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Abstract

This work introduces the Fleet-size and Mix Pollution Location-Inventory-Routing Prob-

lem with Just-in-Time replenishment policy and Capacity Planning. This problem extends

the strategic-level decisions of classic LIRP by considering capacity selection decisions and

heterogeneous fleet composition. An MIP formulation of this new complex combinatorial

optimization problem is proposed and small-sized problem instances are solved using the

CPLEX solver. For the solution of more realistic-sized problem instances, a General Vari-

able Neighborhood Search (GVNS)-based framework is adopted. Novel adaptive shaking

methods are proposed as intelligent components of the developed GVNS algorithms to fur-

ther improve their performance. To evaluate the proposed GVNS schemes, several problem

instances are randomly generated by following specific instructions from the literature and

adopting real vehicles’ parameters. Comparisons between these solutions and the corre-

sponding ones achieved by CPLEX are made. The computational results indicate the effi-

ciency of the proposed GVNS-based algorithms, with the best GVNS scheme to produce 7%

better solutions than CPLEX for small problems. Finally, the economic and environmental

impacts of using either homogeneous or heterogeneous fleet of vehicles are examined.
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1. Introduction

Supply chain management (SCM) traditionally focuses on cost-efficient practices in or-

der to achieve high profit levels. However, the increased socio-environmental concerns have

shifted the organizations’ focus to a balanced goal which integrates economic, environ-

mental and social goals. These three dimensions are the major pillars of sustainability

(Foo et al.,2018). Managing sustainability is characterized by high complexity and based on

its strategic role, sustainability affects companies’ performance and eventually their growth.

Therefore, the efficient SCM is critical for balancing and optimizing sustainability and con-

sequently is the strategic key factor for achieving long-term competitive advantage.

It is commonly accepted that the intertemporal integration of supply chain activities is

crucial for any company to achieve competitive advantage (Zhalechian et al.,2016). In this

direction, complex supply chain optimization problems, which integrate strategic, tactical

and operational decision levels, have been extensively studied in the open literature. The

Location-Inventory-Routing problem (LIRP) is one of the most challenging integrated opti-

mization problems (Liu & Lee,2003). It is an NP-hard optimization problem which consists

of the Facility Location Problem (FLP), the Inventory Control Problem (ICP) and the Ve-

hicle Routing Problem (VRP) (Javid & Azad,2010). The main objective of this problem is

usually the minimization of total cost, consists of location, inventory and routing costs.

Despite the cost efficiency being a prerequisite for sustainable performance, it is not

enough for achieving sustainability (Lin et al.,2014a, Lin et al.,2014b). The environmen-

tal and consequently the social impacts of supply chain activities must also be improved

(Zhang et al.,2016, Xu et al.,2019). Problems which tackle environmental-related decisions

are characterized as green optimization problems (Martins & Pato,2019, Bektaş et al.,2019,

Skouri et al.,2018, Poonthalir & Nadarajan,2018). The majority of previous works in this

area has focused on green routing optimization problems (Yu et al.,2019, Li et al.,2018,

Soon et al.,2019). However, as recently noticed by Koç et al. (2016) mentioned that depot-

and fleet composition- related decisions also affect emissions. In this direction, several con-

tributions have studied more complex supply chain optimization problems within environ-
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mental considerations. Dukkanci et al. (2019) addressed a green location-routing problem.

They used a comprehensive modal emission model in order to estimate the emitted pollu-

tants. Zhang et al. (2018) studied a multi-depot emergency location-routing problem with

carbon dioxide emissions. Cheng et al. (2017) proposed a green inventory-routing problem

with fleet heterogeneity. They highlighted the benefits of using a mixed fleet. Toro et al.

(2017) studied the multi-objective green location-routing problem and they highlighted the

importance of using more vehicles in shorter routes to minimize both fuel consumption

and emissions. Micheli & Mantella (2018) studied an environmentally extended inventory-

routing problem with heterogeneous fleet and they examined the effect of different carbon

control policies on emissions reduction. Eventhough the environmental-related decisions are

critical in achieving sustainability, limited contributions of green LIRP cases have been re-

ported. More specifically, a multi-objective MINLP model for the closed-loop LIRP was

proposed (Zhalechian et al.,2016). They used a stochastic-possibilistic approach in order

to tackle uncertainty and they developed a hybrid self-adaptive Genetic Algorithm (GA) -

Variable Neighborhood Search (VNS) metaheuristic algorithm to solve large-sized instances.

Karakostas et al. (2019b) proposed a Pollution LIRP and they illustrated the applicability

of Basic VNS (BVNS) metaheuristic algorithms on medium-sized problem instances. Table

1 summarizes the main LIRP contributions.
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The importance of selecting an appropriate replenishment policy in the green IRP prob-

lem has been clearly highlighted in previous studies. The Just-in-Time (JiT) replenishment

policy is a popular inventory management strategy based on the lean management philoso-

phy and the increased customer satisfaction. Recent studies have shown that this policy posi-

tively affects the sustainable performance of a company (Kong et al.,2018, Wang & Ye,2018).

This is due to the elimination of storage activities and consequently the relative waste. More-

over, the significance of facilities-related decisions on a company’s sustainable performance is

indisputable. That being said, the capacity planning of facilities is also critical for achieving

sustainability due to its strategic nature (Aldis,2017).

This work addresses a new variant of the LIRP, the Fleet-size and Mix Pollution LIRP

with JiT replenishment policy and capacity planning (FSMPLIRP). This new NP-hard

problem considers further strategic level decisions, such as the capacity planning and fleet

composition. The JiT replenishment policy is the only appropriate in some emergency supply

chain networks, such as the medical supply chains. However, it reduces the flexibility on

route scheduling and makes even harder the effort of building efficient routes. For the efficient

solution of the underlying problem, the development of problem-specific solution methods

is crucial. The capability of an algorithm to use past experience in order to improve its

performance is a key feature of intelligent optimization. Therefore, in this work we develop

General Variable Neighborhood Search (GVNS) metaheuristic algorithms within adaptive

shaking mechanisms in an effort to improve their performance and solve a supply chain

problem of significant industrial interest. The proposed modeling framework and solution

approaches can provide the basis for the development of an expert system that can assist

decision makers to derive rigorous and fast decisions related to the operation and design of

such supply chains. The main contributions of this work are summarized as follows:

• An MIP formulation for the Fleet-size and Mix Pollution Location Inventory Routing

Problem .

• New adaptive shaking methods, as intelligent components in the developed GVNS

algorithms for the solution of the above problem.
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• Investigation of different variants of the solution approaches.

• Development of a self-contained solver for the problem under consideration.

• Useful managerial insights are provided by solving a number of problem instances.

The structure of this work is as follows. In Section 2 the problem statement is given while

Section 3 provides a detailed presentation of the proposed solution algorithms. Section 4

presents several computational analyses and summarizes key managerial insights. Finally,

conclusions are drawn in Section 5.

2. Problem statement

The FSMPLIRP is defined as a complete graph G = (V,E), where V denotes the set

of nodes including both the set of customers I = {1, ..., NCustomers} and the set of potential

depots J = {1, ..., NDepots} and E = {(v, v1) : v, v1 ∈ V, v 6= v1} is the set of edges. Each

customer has a period-dependent demand for a single-type of product and it is served by

a heterogeneous fleet of vehicles. A vehicle has a fixed usage cost and a specific capacity

level. A mixed integer programming (MIP) model is proposed to describe this problem. The

model is an extension of a recently proposed PLIRP formulation (Karakostas et al.,2019b)

and it tackles a more complex variant of the LIRP by considering facility capacity planning,

fleet composition and JiT replenishment policy. The use of JiT replenishment policy means

that the delivered and the demanded quantity of product must be equal for each customer

in each time period. Thus, the formation of efficient routes gets even harder than the case of

PLIRP. For clarity reason the model sets, parameters and variables are provided in Tables

2, 3, 4 and 5.

