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Abstract—The simplex method is perhaps the most widely 
used method for solving linear programming (LP) problems. 
The computation time of simplex type algorithms depends 
on the basis inverse that occurs in each iteration.  
Parallelizing simplex type algorithms is one of the most 
challenging problems. The aim of this paper is to present a 
parallel implementation of the primal exterior point simplex 
algorithm. In this approach the basis inverse is computed in 
parallel. The matrix that holds the basis is distributed 
among different workers and the computation is performed 
faster in large-scale LP problems. Apart from the parallel 
implementation, this paper presents a computational study 
that shows the speedup among the serial and parallel 
version in large-scale randomly generated full dense LP 
problems.  

Index Terms—Computational Study, Exterior Point Simplex 
type Algorithm, Linear Programming, Parallel 
Programming. 

I. INTRODUCTION 

Linear Programming (LP) is a significant area in the 
field of mathematical optimization, where a linear 
function (1) is optimized. 
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Several methods are available for solving LP problems, 
among which the simplex algorithm [9] is the most widely 
used due to its simplicity and speed. Although it is well 
known that the computational complexity of the simplex 
method is not polynomial in the number of equations, in 
practice it can quickly solve many LP problems. 
Applications of the simplex method can be found in 
various areas, such as operations research and nonlinear 
constrained structural optimization. We assume that the 
problem is in its general form. Formulating the linear 
problem in mathematical terms now, we can describe it as 
shown below: 
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T x
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where A∈Rmxn, (c, x)∈Rn, b∈Rm, and T denotes 
transposition. We assume that A has full rank. The 
simplex method searches for an optimal solution by 

moving from one feasible solution to another, along the 
edges of the feasible set.  

Exterior Point Simplex Algorithm (EPSA) differs 
radically from Primal Simplex Algorithm (PSA) because 
its basic solutions are not feasible [26] and [28]. EPSA 
relies on the idea [27] that making steps in directions that 
are linear combinations of attractive descent directions can 
lead to faster practical convergence than that achievable 
by PSA. For all known pivoting rules [24, 30] sequences 
of examples have been constructed, such that the number 
of iterations is exponential in m+n. None of the existing 
simplex type algorithms admits polynomial complexity. 

As in the solution of any large scale mathematical 
system, the computational time for large LP problems is a 
major concern. The requirement for faster and more 
efficient computations in scientific applications has been 
considerably increased in the last years. Natural 
restrictions and high costs render impossible the increase 
of speed of processors beyond concrete limits. In order to 
overcome these difficulties new architectures have been 
developed importing the parallel processing [3], [7], [12], 
[33]. Nowadays the clustering of many processors has led 
to the development of various types of high-performance 
machines.  

Networked computers have become a common 
infrastructure in most organisations, especially large ones. 
Additionally, the speed of the network has also improved 
significantly. Nowadays, it is very common for local area 
networks to transfer multiple types of data such as voice 
and video. High performance computing has also 
benefited and today, distributed computing is quickly 
gaining popularity [23].  

Parallel programming is a good practice for solving 
computationally intensive problems in various fields. In 
operations research, for instance, solving maximization 
problems with simplex method is an area where parallel 
algorithms are being developed [19], [20], [22], [32]. 
Parallelizing simplex type algorithms is one of the most 
challenging problems. Due to very dense matrices and 
very heavy communication, the ratio of computation to 
communication is extremely low. It becomes necessary to 
carefully select parallel techniques, partitioning patterns 
and communication optimization in order to achieve a 
speedup. A popular approach for the implementation of 
parallel algorithms is to configure a cluster or a network of 
personal computers. With the advances made in computer 
hardware and software, it is now quite a simple matter to 
configure a computer network.  

