
BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 1

A parallel implementation of an exterior point
algorithm for linear programming problems

N. Ploskas1, N. Samaras1 and A. Sifaleras2
1 University of Macedonia/Applied Informatics, Thessaloniki, Greece
2 University of Macedonia/Technology Management, Naousa, Greece

Abstract—The simplex method is perhaps the most widely
used method for solving linear programming (LP) problems.
The computation time of simplex type algorithms depends
on the basis inverse that occurs in each iteration.
Parallelizing simplex type algorithms is one of the most
challenging problems. The aim of this paper is to present a
parallel implementation of the primal exterior point simplex
algorithm. In this approach the basis inverse is computed in
parallel. The matrix that holds the basis is distributed
among different workers and the computation is performed
faster in large-scale LP problems. Apart from the parallel
implementation, this paper presents a computational study
that shows the speedup among the serial and parallel
version in large-scale randomly generated full dense LP
problems.

Index Terms—Computational Study, Exterior Point Simplex
type Algorithm, Linear Programming, Parallel
Programming.

I. INTRODUCTION

Linear Programming (LP) is a significant area in the
field of mathematical optimization, where a linear
function (1) is optimized.

1

n

i i
i

z c x
=

=∑ (1)

Several methods are available for solving LP problems,
among which the simplex algorithm [9] is the most widely
used due to its simplicity and speed. Although it is well
known that the computational complexity of the simplex
method is not polynomial in the number of equations, in
practice it can quickly solve many LP problems.
Applications of the simplex method can be found in
various areas, such as operations research and nonlinear
constrained structural optimization. We assume that the
problem is in its general form. Formulating the linear
problem in mathematical terms now, we can describe it as
shown below:

min c

 to Ax = b

 x 0

T x

subject

≥

 (2)

where A∈Rmxn, (c, x)∈Rn, b∈Rm, and T denotes
transposition. We assume that A has full rank. The
simplex method searches for an optimal solution by

moving from one feasible solution to another, along the
edges of the feasible set.

Exterior Point Simplex Algorithm (EPSA) differs
radically from Primal Simplex Algorithm (PSA) because
its basic solutions are not feasible [26] and [28]. EPSA
relies on the idea [27] that making steps in directions that
are linear combinations of attractive descent directions can
lead to faster practical convergence than that achievable
by PSA. For all known pivoting rules [24, 30] sequences
of examples have been constructed, such that the number
of iterations is exponential in m+n. None of the existing
simplex type algorithms admits polynomial complexity.

As in the solution of any large scale mathematical
system, the computational time for large LP problems is a
major concern. The requirement for faster and more
efficient computations in scientific applications has been
considerably increased in the last years. Natural
restrictions and high costs render impossible the increase
of speed of processors beyond concrete limits. In order to
overcome these difficulties new architectures have been
developed importing the parallel processing [3], [7], [12],
[33]. Nowadays the clustering of many processors has led
to the development of various types of high-performance
machines.

Networked computers have become a common
infrastructure in most organisations, especially large ones.
Additionally, the speed of the network has also improved
significantly. Nowadays, it is very common for local area
networks to transfer multiple types of data such as voice
and video. High performance computing has also
benefited and today, distributed computing is quickly
gaining popularity [23].

Parallel programming is a good practice for solving
computationally intensive problems in various fields. In
operations research, for instance, solving maximization
problems with simplex method is an area where parallel
algorithms are being developed [19], [20], [22], [32].
Parallelizing simplex type algorithms is one of the most
challenging problems. Due to very dense matrices and
very heavy communication, the ratio of computation to
communication is extremely low. It becomes necessary to
carefully select parallel techniques, partitioning patterns
and communication optimization in order to achieve a
speedup. A popular approach for the implementation of
parallel algorithms is to configure a cluster or a network of
personal computers. With the advances made in computer
hardware and software, it is now quite a simple matter to
configure a computer network.