6



Table 2: Sets of the mathematical model

Indices Explanation

V set of nodes

J set of candidate depots

I set of customers

K set of vehicles

H set of discrete and finite planning horizon

R set of speed levels

L set of capacity levels

7



Table 3: Vehicles’ parameters.

Parameter Explanation Value (Cheng et al.,2017;Koç et al.,2014;Karakostas et al.,2019b)

ǫ fuel-to-air mass ratio 1

g gravitational constant (m/s2) 9.81

ρ air density (kg/m3) 1.2041

CR coefficient of rolling resistance 0.01

η efficiency parameter for diesel engines 0.45

fc unit fuel cost (Euros/L) 0.7382

fe unit CO2 emission cost (Euros/kg) 0.2793

fd driver wage (Euros/s) 0.0025

σ CO2 emitted by unit fuel consumption (kg/L) 2.669

HVDF heating value of a typical diesel fuel (kj/g) 44

ψ conversion factor (g/s to L/s) 737

θ road angle 0

τ acceleration (m/s2) 0

CWk curb weight (kg) 3500

EFFk engine friction factor (kj/rev/L) 0.25

ESk engine speed (rev/s) 39

EDk engine displacement (L) 2.77

CADk coefficient of aerodynamics drag 0.6

FSAk frontal surface area (m2) 9

V DTEk vehicle drive train efficiency 0.4

Qk loading capacity of vehicle k instance-dependent

V FCk usage cost of vehicle k 1200 or 1400

The value of parameters fe and fd are converted into Euro currency (26th of February,

2018). The usage cost for light-duty vehicles taken as 1200 Euros and for the case of

medium-duty vehicles is 1400 Euros.

8



Table 4: Non-vehicle related FSMPLIRP model parameters.

Notation Explanation

fjl fixed opening cost of depot j with capacity level l

Cjl storage capacity of depot j with capacity level l

hi unit inventory holding cost of customer i

dit period-variable demand of customer i

cij travelling cost of locations pair (i, j)

sr the value of the speed level r

Table 5: GLIRP model variables.

Notation Explanation

yjl 1 if depot j with capacity level l is opened; 0 otherwise

zij 1 if customer i is assigned to depot j; 0 otherwise

vskt 1 if vehicle k is selected in period t; 0 otherwise

xijkt 1 if node j is visited after i in period t by vehicle k

qikt product quantity delivered to customer i in period t by vehicle k

avikt load weight by travelling from node v to the customer i with vehicle k in period t

zzv1v2ktr 1 if vehicle k travels from node v1 to v2 in period t with speed level r

In this work, a comprehensive fuel consumption model from the literature is adopted

(Cheng et al.,2017). To reduce the length of some parts of the objective function, the next

formulas are provided.

• α = τ + gCR sin θ + gCR cos θ

• γk =
1

1000V DTEkη

• βk = 0.5CADρFSAk

• λ = HVDF
ψ

9



min
∑

j∈J

fjlyjl +
∑

i∈I

hi
∑

t∈H

1

2
dit +

∑

i∈V

∑

j∈V

∑

t∈H

∑

k∈K

cijxijkt

+
∑

i∈V

∑

j∈V

∑

k∈K

∑

t∈H

{

λ (fc + (feσ))

(

∑

r∈R

(zzijktr EFFk ESk EDk cij)
sr

+

(

αγk (CWk xijkt + aijkt) cij

)

+

(

βk γk
∑

r∈R

(sr zzijktr)
2

)

)

}

+
∑

i∈V

∑

j∈V

∑

k∈K

∑

t∈T

∑

r∈R

fd
(zzijktr cij)

sr
+
∑

k∈K

∑

t∈H vsktV FCk

(1)

Subject to

vskt ≤
∑

v∈V

∑

v1∈V

xvv1kt, ∀k ∈ K, ∀t ∈ H, v 6= v1 (2)

xvv1kt ≤ vskt ∀v, v1 ∈ V, v 6= v1, ∀k ∈ K, ∀t ∈ H (3)

∑

r∈R

zzijktr = 1 ∀i, j ∈ V, ∀k ∈ K, ∀t ∈ H (4)

∑

i∈V

aijkt −
∑

i∈V

ajikt = qjktPW ∀j ∈ I, ∀k ∈ K, ∀t ∈ H (5)

∑

j∈V

xijkt −
∑

j∈V

xjikt = 0 ∀i ∈ V, ∀k ∈ K, ∀t ∈ H (6)

∑

j∈V

∑

k∈K

xijkt ≤ 1 ∀t ∈ H, ∀i ∈ I (7)

∑

j∈V

∑

k∈K

xjikt ≤ 1 ∀t ∈ H, ∀i ∈ I (8)

∑

i∈I

∑

j∈J

xijkt ≤1 ∀k ∈ K, ∀t ∈ H (9)
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xijkt = 0 ∀i, j ∈ J, ∀k ∈ K, ∀t ∈ H, i 6= j (10)

∑

i∈I

qikt ≤ Qk ∀k ∈ K, ∀t ∈ H (11)

∑

j∈J

zij = 1 ∀i ∈ I (12)

zij ≤ yjl ∀i ∈ I, ∀j ∈ J (13)

∑

i∈I

(

zij
∑

t∈H

dit

)

≤ Cjl ∀j ∈ J, ∀l ∈ L (14)

∑

u∈I

xujkt +
∑

u∈V \{i}

xiukt ≤ 1 + zij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (15)

∑

i∈I

∑

k∈K

∑

t∈H

xjikt ≥ yjl ∀j ∈ J, ∀l ∈ L (16)

∑

i∈I

xjikt ≤ yjl ∀j ∈ J, ∀l ∈ L, ∀k ∈ K, ∀t ∈ H (17)

∑

k∈K

qikt = dit, ∀i ∈ I, ∀t ∈ H (18)

qikt ≤M
∑

j∈V

xijkt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (19)

∑

j∈V

xijkt ≤Mqikt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (20)

xijkt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ H, ∀k ∈ K (21)

yjl ∈ {0, 1} ∀j ∈ J, ∀l ∈ L (22)
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zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (23)

qikt ≤ min {Qk, dit} ∀i ∈ I, ∀k ∈ K ,∀t ∈ H (24)

The objective criterion of this model is the minimization of the total cost which consists

of the facilities’ opening costs, the average inventory holding costs, general routing costs,

fuel and CO2 emissions costs, driver wages and vehicle usage costs. Constraints (2) ensure

that a vehicle is selected in a period only if a route has been scheduled for it in that period.

Constraints (3) guarantee that a vehicle will move through a pair of nodes in a period, only

if it is selected in that period. Constraints (4) impose the selection of a specific speed level

for traveling through two nodes in each time period. Constraints (5) satisfy the product

flow balance and simultaneously act as subtour elimination constraints. Constraints (6)

guarantee the equilibrium between the interior and exterior flow of vehicles. A customer

will be serviced by one vehicle at most in each time period, as it is imposed by Constraints

(7) and (8). Constraints (9) force a vehicle to not perform more than one route per time

period. Constraints (10) ensure that a vehicle will not move through two depot locations.

The product quantity delivered with a vehicle must not exceed its capacity, as it is imposed

by Constraints (11). According to Constraints (12) a vehicle will move from a depot to

a customer, only if that customer is assigned to the depot. A customer can be assigned

only to an open depot based on Constraints (13). Constraints (14) ensure the observance of

depots’ capacities. Constraints (15) impose a customer to connect with a depot, only if that

customer is allocated to that depot. A vehicle departures from a depot only if that depot is

opened according to Constraints (16) and (17). A customer is visited at a specific period,

only if a replenishment is scheduled for that period, according to Constraints (19). The last

four set of constraints declare the nature of the decision variables.
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3. General variable neighborhood search-based heuristics

Variable neighborhood search (VNS) is a metaheuristic framework known for its flexi-

bility and simplicity on building efficient heuristic algorithms (Hansen et al.,2010). A VNS

algorithm mainly consists of the three following components:

• An improvement phase,

• a shaking phase,

• a neighborhood change step (Hansen et al.,2017).