The primary reasons for using parallel computing are 
to:  

(i). reduce execution time 
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(ii). solve larger problems 
(iii).  provide concurrency 
(iv). take advantage of non-local resources - using 

available computer resources on a wide area 
network and finally  

(v). overcome memory constraints  
The application of parallel processing to the simplex 

method for linear programming has been considered since 
the early 1970's. However, only since the beginning of the 
1980's attempts have been made to develop 
implementations. Although few experiments have been 
made, using shared memory machines, the vast majority 
of implementations used distributed memory 
multiprocessors and Ethernet-connected clusters. 

One of the earliest parallel tableau simplex methods on 
a small-scale distributed memory Multiple-Instruction 
Multiple-Data (MIMD) machines is by Finkel [11]. His 
study showed that the overhead for distributing matrix 
elements for pivot operations, and for inter-process 
synchronization did not allow for any significant speedup. 
Wu and Lewis [36] presented two parallelization of the 
revised simplex algorithm with explicit form of the basis 
inverse on a shared memory MIMD machine. Their 
implementations presented good scalability only on very 
small problem sizes. Stunkel [34] studied the performance 
of the tableau and the revised simplex on the iPSC/2 
hypercube computer. Helgason et al. [17] proposed an 
algorithm to implement the revised simplex using sparse 
matrix methods on shared memory MIMD computer. 
Furthermore, Shu and Wu [32] and Shu [31] parallelized 
the explicit inverse and the LU decomposition of the basis 
simplex algorithms. Both methods are very efficient, with 
the first being more suitable to LP problems with dense 
constrained matrices, while the second being more 
suitable to LP problems with sparse matrices. The LU 
decomposition of the basis attained some speedup only in 
large and sparse problems.  

Simplex algorithms for general LP problems on Single 
Instruction Multiple Data (SIMD) have been reported by 
Agarwal et al. [1], and by Eckstein et al. [10]. The 
implementation in [1] had a disappointing performance. 
Eckstein et al. in [10] implemented a parallelization of 
dense simple and interior-point algorithms in a CM2 
machine. They reported that interior point algorithms are 
relatively easy to implement on SIMD machines with 
commercially available library software.  

Hall and McKinnon [16] worked on parallel revised 
methods and obtained a speedup of between 2.5 and 4.8. 
Thomadakis and Liu [35] worked on the standard method 
utilizing the MP-1 and MP-2 MasPar. Yarmish [37] 
describes a coarse grained distributed simplex method, 
dpLP, that efficiently solved all LP problems in the Netlib 
repository [14]. Cvetanovic et al. [8] report a speedup of 
twelve when solving two small size problems with 
standard simplex. Recently, Badr et al. [2] presented 
results for an implementation on eight computers, 
achieving a speedup of five when solving small random 
dense LP problems. Lentini et al. [21] developed a parallel 
implementation of the standard simplex method with the 
tableau stored as a sparse matrix. When solving medium 
sized Netlib problems on four transputers they achieved a 
speedup of between 0.5 and 2.7, with a super-linear 
speedup of 5.2 on one problem with a relatively large 
column-row ratio. Finally, in [4, 6, 29] computational 

results for parallelizing the network simplex method are 
reported. 

This paper presents a parallelization of the exterior-
point simplex algorithm on a multicore machine. The 
focus of this parallelization is on the basis inverse. An 
outline of the rest of the paper is as follows. In Section II, 
the exterior-point simplex algorithm is described and 
presented. In Section III, the parallel matrix multiplication 
technique which was used to compute the basis inverse is 
introduced. Section IV presents the parallel exterior-point 
simplex algorithm and section V gives the computational 
results. Finally, the conclusions of this paper are outlined 
in section VI.   