The primary reasons for using parallel computing are
to:

(i). reduce execution time

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 2

(ii). solve larger problems
(iii). provide concurrency
(iv). take advantage of non-local resources - using

available computer resources on a wide area
network and finally

(v). overcome memory constraints
The application of parallel processing to the simplex

method for linear programming has been considered since
the early 1970's. However, only since the beginning of the
1980's attempts have been made to develop
implementations. Although few experiments have been
made, using shared memory machines, the vast majority
of implementations used distributed memory
multiprocessors and Ethernet-connected clusters.

One of the earliest parallel tableau simplex methods on
a small-scale distributed memory Multiple-Instruction
Multiple-Data (MIMD) machines is by Finkel [11]. His
study showed that the overhead for distributing matrix
elements for pivot operations, and for inter-process
synchronization did not allow for any significant speedup.
Wu and Lewis [36] presented two parallelization of the
revised simplex algorithm with explicit form of the basis
inverse on a shared memory MIMD machine. Their
implementations presented good scalability only on very
small problem sizes. Stunkel [34] studied the performance
of the tableau and the revised simplex on the iPSC/2
hypercube computer. Helgason et al. [17] proposed an
algorithm to implement the revised simplex using sparse
matrix methods on shared memory MIMD computer.
Furthermore, Shu and Wu [32] and Shu [31] parallelized
the explicit inverse and the LU decomposition of the basis
simplex algorithms. Both methods are very efficient, with
the first being more suitable to LP problems with dense
constrained matrices, while the second being more
suitable to LP problems with sparse matrices. The LU
decomposition of the basis attained some speedup only in
large and sparse problems.

Simplex algorithms for general LP problems on Single
Instruction Multiple Data (SIMD) have been reported by
Agarwal et al. [1], and by Eckstein et al. [10]. The
implementation in [1] had a disappointing performance.
Eckstein et al. in [10] implemented a parallelization of
dense simple and interior-point algorithms in a CM2
machine. They reported that interior point algorithms are
relatively easy to implement on SIMD machines with
commercially available library software.

Hall and McKinnon [16] worked on parallel revised
methods and obtained a speedup of between 2.5 and 4.8.
Thomadakis and Liu [35] worked on the standard method
utilizing the MP-1 and MP-2 MasPar. Yarmish [37]
describes a coarse grained distributed simplex method,
dpLP, that efficiently solved all LP problems in the Netlib
repository [14]. Cvetanovic et al. [8] report a speedup of
twelve when solving two small size problems with
standard simplex. Recently, Badr et al. [2] presented
results for an implementation on eight computers,
achieving a speedup of five when solving small random
dense LP problems. Lentini et al. [21] developed a parallel
implementation of the standard simplex method with the
tableau stored as a sparse matrix. When solving medium
sized Netlib problems on four transputers they achieved a
speedup of between 0.5 and 2.7, with a super-linear
speedup of 5.2 on one problem with a relatively large
column-row ratio. Finally, in [4, 6, 29] computational

results for parallelizing the network simplex method are
reported.

This paper presents a parallelization of the exterior-
point simplex algorithm on a multicore machine. The
focus of this parallelization is on the basis inverse. An
outline of the rest of the paper is as follows. In Section II,
the exterior-point simplex algorithm is described and
presented. In Section III, the parallel matrix multiplication
technique which was used to compute the basis inverse is
introduced. Section IV presents the parallel exterior-point
simplex algorithm and section V gives the computational
results. Finally, the conclusions of this paper are outlined
in section VI.

II. EXTERIOR-POINT SIMPLEX ALGORITHM

The algorithm starts with a primal feasible basic
partition (B, N). The variables corresponding to B will be
called basic. The others will be referred to as non-basic.
Later on, the following sets of indexes are computed:

 { }: 0jP j N s= ∈ < . (3)

 { }: 0jz j N s= ∈ ≥ . (4)

If P = ∅ then the current basis B and the corresponding
solution xT = (xB, xN) is optimal for the primal problem.
EPSA firstly defines the leaving and afterwards the
entering variable. The leaving variable xB[r] = xk is
computed as follows:

[] []

[]
[] []

min : 0B r B i
B i

B r B i

x x
a d

d d

= = <
− −

 (5)

where d is an improving direction. This direction is
constructed in such way that the ray {x + td : t > 0}
crosses the feasible region of (2). The notation dB denotes
those components from d which correspond to the basic
variables. The dB is computed as following:

∑
∈

−=
Pj

jB hd

 (6)

Where hj = B-1 A.j. If dB ≥ 0, then the problem is
unbounded.

