developed a Skewed-GVNS algorithm for the cumulative capacitated VRP,
whereas Pei et al. (2020) applied a GVNS algorithm for the traveling re-
pairman problem with profits and obtained new best solutions for most
instances.

The VNS framework is trajectory-based and flexible for building heuris-
tics, meaning it manages a single solution in each step. The main idea of
VNS is a systematic change of neighborhoods in an intensification phase,
intending to find a local optimum and a diversification phase to escape the
valley of the local optimum (Hansen et al., 2019; Brimberg et al., 2023).
Furthermore, it is based on the facts that a local optimum with regard to
one neighborhood structure is not necessarily so far from another and that

11



a global optimum is also a local optimum considering all possible neigh-
borhood structures. Lastly, local optima with respect to one or several
neighborhoods are relatively close to each other.

It should also be noted that, VNS is a different metaheuristic method
compared to Large Neighborhood Search (LNS). This is due to the fact that,
the latter only uses one large neighborhood in its local search step (intensi-
fication phase) instead of a variable number of different neighborhoods as it
is done by the VNS methodology.

The systematic search to find an optimal or near-optimal solution is
repeated until a particular stopping criterion is met and includes three es-
sential elements. These are:

• Shaking procedure, that is, the diversification phase to escape local
optimum.

• Neighborhood Change Step, the systematic change of neighborhood,
i.e., guiding the search of the solution space.

• Improvement Procedure, i.e., the intensification phase aiming to im-
prove the incumbent solution.

The search can be organized in a deterministic or stochastic way or as
a combination. Over the years, several versions of the VNS have been pro-
posed and successfully applied, such as the Basic VNS (BVNS), Variable
Neighborhood Descent (VND), and General VNS (GVNS). For example,
the BVNS incorporates deterministic and stochastic neighborhood changes,
whereas the local search procedure is deterministic, and the shaking pro-
cedure is stochastic. The local search procedure can utilize either the best
or the first improvement search strategy. VND includes a local search pro-
cedure and a deterministic neighborhood change step. Apart from this in-
tensification phase (local search), VND does not include any diversification
mechanism to escape from local optima. This is the crucial difference from
the (more complete) VNS method, which additionally randomly selects a
point from a neighborhood. This latter part of VNS is done in order to avoid
cycling, which might occur with a deterministic rule. Thus, this diversifica-
tion mechanism (also known as shaking operation in the VNS terminology)
makes the VNS a stochastic method, contrary to the VND variant. Several
neighborhood structures can be examined to improve the incumbent solu-
tion, either sequentially or nested (Hansen et al., 2017). However, most VND
variants examine the different neighborhood structures sequentially (Duarte
et al., 2018) and differ in how the search proceeds when an improvement of

12



the incumbent solution is found in one neighborhood. The most represented
versions in the literature are the Basic VND (bVND), which restarts the
search from the first neighborhood, and the Pipe VND, which continues the
search from the same neighborhood. In Cyclic VND, the search is resumed
by examining the next neighborhood, and in Union VND, where all the pre-
defined neighborhoods are treated as a single one, the search continues in
the same large neighborhood. In addition, there are adaptive search strate-
gies. These use one of the strategies described above, but the order of the
operators changes after each iteration. Usually, the order of the operators
in the subsequent iteration is determined by their performance in the pre-
vious iteration. The intensification part of the Basic VNS (BVNS) method
consists of a local search in one neighborhood. The diversification/shaking
part of BVNS consists of a random selection of a solution from one neigh-
borhood. However, the neighborhoods (used both in the intensification and
in the diversification phases) are sequentially changed one after the other.
The General VNS (GVNS) method replaces the previous local search step
of BVNS with the more powerful VND method; which is also more time
consuming since each time it searches in several neighborhoods one after
the other. Also, the diversification part consists of a random selection of
a solution from one of all the neighborhoods, again in a random fashion.
In this paper, two GVNS algorithms are developed and proposed for the
HMSME-VRP. The first uses a bVND schema and is denoted GVNS, and
the second utilizes an adaptive bVND schema and is denoted GVNSadaptive

hereafter. The distinct difference between the two algorithms is that in the
adaptive version, the order of the operators is changed for each run based on
their previous performance. Section 4.6 presents a more detailed description
of the algorithms.

4.2. Solution representation

To better explain a solution and the different neighborhood structures, the
following notation will be used. Given a solution X, let m be the number
of swap bodies used and n be the number of original vehicles used. As a
swap body can only be used in one customer route, Rm corresponds to the
customer route in which the swap bodym serves customers. P (OVn) denotes
which customer routes are assigned to the original vehicle n, while Q(OVn)
is the sequence of visits to the switch points and the number of unloaded
swap bodies at each switch point for the original vehicle n. Therefore, a
solution of the HMSME-VRP could be represented as in Figure 2, which
illustrates an instance consisting of three switch points and 11 customers.

13



R1 = s2 c3 c2 c1 s2

R2 = s3 c8 c7 s3

R3 = s3 c6 c5 c4 s3

R4 = D c11 c10 c9 D

P (OV1) = R1 R2 R3

P (OV2) = R4

Q(OV1) = s2 : 1 s3 : 1

Q(OV2) = ∅

O
V
1

OV
1

O
V1

LV2

LV1

OV2

D

s1

s2

s3R1

c1

c2 c3

c4

c5

c6
R3

c7

c8
R2

c9

c10

R4

c11

Figure 2: Example of a solution representation for the HMSME-VRP

4.3. Construction of initial solution

A two-phase construction heuristic has been developed to obtain a feasible
initial solution for the HMSME-VRP. In the first phase, customer routes
are formed and their origin is decided, that is, either a switch point or
the central depot. In the second phase, the routes for the original vehicles
are determined, that is, which switch points and in which order to visit and
which customer route to distribute. Both phases utilize the nearest-neighbor
heuristic.

First, a random customer is chosen, and as long as there are still unvisited
customers and remaining capacity, the nearest customer to the last visited
is added to the tour. When all customers are assigned to a route, each route
is assigned to the nearest location w ∈ W , i.e. either to the central depot
or to a switch point, which serves as each customer route’s origin and end
destination. The nearest location w is determined by the distances of the
routes centroid and each candidate in the set W .