In the improvement phase, local search operators are systematically applied in order to im-

prove a given solution, while the shaking phase aims at resolving local optimum traps . The

neighborhood change step leads the exploration of the solution space (Hansen et al.,2017).

Several contributions in the recent literature have applied the VNS framework to solve effi-

ciently hard optimization problems (Fuqing et al.,2019, Xu & Cai, 2018,

Simeonova et al.,2018).

Variable neighborhood descent (VND) is a VNS variant in which a number of local

search operators are applied iteratively with respect to an adopted neighborhood change

strategy (Hansen et al.,2017). According to the neighborhood change strategy, the following

sequential VND schemes are formed:

• Basic VND (bVND). Each time an improved solution is found, the search continues

with the first operator (Hansen et al.,2017).

• Pipe VND (pVND). If an improved solution is found within an operator, the search

continues with that operator (Hansen et al.,2017).

• Cyclic VND (cVND). The search continues with the next operator regardless the

improvements (Hansen et al.,2017).

• Union VND (uVND). It is also known as Multiple neighborhood search. The search

is applied in the union of all neighborhood structures (Hansen et al.,2017).
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• Extended VND (eVND). This VND variant extends bVND by specifying a param-

eter (m) which indicates the improvement depth. More specifically, the search switches

to the first operator either when m improvements are achieved by the current operator

or exactly one improvement is made within the current operator (Lai & Hao,2016).

• Adaptive VND (aVND). This variant uses one of the previous VND schemes but

in each iteration the order of the neighborhoods is changed mainly according to their

success in the previous iteration (Todosijević et al.,2016).

General variable neighborhood search (GVNS) is a widely used VNS variant, which uses

a VND method as its main improvement phase (Hansen et al.,2017). Recently many GVNS

schemes have been efficiently applied on solving hard combinatorial optimization problems

(De Armas et al.,2015, Bezerra et al., 2018, Karakostas et al.,2019a, Mikić et al.,2019).

3.1. Initial solution

To build an initial feasible solution, a three-phase construction method is proposed.

Location, capacity planning and allocation decisions are made in its first phase. In an effort

to find the minimum required number of depots, a ratio-based depots’ selection method

is applied, as presented in our previous work (Karakostas et al.,2019a). If more than one

depots are needed for servicing the given customers, then a nearest customer allocation

procedure is used for each opened depot. In the next phase, the deliveries are set equal to

their corresponding demands for each customer in each time period and the routes are built

by applying a modified Nearest Neighbor heuristic (Flood,1956). Finally, the speed levels

for traveling through the links of the designed network are randomly set.

3.2. Local search operators & pVND

This section describes eight local search operators which are designed to explore the

solutions of the corresponding neighborhood structures. These operators are the following:

Inter-route Relocate (N1). This operator selects two customers assigned to different

routes. Then, it removes the first selected customer from its current position and relocates
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it to the next position of the second selected customer. The initial routes of the two selected

customers can either be assigned to the same depot or different depots.

Opened-Closed Depots Exchange (N2). In this operator for each closed depot

the maximum capacity level is selected and examined if that depot can replace one of the

currently opened depots. It is mainly examined if the capacity of the closed depot is enough

to deal with the total demand of customers allocated to the, potentially to be exchanged,

opened depot.

Intra-route Relocate (N3). This operator selects two customers allocated to the same

depot and moves the first selected customer from its current position to the next position

of the second selected customer.

Inter-route Exchange (N4). This operator swaps two selected customers which they

are assigned to different routes. Similarly to the Inter-route Relocate, the routes can be

allocated to the same depot or not.

Intra-route 2-Opt (N5). It selects two pairs of successive customers, assigned to the

same route, (i, j) and (k, l). Next, it breaks them and reconnects them differently, such as

(i, k) and (j, l).

One Medium-Two Light Vehicles Exchange (N6). This operator selects two cur-

rently used light-duty vehicles and examines if the serviced, by those vehicles, customers

can be serviced by one unselected medium-duty vehicle.

Select Depot Capacity Level (N7). In this operator the most cost-efficient capacity

level is selected for each opened depot with respect to the total demand of its customers.

Medium-To-Light Vehicles Exchange (N8). This operator selects a used medium-

duty vehicle and examines if the total demand of its customers can be serviced by a light-duty

vehicle, in order to perform an exchange between those two vehicles.

These local search operators are included in two pVND methods. The first method

contains operators N1 −N5, while the second one contains operators N1 −N6. The pVND

is selected due to its efficiency in solving hard optimization problems, as it is highlighted in

our previous work (Karakostas et al.,2019a). An adaptive search strategy is also adopted

(Best improvement is applied on small- and medium-sized problem instances, while first
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improvement is used for the case of large-sized instances). The pseudocodes of the proposed

pVND schemes are summarized in Algorithms 1 and 2.

Algorithm 1 pipe-VND 1
1: procedure pVND 1(S, lmax)

2: l = 1

3: while l ≤ lmax do

4: select case(l)

5: case(1)

6: S′ ← N1(S)

7: case(2)

8: S′ ← N2(S)

9: case(3)

10: S′ ← N3(S)

11: case(4)

12: S′ ← N4(S)

13: case(5)

14: S′ ← N5(S)

15: end select

16: if f(S′) < f(S) then

17: S ← S′

18: else

19: l = l + 1

20: end if

21: end while

22: Return S

23: end procedure

Algorithm 2 pipe-VND 2
1: procedure pVND 2(S, lmax)

2: l = 1

3: while l ≤ lmax do

4: select case(l)

5: case(1)

6: S′ ← N1(S)

7: case(2)

8: S′ ← N2(S)

9: case(3)

10: S′ ← N3(S)

11: case(4)

12: S′ ← N4(S)

13: case(5)

14: S′ ← N5(S)

15: case(6)

16: S′ ← N6(S)

17: end select

18: if f(S′) < f(S) then

19: S ← S′

20: else

21: l = l + 1

22: end if

23: end while

24: Return S

25: end procedure
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Operators N7 and N8 are applied within the pVND methods as an integrated improve-

ment phase.

3.3. Shaking procedures

Diversification methods are critical components of metaheuristic algorithms (Xu & Cai,2018).

They are strategies for escaping from local optimum solutions by using properly modified

local search operators. In this work, five shaking operators are designed:

• Inter-route Exchange Shaking (S1). It works as the local search operator N4 with

the difference that the two customers are selected randomly.

• Opened-Closed Depots Exchange (S2). This shaking operator functions similar

to N2. The main difference is that the closed depot is selected randomly.

• Intra-route Relocate (S3). In this operator two customers are randomly selected

in each time period. Then, this shaking operator performs like as N3.

• Select Depot Capacity Level Shaking (S4). This operator selects randomly an

opened depot and changes the capacity level of that depot, with respect to the total

demand of the customers serviced by it.

• Light2Medium Vehicles Exchange Shaking (S5). Initially, a time period is ran-

domly selected and then a selected light-duty vehicle is exchanged with a medium-duty

vehicle.

The above operators are embedded in two shaking procedures (the first does not include

the S5). Their pseudocodes are provided in Algorithms 3 and 4.

17



Algorithm 3 Shaking procedure 1
1: procedure Shake 1(S, l)

2: select case(l)

3: case(1)

4: S′ ← S1(S)

5: case(2)

6: S′ ← S2(S)

7: case(3)

8: S′ ← S3(S)

9: case(4)

10: S′ ← S4(S)

11: end select

Return S′

Algorithm 4 Shaking procedure 2
1: procedure Shake 2(S, l)

2: select case(l)

3: case(1)

4: S′ ← S1(S)

5: case(2)

6: S′ ← S2(S)

7: case(3)

8: S′ ← S3(S)

9: case(4)

10: S′ ← S4(S)

11: case(5)

12: S′ ← S5(S)

13: end select

Return S′

The most commonly used diversification method within VNS is the intensified shaking,

which randomly selects a shaking operator and applies it k times, where k denotes the intense

of diversification and it is 1 ≤ k ≤ kmax, with kmax being the shaking strength. Additional

to the intensified shaking, this work proposes two adaptive shaking procedures. Initially,
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the five shaking operators are ordered in a set. According to that initial order, two adaptive

shaking procedures are formed. In the first procedure the initial order of operators is based

on their computational complexity, while in the second one their ordering is performed

randomly. However, both of them are executed similarly. More specifically, in each GVNS

iteration and for a specific k value, the shaking operators are executed sequentially (shaking

operator - pVND - solution renewal check). A five positions array is used to count the

improvements, achieved by using each shaking operator. Each position is matched with

one shaking operator and in case of finding a new best solution, the value in this position

is increased by one. In the next iteration of GVNS, the sequence of shaking operators is

re-ordered according to the number of improvements recorded in the previous iteration. If

no improvements or the same number of improvements are achieved during an iteration,

the initial order is adopted for the next iteration. Essentially, the core difference between

the adaptive shaking schemes and the intensified shaking lies in the manner the shaking

operators are handled.