II. EXTERIOR-POINT SIMPLEX ALGORITHM 

The algorithm starts with a primal feasible basic 
partition (B, N). The variables corresponding to B will be 
called basic. The others will be referred to as non-basic. 
Later on, the following sets of indexes are computed: 

 { }: 0jP j N s= ∈ < . (3) 

 { }: 0jz j N s= ∈ ≥ . (4) 

If P = ∅ then the current basis B and the corresponding 
solution xT = (xB, xN) is optimal for the primal problem. 
EPSA firstly defines the leaving and afterwards the 
entering variable. The leaving variable xB[r] = xk is 
computed as follows: 
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where d is an improving direction. This direction is 
constructed in such way that the ray {x + td : t > 0} 
crosses the feasible region of (2). The notation dB denotes 
those components from d which correspond to the basic 
variables. The dB is computed as following: 

 
∑
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Where hj = B-1 A.j. If dB ≥ 0, then the problem is 
unbounded. 

In order to compute the entering variable xl, the 
following rations must first be computed: 
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If θ1 ≤ θ2 then l = p, otherwise (e.g., θ1 > θ2) l = q. The 
non-basic variable xl enters the basis. A formal description 
of the EPSA is given below. 

 
EPSA algorithm 

Step 0. (Initialization).  
Start with a feasible partition (B, N). Compute B-1 and 

vectors xB, w and sN. Find the sets of indices P and Q 
using relations (3) and (4). Define an arbitrary vector λ = 
(λ1, λ2, ..., λ|P|) > 0 and compute s0 as follows: 

 0 j j

j P

s sλ
∈

=∑  (7) 

and the direction dB from (5). 
Step 1. (Termination test). 

i) (Optimilaty test). If P = ∅, STOP. The 
problem is optimal. 

ii)  (Leaving variable selection). If dB ≥ 0, STOP. 
If s0 = 0 the problem is optimal. If s0 < 0 the 
problem is unbounded. Otherwise choose the 
leaving variable xB[r] = xk using (5). 

Step 2. (Entering variable selection).  
Compute the row vectors: 

 1 1
. .( )  and ( )rP r p rQ r QH B A H B A− −= =  (9) 

Compute the ratios θ1 and θ2 using relations (7) and (8). 
Determine the indices t1 and t2 such that P[t1] = p and 
Q[t2] = q. If θ1 ≤ θ2, set l = p, otherwise (e.g., θ1 > θ2) l = 
q. The non-basic variable xl enters the basis. 
Step 3. (Pivoting)  

Set B[r] = l. If θ1 ≤ θ2, set P ← P\{l} and Q ← Q ∪ {k}. 
Otherwise, set Q[t2] = k. Using the new partition (B, N) 
where N = (P, Q), update the matrix B-1 and the vectors 
xB, w and sN. Also update dΒ  as follows: 

 1
B Bd E d−=  (10) 

If l∈P set dB[r]  ← dB[r] + λl. Go to step 1. 
 
Proof of correctness of the above algorithm can be 

found in [25, 28]. In order to solve general linear 
optimization problems we applied a hybrid algorithm. 
This version of algorithm embodies unchanged the phase I 
of PSA and actually applies EPSA in phase II. Thus, in 
phase I this algorithm works exactly as PSA, and when a 
feasible partition (solution) is found EPSA is applied. 
Therefore this algorithm is the union of PSA in phase I 
and EPSA in phase II and as a result it’s a hybrid 
algorithm. 

III.  PARALLEL MATRIX MULTIPLICATION 

Multiplication of two matrices, A and B, produces the 
matrix C, whose elements ci,j (0 ≤ i < n, 0 ≤ j < m), can be 
computed as follows: 
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where A is an nxl matrix, and B is an lxm matrix. Each 
element of the ith row of A is multiplied by an element of 
the jth column of B, and the products are summed together 
to obtain the value of the element in the ith row and the jth 
column of C, as illustrated in Figure 1. 

 

Figure 1.  Matrix multiplication scheme 

For convenience, let us assume that the matrices are 
square (nxn matrices). From the definition of matrix 
multiplication given above, the sequential code to 
compute AxB could simply be: 

 
for (i = 0; i < n; i++) 
   for (j = 0; j <n; j++) { 
      C[i][j] = 0; 
      for (k = 0; k < n; k++) 
             C[i][j] = C[i][j] + A[i][k] * B[k][j];  

  } 

 
The algorithm requires n3 multiplications and n3 

additions, leading to a sequential time complexity of 
O(n3).  