The number of customer routes assigned to each switch point serves as
input to the second phase and is considered to be the demand for each
switch point. The nearest neighbor determines the upper-level routes. If a
customer route is assigned to the central depot, an original vehicle serves
that customer route and only that. Otherwise, the original vehicles visit the
nearest switch point until the capacity restriction is met. As the demand
of a switch point may exceed the capacity of a visiting original vehicle,
split deliveries are allowed, and each original vehicle is assigned one of the

14



customer routes originating from the last visited switch point of the upper-
level route. Furthermore, if an original vehicle visits two switch points, the
upper-level route is reversed and added to the end of the route as all swap
bodies need to be returned to the central depot.

4.4. Intensification neighborhood structures

In this section, we describe the eight neighborhood structures used in the
intensification phase to explore and improve the incumbent solution. All
operators employ the best improvement strategy and only feasible moves
are considered. The neighborhood structures are described in detail below.

Intra-route 2-opt (N1). The classical 2-opt operator is applied to
customer routes. It selects a customer route R1 and two successive pairs of
customers within that route (ci, cj) and (ck, cl). The pairs are split, then the
first customers of the two pairs are connected, and the second customers are
connected such that (ci, ck) and (cj , cl). Furthermore, the order of customers
between the two selected pairs is reversed.

Inter-route Relocate (N2). The operator selects two customers that
do not belong to the same route of the customer (c1, c2) and (R1, R2). The
first customer is relocated from the first route to the second and inserted
into the position after the second customer, that is, c1 is relocated from R1

to R2 and positioned after c2. R1 and R2 can be assigned to the same switch
point, but they do not have to.

Inter-route Exchange (N3). Two customers (c1, c2) are selected from
two different customer routes (R1, R2). The operator swaps the customer’s
route assignment. Similar to N2, R1 and R2 can be assigned, but do not
have to be of the same origin.

Intra-route Change Swap Location (N4). This operator changes the
origin of the customer routes. It selects an original vehicle OV1, its upper-
level route, one of the switch points visited S1, and a location w ∈ W ,
which might be another switch point or the central depot. As the number
of customer routes originating from a switch point within the upper-level
route can range between one and three, several cases for this operator are
possible:

• One customer route R1 originate from S1. R1 originate from w instead
of S1 and the upper-level route, Q(OV1), is changed accordingly.

• Two customer routes R1, R2 originate from S1. R1 originate from
w, while R2 originates from S1 or vice versa, or R1 originates from
w1, while R2 originates from w2. The upper-level route, Q(OV1), is
changed accordingly.

15



• Three customer routes, R1, R2, R3 originate from S1. This case results
in several scenarios: all customer routes origin is changed to the same
w, that is, R1, R2, R3 originates from w instead of S1. Two customer
routes can change their origin, while the third does not. For example,
R1 originates from w1 and R2 from w2 instead of S1, note that w1 and
w2 might be the same location. Lastly, all three customer routes can
change their origin; for example, R1 originates from w1, R2 from w2,
and R3 from w3 instead of S1

Inter-route L1 Relocate (N5). The operator selects a customer route
R1, assigned to an original vehicle OV1. Furthermore, it selects a w ∈ W
that is not assigned to OV1 and another original vehicle OV2. The operator
changes the origin of the customer route to w, and its assignment to OV2

and Q(OV1) and Q(OV2) is changed accordingly.
Inter-route L1 Exchange (N6). This operator considers the upper-

level routes of the original vehicles and the switch points they visit. It selects
two customer routes (R1, R2) that are not assigned to the same original
vehicle (OV1, OV2) and swap their assignment.

Intra-route L1 Change (N7). The operator selects an original vehicle
OV1 and changes its upper-level route, that is, it changes the sequence of
visited switch points by OV1, that is, Q(OV1).

Inter-route L1 Insert (N8). This operator selects a customer route
R1, originating from the central depot if there is one, a switch point S1, and
an original vehicle OV1. It changes the origin of R1 to S1 and inserts it into
the upper-level route of OV1.

Figures 3-10 provide illustrative examples of the local search operators
N1 to N8.

Figure 3: Intra-route 2-opt (N1)

16



Figure 4: Inter-route Relocate (N2)

Figure 5: Inter-route Exchange (N3)

Figure 6: Intra-route Change Swap Location (N4)

17



Figure 7: Inter-route L1 Relocate (N5)

Figure 8: Inter-route L1 Exchange (N6)

Figure 9: Intra-route L1 Change (N7)

18



Figure 10: Inter-route L1 Insert (N8)

Although several of the neighborhood structures resemble previously re-
ported structures in the VRP literature, major modifications had to be
made to N4, N5, N6, and N8 in order to adapt them to the HMSME-VRP.
Whereas the remaining neighborhoods needed less extensive modifications.

4.5. Diversification neighborhood structures

The diversification phase consists of the shaking procedure. In each shak-
ing, a number of random jumps are implemented based on randomly selected
neighborhood structures as a way to escape the local optimum. The shak-
ing procedure takes the incumbent solution X and the number of jumps to
perform k as input. It then returns a new solution X ′ in which k random
jumps have been performed randomly from the set of neighborhood struc-
tures. The shaking operators used in this paper are described below, while
the pseudo-code for the shaking procedure is presented in Algorithm 1.

Inter-route Exchange Shake (S1). Selects two customers at random
who do not belong to the same customer route, R1 ̸= R2, and swaps their
route assignment. Similar to N3 but where the change is made at random.

Inter-route Merge Shake (S2). This operator selects two customer
routes at random, R1 and R2, and connects the head of R1 with the tail of
R2 and vice versa, where the head designates the first half of a route and
the tail the second half.

4.6. Complete solution procedures

The components of a GVNS can be used differently to form various schemes.
As mentioned above, different strategies can be used in the intensification
phase of the VND. However, the bVND method is often used in the liter-
ature. It receives an incumbent solution, X, and a set of local search op-
erators, which are applied in sequential order. Suppose that a local search
operator finds an improved solution. The search then restarts from the first

19



Algorithm 1 Shaking procedure
procedure Shake(X, k)

i← 0
while i < k do

operator = random(S1, S2)
X′ ← operator(X)
X ← X′

i← i+ 1
end while

end procedure

operator until all operators have been utilized, and no improvements have
been found. The algorithmic procedure of bVND is provided in Algorithm
2.

