
A double-adaptive general variable neighborhood search algorithm

for the solution of the traveling salesman problem

Panagiotis Karakostas, Angelo Sifaleras∗

Department of Applied Informatics, School of Information Sciences, University of Macedonia,

156 Egnatia Str., Thessaloniki 54636, Greece

Abstract

This work addresses a novel General Variable Neighborhood Search (GVNS) solution method,

which integrates intelligent adaptive mechanisms to re-order the search operators during the

intensification and diversification phases, in an effort to enhance its overall efficiency. To

evaluate the performance of the new GVNS scheme, asymmetric and symmetric instances

of the classic Traveling Salesman Problem (TSP) from the TSPLib were solved. The ob-

tained results of the Double-Adaptive GVNS were compared with those achieved by two

single-adaptive GVNS, which use an adaptive mechanism either for the intensification or

the diversification phase and with a conventional GVNS. For a fair comparison, all GVNS

schemes were structured using the same local search and shaking operators. Moreover, the

novel GVNS algorithm was compared with some recent solution methods for the TSP, found

in the open literature. The comparative studies revealed the high efficiency of the novel VNS

scheme and underlined the significant impact of intelligent mechanisms on the performance

of classic metaheuristic frameworks.

Keywords: Variable Neighborhood Search, Metaheuristics, Adaptive Search, Intelligent

Optimization, Traveling Salesman Problem

∗Corresponding author
Email addresses: pankarakostas@uom.edu.gr (Panagiotis Karakostas), sifalera@uom.gr (Angelo

Sifaleras)

Preprint submitted to Applied Soft Computing April 7, 2022

Angelo Sifaleras
Free Text
Please cite this paper as:

Karakostas P. and Sifaleras A., "A double-adaptive general variable neighborhood search algorithm for the solution of the traveling salesman problem", to appear in Applied Soft Computing, Elsevier, Article ID 108746, 2022.

The final publication is available at Elsevier via https://doi.org/10.1016/j.asoc.2022.108746

1. Introduction

The optimal design and scheduling of complex supply chain systems has a significant positive

impact in creating and enhancing the competitive advantage of organizations (Bhatnagar & Teo,

2009). The optimal configuration of such complex systems requires advanced decision mak-

ing processes, that are achieved through the simultaneous utilization of optimization models

and tools (Grazia Speranza, 2018). A class of such optimization tools are the metaheuristic

algorithms. Metaheuristics are general, high-level, and flexible optimization frameworks,

that can be properly modified to generate powerful heuristic algorithms for the solution

of complex NP-hard optimization problems, such as supply chain optimization problems

(Sevaux et al., 2018). Variable Neighborhood Search (VNS) is a well-known and widely

used metaheuristic optimization framework, proposed by Mladenović & Hansen (1997). It

is characterized by its simplicity and high efficiency on the solution of hard optimization

problems (Hansen et al., 2017). A VNS algorithm consists of three main parts, a neigh-

borhood change step, an intensification phase and a shaking phase (Hansen & Mladenović,

2014). The neighborhood change step is actually a strategy for guiding the search during

the exploration of solution space, as it denotes which neighborhood structure will be applied

as well as the acceptance criterion of an obtained solution (Hansen et al., 2017). The shak-

ing phase contains a mechanism to avoid local optimum solutions, while the improvement

phase constitutes the main mechanism for improving an incumbent solution, by applying,

in accordance to the neighborhood change step, a predefined set of local search operators

(Hansen et al., 2017). General VNS (GVNS) is a classic variant of VNS in which one of

the Variable Neighborhood Descent (VND) procedures is selected as the main improvement

phase. A VND consists of a set of predefined local search operators that are executed either

in a sequential or a nested fashion (Hansen et al., 2017).

Sevaux et al. (2018) mentioned the critical role of the proper configuration of a meta-

heuristic, by defining the most efficient structure and tuning of the parameters of each

framework, in its performance and efficiency. Thus, the development of an efficient meta-

heuristic algorithm is quite difficult, as it demands plenty amount of time in designing and

2

tuning processes. To this end, Sevaux et al. (2018) underlined the necessity of develop-

ing adaptive metaheuristic algorithms, as a structured solution of self-configuration during

the execution of a metaheuristic. Talbi (2021) stated that metaheuristics generate large

amount of data during their execution. According to the authors, such data are divided

into static and dynamic. Static data refer to problem- or instance-specific features, while

dynamic data are linked to more complex information generated by the iterative applica-

tion of a metaheuristic. The authors highlighted the important role of utilizing generated

data to produce useful knowledge for enhancing the performance of metaheuristics, by con-

sidering intelligent machine learning mechanisms. specifically, embedding such data-driven

intelligent mechanisms in the core procedures of metaheuristics leads to the construction of

improved solution approaches in terms of quality and robustness (Karimi-Mamaghan et al.,

2022). , the utilization of generated data leads to useful knowledge and finally to improved

decisions (Karimi-Mamaghan et al., 2022).

GVNS is a powerful metaheuristic which has been successfully applied for the solu-

tion of hard optimization problems of increased practical interest (Menéndez et al., 2017;

Karakostas et al., 2019, 2020a). Some research contributions have attested the benefi-

cial effects integrating low-level machine learning techniques with intensification proce-

dures of GVNS heuristics (Todosijević et al., 2016; Karakostas et al., 2022). Moreover,

Karakostas et al. (2020b) have recently mentioned the positive impact of embedding such

intelligent mechanisms into diversification procedures of GVNS solution methods. However,

the potential performance benefits of the simultaneous integration of intelligent adaptive

mechanisms into both critical components of GVNS has not been investigated. Thus, the

aim of the present study is to eludicate if the mentioned integrated approach can improve

the decision-making ability of a GVNS heuristic. To this end, this work proposes a new

Double-Adaptive GVNS (DA-GVNS), by considering intelligent adaptive mechanisms both

in intensification and diversification phases of the algorithm. These mechanisms process

dynamic data generated in each iteration of the algorithm, to improve its configuration

and consequently its performance in every next iteration. More specifically, short adaptive

memories are adopted both in improvement and shaking phases, which store the number of

3

improvements achieved by each local search and shaking operator. In every next iteration,

the proposed algorithm uses the previous generated data of improvements to configure its

structure, by properly re-ordering its local search and shaking operators. To evaluate the per-

formance of the DA-GVNS, a single local search-adaptive GVNS, a single shaking-adaptive

GVNS and a conventional GVNS were also developed for computational comparison pur-

poses. All GVNS schemes contain the same local search and shaking operators, follow the

best improvement search strategy and were applied to the classic Traveling Salesman Prob-

lem (TSP), a well-known and widely studied combinatorial optimization NP-hard problem,

with several applications in supply chain systems (Punnen, 2007). Moreover, the solutions

obtained by the novel GVNS method were compared to those produced by other improved

metaheuristics found in the recent open literature.