Parallel matrix multiplication is usually based upon the 
direct sequential matrix multiplication algorithm. Even a 
superficial look at the sequential code reveals that the 
computation in each iteration of the two outer loops is not 
dependent upon any other iteration, and each instance of 
the inner loop could be executed in parallel. Hence, with p 
= n processors, we can expect a parallel time complexity 
of O(n2). 

Usually, we want to use far fewer than n processors 
with nxn matrices because of the size of n. Then each 
processor operates upon a group of data points. Each 
matrix can be divided into blocks of elements called 
submatrices. These submatrices can be manipulated as if 
they were single matrix elements [13]. Let us select mxm 
submatrices and s = n/m, that is s rows and columns of 
mxm submatrices. Then there are s2 submatrices in each 
matrix and s2 processors.  

Communication. Each of the s2 slave processors must 
receive one row and one column of submatrices, each 
consisting of m2 elements. In addition, each slave 
processor must return a submatrix C to the master 
processor (m2 elements), giving a communication time of: 
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Computation. Each slave performs in parallel s 
submatrix multiplications and s submatrix additions. One 
sequential submatrix multiplication requires m3 
multiplications and m3 additions. A submatrix addition 
requires m2 additions. Hence: 

 ( )3 22compt s m m= +  (11) 

Hence, the time complexity for this computation is 
O(sm3) = O(nm2). 

The block matrix multiplication algorithm suggests a 
recursive divide-and-conquer solution, as described in 
[15] and [18]. This method has significant potential for 
parallel implementations, especially shared memory 
implementations. 

Furthermore, matrix multiplication can be implemented 
with a two-dimensional mesh. There are several ways that 
matrix multiplication can be developed for a mesh 
organization. The most well-known are: Cannon’s 
algorithm [5] and the systolic approach. Another matrix 
multiplication algorithm was devised by Fox; details can 
be found in Fox et al. [13]. 

IV.  PARALLEL EXTERIOR-POINT ALGORITHM 

Since the parallelization of all individual steps of the 
revised simplex method is limited and very hard to 
achieve, it is important to consider how the method itself 
can be modified to allow the maximum degree of 
independence between the computational steps in different 
iterations. However, it is also essential that any algorithm 
performs basis inverse in parallel with simplex iterations, 
otherwise basis inverse will then become the dominant 
step and limit the possible speed-up. 

Our parallel implementation focus on the reduction of 
the time taken to perform the basis inverse. The basis 
inversion is done with the Product Form of the Inverse 
(PFI) scheme. The parallel implementation is based on a 
master – slave architecture. The master performs all the 
steps of the exterior-point simplex algorithm and the 
slaves only compute their portion of the new basis. 

Let us assume that the matrices E (eta matrix) and B 
(basis) are square (n x n matrices). Furthermore, we have s 
processors. The E matrix is splitted into s submatrices 
with m = n/s rows and n columns each, as shown in Figure 
2. The master broadcast the B matrix to each processor. 
Each processor will compute n/s rows of the new basis. 
The elements of these rows have to be sending back to the 
master. Finally, the master processor joins the submatrices 
to obtain the new basis. 

A. Pseudo-code for the master task 

Table I presents the pseudo-code for the master task 
used for the basis inverse. 