Focused on the adaptive shaking strategies, a reduced scheme is also examined. In

particular, in each GVNS iteration, different shaking operators are applied for different k

values. For instance, for k = 1, the first shaking operator is applied, for k = 2, the next

operator and so on. If all operators are applied and variable k has not reached the kmax

value, the diversification process will continue from the first operator. In each next GVNS

iteration, the re-ordering step is applied such as in the previously discussed adaptive shaking

strategies.

3.4. GVNS schemes

The use of different components leads to different GVNS schemes. Moreover, the struc-

ture of numerical analyses may impose the formation of further GVNS schemes. From a

problem solution perspective, two cases of GVNS schemes are met:

• Case 1: GVNS schemes for solving the homogeneous case of the problem.

• Case 2: GVNS schemes for solving the heterogeneous case of the problem.
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From a shaking strategy perspective, three cases of GVNS schemes are investigated:

• Case 1: GVNS schemes which use the intensified shaking.

• Case 2: GVNS schemes which use the adaptive shaking method with complexity-based

initialization.

• Case 3: GVNS schemes that they use the adaptive shaking method with random initial

order.

Therefore, the following main GVNS are defined:

• GVNS 1: This heuristic is proposed for solving the homogeneous case of the problem

and uses the intensified shaking as its diversification strategy.

• GVNS 2: This GVNS scheme solves the same problem case as the GV NS 1, but it

uses the adaptive shaking with complexity-based initialization.

• GVNS 3: An other heuristic for solving the homogeneous case of the problem which

uses the adaptive shaking with random initial order.

• GVNS 4: This GVNS scheme is proposed for solving the heterogeneous case of the

problem. The intensified shaking is used.

• GVNS 5: This heuristic solves the heterogeneous case of the problem and uses the

adaptive shaking with complexity-based initialization.

• GVNS 6: This GVNS heuristic solves the heterogeneous case of the problem and the

adaptive shaking with random-based initialization is used.

The pseudocodes of the first three GVNS schemes are provided in Algorithms 6, 7 and 8.

However, before the presentation of these pseudocodes, the re-ordering mechanism of shak-

ing operators is provided in Algorithm 5. The ShakingOrder is the ordered set of shaking
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operators, InitialOrder keeps the initial order of the shaking operators and ShakingOpera-

torsChecked is a logical array which indicates if a shaking operator is selected during the

re-ordering phase.

Algorithm 5 Re-ordering mechanism
1: procedure Adaptive Order(ShakingOrder, InitialOrder)

2: if no improvement is found in any neighborhood then

3: ShakingOrder = InitialOrder

4: end if

5: if an improvement is found then

6: for i← 1, 5 do

7: l = Operator with maximum number of improvements

8: ShakingOperatorChecked(l) = .true.

9: ShakingOrder(i) = l

10: end for

11: end if

12: return ShakingOrder

13: end procedure=0

Algorithm 6 General VNS 1
1: procedure GVNS 1(S, kmax,max time, lmax)

2: while time ≤ max time do

3: for k ← 1, kmax do

4: S∗ = Shake 1(S, l)

5: S′ = pV ND 1(S∗, lmax)

6: S∗ = N7(S
′)

7: if f(S∗) < f(S) then

8: S ← S∗

9: end if

10: end for

11: end while

12: return S

Algorithm 7 General VNS 2
1: procedure GVNS 2(S, kmax,max time, lmax)

2: while time ≤ max time do

3: ShakingOrder = Adaptive Order(ShakingOrder, InitialOrder)

4: for k ← 1, kmax do

5: for i← 1, 5 do

6: l = ShakingOrder(i)

7: S∗ = Shake 1(S, l)

8: S′ = pV ND 1(S∗, lmax)

9: S∗ = N7(S
′)

10: if f(S∗) < f(S) then

11: S ← S∗

12: end if

13: end for

14: end for

15: end while

16: return S
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Algorithm 8 General VNS 3
1: procedure GVNS 3(S, kmax,max time, lmax)

2: for i← 1, 5 do

3: InitialOrder(i) = i

4: end for

5: ShakingOrder = Shuffle(InitialOrder)

6: while time ≤ max time do

7: ShakingOrder = Adaptive Order(ShakingOrder, InitialOrder)

8: for k ← 1, kmax do

9: for i← 1, 5 do

10: l = ShakingOrder(i)

11: S∗ = Shake 1(S, l)

12: S′ = pV ND 1(S∗, lmax)

13: S∗ = N7(S
′)

14: if f(S∗) < f(S) then

15: S ← S∗

16: end if

17: end for

18: end for

19: end while

20: return S

The pseudocodes of GVNS 4, GVNS 5 and GVNS 6 are omitted, as they are similar

to the previously provided GVNS schemes. Their differences are the use of pV ND 2 and

operator N8, which is executed exactly after operator N7. More specifically, to solve the het-

erogeneous problem case efficiently, further local search and shaking operators are required.

These operators perform proper changes in order to improve the fleet composition.

Due to the fact that the reduced adaptive shaking strategy is a special case of the adap-

tive shaking strategy, each GVNS scheme, which uses this shaking approach, is defined as

GVNS XR, where GVNS X is the corresponding GVNS scheme with no-reduced adaptive

shaking. For instance, the reduced variant of GV NS 3 is the GVNS 3R and its pseudocode

is provided in Algorithm 9 .
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Algorithm 9 General VNS 3 with reduced adaptive shaking
1: procedure GVNS 3R(S,kmax,max time, lmax)

2: for i← 1, 5 do

3: InitialOrder(i) = i

4: end for

5: ShakingOrder = Shuffle(InitialOrder)

6: while time ≤ max time do

7: ShakingOrder = Adaptive Order(ShakingOrder, InitialOrder)

8: i = 1

9: for k ← 1, kmax do

10: l = ShakingOrder(i)

11: S∗ = Shake 1(S, l)

12: S′ = pV ND 1(S∗, lmax)

13: S∗ = N7(S
′)

14: if f(S∗) < f(S) then

15: S ← S∗

16: end if

17: i = i + 1

18: if i > 5 then

19: i = 1

20: end if

21: end for

22: end while

23: return S

The results of computational experiments on the heterogeneous case of the problem,

show a potential benefit with increasing fleet diversity (for further details see Subsection 4.3

). Those GVNS schemes use the Shake 2 instead of Shake 1.

Finally, it should be mentioned that several auxiliary methods have been developed to

guarantee the feasibility of the obtained solutions. For instance, a method which examines

the existence of sub-routes in a selected route.

4. Computational analysis and results

4.1. Computing environment

The MIP formulation of the studied problem was implemented in GAMS (GAMS 24.9.1)

(Brooke et al.,1998) and its instances were solved by CPLEX 12.7.1.0 solver. The time limit

for solving small-sized instances was set at two hours, while for the medium- and large-

sized instances the time limit was increased to up to three hours. The proposed algorithms

were coded in Fortran and they were executed by Intel Fortran compiler 18.0 using the

optimization option /O3. Both CPLEX and Intel Fortran compiler ran on a laptop PC
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running Windows 10 Home 64-bit with an Intel Core i7-6700 CPU at 2.6 GHz and 16 GB

RAM. The execution time limit for the designed heuristic algorithms was set at 60s.