In order to compute the entering variable xl, the
following rations must first be computed:

 jQ
1 rj

rQ rj

ss
θ min : H 0 j P

H H

 −−
= − = > ∧ ∈

 (7)

and

 2θ min : 0 Q j
rj

rQ rj

s s
H j Q

H H

 − −
= − = < ∧ ∈

 (8)

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 3

If θ1 ≤ θ2 then l = p, otherwise (e.g., θ1 > θ2) l = q. The
non-basic variable xl enters the basis. A formal description
of the EPSA is given below.

EPSA algorithm

Step 0. (Initialization).
Start with a feasible partition (B, N). Compute B-1 and

vectors xB, w and sN. Find the sets of indices P and Q
using relations (3) and (4). Define an arbitrary vector λ =
(λ1, λ2, ..., λ|P|) > 0 and compute s0 as follows:

 0 j j

j P

s sλ
∈

=∑ (7)

and the direction dB from (5).
Step 1. (Termination test).

i) (Optimilaty test). If P = ∅, STOP. The
problem is optimal.

ii) (Leaving variable selection). If dB ≥ 0, STOP.
If s0 = 0 the problem is optimal. If s0 < 0 the
problem is unbounded. Otherwise choose the
leaving variable xB[r] = xk using (5).

Step 2. (Entering variable selection).
Compute the row vectors:

 1 1
. .() and ()rP r p rQ r QH B A H B A− −= = (9)

Compute the ratios θ1 and θ2 using relations (7) and (8).
Determine the indices t1 and t2 such that P[t1] = p and
Q[t2] = q. If θ1 ≤ θ2, set l = p, otherwise (e.g., θ1 > θ2) l =
q. The non-basic variable xl enters the basis.
Step 3. (Pivoting)

Set B[r] = l. If θ1 ≤ θ2, set P ← P\{l} and Q ← Q ∪ {k}.
Otherwise, set Q[t2] = k. Using the new partition (B, N)
where N = (P, Q), update the matrix B-1 and the vectors
xB, w and sN. Also update dΒ as follows:

 1
B Bd E d−= (10)

If l∈P set dB[r] ← dB[r] + λl. Go to step 1.

Proof of correctness of the above algorithm can be

found in [25, 28]. In order to solve general linear
optimization problems we applied a hybrid algorithm.
This version of algorithm embodies unchanged the phase I
of PSA and actually applies EPSA in phase II. Thus, in
phase I this algorithm works exactly as PSA, and when a
feasible partition (solution) is found EPSA is applied.
Therefore this algorithm is the union of PSA in phase I
and EPSA in phase II and as a result it’s a hybrid
algorithm.

III. PARALLEL MATRIX MULTIPLICATION

Multiplication of two matrices, A and B, produces the
matrix C, whose elements ci,j (0 ≤ i < n, 0 ≤ j < m), can be
computed as follows:

1

, , ,

0

l

i j i k k j

k

c a b
−

=

=∑ (11)

where A is an nxl matrix, and B is an lxm matrix. Each
element of the ith row of A is multiplied by an element of
the jth column of B, and the products are summed together
to obtain the value of the element in the ith row and the jth
column of C, as illustrated in Figure 1.

Figure 1. Matrix multiplication scheme

For convenience, let us assume that the matrices are
square (nxn matrices). From the definition of matrix
multiplication given above, the sequential code to
compute AxB could simply be:

for (i = 0; i < n; i++)
 for (j = 0; j <n; j++) {
 C[i][j] = 0;
 for (k = 0; k < n; k++)
 C[i][j] = C[i][j] + A[i][k] * B[k][j];

 }

The algorithm requires n3 multiplications and n3

additions, leading to a sequential time complexity of
O(n3).