This work is structured as follows. Section 2 presents a literature review on recent

TSP contributions and on recent advances and applications of VNS. The proposed solution

method is presented in Section 3, while the computational analyses are provided in Section

4. Finally, Section 5 summarizes the concluding remarks and potential future extensions.

2. Literature review

2.1. Recent contributions on TSP

Osaba et al. (2018) developed an imrpoved discrete water cycle algorithm for the solution

both of symmetric and asymmetric TSP instances. The authors enhanced the classic wa-

ter cycle algorithm by considering further features, such as the utilization of the Hamming

distance metric for the computation of distances among obtained solutions and the consider-

ation of an adaptive modification of the movement function. To evaluate the performance of

their proposed solution method, they proceeded a computational study using six metaheuris-

tics from the open literature, applied on 33 TSPLib instances. Boryczka & Szwarc (2019)

proposed an improved Harmony Search (HS) algorithm for the solution of asymmetric TSP,

by addressing a weak mechanism to enhance the effectiveness of harmony memory. The

authors found that their improved HS lead to average solution error from 13.42% to 5.54%.

4

Papalitsas et al. (2019) performed an extended computational analysis for the evaluation of

the potential impact of different diversification methods on the performance of GVNS during

the solution of asymmetric, symmetric and national TSPLib instances. They studied the

effects of three diversification methods, the classic intensified shaking, a quantum-inspired

diversification method, and a shuffle method. They found that both intensified shaking

and quantum-inspired method performed equivalently in case of asymmetric TSP and much

better than using the shuffle diversification, while no significant differences observed in case

of symmetric TSP.

Zhong et al. (2019) proposed a discrete variant of a nature-inspired metaheuristic, called

Pigeon-Inspired Optimization (PIO) for the solution of large-scale symmetric TSP instances.

The authors enhanced the main operators of their algorithm by considering learning abilities

in order to improve the exploration and the exploitation of their algorithm. Moreover, the

Metropolis acceptance criterion was adopted in an effort to avoid premature convergence.

The proposed solution method was tested on 33 large symmetric TSP instances and the

achieved solutions compared to those obtained by the state-of-the-art solution methods for

such large-scale problem cases. Wang et al. (2019) developed a discrete symbiotic organism

search solution method for the solution of TSP. They integrated their method with excellence

coefficients in an effort to accelerate the exploration of their search. Moreover, they adopted

a self-escape strategy in order to avoid the local optimum solutions.

Campuzano et al. (2020) focused on the improvement of the computational performance

of the Miller-Tucker-Zelmin model for the assymetric TSP, by proposing relative valid in-

equalities. Ebadinezhad (2020) proposed an improved Ant Colony Optimization (ACO) al-

gorithm, by considering a self-adaptive mechanism to overcome specific drawbacks of classic

ACO metaheuristic, such as low convergence speed and trapping in local optimum solutions.

The author performed a computational study between the new method and the classic one,

on 10 symmetric TSP instances from TSPLib. The results showed that the new method

presents faster convergence speed and higher accuracy of search. A hybrid metaheuristic

solution method, integrating the Deer Hunting Optimization Algorithm (DHOA) and the

Earhworm Optimization Algorithm (EWA), was proposed by Rajesh Kanna et al. (2021).

5

The main objective of their work was the development of a powerful heuristic for the solution

of large-scale symmetric TSP instances. According to their numerical results, the proposed

solution method outperformed several population-based metaheuristics and presented better

computational times. Panwar & Deep (2021) integrated the classic Grey Wolf Optimization

(GWO) metaheuristic with 2-opt local search operators to develop a new discrete GWO for

the solution of symmetric TSP instances. To evaluate the performance of the new solu-

tion method, the authors conducted a comparative study on 17 symmetric TSP instances

from TSPLib, with other nature-inspired metaheuristics, such as the Bat Algorithm and the

Discrete Firefly Algorithm.

2.2. Recent advances and applications of VNS

Li & Tian (2016) developed a self-adaptive VNS algorithm for the solution of the prize-

collecting vehicle routing problem. The proposed algorithm performs changes on the se-

quence of search operators according to the search history. More specifically, the authors

implemented a two-level Basic VNS. In the first one, the selection of customers is per-

formed, while in the second one, the sequence of the selected customers is improved. The

self-adaptive mechanism is applied in the second level, according to a selection probabil-

ity, which is computed based on the improvements achieved by its search operator. The

computational analysis showed that, the two-level Basic VNS scheme within the adaptive

mechanism performed better than the corresponding classic solution method with respect to

all solved problem instances. Todosijević et al. (2016) proposed an adaptive GVNS heuris-

tic algorithms for solving the unit commitment problem, by considering both different VND

schemes and an adaptive re-ordering mechanism. The adaptive mechanism was designed to

change the sequence of local search operators according to their improvements achieved in

its previous iteration.

An improved VNS for the solution both of asymmetric and symmetric TSP was proposed

by Hore et al. (2018). The improved variant of VNS utilized a clever choice during the

construction of neighborhoods and a stochastic approach, such as the one applied in the

simulated annealing method, to escape local optimum solutions. The authors underlined

6

the improved performance of their solution method based on their numerical experiments.