Algorithm 2 Basic VND
procedure bVND(X, lmax)

l← 1
while l ≤ lmax do

X′ ← Ni(X)
if f(X′) < f(X) then

X ← X′

l← 1
else

l← l + 1
end if

end while
return X

end procedure

In addition to the bVND, this paper uses an adaptive version of the
bVND (Karakostas et al., 2020; Karakostas and Sifaleras, 2022). That is,
the order in which the operators of the intensification phase are explored
is changed according to their respective success in the previous VND itera-
tion. In each VND iteration, the success of each operator is recorded and
then used in a re-ordering mechanism to re-order the operators. The re-
ordering mechanism is presented in Algorithm 3, while the pseudo-code for
the adaptive bVND is presented in Algorithm 4.

Algorithm 3 Re-ordering
procedure Operators order(Opr Order,Opr Rec)

if an improvement is found then
Opr Order ← Descending Order(Opr Order,Opr rec)

end if
return Opr Order

end procedure

20



Algorithm 4 Adaptive Basic VND
procedure Adaptive bV ND(X, lmax, Opr Order)

for l← 1, lmax do
Opr Rec(l)← 0

end for
l← 1
while l ≤ lmax do

X′ ← Opr Orderl(X)
if f(X′) < f(X) then

X ← X′

Opr Rec(l)← Opr Rec(l) + 1
l← 1

else
l← l + 1

end if
end while
return X,Opr Rec

end procedure

In addition to the incumbent solution and the set of local search op-
erators, the adaptive bVND is supplied with the order of the operators.
Furthermore, it returns Opr Rec in addition to the solution X, which is
a one-dimensional array in which each local search operator is assigned a
position. The array is used to store the number of times each local search
operator has contributed to an improved solution and then used in the re-
ordering procedure, Algorithm 3, to sort the operators in descending order.
As the VNS continues to perform more and more iterations, the adaptive
mechanism will emphasize more execution time on the most contributing
operators.

Algorithm 5 describes the complete schema of the Adaptive GVNS. In
the GVNS, the initial order of the local search operators corresponds to their
respective numbers described above. These were determined during the pre-
evaluation phase based on their cardinality, when applicable, performance,
and contributions to improving the solution. It is worth mentioning that
auxiliary procedures have also been developed and used to guarantee the
correct objective value and the feasibility of the solution.

21



Algorithm 5 Adaptive General VNS
procedure GV NSadaptive(X, kmax, cpu time, lmax, Opr Order)

for l← 1, lmax do
Opr Rec(l)← 0

end for
while time < cpu time do

for k ← 1, kmax do
X′ ← Shake(X, k)
X′′ ← Adaptive bV ND(X′, lmax, Opr Order)
Operators reorder(Opr Order,Opr rec)
if f(X′′) < f(X) then

X ← X′′

k ← 1
end if

end for
end while
return X

end procedure

The inputs for GVNSadaptive are an initial feasible solution, X, the shak-
ing intensity, kmax, that is, the maximum number of successive applications
of shaking operators to an incumbent solution, the maximum execution time
corresponds to cpu time and lastly the cardinality number of local search
operators and their initial order, lmax and Opr Order, respectively. In each
iteration, the incumbent solution X is diversified using the shaking proce-
dure, where the magnitude of the diversification of the new solution X ′ is
determined by the current value k. Subsequently, the new solution X ′ is
applied to Adaptive bV ND, which returns an improved solution X ′′ as well
as the record of the performance of local search operators Opr rec. The
re-ordering mechanism then updates the order of the local search operators
before the new solution X ′′ is compared to the current best solution X. If
a better solution is obtained, the new solution is stored as the current best,
and the value k is reset to one. This is then repeated until the maximum
execution time is reached. The conventional GVNS algorithm follows the
same procedure as GVNSadaptive with the same input parameters except
for the vector Opr rec, and instead of applying Adaptive bV ND the bVND
schema is utilized. The pseudo-code for the conventional GVNS algorithm
is presented in Algorithm 6.

22



Algorithm 6 General VNS
procedure GV NS(X, kmax, cpu time, lmax)

while time < cpu time do
for k ← 1, kmax do

X′ ← Shake(X, k)
X′′ ← bV ND(X′, lmax)
if f(X′′) < f(X) then

X ← X′′

k ← 1
end if

end for
end while
return X

end procedure

5. Computational results

This section presents and discusses the results of our computational exper-
iments. The proposed solution algorithms presented in Section 4.6 and the
complete mathematical model presented in Tadaros et al. (2023) were coded
in Python 3.8. To solve the mathematical model the Gurobi Optimization
solver v9.5.0 was used and all experiments were conducted using a 2.3 GHz
Quad-Core Intel Core i7 processor with 32 GB of RAM on a macOS.

First, the generated instances in this paper are presented in Section
5.1. Section 5.2 the procedure of tuning the parameters for the presented
algorithms is described and discussed. In Section 5.3, the performance of the
model and the proposed algorithms are evaluated and analyzed as well as the
contribution of the local search operators. Lastly, in Section 5.4 statistical
tests are presented for comparing the solutions of the proposed algorithms.

5.1. Problem instances

As this is a new problem, the only existing benchmark instances are the
12 small instances presented in Tadaros et al. (2023). Therefore, in this
paper, 48 new benchmark instances of realistic size have been generated.
The generated instances are divided into three subsets based on how the
customers have been located: semi-clustered, random, and clustered. As
previously mentioned, the HMSME-VRP originates from the policies of a
Nordic distribution company. The procedure to generate the semi-clustered
instances is developed by trying to mimic the behavior and the distribution
of customers in a real-life setting from which the problem originates. We
refer to this subset as semi-clustered instances since customers have been
sited based on clustering and randomly by a uniform distribution resulting
in densely populated areas and some randomization and sparsely located

23



customers. The second subset includes only randomly placed customers,
while the customers of the third subset have been placed solely by clustering.
Each problem instance has a name of the form X-nY-sZ where X denotes
which subset the instance belongs to semi-clustered (SC), random (R), or
clustered (C). Y denotes the total number of nodes, and Z is the number
of switch points. A more detailed description of the instance generation
is provided in the online supplementary material, and the complete set of
generated instances is available at https://github.com/ahotad/HMSME-
VRP-Instances.git.