4.2. Problem instances

Due to the fact that the FSMPLIRP is introduced in this work, there is no available

test instances in the literature. Thus, 30 new problem instances were randomly gener-

ated, using the instructions given by Zhang et al. (2014). The vehicle fixed cost of light-

duty vehicles is randomly generated with a Normal distribution with parameters µ = 1000

and σ = 500, while the cost of medium-duty vehicles is calculated as floor((light cost +

(light cost ∗ (20% + rand(0.5, 5))))). Each problem instance has a name formed as X-

Y-Z, where X denotes the number of potential depots, Y the number of customers and

Z the number of time periods. The set of generated problem instances are available in

http://pse.cheng.auth.gr/index.php/publications/benchmarks/.

4.3. Parameter setting & computational results

Before the presentation of the experimental study, an overview of the proposed solution

method is provided in Figure 1.

Start Solution Method

Construction Heuristic

General Variable Neighborhood Search

Shaking pipe-VND Solution Renewal?

Post-optimization search operators

Report Final Solution

End Solution Method

True False

Continue with the previous best solutionContinue with the new solution

Figure 1: Flowchart of the proposed solution method.
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A critical parameter of a VNS-based heuristic algorithm is kmax. In this regard, a pa-

rameter estimation is performed in order to select the most efficient value of this parameter.

The examined values of kmax are 10, 12, 15, 20 and 25. For this estimation process, the

GVNS 1 is used (light-duty vehicles case). Table 6 summarizes the total cost achieved

for each problem instance and different values of kmax. It should be mentioned that in all

presented results, the reported value of each instance is the average solution of 10 runs.
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Table 6: kmax analysis on the GVNS 1 performance on 30 GLIRP

Instance kmax = 10 kmax = 12 kmax = 15 kmax = 20 kmax = 25

4-9-3 19950.64 19950.64 20025.74 19965.42 20001.45

4-10-3 20776.81 20401.16 20323.12 20442.53 20484.32

4-10-5 16890 16757.12 16639.51 16994.84 16773.05

4-12-5 20745.54 21537.64 19257.65 19241.52 19298.63

4-15-3 10205.15 10202.94 10202.69 10202.63 10207.29

5-12-3 12966.13 12966 12966.47 12966.83 12982.32

5-15-3 15980.28 15973.33 15979.88 15970.49 15979.27

5-15-5 21963.65 22156.5 21973 21984.31 22028.07

5-18-3 23382.51 22843.35 22989.54 23503.2 22795.83

5-20-3 19082.94 19080.76 19145.74 19095.92 19083.83

6-40-5 22053.01 22116.36 22086.75 22166.08 22051.46

7-52-5 16565.59 16459.8 16475.07 16449.83 16602.87

7-55-7 20640.6 20740.16 20680.7 20734.96 20680.7

8-60-5 25158.09 25270.78 24917.71 25192.96 25094.77

8-65-7 45432.84 46333.11 46389.98 46813.38 46404.39

9-70-5 27257.63 27257.63 27257.63 26954.93 26422.93

9-75-7 29229.05 29235.23 29256.86 29229.98 29234.61

9-85-5 23312.07 23113.37 23355.22 23346.96 23307.15

9-88-7 28413.28 28298.62 28497.24 28622.26 28606.53

10-90-7 25664.05 25744.83 25744.83 25651.54 25744.6

15-100-7 21079.91 21175.92 20676.81 21168.42 21061.69

15-100-10 32776.21 33164.21 32454.69 33162.97 33162.97

15-120-10 32001.47 31998.65 31712.23 31869.61 31866.53

20-150-10 27251.23 27247.53 27011.78 27251.23 27242.03

20-180-12 56623.45 56001.89 55474.01 56363.05 56779.96

25-200-12 53858.84 55481.55 53660.57 55448.09 55502.41

30-250-10 40514.82 40608.62 40608.62 40621.34 40339.15

30-270-10 40604.43 40001.64 39793.64 39817.2 39804.99

35-300-10 69917.79 71524.05 70530.91 70429.36 70638.92

35-310-12 70241.78 69334.98 70366.98 69721.21 70114.25

Average 29684.66 29765.95 29350.96 29022.74 29676.57

In accordance with the average values of the previously reported results, it is obvious

that kmax = 15 produces slightly better solutions than the other tested values. This minor

improvement is mainly based on the results achieved on ten small-sized and ten large-sized

instances. The selected strength of shaking presumably permits more iterations of the
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improvement phase than the more intense shaking options and better exploration than the

limited kmax choices.

To fairly compare the intensified shaking with the two proposed adaptive shaking meth-

ods (actually their corresponding GVNS schemes), the same kmax value is also used in

the adaptive cases. Table 7 provides the average and best results obtained by GVNS 1,

GVNS 2 and GVNS 3.
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Table 7: Average and best values of GVNS 1, GVNS 2 and GVNS 3

Instance GVNS1 Avg GV NS1 Best GV NS2 Avg GV NS2 Best GV NS3 Avg GV NS3 Best

4-9-3 20025.74 19893.35 19965.42 19893.35 19965.42 19893.35

4-10-3 20323.12 20211.22 20388.18 20386.88 20477.19 20236.63

4-10-5 16639.51 16639.47 16654.57 16639.49 16668.95 16639.52

4-12-5 19257.65 19218.74 19330 19218.7 19999.71 19232.61

4-15-3 10202.69 10197.83 10204.27 10199.25 10206.14 10197.82

5-12-3 12966.47 12965.52 12977.22 12965.53 12966.05 12965.53

5-15-3 15979.88 15968.03 15978.63 15967.97 15982.42 15968.01

5-15-5 22040.32 21811.93 21973.37 21829.92 22097.31 22061.04

5-18-3 22989.54 22034.8 22393.16 22044.37 22769.88 22048.34

5-20-3 19145.74 19072.08 19097.41 18970.59 19109.76 18969.02

6-40-5 22086.75 21869.92 22033.75 21955.77 22113.73 21864.69

7-52-5 16475.07 16346.4 16492.06 16338.96 16523.26 16357.35

7-55-7 20680.7 20483.23 20289.07 20133.6 20617.13 20220.49

8-60-5 25209.82 24851.46 24917.71 24366.79 25008.58 24745.05

8-65-7 46389.98 45296.65 46216.56 45553.83 46749.3 46256.98

9-70-5 27257.63 25545.31 25532.28 25277.36 25450.91 25224.12

9-75-7 29256.86 29142.09 29272.45 29137.69 29205.54 29107.46

9-85-5 23355.22 23022.43 22858.58 22608.26 23240.07 22985.04

9-88-7 28497.24 28392.9 28615.11 28451.68 28676.73 28392.88

10-90-7 25744.83 25484.67 25438.81 25245.69 25437.12 25021.07

15-100-7 20676.81 18625.63 20581.55 20285.07 20507.03 20234.9

15-100-10 32742.03 31188.25 32454.69 31394.29 32586.89 31942.82

15-120-10 31712.23 30893.46 32617.02 32180.6 32171.38 31680.79

20-150-10 27011.78 26103.88 26916.86 26619.65 26723.04 26606.19

20-180-12 55894.64 55090.93 55474.01 55074.75 56836.62 56310.66

25-200-12 53660.57 52278.51 52938.72 52275.73 52322.95 51564.92

30-250-10 40608.62 39350.63 40342.18 39633.71 40846.64 39432.27

30-270-10 39793.64 37218.66 38271.97 37788.59 37477.92 36481.77

35-300-10 70530.91 67347.98 69935.89 69155.16 69935.89 69155.16

35-310-12 70366.98 67722.48 69916.42 69088.91 69916.42 69088.91

Average 29584.1 28808.95 29335.93 29022.74 29419.67 29029.51

The above results illustrate that both GVNS schemes using adaptive shaking perform

better than the GVNS scheme using the classic intensified shaking. More specifically, both

of the adaptive shaking methods are more effective than the classic one. This effectiveness

may depend on the reduced randomness in the selection of shaking operators.The adaptive
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shaking with a complexity-based initial order is a pure deterministic method, while the

second one confines randomness in the initial order of its operators. In the classical shaking

method, each shaking operator has the same probability to be selected. It has been observed

that in some problem instances one or more shaking operators cannot lead to efficient search,

they keep being selected iteratively, though. Moreover, the GVNS 2 produces better quality

solutions than the GVNS 3. Further, the GV NS 2 is compared with its corresponding

reduced scheme, GVNS 2R. Their numerical results are reported in Table 8.
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Table 8: GVNS 2 vs GVNS 2R
Instance GVNS 2 Avg GV NS 2 Best GV NS 2R Avg GV NS 2R Best