Karakostas et al. (2019) proposed a problem-level data-driven GVNS algorithm for the

solution of a new variant of the complex Location-Inventory-Routing Problem (LIRP). More

specifically, the authors proposed an adaptive search strategy, which incorporates the first

and best improvement search strategy according to the size of each problem instance.

Karakostas et al. (2022) developed an efficient hybrid GVNS algorithm for the solution

of the Pollution LIRP (PLIRP). The proposed hybrid solution method considers both static

and dynamic data to achieve a highly-adaptive performance. More specifically, according

to the size of under solution problem instances, different intensity levels of shaking method

and VNS variants were applied, while for some of those variants a local search operators’

adaptive re-ordering mechanism was also used. The same authors proposed adaptive GVNS

heuristic algorithms for the solution of the Fleet size and mix PLIRP (Karakostas et al.,

2020b). A major novelty of their solution approach was the development of new adaptive

shaking mechanisms. These intelligent components enhanced the performance of adaptive

GVNS, which performed much better than both the conventional one and the well-known

optimization solver, CPLEX.

Ren et al. (2020a) developed an improved VNS for the solution of the bi-objective mixed-

energy fleet vehicle routing problem. The authors embedded a selection mechanism in a

BVNS framework for the selection of partial elite solutions to continue the search in each

next iteration of the method, in an effort to simultaneously achieve diversity, without being

trapped in local optimum solutions. Ren et al. (2020b) developed an improved VNS solution

method for the static bike-sharing rebalancing problem, under the consideration of depot

inventory. More specifically, the authors addressed a hybridization of BVNS and GVNS, as

well as a hybridization on the level of search strategy. The utilized search strategy is similar

to the one proposed by Karakostas et al. (2019), as it applies first and best improvement

strategy under conditions. The numerical results showed that, the proposed solution method

outperformed the corresponding conventional GVNS.

7

2.3. Knowledge gap and research contribution

The conducted literature review reveals the consistent effort of research community to de-

velop improved solution methods for efficiently tackling hard optimization problems. The

proper configuration of the critical components of such solution methods remains a crucial

factor, which significantly affects their performance. The adoption of data-driven machine

learning procedures constitutes an effective approach for addressing this challenging process.

In case of VNS and its main variants, only a limited number of contributions have applied in-

telligent procedures to improve the performance of the developed heuristic algorithms. The

majority of those studies focused on the adoption of data-driven adaptive mechanisms exclu-

sively into the intensification phase of the proposed algorithms. However, Karakostas et al.

(2020b) have applied intelligent adaptive mechanisms to configure an effective structural or-

der of the diversification component of their solution method. The authors have concluded

that their approach has achieved improved solutions compared to its corresponding conven-

tional method. These findings have led to the research question whether the simultaneous

consideration of intelligent adaptive mechanisms into both intensification and diversifica-

tion components of a GVNS heuristic can lead to further improvements compared to its

conventional and single-adaptive corresponding variants.

3. The Double-Adaptive GVNS

This section is divided into two main parts. The first one attempts to provide a general

structure of the novel GVNS scheme, while the second part provides a specific modification of

this scheme for the solution of symmetric and asymmetric TSP instances. More specifically,

the section of the general structure of DA-GVNS consists of information about GVNS, details

about improvement and shaking adaptive mechanisms and the overview of the new scheme.

The last part of this section presents the utilized local search and shaking operators, the

adopted search strategy, and the overview of the solution method, as they are formed to

solve the TSP.

8

3.1. General VNS

VNS is a trajectory-based metaheuristic framework which utilizes a variable number of

neighborhoods instead of only one (fixed) neighborhood. The simplest version of this frame-

work is also known as Basic VNS (BVNS). The BVNS scheme interchanges a neighborhood,

one after the other, firstly for local search in it (intensification part) and afterward for

shaking in it (diversification part) (Hansen et al., 2017). GVNS is another variant of VNS,

which is characterized by a stronger intensification phase than BVNS. The key difference

between GVNS and BVNS is that, the GVNS scheme -sequentially- performs local search

in several neighborhoods one after the other (intensification part) and afterward it utilizes

one or more neighborhoods for shaking (diversification part). The intensification phase

of the GVNS scheme is also denoted as VND. Due to the simplicity and the efficiency of

the GVNS, several recent research contributions have developed GVNS-based solution ap-

proaches for hard combinatorial optimization problems (Menéndez et al., 2017; Mikić et al.,

2019; Karakostas et al., 2020a,b). A GVNS consists of a shaking phase, a VND variant as

its main improvement phase, and a neighborhood change step (Hansen et al., 2017). Al-

though several VND variants have been proposed in the literature, pipe-VND (pVND) has

been experimentally proved as one of the most efficient (Karakostas et al., 2019, 2020b).

Algorithm 1 provides the algorithmic procedure of pVND.

9

Algorithm 1 pipe-VND
1: procedure pVND 1(S, lmax)

2: l = 1

3: while l ≤ lmax do

4: S′ ← Local Search Operator l(S)

5: if f(S′) < f(S) then

6: S ← S′

7: else

8: l = l + 1

9: end if

10: end while

11: Return S

12: end procedure

A pVNDmethod receives an incumbent solution and a set of local search operators, which

are systematically applied. According to the pVND neighborhood change criterion, the

search continues with the same local search operator while this one produces improvements.

If no improvement found in an iteration, the search continues with the next local search

operator in the set of neighborhoods (Hansen et al., 2017).

An overview of a GVNS algorithm is provided in Algorithm 2.

10

Algorithm 2 General VNS
1: procedure GVNS(S, kmax,max time, lmax)

2: while time ≤ max time do

3: for k ← 1, kmax do

4: S∗ = Shake(S, l)

5: S′ = pV ND(S∗, lmax)

6: if f(S∗) < f(S) then

7: S ← S∗

8: end if

9: end for

10: end while

11: return S

12: end procedure

A GVNS method receives an initial feasible solution S, a value kmax which denotes the

maximum number of iterations of the shaking phase, the number of local search operators

utilized in the improvement phase, lmax and a stopping limit, such as a maximum CPU time

of execution, max time (Hansen et al., 2017).