TABLE I.   
MASTER TASKS’  PSEUDO-CODE 

1. B = labBroadcast(1, B); 

2. for i=2:Numoflabs 
3.         labSend(E((i-1)*d/Numoflabs+1:                              

i*d/Numoflabs,:),i,2); 
4. end 
5. new_B=E(1:d/Numoflabs,:)*B; 
6. for i=2:Numoflabs 
7.     d2=labReceive(i,3); 
8.     B=[B; d2]; 
9. end 
 
where Numoflabs is the number of workers used and d 

is the rows of the instance. 
Initially, the master broadcasts the matrix B to the 

workers. In lines 2 to 4, the distribution of matrix E is 
being performed. The master holds the first d/Numoflabs 
rows and sends the other to workers. Each node has equal 
number of rows. Next, the master computes its’ portion of 
the new basis. In lines 6 to 9, the master receives the 
results from other workers and joins the submatrices to 
form the new basis. 

B. Pseudo-code for the slave tasks 

Table II introduces the pseudo-code for the slave tasks 
used for the basis inverse. 

TABLE II.   
SLAVE TASKS’  PSEUDO-CODE 

1. B=labBroadcast(1); 
2. E=labReceive(1,2); 
3. new_B=E*B; 
4. labSend(B,1,3); 

 
Initially, the slave receives the whole matrix B from the 

master process (line 1) and its’ portion of the matrix E 
(line 2). Next, the slave process performs its’ computation 
(line 3) and sends back to the master the submatrix of the 
new basis. 

 

Figure 2.  Block Matrix multiplication scheme 
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V. COMPUTATIONAL EXPERIMENTS 

The three more usual approaches to analyzing 
algorithms are i) worst-case analysis, ii) average-case 
analysis, and iii) experimental analysis. Computational 
studies have proven useful tools in order to examine the 
practical efficiency of an algorithm, or even compare 
algorithms by using the same problem sets. 

A. Computing environment 

The comparative computational study has been 
performed on an Intel Core 2 Duo T5550 1.83 GHz, with 
3Gb RAM running under Windows Professional XP 32-
bit Edition SP3. The algorithms have been implemented 
using MATLAB R2009a 32-bit Professional Edition. 

The parallel implementation uses the Parallel 
Computing Toolbox of the MATLAB R2009a x86 
environment. Parallel Computing Toolbox enables us to 
solve computationally and data-intensive problems using 
MATLAB and Simulink on multicore and multiprocessor 
computers. Parallel processing constructs, such as parallel 
for-loops and code blocks, distributed arrays, parallel 
numerical algorithms, and message-passing functions let 
you implement task- and data-parallel algorithms in 
MATLAB at a high level, without the restriction for 
programming for a specific hardware and network 
architectures. The toolbox can be used to execute 
applications on a single multicore or multiprocessor 
desktop. Without changing the code, the same application 
can run on a computer cluster (using MATLAB 
Distributed Computing Server). 

Parallel MATLAB applications can be distributed as 
executables or shared libraries that can access MATLAB 
Distributed Computing Server. Facilities are offered for 
using high-level constructs such as distributed arrays, 
parallel algorithms, and functions for exchanging 
information between processes using message passing 
procedures like broadcast, send, receive and others. 
Parallel Computing Toolbox has the ability to run eight 
workers locally on a multicore desktop and can be 
integrated with MATLAB Distributed Computing Server 
for cluster-based applications that use any scheduler or 
any number of workers. 

B. Problem instances 

The instances are listed in Table III. For each problem 
type of a particular size, 10 instances were generated, 
using a different seed number. All instances are randomly 
generated optimal problems. For each instance, we 
averaged times over 5 runs. All instances are on average 
98% dense. 

C. Results 

In this section, computational results regarding to our 
implementations are reported. The results given in Table 
IV show the average times of the sequential exterior-point 
simplex algorithm for 5 executions. All times are 
displayed in seconds. 

TABLE III.   
DIMENSIONS OF PROBLEMS 

Problem name 
Number of 

rows 
Number of 
columns 

pr1 500 500 

pr2 1000 1000 

pr3 1500 1500 

pr4 2000 2000 

pr5 2500 2500 

pr6 3000 3000 

 
Table IV shows that the computation time of simplex 

type algorithms depends on the basis inverse that occurs in 
each iteration.  