5.2. Parameter settings

In any VNS schema, the shaking intensity parameter, kmax, is critical to
the efficiency of the solution method. If the value is set too small, there
is a risk of getting stuck in local optimum. On the other hand, if set to
large, the procedure is similar to a random walk. For each developed GVNS
method, there might be different most suitable values, and in each case
that value is empirically determined through computational experiments.
However, it should be emphasized that different values of kmax do not nec-
essarily lead to considerable variations in the solutions obtained, but it is
nevertheless crucial to examine the most suitable value for each problem
and algorithm. Therefore, we estimate this parameter for each algorithm by
examining three different kmax values using the semi-clustered instance set.
The values examined are kmax = 10, 15, and 20, respectively. In Table 3, the
average solution of ten runs for each problem instance, algorithm, and the
corresponding kmax value is reported, as well as the maximum CPU time in
seconds for each run.

Table 3: kmax evaluation of GVNS and GVNSAdaptive on the semi-clustered instance set

GV NSAdaptive GV NS

Instance Cpu-time kmax = 10 kmax = 15 kmax = 20 kmax = 10 kmax = 15 kmax = 20
SC-n34-s2 60 9526.8 9395.9 9524.6 9524.1 9564.1 9558.1
SC-n40-s2 60 6658.3 6524.7 6638.5 6660 6646.5 6729.2
SC-n40-s3 60 7549.9 7500.5 7531 7544.5 7579.5 7758.5
SC-n46-s5 60 5551.2 5530 5667.8 5535.8 5558.4 5567.8
SC-n66-s7 60 13422.2 13736.1 14000 13914.5 13840.5 13837.8
SC-n71-s6 60 12861.4 12743.2 12934.5 12875.2 12981.2 12546.9
SC-n77-s6 60 13268.3 13403.2 13658.6 13561.1 13647 13555.1
SC-n93-s7 60 17104.9 17437.1 17247.9 17344.4 17250.9 17535.5
SC-n153-s15 180 15122 15043.8 14986.5 15252.3 15033.1 15043
SC-n194-s16 180 17250.6 17382.4 17434.6 17281.4 17365.2 17683.3
SC-n197-s12 180 16308 16608.7 16608.7 16595.4 16309.9 16107.1
SC-n199-s18 180 18661.8 18448.4 18439.7 18538 18559.8 18458.3
SC-n239-s27 360 16657.9 16574.6 16246.6 16421.4 16613.4 16314.1
SC-n240-s19 360 16870.9 16589.3 16588.1 16961.6 16676.9 17300.6
SC-n274-s15 360 19891.6 19955.1 20113.9 20066.6 19868.6 19984.8
SC-n309-s21 360 18078.5 18320.7 18366 18322.3 18337.8 18250.2
Average 14049.02 14074.61 14124.19 14149.91 14114.55 14139.39

24



As can be seen in Table 3, the shaking intensity corresponding to the
value kmax equal to 10 performs slightly better than the other two for the
GVNSadaptive algorithm. This can presumably be explained by the fact
that less intense shaking allows for more VND iterations, and hence more
time in the intensification phase. Although at the expense of a lower degree
of exploration of the solution space than the other two options with higher
kmax values. For the conventional GVNS algorithm, the kmax value equal to
15 yielded the best results, which is a more balanced procedure between the
exploitation and exploration of the solution space compared to the adaptive
version and a kmax value of 10.

5.3. Computational results and analysis

To evaluate the performance and efficiency of the two algorithms, tests were
conducted on the 12 instances reported in Tadaros et al. (2023). Addition-
ally, we generated 6 more instances by the same procedure as in Tadaros
et al. (2023), extending the set to include instances with 30 nodes and 5
switch points. The results obtained by Gurobi correspond to a maximum
time limit of one hour for instances up to 23 nodes, while for instances in-
cluding 27 nodes and more, the time limit was set to two hours. For the two
GVNS algorithms, the CPU time was set to 60 seconds and the parameters
were set to the best reported in Table 3, i.e. a kmax value of 10 and 15 for
the GVNSadaptive and the conventional GVNS, respectively. The results
obtained by Gurobi and the two algorithms are reported in Table 4. Average
results of the GVNS algorithms correspond to the average solution obtained
by ten runs, while the best corresponds to the best solution found of those
ten runs. Instances which gurobi could solve to optimality are marked with
an ∗.

25



Table 4: Comparison of achieved results by GVNS, GVNSAdaptive and Gurobi

Gurobi Adaptive Conventional

Instance LB UB Best Average Best Average

U-n13-s3∗ 59 59 59 59 59 59
L-n13-s3∗ 59 59 59 59 59 59
H-n13-s3∗ 73 73 77 77.1 77 77
U-n16-s3∗ 80 80 80 80 80 80
L-n16-s3 81 95 95 95 95 96
H-n16-s3∗ 84 84 84 91.6 92 92.9
U-n20-s4 94 105 105 105 105 105.4
L-n20-s4 92 107 105 109.1 105 111.4
H-n20-s4 98 117 116 120.4 116 124.8
U-n23-s4 112 129 125 125 125 126.2
L-n23-s4 115 144 142 147.9 143 147.3
H-n23-s4 103 143 142 148.5 142 145.4
U-n27-s5 122 138 138 138.8 138 139.2
L-n27-s5 114 148 146 149.8 144 152.8
H-n27-s5 112 155 154 159.4 151 158.8
U-n30-s5 - - 154 154 154 154.4
L-n30-s5 - - 165 169.9 165 170.8
H-n30-s5 - - 171 182.6 174 187.5

The results show that both VNS algorithms are efficient and produce
competitive results compared to the Gurobi solver. For the 15 instances in
which Gurobi could provide bounds within the time limit, the conventional
version found a better result in 7 instances and matched the upper bound
in 6 instances, while the adaptive version was able to find a better solution
in 7 instances and the same as the upper bound in 7 instances.