3.2. Adaptive mechanisms

Various research contributions in the open literature have addressed the benefits of adopting

adaptive re-ordering mechanisms within the improvement phase of a VNS solution method,

in order to provide more execution time in the most promising local search operators in

each iteration (Todosijević et al., 2016; Sevaux et al., 2018; Karakostas et al., 2022). Such

intelligent learning components, usually, utilize short memories to store historical execution

data, such as the improvements of each local search operator in previous iterations and use

the stored information to re-order the operators in an effort to enhance the performance

of improvement phase (Simeonova et al., 2018). These procedures are known as low-level

data-driven machine learning components (Talbi, 2021). A pseudocode which provides the

structure of a local search re-ordering adaptive mechanism is given in Algorithm 3.

11

Algorithm 3 Local Search Adaptive Mechanism
1: procedure Local Search Adaptive Mechanism(LSOperators Order, LSO Initial Order, Improvements Counter)

2: if no improvement is found in any neighborhood then

3: New LSOperators Order ← LSO Initial Order

4: end if

5: if an improvement is found then

6: New LSOperators Order ← Descending Order(LSOperators Order, Improvements Counter)

7: end if

8: LSOperators Order ← New LSOperators Order

9: return LSOperators Order

10: end procedure

Typically, such intelligent mechanisms receive the current order of local search operators

and a 1 × l max vector, LS Improvements Counter, where l max is the number of local

search operators used in the improvement phase. Each position of this vector is assigned

to each one of the available local search operators and stores the number of improvements

achieved by using each of them, in previous iteration(s). According to the initial order of local

search operators, several rules can be found in the literature. Commonly, the complexity-

or random-based initial order are applied (Todosijević et al., 2016; Karakostas et al., 2022).

Recently, Karakostas et al. (2020b) focused on the development of adaptive shaking

procedures to enhance the performance of a GVNS solution method for the solution of a

complex supply chain network optimization problem. The authors found that the consider-

ation of adaptive mechanisms during the diversification phase of their GVNS heuristic leads

to higher quality solution than those obtained by the corresponding conventional method.

Algorithm 4 provides the pseudocode of the shaking adaptive mechanism.

12

Algorithm 4 Shaking Adaptive Mechanism
1: procedure Shaking Adaptive Mechanism(ShakingOrder, ShakingInitialOrder, Shmax)

2: if no improvement is found in any neighborhood then

3: ShakingOrder = ShakingInitialOrder

4: end if

5: if an improvement is found then

6: for i← 1, Shmax do

7: l = Operator with maximum number of improvements

8: ShakingOperatorChecked(l) = .true.

9: NewShakingOrder(i) = l

10: end for

11: ShakingOrder = NewShakingOrder

12: end if

13: return ShakingOrder

14: end procedure

The shaking adaptive mechanism receives the current order of shaking operators, ShakingOrder,

their initial order, ShakingInitialOrder, and the maximum number of shaking operators,

Shmax. In case of not achieving any improvement in the previous iteration, the order of

shaking operators returns to the initial one. Otherwise, a descending re-ordering of the

shaking operators is performed.

3.3. Overview of the proposed solution method

This section provides the procedural overview of the DA-GVNS, using the pVND in the

improvement phase, and the intensified shake as its diversification phase. The overall method

is summarized in Algorithm 5.

13

Algorithm 5 Double Adaptive GVNS
1: procedure DA-GVNS(S, kmax,max time, lmax, LSO Initial Order, ShakingInitialOrder)

2: while time ≤ max time do

3: ShakingOrder = Shaking Adaptive Mechanism(ShakingOrder, ShakingInitialOrder, Shmax)

4: for k ← 1, kmax do

5: for i← 1, Shmax do

6: l = ShakingOrder(i)

7: S∗ = Shake(S, l)

8: Local Search Adaptive Mechanism(LSOperators Order, Improvements Counter)

9: S′ = pV ND(S∗, lmax, LSOperators Order)

10: if f(S′) < f(S) then

11: S ← S′

12: end if

13: end for

14: end for

15: end while

16: return S

17: end procedure

The input for the DA-GVNS are:

• an initial feasible solution, S

• an integer value of kmax parameter, which denotes the maximum number of consecutive

applications of a shaking operator,

• the maximum CPU execution time,

• the number of local search operators included in the pVND procedure,

• an initial order of shaking operators, ShakingInitialOrder

• an initial order of local search operators, LSO Initial Order

14

In each iteration a re-ordering of the shaking operators is performed in descending order,

based on the improvements achieved by applying each of them in each previous iteration.

Either in the first or in each unsuccessful iteration, an initial predefined shaking order (from

the most to the least complex operator) is adopted. Next, for each shaking intensity value

(line 4) the shaking operators are successively selected according to their order, and the

incumbent solution, S is diversified (line 7) to produce a new solution, S∗. Then, the local

search operators in pVND are being re-ordered (line 8) based on their previous performance

(a predefined initial order is adopted similarly to the shaking process). Considering the

new order of local search operators, the pVND is applied on the solution S∗ to produce a

new, hopefully improved, solution S ′ (line 9). The new solution is then compared with the

currently best one (line 10) to examine whether any improvement was achieved (line 11).

This process is iteratively executed until the maximum CPU execution time is reached.

3.4. Modifications on DA-GVNS for the solution of TSP

3.4.1. Initial solution

DA-GVNS receives an initial solution and iteratively attempts to improve it. The classic

Nearest Neighbor heuristic (Flood, 1956) is applied to construct a feasible initial solution of

TSP instances.

3.4.2. Neighborhood structures

As the main objective of this work is to investigate the potential enhancement of the perfor-

mance of the GVNS scheme, by considering both local search and shaking adaptive mech-

anisms, three classic and commonly adopted neighborhood structures are utilized. More

specifically, the same neighborhood structures are used in improvement and diversification

phases. These neighborhood structures are the 1− 0 relocate, which relocates the position

of a node in a route, the 1−1 exchange, also known as swap operator, which exchanges two

nodes in a given route, and the 2 − opt operator, which removes and reconnects two edges

in the route. The solution representation adopted in this work is the path representation.