4-9-3 19965.42 19893.35 20001.45 19893.35

4-10-3 20388.18 20386.88 20371.25 20306.64

4-10-5 16654.57 16639.49 16670.78 16639.5

4-12-5 19330 19218.7 19408.15 19363.85

4-15-3 10204.27 10199.25 10202.1 10197.66

5-12-3 12977.22 12965.53 12965.53 12965.52

5-15-3 15978.63 15967.97 15975.89 15966.53

5-15-5 21973.37 21829.92 21973.37 21829.92

5-18-3 22393.16 22044.37 22912.03 22393.16

5-20-3 19097.41 18970.59 19060.16 19013.63

6-40-5 22033.75 21955.77 22054.8 21930.66

7-52-5 16492.06 16338.96 16431.74 16213.8

7-55-7 20289.07 20133.6 20263.26 20188.2

8-60-5 24917.71 24366.79 24917.71 24366.79

8-65-7 46216.56 45553.83 46550.04 45434.11

9-70-5 25532.28 25277.36 25260.02 25095.64

9-75-7 29272.45 29137.69 29229.07 29051.29

9-85-5 22858.58 22608.26 22977.73 22777.82

9-88-7 28615.11 28451.68 28594.76 28410.18

10-90-7 25438.81 25245.69 25599.85 25336.84

15-100-7 20581.55 20285.07 20670.1 20333.84

15-100-10 32454.69 31394.29 32454.69 31394.29

15-120-10 32617.02 32180.6 32303.52 31684.38

20-150-10 26916.86 26619.65 26928.55 26681.24

20-180-12 55474.01 55074.75 55474.01 55074.75

25-200-12 52938.72 52275.73 52965.83 52275.73

30-250-10 40342.18 39633.71 40497.02 39821.39

30-270-10 38271.97 37788.59 38190.2 37634.62

35-300-10 69935.89 69155.16 70789.39 69969.02

35-310-12 69916.42 69088.91 71584.55 68786.73

Average 29335.93 29022.74 29442.59 29034.37

The results indicate that the GVNS 2 is a more suitable scheme for solving the homo-

geneous case of the problem than its reduced version. Thus, the GVNS 2 is compared with

the results obtained by the CPLEX solver, in order to further evaluate its efficiency. This

comparison is summarized in Table 9. “OM” indicates the out-of-memory error occurred by
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solving large-sized instances.

Table 9: Compare the results achieved by GVNS 2 and CPLEX (using light-duty vehicles)

Instance CPLEX (a) GVNS 2 Avg (b) GVNS 2 Best (c) Gap a-b % Gap a-c %

4-9-3 19261.33 19965.42 19893.35 - 3.66 - 3.28

4-10-3 20022.66 20388.18 20306.64 - 1.83 - 1.82

4-10-5 16690.5 16654.57 16639.5 0.22 0.31

4-12-5 19551.98 19330 19218.7 1.14 1.7

4-15-3 10412.98 10204.27 10199.25 2 2.05

5-12-3 13146.48 12977.22 12965.53 1.29 1.38

5-15-3 15715.24 15978.63 15965.53 - 1.68 - 1.61

5-15-5 23045.4 21973.37 21829.92 4.65 5.27

5-18-3 22572.41 22393.16 22044.37 0.79 2.34

5-20-3 23873.07 19097.41 18970.59 20 20.54

6-40-5 N/A 22033.75 21955.77 - -

7-52-5 N/A 16492.06 16338.96 - -

7-55-7 N/A 20289.07 20133.6 - -

8-60-5 N/A 24917.71 24366.79 - -

8-65-7 N/A 46216.56 45553.83 - -

9-70-5 N/A 25532.28 25277.36 - -

9-75-7 N/A 29272.45 29137.69 - -

9-85-5 N/A 22858.58 22608.26 - -

9-88-7 N/A 28615.11 28594.76 - -

10-90-7 OM 25438.81 25245.69 - -

15-100-7 OM 20581.55 20285.07 - -

15-100-10 OM 32454.69 31394.29 - -

15-120-10 OM 32617.02 32180.6 - -

20-150-10 OM 26916.86 26619.65 - -

20-180-12 OM 55474.01 55074.75 - -

25-200-12 OM 52938.72 52275.73 - -

30-250-10 OM 40342.18 39633.71 - -

30-270-10 OM 38271.97 37788.59 - -

35-300-10 OM 69935.89 69155.16 - -

35-310-12 OM 69916.42 69088.91 - -

The GVNS 2 produces almost 3% better solutions than CPLEX in average for the case

of the small-sized instances. Focused on the best found solutions of the GV NS 2, this gap

is increased approximately to 3.4%. As it can be noticed, the CPLEX solver cannot provide

feasible solutions for the medium-sized instances under the specified time limit. Moreover,

an out-of-memory error occurred during the solution of the medium-sized instance “10-90-
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7” and all large-sized instances. As the GVNS 2 proved to be efficient in solving problem

instances of the studied problem, it is also used to solve these instances under the usage of

medium-duty trucks. The achieved results are compared with those produced by CPLEX

solver and they are reported in Table 10.

Table 10: Compare the results achieved by GVNS 2 and CPLEX (using medium-duty vehicles)

Instance CPLEX (a) GVNS 2 Avg (b) GVNS 2 Best (c) Gap a-b % Gap a-c %

4-9-3 19161.21 19907.18 19867.3 - 3.89 - 3.68

4-10-3 19871.37 20025.72 19984.59 - 0.78 - 0.57

4-10-5 16641.27 16481.28 16478.75 0.96 0.98

4-12-5 20477.68 19135.32 19125.16 6.56 6.6

4-15-3 10296.25 10178.69 10176.11 1.14 1.17

5-12-3 13038.15 12858.72 12854.84 1.38 1.41

5-15-3 15633.85 15801.46 15787.22 - 1.07 - 0.98

5-15-5 23523.54 21838.86 20449.79 7.16 13.07

5-18-3 22345.25 21816.29 20858.26 2.37 6.65

5-20-3 20379.37 18857 18784.91 7.47 7.82

6-40-5 N/A 21401.83 21069.95 2.46 3.86

7-52-5 N/A 16370.36 16202.46 - -

7-55-7 N/A 20684.1 20289.71 - -

8-60-5 N/A 23977.64 23607.5 - -

8-65-7 N/A 42803.82 41951.12 - -

9-70-5 N/A 25551.22 24409.88 - -

9-75-7 N/A 28340.91 28310.15 - -

9-85-5 N/A 23452.48 23050.71 - -

9-88-7 N/A 29048.78 28817.38 - -

10-90-7 OM 25876.82 25483.62 - -

15-100-7 OM 15211.71 13986.74 - -

15-100-10 OM 32413.15 32058.96 - -

15-120-10 OM 33093.59 32846.37 - -

20-150-10 OM 27227.04 26836.73 - -

20-180-12 OM 58273.09 57768.52 - -

25-200-12 OM 53710.14 52649.32 - -

30-250-10 OM 46402.38 45561.52 - -

30-270-10 OM 39775.43 39323.89 - -

35-300-10 OM 65889.8 64470.15 - -

35-310-12 OM 73180.99 72344.19 - -

The proposed GVNS algorithm performs approximately 2.5% better than CPLEX in

solving the homogeneous case of the problem using medium-duty vehicles (approximately
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up to 4% focused on best found solutions of GVNS). Moreover, the commercial solver cannot

provide feasible solutions even for some small-sized instances.