5.3.1. Analysis of local search operators

Table 5 presents the contribution of each local search operator for the
runs on the instances reported in Table 4. The rows of average improvement
show the average magnitude of improvement for each operator in those cases
where the operator is able to improve the incumbent solution. On the con-
trary, rank represents the frequency with which a specific operator has found
a better solution than the incumbent. A rank of 1 indicates that the operator
in question has the highest frequency of finding improved solutions.

Table 5: Contributions of local search operators

N1 N2 N3 N4 N5 N6 N7 N8

Average improvement
Adaptive 2.09 3.51 17.32 4.29 6.19 3.41 2.96 3.47

Conventional 2.54 5.51 14.46 4.06 4.95 2.70 2.77 2.59

Rank
Adaptive 2 4 1 3 5 7 6 8

Conventional 1 3 2 4 5 6 7 8

As seen in Table 5, the average improvement per operator is generally

26



higher for the adaptive versions except for operators N1 and N2. Their rank
in their respective version might partially explain the exception for the N1

and N2 as both operators have a lower rank in the conventional version and,
thereby, a higher frequency of finding improved solutions. Additionally, it is
noteworthy that operator N3 stands out with the highest average improve-
ment, significantly contributing to the overall by the inter-route operators.

It is also worth mentioning that there are dependencies among the op-
erators, for example, N2 and N3, where specific changes in one operator can
result in fewer alternatives in the other, and vice versa. The use of opera-
tors varies depending on the instance and its characteristics. For example,
operator N2 is seldom used in unitary instances. Another example is the
N8 operator, which can only be utilized in cases where a customer route is
assigned to the central depot. However, the operator is vital in searching for
the optimal solution as without it, the algorithms could get trapped in lo-
cal optimum if that case occurred. This is further demonstrated by the fact
that although it is the operator with the highest rank in both versions of the
algorithms, its average improvement is higher than several other operators.

In order to further evaluate the contributions and the necessity of the
local search operators, three different versions of each algorithm were tested.
The first version, referred to as v1, includes all 8 local search operators, v2
the 4 operators with the lowest rank, and v3 the 2 lowest rank operators.
The average objective value for each instance and version is reported in
Table 6.

Table 6: Results obtained by different local search operator combinations

Adaptive Conventional
Instance v1 v2 v3 v1 v2 v3

U-n13-s3 59 59.8 63.8 59 59.8 65
L-n13-s3 59 61.4 65 59 64.6 66.2
H-n13-s3 77.1 77 83.5 77 77 85.5
U-n16-s3 80 80 90 80 80 93.3
L-n16-s3 95 97.8 107.4 96 97.9 109.3
H-n16-s3 91.6 95.8 107.9 92.9 99.8 113.9
U-n20-s4 105 105.4 118.3 105.4 106.2 116.4
L-n20-s4 109.1 112.1 127.6 111.4 111 122.1
H-n20-s4 120.4 123.1 130.4 124.8 122.8 133.5
U-n23-s4 125 126.4 143.3 126.2 126.4 135.5
L-n23-s4 147.9 149 161.2 147.3 149.3 159.1
H-n23-s4 148.5 150.8 158.5 145.4 152.5 160
U-n27-s5 138.8 139.6 153.2 139.2 139 152.4
L-n27-s5 149.8 151.5 166.4 152.8 152.2 169.2
H-n27-s5 159.4 161.3 177.2 158.8 162.5 172.4
U-n30-s5 154 157.1 171.5 154.4 158.1 164
L-n30-s5 169.9 170 189.9 170.8 176.3 179.9
H-n30-s5 182.6 183.1 206.2 187.5 186.3 200.6

Focusing on the unitary instances, there are minor differences between the
versions in the smaller instances. However, the difference between the ob-

27



tained objective values increases with the size of the instances. On the
other hand, for the instances with low and high demand distributions, such
a difference is present even in the instances of smaller size. Furthermore, a
Friedman test was performed based on the different versions. The p-value
for both the adaptive and conventional versions is considerably lower than
0.01, which confirms a statistically significant difference between the results
obtained by the different versions and the superiority of v1, including all 8
local search operators.

5.3.2. Computational results of generated instances

For the computational analysis of the two algorithms based on the newly
generated instances, we used the same computing environment and settings,
but with extended CPU times. The extended CPU times correspond to 180
seconds for the small instances, 600 seconds for medium instances, and 1200
seconds for large instances. In Table 7, the best and average results are re-
ported for all semi-clustered instances. Note that, as previously mentioned,
ten runs have been executed for each such instance and algorithm, where
the average result is the average of those ten runs, while the best solution
corresponds to the best solution obtained by those ten runs.

Table 7: Average and best solutions for the GVNSAdaptive and GVNS for the semi-
clustered instances

GV NSAdaptive GV NS

Instance cpu-time Avg Best Gap Avg Best Gap
SC-n34-s2 180 9300 9194 1.14 9377.8 9194 1.96
SC-n40-s2 180 6423.2 6399 0.38 6646 6490 2.35
SC-n40-s3 180 7429.2 7273 2.1 7497.2 7323 2.32
SC-n46-s5 180 5426.9 5274 2.82 5442.4 5348 1.73
SC-n66-s7 180 13269 12688 4.38 13587.8 12946 4.72
SC-n71-s6 180 12301.9 11677 5.08 12533.7 12196 2.69
SC-n77-s6 180 13059.4 12503 4.26 13128.3 12293 6.36
SC-n93-s7 180 16561.8 15886 4.08 17204.4 16423 4.54
SC-n153-s15 600 14772.2 14012 5.15 14752.5 14204 3.72
SC-n194-s16 600 17257.9 16206 6.1 17362 16275 6.26
SC-n197-s12 600 15900.5 14902 6.28 16211.2 15612 3.7
SC-n199-s18 600 18137.6 17232 4.99 18647.4 17809 4.5
SC-n239-s27 1200 16288.6 15135 7.08 16204.2 15440 4.72
SC-n240-s19 1200 16776 16129 3.86 16783.8 15944 5
SC-n274-s15 1200 19674.7 19028 3.29 20279.9 19415 4.26
SC-n309-s21 1200 18167.7 17069 6.05 18267 17218 5.74

The results in Table 7 show that the adaptive version produces better
results than the classic version and outperforms it in 14 of the 16 semi-
clustered instances for the average and best results. This could potentially
be explained by the fact that the adaptive version, as more VND runs are
performed, focuses more on the most promising neighborhoods, while in the
conventional version the search is conducted in the same manner regardless
of the neighborhood’s performance. The results obtained by the randomized

28



and clustered instances both support the indication that theGVNSadaptive is
a more suitable schema for the HMSME-VRP. Table 8 presents the results of
the randomly generated instances, while the results of the clustered instances
are reported in Table 9. Furthermore, the figures 11 and 12 depict the
number of wins between the two algorithms for each subset of instances for
average and best solutions, respectively.