Thus, each local search operator modifies an incumbent solution by iteratively applying sin-

gle moves, which leads to a new solution path. An illustrative example of such changes of the

15

solution path made by a single application of each local search operator, on a six customers’

path representation route, is provided in Figure 1. Despite relocate and exchange constitute

classic path-based search operators, 2-opt is typically considered as an edge-based operator.

However, the 2-opt local search operator using an edge-based representation is equivalent to

the sub-tour reversal algorithm using a path representation Hillier & Lieberman (2021).

position

route

“1-0 Relocate”

1 2 3 4 5 6

4 3 1 6 5 2

1 2 3 4 5 6

4 1 6 5 3 2

position

route

“1-1 Exchange”

1 2 3 4 5 6

4 3 1 6 5 2

1 2 3 4 5 6

4 3 6 1 5 2

“2-opt” or “Sub-tour Reversal”

1 2 3 4 5 6

4 3 5 6 1 2

position

route

1 2 3 4 5 6

4 3 1 6 5 2

Figure 1: An illustrated example of the changes made in a route after a single application of each local

search operator.

In case of the 1− 0 relocate search operator, node 3 is removed from its current position

and it is inserted exactly after node 5. This move leads to the dropping of the edges (4, 3),

16

(3, 1), and (5, 2) and to the addition of the edges (4, 1), (5, 3), and (3, 2). In the example

of 1− 1 exchange, nodes 1 and 6 are selected and being swapped. This moves modifies the

route by dropping the edges (3, 1), (1, 6), and (6, 5) and by adding the edges (3, 6), (6, 1) and

(1, 5). It should be mentioned that, no cost change will occurred by the replacement of the

edge (1, 6) from the edge (6, 1) in case of a symmetric TSP instance. Finally, in the example

of the 2−opt operator or sub-tour reversal algorithm, the edges (3, 1) and (5, 2) are dropped

and the edges (3, 5) and (1, 2) are added into the solution. In terms of implementation, this

move of 2 − opt is performed by selecting the nodes 3 and 2, and reversing the sub-tour

[1, 6, 5].

4. Computational analysis and results

4.1. Computing environment

The proposed DA-GVNS and the other developed GVNS variants were coded in For-

tran, and they were executed by Intel Fortran compiler 18.0 using the optimization op-

tion /O3. The execution was performed on a laptop PC running Windows 10 Home

64-bit with an Intel Core i7-9750H CPU at 2.6 Ghz and 16 GB RAM. The computa-

tional experiments were conducted on symmetric and asymmetric TSP instances of TSPLib

(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95) with a CPU execution time

limit of 60s. It should be clarified that, the following reported results are the average and

the best objective values of 10 runs for each problem instance.

4.2. kmax computational analysis

The shaking intensity is a critical parameter for the efficiency of a GVNS solution method,

which should be tuned. Small values of this parameter cannot guarantee the avoidance of

being trapped in local optimum solutions, while greater values can lead to random per-

mutations (Hansen & Mladenović, 2014; Hansen et al., 2017). The selection of the most

suitable value of kmax parameter, in each developed GVNS method, is made empirically

through computational experimentation. This process is known as off-line parameter initial-

ization strategy (Talbi, 2009). This section presents the computational analysis performed

17

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

to evaluate the impact of different shaking levels on the performance of the developed GVNS

variants. Table 1 summarizes the average objective values achieved by each GVNS variant

when solving asymmetric TSP instances.

Table 1: kmax analysis on the performance of GVNS methods on 19 asymmetric TSP instances
GVNS LSA−GVNS SHA−GVNS DA−GVNS

Instance kmax = 8 kmax = 10 kmax = 12 kmax = 8 kmax = 10 kmax = 12 kmax = 8 kmax = 10 kmax = 12 kmax = 8 kmax = 10 kmax = 12

br17 39 39 39 39 39 39 39 39 39 39 39 39

ft53 7039 7080 7064 7043 7183 7053 7132 7048 7072 7011 7018 7011

ft70 39590 39791 39545 39453 39654 39769 39963 39811 39756 39585 39650 39874

ftv33 1286 1286 1286 1286 1286 1286 1286 1286 1296 1286 1286 1286

ftv35 1481 1475 1481 1480 1477 1478 1475 1475 1476 1473 1473 1479

ftv38 1539 1540 1542 1535 1542 1540 1538 1539 1535 1535 1534 1538

ftv44 1651 1629 1616 1634 1640 1633 1638 1627 1629 1631 1640 1647

ftv47 1802 1804 1792 1818 1806 1793 1808 1798 1803 1788 1786 1801

ftv55 1663 1635 1648 1636 1626 1668 1653 1648 1651 1636 1648 1657

ftv64 1895 1939 1911 1904 1888 1930 1907 1911 1908 1895 1889 1895

ftv70 2094 2093 2101 2058 2104 2111 2063 2082 2119 2078 2098 2092

ftv170 3399 3407 3504 3363 3364 3415 3456 3410 3511 3307 3339 3418

kro124p 36788 36586 36546 36865 36714 37020 36451 36492 36701 36403 36544 36470

p43 5620 5620 5620 5620 5620 5620 5620 5620 5620 5620 5620 5620

rbg323 1461 1481 1485 1450 1450 1443 1450 1467 1487 1451 1455 1451

rbg358 1298 1304 1290 1288 1278 1284 1295 1277 1298 1276 1290 1280

rbg403 2489 2493 2508 2482 2488 2486 2492 2490 2513 2481 2493 2491

rbg443 2769 2766 2766 2767 2761 2762 2774 2781 2768 2761 2769 2767

ry48p 14468 14453 14445 14451 14468 14441 14451 14478 14473 14465 14451 14436

Average 6756.37 6759 6746.79 6745.89 6757.26 6777.42 6762.68 6751.53 6771.32 6722.16 6738 6750.11

It should be clarified that different kmax values don’t always lead to significant per-

formance fluctuations. However, it is always critical to investigate which value fits better

in each problem type. To this end, using kmax = 12 has led to better results in case of

conventional GVNS scheme. The numerical experiments on the effect of different shaking

intensity on the performance of LS-Adaptive GVNS showed that kmax = 8 has led to slightly

better solutions compared to those obtained with kmax = 10 or kmax = 12. Moreover, the

GVNS scheme enhanced by a shaking adaptive mechanism performs better with kmax = 10.