Parallel matrix multiplication is usually based upon the
direct sequential matrix multiplication algorithm. Even a
superficial look at the sequential code reveals that the
computation in each iteration of the two outer loops is not
dependent upon any other iteration, and each instance of
the inner loop could be executed in parallel. Hence, with p
= n processors, we can expect a parallel time complexity
of O(n2).

Usually, we want to use far fewer than n processors
with nxn matrices because of the size of n. Then each
processor operates upon a group of data points. Each
matrix can be divided into blocks of elements called
submatrices. These submatrices can be manipulated as if
they were single matrix elements [13]. Let us select mxm
submatrices and s = n/m, that is s rows and columns of
mxm submatrices. Then there are s2 submatrices in each
matrix and s2 processors.

Communication. Each of the s2 slave processors must
receive one row and one column of submatrices, each
consisting of m2 elements. In addition, each slave
processor must return a submatrix C to the master
processor (m2 elements), giving a communication time of:

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 4

{ }

{ }

2 2

2
2

2() ()

 3 (2)

comm startup data startup data

startup data

t s t nmt t m t

n
t m nm t

m

= + + +

 = + +

 (12)

Computation. Each slave performs in parallel s
submatrix multiplications and s submatrix additions. One
sequential submatrix multiplication requires m3
multiplications and m3 additions. A submatrix addition
requires m2 additions. Hence:

 ()3 22compt s m m= + (11)

Hence, the time complexity for this computation is
O(sm3) = O(nm2).

The block matrix multiplication algorithm suggests a
recursive divide-and-conquer solution, as described in
[15] and [18]. This method has significant potential for
parallel implementations, especially shared memory
implementations.

Furthermore, matrix multiplication can be implemented
with a two-dimensional mesh. There are several ways that
matrix multiplication can be developed for a mesh
organization. The most well-known are: Cannon’s
algorithm [5] and the systolic approach. Another matrix
multiplication algorithm was devised by Fox; details can
be found in Fox et al. [13].

IV. PARALLEL EXTERIOR-POINT ALGORITHM

Since the parallelization of all individual steps of the
revised simplex method is limited and very hard to
achieve, it is important to consider how the method itself
can be modified to allow the maximum degree of
independence between the computational steps in different
iterations. However, it is also essential that any algorithm
performs basis inverse in parallel with simplex iterations,
otherwise basis inverse will then become the dominant
step and limit the possible speed-up.

Our parallel implementation focus on the reduction of
the time taken to perform the basis inverse. The basis
inversion is done with the Product Form of the Inverse
(PFI) scheme. The parallel implementation is based on a
master – slave architecture. The master performs all the
steps of the exterior-point simplex algorithm and the
slaves only compute their portion of the new basis.

Let us assume that the matrices E (eta matrix) and B
(basis) are square (n x n matrices). Furthermore, we have s
processors. The E matrix is splitted into s submatrices
with m = n/s rows and n columns each, as shown in Figure
2. The master broadcast the B matrix to each processor.
Each processor will compute n/s rows of the new basis.
The elements of these rows have to be sending back to the
master. Finally, the master processor joins the submatrices
to obtain the new basis.

A. Pseudo-code for the master task

Table I presents the pseudo-code for the master task
used for the basis inverse.

TABLE I.
MASTER TASKS’ PSEUDO-CODE

1. B = labBroadcast(1, B);

2. for i=2:Numoflabs
3. labSend(E((i-1)*d/Numoflabs+1:

i*d/Numoflabs,:),i,2);
4. end
5. new_B=E(1:d/Numoflabs,:)*B;
6. for i=2:Numoflabs
7. d2=labReceive(i,3);
8. B=[B; d2];
9. end

where Numoflabs is the number of workers used and d

is the rows of the instance.
Initially, the master broadcasts the matrix B to the

workers. In lines 2 to 4, the distribution of matrix E is
being performed. The master holds the first d/Numoflabs
rows and sends the other to workers. Each node has equal
number of rows. Next, the master computes its’ portion of
the new basis. In lines 6 to 9, the master receives the
results from other workers and joins the submatrices to
form the new basis.