Table 8: Average and best solutions for the GVNSAdaptive and classic GVNS for the
random instances

GV NSAdaptive GV NS

Instance cpu-time Avg Best Gap Avg Best Gap
R-n38-s6 180 6688.7 6333 5.32 6722.6 6593 1.93
R-n49-s8 180 7883 7628 3.23 8079.9 7791 3.58
R-n62-s8 180 8943.9 8492 5.05 9217.3 8693 5.69
R-n71-s3 180 11991.5 11392 5 12480.1 11715 6.13
R-n84-s9 180 12587.7 11429 9.21 12803.9 12094 5.54
R-n86-s6 180 13720.3 12784 6.82 13758.4 13279 3.48
R-n96-s7 180 13866.3 13220 4.66 14118.2 13690 3.03
R-n104-s5 180 15255.3 14201 6.91 15953.3 14761 7.47
R-n169-s14 600 17203.4 16168 6.02 17187.6 16685 2.92
R-n173-s15 600 20647.5 19482 5.64 20972.3 19321 7.87
R-n183-s14 600 25725.3 24920 3.13 25237.9 23201 8.07
R-n190-s13 600 21943.4 20416 6.96 22124.3 20639 6.71
R-n261-s15 1200 29283.8 27390 6.47 29453.2 28014 4.88
R-n265-s23 1200 31485.4 29833 5.25 31898.9 30927 3.05
R-n266-s27 1200 34434.3 33097 3.88 34960.5 33703 3.6
R-n298-s29 1200 30905.2 29842 3.44 30956.9 29705 4.04

Table 9: Average and best solutions for the GVNSAdaptive and classic GVNS for the
clustered instances

GV NSAdaptive GV NS

Instance cpu-time Average Best Gap Average Best Gap
C-n44-s10 180 4630.2 4499 2.83 4588.6 4478 2.41
C-n46-s7 180 6262.1 6123 2.22 6351.5 6100 3.96
C-n50-s2 180 6865.3 6649 3.15 6993.8 6807 2.67
C-n59-s4 180 6711.8 6420 4.35 6692.9 6473 3.29
C-n61-s7 180 8354.2 8087 3.2 8595.1 8150 5.18
C-n69-s2 180 7752 7516 3.04 7960 7672 3.62
C-n75-s2 180 8301.5 7920 4.6 8434.4 8111 3.83
C-n99-s10 180 13178 12387 6 13527.9 12984 4.02
C-n119-s16 600 10713.6 9880 7.78 11150.4 10712 3.93
C-n199-s19 600 14566.5 13639 6.37 14441.2 13778 4.59
C-n203-s15. 600 18255.7 17504 4.12 18380.6 17415 5.25
C-n206-s10 600 18896.6 17890 5.33 18769.5 18065 3.75
C-n269-s22 1200 23009.5 21501 6.56 22885.1 21928 4.18
C-n285-s29. 1200 26874.7 25876 3.71 26812.4 25646 4.35
C-n294-s18 1200 25665.2 24942 2.82 26461.5 24857 6.06
C-n307-s28 1200 21315.2 20299 4.77 21337.5 19899 6.74

29



Figure 11: GVNSadaptive vs. classic GVNS based on average solutions

Figure 12: GVNSadaptive vs. classic GVNS based on best solutions

In the same way as for the semi-clustered instances, GVNSadaptive out-
performs the conventional GVNS in both average and best solutions for the
subset of random and clustered instances. Regarding random instances, the

30



adaptive version obtains a better average solution in 14 of 16 instances and
a lower best solution on 13 occasions compared to the conventional version.
However, these results are less significant for clustered instances, where the
adaptive version finds a better solution in 10 of the 16 instances with respect
to average and best solutions.

5.4. Statistical tests

As shown in Table 4, both VNS algorithms are competitive compared to
Gurobi, providing good quality solutions in a short time frame for small
instances. However, as Gurobi could not find a feasible solution on larger
instances within a reasonable time, in order to compare the two GVNS ver-
sions, a Wilcoxon Signed-Rank Test was performed on average and best
solutions for the three instance sets to determine if there is statistical signif-
icance between the two algorithms with regard to performance. The test is
the non-parametric version of the paired T-test and is used to compare the
means of the two samples. In this particular instance, the null hypothesis
would be that the mean of the samples, i.e., for each algorithm and subset
of the instances, is the same, whereas the alternative hypothesis is that they
are not. The results of the Wilcoxon test are reported in Table 10.

Table 10: Wilcoxon test results
P -value

Semi-clustered instances
Average solutions 0.00763

Best solutions 0.04089

Random instances
Average solutions 0.00336

Best solutions 0.00919

Clustered instances
Average solutions 0.05768

Best solutions 0.14386

Multiple conclusions can be drawn based on the results of the Wilcoxon
test. First, there is statistical significance between the two algorithms with
regard to their performance for the semi-clustered and randomly generated
instances. The p-value of the average solutions of the semi-clustered in-
stances average and the best solutions of the random instances are less than
1%, which means that even with a confidence level of 1%, we could reject
the null hypothesis. However, the best solutions for the semi-clustered in-
stances would require a significance level of 5% to reject the null hypothesis.
Although there is no statistically significant difference between the two al-
gorithms for clustered instances, the p-value is just above 5%. Furthermore,
when comparing the p-values of the average and the best solutions for all
subsets of the instances, the p-values of the average solutions are smaller
than those of the best solution in all cases, which means that there is a

31



larger variation in the solutions obtained by the classic GVNS than in the
GVNSadaptive.