Finally, the off-line parameter testing showed that DA-GVNS performs better under the

consideration of a limited shaking intensity, such the kmax = 8.

4.3. Computational results on asymmetric TSP instances

Tables 2 provides the average objective values found by using all GVNS variants.

18

Table 2: The average results of asymmetric TSP instances using GVNS variants

Instance GVNS LSA-GVNS SHA-GVNS DA-GVNS

br17 39 39 39 39

ft53 7064 7043 7048 7011

ft70 39545 39453 39811 39585

ftv33 1286 1286 1286 1286

ftv35 1481 1480 1475 1473

ftv38 1542 1535 1539 1535

ftv44 1616 1634 1627 1636

ftv47 1792 1818 1798 1788

ftv55 1648 1636 1648 1636

ftv64 1911 1904 1911 1895

ftv70 2101 2058 2082 2078

ftv170 3504 3363 3410 3307

kro124p 36546 36865 36492 36403

p43 5620 5620 5620 5620

rbg323 1485 1450 1467 1451

rbg358 1290 1288 1277 1276

rbg403 2508 2482 2490 2481

rbg443 2766 2767 2781 2761

ry48p 14445 14451 14478 14465

Average 6746.79 6745.89 6751.53 6722.16

The DA-GVNS produced better solutions in terms of quality compared to those obtained

by other GVNS variants, as it is indicated by the average costs presented in Table 2. It is

clear that the consideration of intelligent re-ordering mechanisms both in intensification and

diversification phase has a positive impact on the performance of the GVNS scheme. This

enhancement may be attributed by the potential creation of better patterns of improvement

and shaking operators, which can lead to the exploration of more promising areas in the

search space, as well as by providing more execution time to the most successful operators.

To further evaluate the performance of DA-GVNS on the solution of asymmetric TSP

instances, numerical comparisons were conducted with recent research contributions. More

specifically, the results obtained by the DA-GVNS was compared to those achieved by a

discrete water cycle algorithm proposed by Osaba et al. (2018) and an improved Harmony

Search algorithm, proposed by Boryczka & Szwarc (2019). Table 3 provides these numerical

19

comparisons. Herein, it should be clarified that the bold highlighting in the following Tables

is applied to mention the best values achieved among the tested methods. The best-known

values are given as a reference information.

Table 3: Average results of DA-GVNS and recent literature contributions on 19 asymmetric TSP instances.

Instance Best-known DA-GVNS DWCA HS

br17 39 39 39 39

ft53 6905 7011 7199.4 7148.3

ft70 38673 39585 40111.1 39722.03

ftv33 1286 1286 1308.7 1320.57

ftv35 1473 1473 1485.8 1490.6

ftv38 1530 1535 1549 1547.13

ftv44 1613 1631 1665 1645.4

ftv47 1778 1788 1827.8 1800.43

ftv55 1608 1636 1691.4 1625.17

ftv64 1839 1895 1961 1876.2

ftv70 1950 2078 2126.2 2027.83

ftv170 2755 3307 - 3393.07

kro124p 36230 36403 39252.8 38348.2

p43 5620 5620 5620 5620.27

rbg323 1326 1451 - 1555.4

rbg358 1163 1276 - 1424.63

rbg403 2465 2481 - 2637.8

rbg443 2720 2761 - 2914.33

ry48p 14422 14465 14517.8 14513.9

Average 6599.7 6722.2 8596.79∗ 6876.3

The asterisk symbol, in the average value of the results achieved by the DWCA, denotes

that this value refers to the available solutions in the work of Boryczka & Szwarc (2019).

The corresponding average value in case of DA-GVNS is 8317.5. To this end, it is clear

that the DA-GVNS performed 3.25% better than the DWCA and 2.24% better than the

improved HS.

4.4. Computational results on symmetric TSP instances

According to numerical testing, all GVNS variants produced best results, using the same

kmax values adopted in case of the solution of asymmetric TSP instances. Thus, for the

20

solution of symmetric TSP instances, the DA-GVNS had a shaking intensity of kmax = 8,

the LSA-GVNS used kmax = 8, the SHA-GVNS used kmax = 10, and the GVNS adopted a

shaking intensity of kmax = 12. The average and best performance of all GVNS variants on

the solution of symmetric TSP instances are illustrated in Figures 2 and 3 correspondingly.

Figure 2: Comparison between GVNS variants on symmetric TSP results in average.

21

Figure 3: Comparison between GVNS variants on best found symmetric TSP results.

As it has been observed in case of asymmetric TSP, the consideration of the double-

adaptive mechanism within the GVNS scheme has, also, a positive impact on its performance

in the solution of symmetric problem instances.

To further evaluate the performance of DA-GVNS, it was compared to other recently

proposed solution methods in the open literature for the TSP. More specifically, the re-

sults achieved by the DA-GVNS were compared to those obtained by an improved VNS

(Hore et al., 2018), an improved HS (Osaba et al., 2018), and a discrete GWO (D-GWO)

(Panwar & Deep, 2021). Table 4 summarizes these computational comparisons.

22

Table 4: Comparisons between DA-GVNS and recently

proposed methods for the solution of symmetric TSP in-

stances (average values).