B. Pseudo-code for the slave tasks

Table II introduces the pseudo-code for the slave tasks
used for the basis inverse.

TABLE II.
SLAVE TASKS’ PSEUDO-CODE

1. B=labBroadcast(1);
2. E=labReceive(1,2);
3. new_B=E*B;
4. labSend(B,1,3);

Initially, the slave receives the whole matrix B from the

master process (line 1) and its’ portion of the matrix E
(line 2). Next, the slave process performs its’ computation
(line 3) and sends back to the master the submatrix of the
new basis.

Figure 2. Block Matrix multiplication scheme

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 5

V. COMPUTATIONAL EXPERIMENTS

The three more usual approaches to analyzing
algorithms are i) worst-case analysis, ii) average-case
analysis, and iii) experimental analysis. Computational
studies have proven useful tools in order to examine the
practical efficiency of an algorithm, or even compare
algorithms by using the same problem sets.

A. Computing environment

The comparative computational study has been
performed on an Intel Core 2 Duo T5550 1.83 GHz, with
3Gb RAM running under Windows Professional XP 32-
bit Edition SP3. The algorithms have been implemented
using MATLAB R2009a 32-bit Professional Edition.

The parallel implementation uses the Parallel
Computing Toolbox of the MATLAB R2009a x86
environment. Parallel Computing Toolbox enables us to
solve computationally and data-intensive problems using
MATLAB and Simulink on multicore and multiprocessor
computers. Parallel processing constructs, such as parallel
for-loops and code blocks, distributed arrays, parallel
numerical algorithms, and message-passing functions let
you implement task- and data-parallel algorithms in
MATLAB at a high level, without the restriction for
programming for a specific hardware and network
architectures. The toolbox can be used to execute
applications on a single multicore or multiprocessor
desktop. Without changing the code, the same application
can run on a computer cluster (using MATLAB
Distributed Computing Server).

Parallel MATLAB applications can be distributed as
executables or shared libraries that can access MATLAB
Distributed Computing Server. Facilities are offered for
using high-level constructs such as distributed arrays,
parallel algorithms, and functions for exchanging
information between processes using message passing
procedures like broadcast, send, receive and others.
Parallel Computing Toolbox has the ability to run eight
workers locally on a multicore desktop and can be
integrated with MATLAB Distributed Computing Server
for cluster-based applications that use any scheduler or
any number of workers.

B. Problem instances

The instances are listed in Table III. For each problem
type of a particular size, 10 instances were generated,
using a different seed number. All instances are randomly
generated optimal problems. For each instance, we
averaged times over 5 runs. All instances are on average
98% dense.

C. Results

In this section, computational results regarding to our
implementations are reported. The results given in Table
IV show the average times of the sequential exterior-point
simplex algorithm for 5 executions. All times are
displayed in seconds.

TABLE III.
DIMENSIONS OF PROBLEMS

Problem name
Number of

rows
Number of
columns

pr1 500 500

pr2 1000 1000

pr3 1500 1500

pr4 2000 2000

pr5 2500 2500

pr6 3000 3000

Table IV shows that the computation time of simplex

type algorithms depends on the basis inverse that occurs in
each iteration.

TABLE IV.
TOTAL TIME OF THE SEQUENTIAL EXTERIOR-POINT SIMPLEX

ALGORITHM

Dimension Total time Time of basis inverse

pr1 21.81 8.01

pr2 228.10 89.84

pr3 861.37 340.59

pr4 1659.14 640.15

pr5 3731.81 1231.62

pr6 7474.44 2567.89

Tables V and VI present the results from the execution

of the parallel implementation with 2 and 4 workers,
respectively. In both tables, columns 2, 3, 4 and 5 show
the total time, the computational time, the communication
time and the time of the basis inverse, respectively. These
results are also graphically illustrated in Figures 3 and 4.