The impact of using different type of vehicles on fuel consumption, its cost and CO2

emissions is illustrated in Figures 2, 3 and 4 respectively.
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Figure 2: The average fuel consumption cost in cases of light- and medium-duty vehicles.
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Figure 3: The average fuel consumption (L) in cases of light- and medium-duty vehicles.
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Figure 4: The average CO2 emissions (kg) in cases of light- and medium-duty vehicles.

It is important to highlight that the use of medium-duty vehicles leads to significant
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decrease on fuel consumption and CO2 emissions. More specifically, both the fuel consump-

tion and the CO2 levels are decreased by 2.6%. There is a twofold explanation for these

reductions. First, by adopting a fleet with medium-duty vehicles, fewer and better-formed

routes can be built than using light-duty trucks. Also, using medium-duty vehicles leads to

a smaller fleet size than in the case of light-duty vehicles. Nonetheless, the fuel consumption

cost is increased by 9.66% using medium-duty vehicles. This may be attributed by the total

weight (curb and load weight) which is obviously increased in the case of medium-duty fleet

of vehicles.

However, a mixed-fleet is commonly adopted in real-life applications. Thus, further

examination is made in this direction. GVNS 4, GVNS 5 and GV NS 6 are initially tested

on the 30 random generated instances. Their results are provided in Table 11.
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Table 11: Average and best values of GVNS 4, GVNS 5 and GVNS 6

Instance GVNS4 Avg GV NS4 Best GV NS5 Avg GV NS5 Best GV NS6 Avg GV NS6 Best

4-9-3 30520.18 29647.29 30765.42 30693.35 30829.18 30799.61

4-10-3 35995.16 34513.94 34548.23 34513.94 36137.61 34513.95

4-10-5 28832 28832 28736.49 28714.56 28719.87 28714.62

4-12-5 37984.05 37211.55 37084.53 36260.56 39506.74 37204

4-15-3 17403.02 17397.8 17404.49 17397.68 17406.42 17397.69

5-12-3 27441.68 27423.38 27440.32 27422.85 27427.79 27422.85

5-15-3 30375.2 30368.01 30373.36 30366.56 30374.89 30368.03

5-15-5 69067.65 67497.91 68913.66 66977.66 69133.17 68662.37

5-18-3 46657.86 46390.79 46656.1 46390.98 46917.01 46406.27

5-20-3 33527.63 33475.16 33526.97 33470.58 33485.1 33402.98

6-40-5 61421.62 59524.58 62042.52 61639.27 61680.45 61591.17

7-52-5 40447.48 40391.73 40481.73 40448.62 40492.68 40428.09

7-55-7 45860.46 45718.6 45621.25 45421.78 45926.44 45722.02

8-60-5 94385.55 93461.52 93143.03 92208.35 93827.05 92065.25

8-65-7 253406.5 251405.2 253101.7 251508.6 252217.1 249853.3

9-70-5 73244.6 68938.83 72703.7 68663.82 72474.47 69907.24

9-75-7 58312.67 58174.97 58347.14 58260.16 58187.53 57971.01

9-85-5 47269.27 46890.23 47061.94 46992.61 47293.92 47010.44

9-88-7 62355.02 62181.18 62376.73 62196.86 62315.84 62242.41

10-90-7 45197.7 43846.87 43894.43 43761.46 43860.43 43517.92

15-100-7 50805.08 48844.84 50482.09 48101.82 48846.77 48371.12

15-100-10 71896.95 69419.84 71738.12 70931.28 71147.65 70017.36

15-120-10 78304.45 76205.23 76163.42 74377.12 78649.79 77165.66

20-150-10 87011.1 86023.12 86066.52 83902.64 86030.11 83007.77

20-180-12 187639.4 186855.5 187120.5 186712.4 186053.3 184981.3

25-200-12 165293 163618.9 164964.5 161578.4 164715.2 162377.6

30-250-10 76810.38 75669.81 76497.02 75821.38 77208.77 76601.8

30-270-10 88248.25 85529.95 86804.2 86043.47 86473.67 85925.92

35-300-10 196312 194688.7 196371.9 194698.6 194955.3 194174.2

35-310-12 133082 131259.6 133164.1 132237.7 133164.1 132237.7

Average 75836.93 74713.57 75453.2 74590.5 75515.28 74668.72
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Similar to the homogeneous case of the problem, the GVNS scheme which uses the

adaptive shaking mechanism with a complexity-based initial order is proved the most efficient

method. Furthermore, it is interesting to examine the reduced case of GV NS 5. Table 12

contains the average and the best found solutions of GVNS 5R and their gap (%) from the

corresponding GVNS 5 solutions.

Table 12: The results achieved by GVNS 5R and their gap from the results of GVNS 5

Instance GVNS 5R Avg GV NS 5R Best Gap Avg. Solutions % Gap Best Solutions %

4-9-3 30786.67 30693.35 -0.07 0

4-10-3 34487.43 34381.39 0.18 0.38

4-10-5 28776.89 28731.59 -0.14 -0.06

4-12-5 37093.05 36277.87 -0.02 -0.05

4-15-3 17405.14 17399.35 0 -0.01

5-12-3 27432.32 27422.85 0.03 0

5-15-3 30379.59 30368.05 -0.02 0

5-15-5 69218.02 67989.64 -0.44 -1.51

5-18-3 46775.61 46390.61 -0.26 0

5-20-3 33520.76 33481.52 0.02 -0.03

6-40-5 61423.02 60347.19 1 2.1

7-52-5 40679.31 40458.96 -0.49 -0.03

7-55-7 45511.59 45452.61 0.24 -0.07

8-60-5 93115.1 92390.42 0.03 -0.2

8-65-7 251383.6 249532.1 0.68 0.79

9-70-5 72597.73 69526.91 0.15 -1.26

9-75-7 58223.48 58030.34 0.21 0.39

9-85-5 47107.16 46879.55 -0.1 0.24

9-88-7 62397.38 62219.98 -0.03 -0.04

10-90-7 43938.91 43811.77 -0.1 -0.11

15-100-7 45505.46 41004.02 9.86 14.76

15-100-10 72098.84 71548.5 -0.5 -0.87

15-120-10 76792.02 76115.48 -0.83 -2.34

20-150-10 86059.3 84094.49 0.01 -0.23

20-180-12 186510 185948.6 0.33 0.41

25-200-12 163087.7 159319.8 1.14 1.4

30-250-10 76439.84 75821.38 0.07 0

30-270-10 86554.11 85849.48 0.29 0.23

35-300-10 195684.7 194490.1 0.35 0.11

35-310-12 133164.1 132237.7 0 0
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Despite the results clearly indicate that both GVNS 5 and GVNS 5R perform almost

equivalently, it seems that the GVNS with the reduced adaptive shaking scheme can pro-

duce slightly better solutions than the initial scheme, especially on large problem instances.