Instance Best-known DA-GVNS iVNS HS D-GWO

bays29 2020 2020 2020 - -

berlin52 7542 7542 7544.36 7542 -

bier127 118282 119122 119006.4 - -

brazil58 25395 25395 25592.72 - -

ch130 6110 6154 6153.72 - -

ch150 6528 6595 6644.95 - -

d198 15780 15855 16079.28 - -

d1291 50801 54778 56095.33 - -

d1655 62128 67292 70337.23 - -

dantzig42 699 699 699 - -

eil51 426 426 428.98 428.4 -

eil76 538 538 552.57 547.9 -

eil101 629 633 648.27 645.9 -

fl417 11861 12019 12183.14 - -

fl1400 20127 21858 21085.98 - -

fri26 937 937 937 - -

gil262 2378 2451 2501.86 - -

gr17 2085 2085 2085 - -

gr21 2707 2707 2707 - -

gr24 1272 1272 1272 - -

gr48 5046 5046 5046 - -

kroA100 21282 21282 21695.79 21348.1 -

Continued on next page

23

Table 4 – continued from previous page

Instance Best-known DA-GVNS iVNS HS D-GWO

kroB100 22141 22165 22140.2 22450.7 22444.6

kroC100 20749 20749 20809.29 20934.7 21078

kroD100 21294 21294 21490.62 21529.6 -

kroE100 22068 22121 22193.8 22246.2 22410

kroA150 26524 26817 26947.17 - -

kroB150 26130 26256 26537.04 - 26756.2

kroA200 29368 29807 30339.67 - -

kroB200 29437 30015 30453.22 - -

lin105 14379 14390 14395.64 - 14520

lin318 42029 43201 43964.93 - -

pcb442 50778 53009 50800.24 - -

pcb1173 56892 61725 63435.95 - -

pcb3038 137694 152209 154565.4 - -

pr76 108159 108159 108159 - 108900

pr107 44303 44303 44314.92 44647.1 44685.1

pr124 59030 59050 59051.82 59338.9 59390.9

pr136 96772 97062 97985.84 98761.4 99310.5

pr144 58537 58537 58563.97 58734.6 58600.5

pr152 73682 73839 73855.11 74202.6 74230

pr226 80369 80880 80514.64 - 81135.7

pr264 49135 49880 51197.14 49528.6 -

pr299 48191 49719 50373.12 - -

pr439 107217 112600 111771.2 - 112850.3

pr1002 259045 277867 280563.9 - 267713.2

rat99 1211 1211 1241.26 - -

Continued on next page

24

Table 4 – continued from previous page

Instance Best-known DA-GVNS iVNS HS D-GWO

rat195 2323 2364 2453.81 - -

rat575 6773 7179 7362.51 - -

rat783 8806 9445 9707.36 - -

rd100 7910 7910 7918.36 - -

rd400 15281 15915 16250.21 - -

rl1323 270199 292819 295611.2 - -

st70 675 675 677.11 678.6 -

swiss42 1273 1273 1273 - -

u159 42080 42168 42467.61 - 42563.3

u574 36905 39583 39629.11 - -

u724 41910 44814 45729.71 - -

u2319 234256 243332 262595.6 - -

vm1748 336556 369787 366757.8 - -

Average 47578 49847.25 50423.58 31472.83∗ 70439.22∗

The results of symmetric TSP instances indicate the significant role of adaptive mecha-

nisms on the performance of the GVNS. It is crucial to mention that even considering classic

search operators, the data-driven intelligent re-ordering mechanisms can enhance the perfor-

mance of the GVNS algorithm, in order to perform better than other improved VNS imple-

mentations, such as the single-adaptive GVNS variants and the improved VNS of Hore et al.

(2018). Also, the DA-GVNS performs better than the improved HS of Osaba et al. (2018)

and almost equivalently to the D-GWO of Panwar & Deep (2021). The average values of

DA-GVNS in problem instances solved by improved HS and D-GWO are 31256 (improved

by 0.69%) and 70676.4 (0.34% worse) correspondingly. Thus, the DA-GVNS provides

a good base for further improvements, such as the consideration of improved local search

25

operators, to construct an even more efficient heuristic algorithm.

5. Conclusions

This work presents a novel GVNS scheme, which considers intelligent, low-level data-driven,

mechanisms both in intensification and diversification phases, to efficiently re-order the

search operators, and finally to enhance the overall performance of the algorithm. To evalu-

ate the performance of the new GVNS variant, single-adaptive and the conventional GVNS

were also implemented and properly modified to be able to solve both symmetric and asym-

metric TSP instances. The conducted computational study showed that, the consideration

of the double-adaptive mechanism has a significant positive effect on the performance of

the GVNS method. Moreover, further computational comparisons were performed between

the proposed DA-GVNS and other recently proposed solution methods. These additional

comparisons showed that DA-GVNS, even with the adoption of non-improved local search

operators, can provide high quality solutions and perform better than other efficient methods

in the open literature.

The aforementioned remarks stated the benefits of integrating intelligent learning com-

ponents in the main process of classic metaheuristic frameworks, such as the VNS. To this

end, an interesting future work direction could focus on the development of wider adaptive

mechanisms. More specifically, adaptive mechanisms for the selection of VND variants and

kmax during the execution of a GVNS solution method can potentially enhance the per-

formance of the DA-GVNS. Moreover, the selection and the implementation of improved

local search operators in the DA-GVNS can also lead to further improvements. Another

interesting future research direction is the further investigation of the performance of the

DA-GVNS on the solution of more complex supply chain network optimization problems.

References

Bhatnagar, R., & Teo, C. (2009). Role of logistics in enhancing competitive advantage: A value chain frame-

work for global supply chains. International Journal of Physical Distribution & Logistics Management ,

39 , 202–226.

26

Boryczka, U., & Szwarc, K. (2019). The Harmony Search algorithm with additional improvement of harmony

memory for Asymmetric Traveling Salesman Problem. Expert Systems with Applications , 122 , 45–53.

Campuzano, G., Oberque, C., & Aguayo, M. M. (2020). Accelerating the Miller–Tucker–Zemlin model for

the asymmetric traveling salesman problem. Expert Systems with Applications , 148 , 113229.

Ebadinezhad, S. (2020). DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for

the traveling salesman problem. Engineering Applications of Artificial Intelligence, 92 , 103649.

Flood, M. (1956). The Traveling-Salesman Problem. Operations Research, 4 , 61–75.