TABLE IV.   
TOTAL TIME OF THE SEQUENTIAL EXTERIOR-POINT SIMPLEX 

ALGORITHM 

Dimension Total time Time of basis inverse  

pr1 21.81 8.01 

pr2 228.10 89.84 

pr3 861.37 340.59 

pr4 1659.14 640.15 

pr5 3731.81 1231.62 

pr6 7474.44 2567.89 

 
Tables V and VI present the results from the execution 

of the parallel implementation with 2 and 4 workers, 
respectively. In both tables, columns 2, 3, 4 and 5 show 
the total time, the computational time, the communication 
time and the time of the basis inverse, respectively. These 
results are also graphically illustrated in Figures 3 and 4. 

TABLE V.   
TOTAL, COMPUTATION, COMMUNICATION AND BASIS INVERSE TIME OF 

THE PARALLEL IMPLEMENTATION USING 2 WORKERS 

Dimension 
Total 
Time 

Computation 
Time 

Communication 
Time 

Time of 
basis 

inverse 
pr1 37.72 14.24 23.48 3.88 
pr2 424.59 160.96 263.63 42.20 
pr3 1384.70 595.92 788.80 167.51 
pr4 2548.40 1123.80 1424.60 355.07 
pr5 6061.60 2540.50 3521.10 786.71 
pr6 12536.70 4839.10 7697.10 1403.90 

TABLE VI.   

TOTAL, COMPUTATION, COMMUNICATION AND BASIS INVERSE TIME OF 
THE PARALLEL IMPLEMENTATION USING 4 WORKERS 

Dimension 
Total 
time 

Computation 
time 

Communication 
time 

Time of 
basis 

inverse 
pr1 85.02 14.20 70.82 0.37 
pr2 586.32 148.78 437.52 17.96 
pr3 1577.10 484.62 1092.50 76.80 
pr4 2957.50 859.38 2098.20 126.58 
pr5 6131.90 1905.10 4226.80 273.84 
pr6 11789.45 3985.54 7803.91 526.54 

 
Table VII presents the time taken to perform the basis 

inverse using 1, 2 and 4 workers, respectively. Figure 5 is 
the graphical representation of the results shown in Table 
VII. Table VII shows that we have a significant reduction 
of the computation time needed by the basis inverse. The 
speed-up gained from the parallelization of the basis 
inverse is of average 4.72. Due to very dense matrices and 
very heavy communication, the ratio of computation to 
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communication is extremely low. As a result the parallel 
implementation does not offer any speed-up to the total 
time. 

TABLE VII.   
BASIS INVERSE TIME USING 1, 2 AND 4 WORKERS, RESPECTIVELY 

Dimension 1 worker 2 workers 4 workers 
pr1 8.00 3.88 0.37 
pr2 89.84 42.20 17.96 
pr3 340.59 167.51 76.80 
pr4 640.15 355.07 126.58 
pr5 1231.60 786.71 273.84 
pr6 2567.89 1403.90 526.54 
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Figure 3.  Total, computation, communication and basis inverse times 

of the parallel implementation using 2 workers 
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Figure 4.  Total, computation, communication and basis inverse times 

of the parallel implementation using 4 workers 
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Figure 5.  Basis inverse time using 1, 2 and 4 workers, respectively 

VI.  CONCLUSIONS 

A parallel algorithm for the exterior-point revised 
simplex method has been described and a speed-up of 
average 4.72, regarding the basis inverse procedure, was 
demonstrated by the computational results. Due to very 
dense matrices and very heavy communication, the ratio 
of computation to communication is extremely low. As a 
result the parallel implementation does not offer any 
speed-up to the total time. However, these results could be 
further improved by performance optimization. 

In summary, parallelizing simplex algorithms is not an 
easy task. Due to heavy communication, the 
computational results show that it is hard to achieve a 
linear speed-up even with carefully selected partitioning 
patterns and communication optimization. 
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