6. Conclusions and future research

Being one of the most studied combinatorial optimization problems, there
is a wide range of extensions and subclasses of the VRP. This paper studies
the HMSME-VRP, a newly introduced version of the VRP that originates
from a real-world application, and the policies of a Nordic distribution com-
pany. The VRP is an NP-hard problem, and, as a version of that problem,
the HMSME-VRP adds further complexity. Previous studies have shown
that only small-sized instances can be solved using a commercial solver in a
reasonable time. In order to solve realistically sized instances, in this paper,
two different GVNS-based heuristics with multiple neighborhood structures,
both in the diversification and intensification phase, have been developed
and presented. In addition to a conventional GVNS, an adaptive GVNS has
been proposed, which utilizes an intelligent re-ordering mechanism of the
local search operators in the intensification phase based on their success in
the previous iteration. Both algorithms provide good-quality solutions and
outperform Gurobi.

Furthermore, 48 new benchmark instances have been generated and di-
vided into three subsets based on their properties. The subsets correspond
to randomly placed customers, clustered customers, and semi-clustered cus-
tomers; of which the latter better mimics the distribution of switch points
and customers in the real-life situation that initiated this study. The com-
putational experimentation based on these benchmark instances shows that
the adaptive version outperforms the conventional version of the GVNS
schema in most of the cases with respect to both average and best solutions.
Moreover, this superiority is statistically confirmed by the Wilcoxon test.

From a practical point of view, since the problem studied originates from
a Nordic distribution company, the proposed algorithms constitute practical
tools that can be useful for such companies. The HMSME-VRP enables com-
panies to cover large geographical areas without significant investments in
infrastructure. However, as a commercial solver cannot be used to solve the
model, the proposed algorithm efficiently solves large-size instances within
minutes and can thus be used in the process of designing distribution routes.

Several interesting future research directions are possible. Regarding
the problem statement, additional constraints may be introduced to bet-
ter model real-life aspects of the transportation system. Such extensions
could, for example, include time windows, service times, or maximum route

32



time. Given the problem’s complexity and the failure of exact solvers to solve
large-scale instances, it would be interesting to verify the performance of the
proposed GVNS algorithms by comparing them either to other metaheuris-
tics, for instance, ant-colony optimization or to decomposition approaches,
such as column generation schemes.

References

Absi, N., Cattaruzza, D., Feillet, D., and Housseman, S. (2017). A relax-
and-repair heuristic for the swap-body vehicle routing problem. Annals
of Operations Research, 253(2):957–978.

Accorsi, L. and Vigo, D. (2020). A hybrid metaheuristic for single truck and
trailer routing problems. Transportation Science, 54(5):1351–1371.

Anderluh, A., Hemmelmayr, V. C., and Nolz, P. C. (2017). Synchronizing
vans and cargo bikes in a city distribution network. Central European
Journal of Operations Research, 25:345–376.

Anderluh, A., Nolz, P. C., Hemmelmayr, V. C., and Crainic, T. G. (2021).
Multi-objective optimization of a two-echelon vehicle routing problem
with vehicle synchronization and ‘grey zone’customers arising in urban
logistics. European Journal of Operational Research, 289(3):940–958.

Brimberg, J., Salhi, S., Todosijević, R., and Urošević, D. (2023). Variable
neighborhood search: The power of change and simplicity. Computers &
Operations Research, 155:106221.

Chao, I.-M. (2002). A tabu search method for the truck and trailer routing
problem. Computers & Operations Research, 29(1):33–51.

Cuda, R., Guastaroba, G., and Speranza, M. G. (2015). A survey on two-
echelon routing problems. Computers & Operations Research, 55:185–199.

Drexl, M. (2011). Branch-and-price and heuristic column generation for
the generalized truck-and-trailer routing problem. Revista de Métodos
Cuantitativos para la Economı́a y la Empresa, 12:5–38.

Duarte, A., Sánchez-Oro, J., Mladenović, N., and Todosijević, R. (2018).
Variable neighborhood descent. In Mart́ı, R., Pardalos, P., and Resende,
M., editors, Handbook of Heuristics, pages 341–367. Springer, Cham.

33



European Commission (2023). EU transport in figures: statistical pocketbook
2023. Publications Office.

Guo, J., Long, J., Xu, X., Yu, M., and Yuan, K. (2022). The vehicle rout-
ing problem of intercity ride-sharing between two cities. Transportation
Research Part B: Methodological, 158:113–139.

Hansen, P., Mladenović, N., Brimberg, J., and Pérez, J. A. M. (2019). Vari-
able neighborhood search. In Gendreau, M. and Potvin, J.-Y., editors,
Handbook of Metaheuristics, pages 57–97. Springer International Publish-
ing, Cham.

Hansen, P., Mladenović, N., Todosijević, R., and Hanafi, S. (2017). Variable
neighborhood search: basics and variants. EURO Journal on Computa-
tional Optimization, 5(3):423–454.

Huber, S. and Geiger, M. J. (2014). Swap body vehicle routing problem:
A heuristic solution approach. In González-Ramı́rez, R. G., Schulte, F.,
Voß, S., and Ceroni Dı́az, J. A., editors, Computational Logistics, pages
16–30, Cham. Springer International Publishing.

Kalatzantonakis, P., Sifaleras, A., and Samaras, N. (2020). Cooperative
versus non-cooperative parallel variable neighborhood search strategies: a
case study on the capacitated vehicle routing problem. Journal of Global
Optimization, 78(2):327–348.

Kalatzantonakis, P., Sifaleras, A., and Samaras, N. (2023). A reinforcement
learning-variable neighborhood search method for the capacitated vehicle
routing problem. Expert Systems with Applications, 213:118812.

Karakostas, P. and Sifaleras, A. (2022). A double-adaptive general variable
neighborhood search algorithm for the solution of the traveling salesman
problem. Applied Soft Computing, 121:108746.

Karakostas, P., Sifaleras, A., and Georgiadis, M. C. (2020). Adaptive vari-
able neighborhood search solution methods for the fleet size and mix pol-
lution location-inventory-routing problem. Expert Systems with Applica-
tions, 153:113444.