Grazia Speranza, M. (2018). Trends in transportation and logistics. European Journal of Operational

Research, 264 , 830–836.

Hansen, P., & Mladenović, N. (2014). Variable Neighborhood Search. In E. Burke, & G. Kendall (Eds.),

Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (pp. 313–

337). New York: Springer Science+Business Media.

Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2017). Variable neighborhood search: Basics and

variants. EURO Journal on Computational Optimization, 5 , 423–454.

Hillier, F. S., & Lieberman, G. J. (2021). Introduction to Operations Research. (11th ed.). McGraw Hill.

Hore, S., Chatterjee, A., & Deqanji, A. (2018). Improving variable neighborhood search to solve the traveling

salesman problem. Applied Soft Computing , 68 , 83–91.

Karakostas, P., Panoskaltsis, N., Mantalaris, A., & Georgiadis, M. (2020a). Optimization of CAR T-cell

therapies supply chains. Computers & Chemical Engineering , 139 , 106913.

Karakostas, P., Sifaleras, A., & Georgiadis, C. (2019). A general variable neighborhood search-based so-

lution approach for the location-inventory-routing problem with distribution outsourcing. Computers &

Chemical Engineering , 126 , 263–279.

Karakostas, P., Sifaleras, A., & Georgiadis, C. (2020b). Adaptive variable neighborhood search solution

methods for the fleet size and mix pollution location-inventory-routing problem. Expert Systems with

Applications , 153 , 113444.

Karakostas, P., Sifaleras, A., & Georgiadis, C. (2022). Variable neighborhood search-based solution methods

for the pollution location-inventory-routing problem. Optimization Letters , 16 , 211–235.

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A. M., & Talbi, E. (2022). Machine

learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-

art. European Journal of Operational Research, 296 , 393–422.

Li, K., & Tian, H. (2016). A two-level self-adaptive variable neighborhood search algorithm for the prize-

collecting vehicle routing problem. Applied Soft Computing , 43 , 469–479.

Menéndez, B., Bustillo, M., Pardo, E. G., & Duarte, A. (2017). General variable neighborhood search for

the order batching and sequencing problem. European Journal of Operational Research, 263 , 82–93.

27

Mikić, M., Todosijević, R., & Urošević, D. (2019). Less is more: General variable neighborhood search for

the capacitated modular hub location problem. Computers & Operations Research, 110 , 101–115.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research,

24 , 1097–1100.

Osaba, E., Del Ser, J., Sadollah, A., Bilbao, M. N., & Camacho, D. (2018). A discrete water cycle algorithm

for solving the symmetric and asymmetric traveling salesman problem. Applied Soft Computing , 71 ,

277–290.

Panwar, K., & Deep, K. (2021). Discrete Grey Wolf Optimizer for symmetric travelling salesman problem.

Applied Soft Computing , 105 , 107298.

Papalitsas, C., Karakostas, P., & Andronikos, T. (2019). A Performance Study of the Impact of Different

Perturbation Methods on the Efficiency of GVNS for Solving TSP. Applied System Innovation, 2 , 31.

Punnen, A. P. (2007). The Traveling Salesman Problem: Applications, Formulations and Variations. In

G. Gutin, & A. P. Punnen (Eds.), The Traveling Salesman Problem and Its Variations . Springer, Boston,

MA volume 12.

Rajesh Kanna, S., Sivakumar, K., & Lingaraj, N. (2021). Development of Deer Hunting linked Earthworm

Optimization Algorithm for solving large scale Traveling Salesman Problem. Knowledge-Based Systems ,

227 , 107199.

Ren, X., Huang, H., Feng, S., & Liang, G. (2020a). An improved variable neighborhood search for bi-

objective mixed-energy fleet vehicle routing problem. Journal of Cleaner Production, 275 , 124155.

Ren, Y., Meng, L., Zhao, F., Zhang, C., Guo, H., Tian, Y., Tong, W., & Sutherland, J. W. (2020b). An

improved general variable neighborhood search for a static bike-sharing rebalancing problem considering

the depot inventory. Expert Systems with Applications , 160 , 113752.

Sevaux, M., Sorensen, K., & Pillay, N. (2018). Adaptive and multilevel metaheuristics. In R. Mart́ı,

P. Pardalos, & M. Resende (Eds.), Handbook of Heuristics (pp. 1–19). Springer.

Simeonova, L., Wassan, N., Salhi, S., & Nagy, G. (2018). The heterogeneous fleet vehicle routing problem

with light loads and overtime: Formulation and population variable neighborhood search with adaptive

memory. Expert Systems with Applications , 114 , 183–195.

Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. Hoboken, New Jersey: John Wiley

& Sons, Inc.

Talbi, E.-G. (2021). Machine learning into metaheuristics: A survey and taxonomy. ACM Computing

Surveys , 54 , 1–32.

Todosijević, R., Mladenović, M., Hanafi, S., Mladenović, N., & Crévits, I. (2016). Adaptive general vari-

able neighborhood search heuristics for solving the unit commitment problem. International Journal of

Electrical Power & Energy Systems , 78 , 873–883.

28

Wang, Y., Wu, Y. W., & Xu, N. (2019). Discrete symbiotic organism search with excellence coefficients and

self-escape for traveling salesman problem. Computers & Industrial Engineering , 131 , 269–281.

Zhong, Y., Wang, L., Lin, M., & Zhang, H. (2019). Discrete pigeon-inspired optimization algorithm with

Metropolis acceptance criterion for large-scale traveling salesman problem. Swarm and Evolutionary

Computation, 48 , 134–144.

29

	Introduction
	Literature review
	Recent contributions on TSP
	Recent advances and applications of VNS
	Knowledge gap and research contribution

	The Double-Adaptive GVNS
	General VNS
	Adaptive mechanisms
	Overview of the proposed solution method
	Modifications on DA-GVNS for the solution of TSP
	Initial solution
	Neighborhood structures

	Computational analysis and results
	Computing environment
	kmax computational analysis
	Computational results on asymmetric TSP instances
	Computational results on symmetric TSP instances

	Conclusions