TABLE V.
TOTAL, COMPUTATION, COMMUNICATION AND BASIS INVERSE TIME OF

THE PARALLEL IMPLEMENTATION USING 2 WORKERS

Dimension
Total
Time

Computation
Time

Communication
Time

Time of
basis

inverse
pr1 37.72 14.24 23.48 3.88
pr2 424.59 160.96 263.63 42.20
pr3 1384.70 595.92 788.80 167.51
pr4 2548.40 1123.80 1424.60 355.07
pr5 6061.60 2540.50 3521.10 786.71
pr6 12536.70 4839.10 7697.10 1403.90

TABLE VI.

TOTAL, COMPUTATION, COMMUNICATION AND BASIS INVERSE TIME OF
THE PARALLEL IMPLEMENTATION USING 4 WORKERS

Dimension
Total
time

Computation
time

Communication
time

Time of
basis

inverse
pr1 85.02 14.20 70.82 0.37
pr2 586.32 148.78 437.52 17.96
pr3 1577.10 484.62 1092.50 76.80
pr4 2957.50 859.38 2098.20 126.58
pr5 6131.90 1905.10 4226.80 273.84
pr6 11789.45 3985.54 7803.91 526.54

Table VII presents the time taken to perform the basis

inverse using 1, 2 and 4 workers, respectively. Figure 5 is
the graphical representation of the results shown in Table
VII. Table VII shows that we have a significant reduction
of the computation time needed by the basis inverse. The
speed-up gained from the parallelization of the basis
inverse is of average 4.72. Due to very dense matrices and
very heavy communication, the ratio of computation to

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 6

communication is extremely low. As a result the parallel
implementation does not offer any speed-up to the total
time.

TABLE VII.
BASIS INVERSE TIME USING 1, 2 AND 4 WORKERS, RESPECTIVELY

Dimension 1 worker 2 workers 4 workers
pr1 8.00 3.88 0.37
pr2 89.84 42.20 17.96
pr3 340.59 167.51 76.80
pr4 640.15 355.07 126.58
pr5 1231.60 786.71 273.84
pr6 2567.89 1403.90 526.54

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 500 1000 1500 2000 2500 3000

T
im

e
(in

 s
ec

s)

Dimension of the problem

Total, computation, communication and basis inverse time using 2 workers

Total time
Computation time

Communication time
Time of basis inverse

Figure 3. Total, computation, communication and basis inverse times

of the parallel implementation using 2 workers

 0

 2000

 4000

 6000

 8000

 10000

 12000

 500 1000 1500 2000 2500 3000

T
im

e
(in

 s
ec

s)

Dimension of the problem

Total, computation, communication and basis inverse time using 4 workers

Total time
Computation time

Communication time
Time of basis inverse

Figure 4. Total, computation, communication and basis inverse times

of the parallel implementation using 4 workers

 0

 500

 1000

 1500

 2000

 2500

 3000

 500 1000 1500 2000 2500 3000

T
im

e
(in

 s
ec

s)

Dimension of the problem

Basis inverse time using 1, 2 and 4 workers, respectively

1 worker
2 workers
4 workers

Figure 5. Basis inverse time using 1, 2 and 4 workers, respectively

VI. CONCLUSIONS

A parallel algorithm for the exterior-point revised
simplex method has been described and a speed-up of
average 4.72, regarding the basis inverse procedure, was
demonstrated by the computational results. Due to very
dense matrices and very heavy communication, the ratio
of computation to communication is extremely low. As a
result the parallel implementation does not offer any
speed-up to the total time. However, these results could be
further improved by performance optimization.

In summary, parallelizing simplex algorithms is not an
easy task. Due to heavy communication, the
computational results show that it is hard to achieve a
linear speed-up even with carefully selected partitioning
patterns and communication optimization.

REFERENCES
[1] A. Agrawal, G. E. Blelloch, R. L. Krawitz, and C. A. Phillips,

“Four vector-matrix primitives”, In ACM Symposium on Parallel
Algorithms and Architectures, pp. 292-302, 1989.