Leach, D. Z. and Savage, C. J. (2012). Impact assessment: High capacity
vehicles.

34



Liimatainen, H., Pöllänen, M., and Nykänen, L. (2020). Impacts of increas-
ing maximum truck weight–case finland. European Transport Research
Review, 12:1–12.

Lin, S.-W., Vincent, F. Y., and Lu, C.-C. (2011). A simulated annealing
heuristic for the truck and trailer routing problem with time windows.
Expert Systems with Applications, 38(12):15244–15252.

Liu, R. and Jiang, S. (2022). A variable neighborhood search algorithm with
constraint relaxation for the two-echelon vehicle routing problem with
simultaneous delivery and pickup demands. Soft Computing, 26(17):8879–
8896.

Macrina, G., Pugliese, L. D. P., Guerriero, F., and Laporte, G. (2020).
Crowd-shipping with time windows and transshipment nodes. Computers
& Operations Research, 113:104806.

Miranda-Bront, J., Curcio, B., Méndez-Dı́az, I., Montero, A., Pousa, F., and
Zabala, P. (2017). A cluster-first route-second approach for the swap body
vehicle routing problem. Annals of Operations Research, 253(2):935–956.

Mirmohammadsadeghi, S. and Ahmed, S. (2015). Memetic heuristic ap-
proach for solving truck and trailer routing problems with stochastic de-
mands and time windows. Networks and Spatial Economics, 15(4):1093–
1115.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Com-
puters & Operations Research, 24(11):1097–1100.

Pei, J., Mladenović, N., Urošević, D., Brimberg, J., and Liu, X. (2020).
Solving the traveling repairman problem with profits: A novel variable
neighborhood search approach. Information Sciences, 507:108–123.

Perboli, G., Tadei, R., and Vigo, D. (2011). The two-echelon capacitated ve-
hicle routing problem: Models and math-based heuristics. Transportation
Science, 45(3):364–380.

Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N., and Van Woensel, T.
(2022). Two-echelon vehicle routing problems: A literature review. Eu-
ropean Journal of Operational Research.

Smiti, N., Dhiaf, M. M., Jarboui, B., and Hanafi, S. (2020). Skewed gen-
eral variable neighborhood search for the cumulative capacitated vehi-

35



cle routing problem. International Transactions in Operational Research,
27(1):651–664.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research, 35(2):254–
265.

Song, L., Gu, H., and Huang, H. (2017). A lower bound for the adaptive two-
echelon capacitated vehicle routing problem. Journal of Combinatorial
Optimization, 33:1145–1167.

Tadaros, M., Migdalas, A., and Samuelsson, B. (2023). A note on the hier-
archical multi-switch multi-echelon vehicle routing problem. Optimization
Letters, 17:1469–1486.

Todosijević, R., Hanafi, S., Urošević, D., Jarboui, B., and Gendron, B.
(2017). A general variable neighborhood search for the swap-body vehicle
routing problem. Computers & Operations Research, 78:468–479.

Toffolo, T., Christiaens, J., Van Malderen, S., Wauters, T., and Van-
den Berghe, G. (2018). Stochastic local search with learning automa-
ton for the swap-body vehicle routing problem. Computers & Operations
Research, 89:68–81.

Toth, P. and Vigo, D. (2002). The vehicle routing problem. SIAM.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., and Velasco, N.
(2010). GRASP/VND and multi-start evolutionary local search for the
single truck and trailer routing problem with satellite depots. Engineering
Applications of Artificial Intelligence, 23(5):780–794.

36



Appendix A. Instance Generation

For this paper, 48 instances were generated following the procedure
described in Algorithm 7. These are divided into three different subsets
based on how customers have been located, that is, instances of randomly
located customers (R), of clustered customers (C), and semi-clustered in-
stances (SC).

37



Algorithm 7 Instance Generation

Require: lC,hC: lowest and highest number of clustered customers,
lR,hR: lowest and highest number of randomly
located customers,
lS,hS: lowest and highest number of switch points,
lD,hD: lowest and highest demand

Ensure: cust : an array of customer locations,
customers demand: an array of customer demand,
switches: an array of switch locations,
dep: an array of the depot location,
Cap: the vehicle capacity

1: procedure Instance Generation(lC,hC, lR,hR, lS,hS, lD,hD )
2: num clust← random(lC, hC)
3: num ran← random(lR, hR)
4: tot cust← num clust+ num ran
5: num switch← random(lS, hS)
6: switches← random(200, 800, size = (num switch, 2))
7: corners← array([[0, 0], [1000, 0], [0, 1000], [1000, 1000]])
8: randCust← random(0, 1000, size = (num ran, 2))
9: dep← random(0, 1000, size = (1, 2))

10: demand← random(lD, hD, size = (tot cust, 1))
11: if num clust > 0 then
12: cust← CLUSTERING(num clust, switches)
13: else
14: cust← array([])
15: end if
16: cust← concatenate((cust, rand C))
17: customers demand← concatenate((cust, demand), axis = 1)
18: n← int(tot cust/12)
19: p← int(tot cust/8)
20: Rmin ← tot cust/random(n, p)
21: Cap← ⌈Rmin ∗ total demand/tot cust⌉
22: return cust, customers demand, switches, dep, Cap
23: end procedure

The parameters used in Algorithm 7 are listed in Table A.11. For each
subset, eight small, four medium, and four large instances were generated.
The parameters for the demand generation are listed in Table A.12. An
instance from each subset is depicted in Figures A.13–A.15 for illustration

38



purposes.

Table A.11: Parameters for instance generation

Parameters
Instance Type Size lC hC lR hR lS hS

SC
Small 20 70 5 30 2 10

Medium 85 160 15 40 10 20
Large 170 260 30 40 15 30

R
Small 0 0 25 100 2 10

Medium 0 0 100 200 10 20
Large 0 0 200 300 15 30

C
Small 25 100 0 0 2 10

Medium 100 200 0 0 10 20
Large 200 300 0 0 15 30

Table A.12: Parameters for demand generation

Variance Values lD hD

Low
Small 5 10
Large 50 100

High
Small 1 10
Large 1 100

39



Figure A.13: SC-n77-s6

Figure A.14: R–71-s3

40



Figure A.15: C-n75-s2

41