[2] E. S. Badr, M. Moussa, K. Papparrizos, N. Samaras, and A.
Sifaleras, “Some computational results on MPI parallel
implementations of dense simplex method”, Transactions on
Engineering, Computing and Technology, Vol. 17, pp. 228-231,
2006.

[3] M. Baker, R. Buyya and D. Laforenza, “Grids and Grid
technologies for wide-area distributed computing”, Software-
Practice and Experience, Vol. 32(15), pp. 1437-1466. 2002.

[4] R. S. Barr and B. L. Hickman, “Parallel Simplex for Large Pure
Network Problems: Computational Testing and Sources of
Speedup”, Operations Research, Vol. 42(1), 1994, pp. 65-80.

[5] L. E. Cannon, A Cellular Computer to Implement the Kalman
Filter Algorithm, Ph.D. Thesis, Montana State University,
Bozman, MT, 1969.

[6] M. D. Chang, M. Engquist, R. Finkel and R. R. Meyer, “A Parallel
Algorithm for Generalized Networks”, Annals of Operations
Research, Vol. 14(1-4), pp. 125-145, 1988.

[7] J. C. Cunha, O. F. Rana and P. D. Medeiros, “Future trends in
distributed applications and problem-solving environments”,
Future Generation Computer Systems, Vol. 21(6), pp. 843-855,
2005.

[8] Z. Cvetanovic, E. G. Freedman and C. Nofsinger, “Efficient
decomposition and performance of parallel PDE, FFT, Monte-
Carlo simulations, simplex, and sparse solvers”, Journal of
Supercomputing, Vol. 5(2-3), pp. 219-238, 1991.

[9] G. B. Dantzig, “Programming in a Linear Structure”, Report of the
September 9, 1948 meeting in Madison, Econometrica, Vol. 17,
pp. 73-74, 1949.

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 7

[10] J. Eckstein, I. Boduroglu, L. Polymenakos and D. Goldfarb,
"Data-Parallel Implementations of Dense Simplex Methods on the
Connection Machine CM-2," ORSA Journal on Computing, Vol.
7(4), pp. 402-416, 1995.

[11] R. A. Finkel, “Large-Grain Parallelism: Three Case Studies”, in
the Characteristics of Parallel Algorithms, Ed. L. H. Jamieson,
The MIT Press, 1987.

[12] I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations”, The International
Journal of High Performance Computing Applications, Vol. 15(3),
pp. 200-222, 2001.

[13] G. Fox, G. Johnson, S. Otto, J. Salmon and D. Walker, “Solving
Problems on Concurrent Processors”, Volume 1, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[14] D. M. Gay, “Electronic mail distribution of linear programming
test problems”. Mathematical Programming Society COAL
Newsletter, Vol. 13, pp. 10-12, 1985.

[15] J. F. Hake, “Parallel Algorithms for Matrix Operations and Their
Performance in Multiprocessor Systems”, in Advances in Parallel
Algorithms, L. Kronsjo and D. Shumsheruddin, eds., Halsted
Press, New York, 1993.

[16] J. A. J. Hall and K. I. M. McKinnon, “ASYNPLEX an
asynchronous parallel revised simplex algorithm,” Annals of
Operations Research, Vol. 81(0), pp. 27-50, 1988.

[17] R. V. Helgason, J. L. Kennington, H. A. Zaki, “A parallelization
of the simplex method”, Annals of Operations Research, Vol.
14(1-4), pp.17-40, 1988.

[18] E. Horowitz and A. Zorat, “Divide-and-Conquer for Parallel
Processing", IEEE Trans. Comput., Vol. C-32(6), pp. 582-585,
1983.

[19] G. Karypis and V. Kumar, Performance and Scalability of the
Parallel Simplex Method for Dense Linear Programming
Problems an Extended Abstract, Technical Report, Computer
Science Department, University of Minessota, 1994.

[20] A. Kilgore, Very Large-scale Linear Programming: A Case Study
Exploiting Both Parallelism and Distributed Memory, MSc
Thesis, Center for Research on Parallel Computation, Rice
University, 1993.

[21] M. Lentini, A. Reinoza, A. Teruel and A. Guillen, “SIMPAR: a
parallel sparse simplex”. Computational and Applied
Mathematics, Vol. 14(1), pp. 49-58, 1995.

[22] I. Maros and G. Mitra, “Investigating the sparse simplex algorithm
on a distributed memory multiprocessor”, Parallel Computing,
Vol. 26(1), pp. 151-170, 2000.

[23] A. K. Noor, “New Computing Systems and Future High-
Performance Computing Environment and their Impact on
Structural Analysis and Design”, Computers and Structures, Vol.
64(1-4), pp. 1-30, 1997.

[24] K. Paparrizos, “Pivoting rules directing the Simplex method
though all feasible vertices of Klee-Minty examples”, OpSearch,
Vol. 26, pp.77-95, 1989.

[25] K. Paparrizos, “Exterior point simplex algorithms, simple and
short proof of correctness”, Proceedings of SYMOPIS ’96, pp. 13-
18, 1996.

[26] K. Paparrizos, “Pivoting algorithms generating two paths”,
presented in ISMP ’97, Lausanne, EPFL Switzerland, 1997.

[27] K. Paparrizos, N. Samaras and G. Stephanides, “An efficient
simplex type algorithm for sparse and dense linear programs”,
European Journal of Operational Research, vol. 148(2), pp. 323-
334, 2003.

[28] K. Paparrizos, N. Samaras, K. Tsiplidis, “Pivoting algorithms for
(LP) generating two paths” in : M.P Pardalos, A.C. Floudas (eds.)
Encyclopedia of Optimization, Vol. 4, Kluwer Academic
Publishers, pp. 302-306, 2001.

[29] J. Peters, “The Network Simplex Method on a Multiprocessor”,
Networks, Vol. 20(7), pp. 845-859, 1990.

[30] C. Roos, “An exponential example for Terlaky’s pivoting rule for
the Criss-cross Simplex method”, Mathematical Programming,
Vol. 46(1), pp. 79-84, 1990.

[31] W. Shu, “Parallel implementation of a sparse simplex algorithm
on MIMD distributed memory computers”. Journal of Parallel
and Distributed Computing, Vol. 31(1), pp. 25-40, 1995.

[32] W. Shu and M. Wu, “Sparse Implementation of Revised Simplex
Algorithms on Parallel Computers”, Sixth SIAM Conference on
Parallel Processing for Scientific Computing, March 22-24,
Norfolk, 1993.

[33] B. Skillicorn and D. Talia, “Models and Languages for Parallel
Computation”, ACM Computing Surveys, Vol. 30(2), pp. 123-
169, 1998.

[34] C. B. Stunkel, “Linear optimization via message-based parallel
processing”, In International Conference on Parallel Processing,
Vol. 3, pp. 264-271, 1988.

[35] M. E. Thomadakis and J. C. Liu, “An Efficient Steepest-Edge
Simplex Algorithm for SIMD Computers,” Proc. Of the
International conference on Super-Computing, ICS ’96, pp. 286-
293, 1996.

[36] Y. Wu and T. G. Lewis, Performance of Parallel Simplex
Algorithms, Tech. Report, Dep't of Computer Science, Oregon
State U., 1988.

[37] G. Yarmish, A Distributed Implementation of the Simplex Method,
Ph.D thesis, Polytechnic University, Brooklyn, NY, 2001.

AUTHORS

N. Ploskas is with the Applied Informatics Department,
University of Macedonia, Greece (e-mail:
mai084@uom.gr).

N. Samaras is with the Applied Informatics
Department, University of Macedonia, Greece (e-mail:
samaras@uom.gr).
A. Sifaleras is with the Technology Management
Department, University of Macedonia, Greece (e-mail:
sifalera@uom.gr).

Manuscript received 20 July 2009.

Published as submitted by the author(s).