This may be occurred by the significant reduction of shaking iterations which enables the

improvement phase to be executed more times. Furthermore, during the experiments with

GVNS 5 and GV NS 5R, it is noticed that the solutions with an increase in vehicle mixing,

are found to be the best. In this direction, an alternative of the GVNS 5 and GVNS 5R

schemes (GVNS 5∗ and GV NS 5∗R respectively), which use the Shake2 instead of Shake1,

are tested. Due to the fact that a local search operator is more complex than a shaking

operator, the shaking operator S5 is selected to be used as the expedient on increasing the

fleet diversity. However, in order to control this diversity, operator N8 is also used. The

numerical results of GVNS 5∗ and GVNS 5∗R are given in Table 13.
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Table 13: The average and best found results of GVNS 5∗ and GV NS 5∗R
Instance GVNS 5∗ Avg (b) GVNS 5∗ Best (c) GVNS 5∗R Avg GV NS 5∗R Best

4-9-3 30556.21 29647.29 30828.79 30723.82

4-10-3 34302.87 33435.3 34759.74 34383.76

4-10-5 29062.39 28716.11 29091.07 28713.12

4-12-5 33141.53 31853.81 33695.88 31857.18

4-15-3 17402.1 17397.66 17405.18 17402.33

5-12-3 27633.45 27423.38 27390.11 27136.26

5-15-3 29351.3 28505.29 29388.97 28782.4

5-15-5 67118.98 65760.69 68626.54 65987.51

5-18-3 44665.75 43821.99 45368.95 44717.53

5-20-3 33515.91 33409.03 33578.46 33375.17

6-40-5 62363.02 60861.09 61515.82 59792.91

7-52-5 40515.12 40408.63 40571.34 40364.73

7-55-7 45617.8 45369.76 45614.4 45435.75

8-60-5 93676.57 92339.34 93438.79 92419.65

8-65-7 252522.6 251273.5 253098.5 251052.1

9-70-5 74397.69 71337.26 72309.77 68820.45

9-75-7 58347.14 58260.16 58187.02 57950.38

9-85-5 47023.98 46917.3 47088.62 46879.55

9-88-7 62373.95 62196.86 62389.43 62233.86

10-90-7 44038.39 43900.62 43981.29 43738.73

15-100-7 49374.27 48124.49 49237.94 48022.45

15-100-10 71331.44 70797.74 71560.47 71225.41

15-120-10 76893.95 74216.33 77064.65 75899.13

20-150-10 85949.9 83769.98 86057.27 83902.64

20-180-12 187129.2 186536.6 187238.5 186772.4

25-200-12 162581 159529 165767.3 164258.2

30-250-10 76497.02 75821.38 76439.84 75821.38

30-270-10 86813.8 85990.55 86723.59 86022.63

35-300-10 195334.7 194490.1 196106.5 194698.6

35-310-12 132730.1 131412.7 132730.1 131412.7

Average 75075.4 74117.46 75241.83 74326.76

From the reported results in Table 13, it is observed that the strategy of increasing

fleet diversity leads to further improvements, as the fleet mixing can potentially lead to

better formation of routes and lower vehicles usage costs. Also, following this approach, the

GVNS 5∗ performs slightly better than its reduced variant both in terms of average and

best found solutions.

To further evaluate, the performance of GVNS 5∗, a comparison with CPLEX is at-
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tempted and results are provided in Table 14.

Table 14: Compare the results achieved by GVNS 5∗ and CPLEX

Instance CPLEX (a) GVNS 5∗ Avg (b) GVNS 5∗ Best (c) Gap a-b % Gap a-c %

4-9-3 30303 30556.21 29647.29 - 0.84 2.16

4-10-3 33457.4 34302.84 33435.3 - 2.53 0.07

4-10-5 32475.16 29062.39 28716.11 10.51 11.58

4-12-5 38363.81 33141.53 31853.81 13.61 16.97

4-15-3 18356.11 17402.1 17397.66 5.2 5.22

5-12-3 28593.7 27633.45 27423.38 3.36 4.09

5-15-3 N/A 14715.93 14708.42 - -

5-15-5 N/A 18128.85 18120 - -

5-18-3 N/A 20342.34 19817.5 - -

5-20-3 N/A 17786.57 17760.79 - -

6-40-5 N/A 18515.07 18316.83 - -

7-52-5 N/A 14316.28 14247.63 - -

7-55-7 N/A 17385.93 17327.99 - -

8-60-5 N/A 20181.07 19868.29 - -

8-65-7 N/A 31585.7 31448.2 - -

9-70-5 N/A 21194.36 21056.55 - -

9-75-7 N/A 23521.41 23486.1 - -

9-85-5 N/A 19425.33 19172.77 - -

9-88-7 N/A 24115.2 24003.46 - -

10-90-7 OM 22148.5 21964.04 - -

15-100-7 OM 10337.47 10140.74 - -

15-100-10 OM 25651.77 25471.85 - -

15-120-10 OM 25090.81 24708.4 - -

20-150-10 OM 19229.42 19055.34 - -

20-180-12 OM 39357.65 38958.88 - -

25-200-12 OM 36297.77 35844.38 - -

30-250-10 OM 31506.05 31080.7 - -

30-270-10 OM 23175.82 22903.12 - -

35-300-10 OM 48197.6 47398.64 - -

35-310-12 OM 47498.46 47010.09 - -

As shown in Table 14, CPLEX can produce feasible solutions only for the six out of ten

small-sized instances. The GVNS 5∗ performs approximately 5.21% better than CPLEX,

and their difference is increased up to around 7.2% in the case of best found solutions by

GVNS 5∗. Considering the high complexity of the studied problem, the achieved quality
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difference and the significant difference on execution time limits, it can be highlighted that

the proposed GVNS scheme is quite efficient for solving the FSMPLIRP. Despite CPLEX is

a state-of-the-art optimization solver, setting a strict time limit for the solution of NP-hard

problems leads to the production of solutions with high optimality gap (gap between the

best integer and the relaxed LP solution). Thus, the solutions obtained by our proposed

solution approach are better even for small-sized instances.

4.4. Medium-duty vehicles vs mixed-fleet

It has been shown that the use of medium-duty only vehicles performs much better

than using only light-duty vehicles mainly in terms of fuel consumption and CO2 emissions.

Therefore, it is interesting to examine how a homogeneous fleet of medium-duty vehicles and

a mixed-fleet affect the fuel consumption (L), the corresponding cost and the CO2 emissions

(kg). Figures 5, 6 and 7 illustrate the discussed impacts for various problem instances.
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Figure 5: The average fuel consumption cost in cases of medium-duty vehicles and mixed-fleet.
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Figure 6: The average fuel consumption (L) in cases of medium-duty vehicles and mixed-fleet.
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Figure 7: The average CO2 emissions (kg) in cases of medium-duty vehicles and mixed-fleet.
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The selection of a mixed-fleet significantly decreases the fuel consumption, the CO2 emis-

sions and their corresponding cost, especially for the case of large problem cases. However,

an other critical decision parameter is the vehicle usage cost. Figure 8 illustrates the different

vehicle usage cost levels for each fleet case.
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Figure 8: The vehicles usage costs in cases of medium-duty vehicles and mixed-fleet.

It is clear that the mixed-fleet is more cost effective than the case of using a homogeneous

fleet of medium-duty vehicles (approximately 10%). Therefore, the use of a mixed-fleet is a

sustainable strategic decision.

The impact of initialization. The use of different initialization rules has a potential

effect on the solution of a GVNS heuristic (Hansen & Mladenović,2014). Therefore, it is

examined whether an alternative customers’ allocation rule has a considerable effect on the

final solution of the GVNS 5∗ (which has been proved the best scheme for solving the

FSMPLIRP) or not. More specifically, the alternative allocation is also a nearest allocation

method, which is applied by considering all the opened depots. The new GVNS scheme is

mentioned as GVNS 5∗Init2. Table 15 provides the results obtained by GV NS 5∗Init2 and the

comparison of them with the solutions produced by CPLEX.
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Table 15: Compare the results achieved by GVNS 5∗ using different initialization methods

Instance GVNS 5∗Init2 Avg GV NS 5∗Init2 Best Gap a % Gap b %

4-9-3 29992.57 29257.67 1.84 1.31

4-10-3 34727.45 34366.66 -1.24 -2.79

4-10-5 28928.39 29822.83 0.46 -0.72

4-12-5 33404.32 32841.5 -0.79 -3.1

4-15-3 17406.08 17400.79 -0.02 -0.02

5-12-3 27428.02 27423.36 0.74 0

5-15-3 29628.76 28672.01 -0.95 -0.58

5-15-5 70556.1 69437.41 -5.12 -5.59

5-18-3 47051.2 46479.4 -5.34 -6.06

5-20-3 33640.74 33528.41 -0.37 -0.36

6-40-5 63186.84 63129.26 -1.32 -3.73

7-52-5 39992.37 39828.16 1.29 1.44

7-55-7 45121.02 45020.08 1.09 0.77

8-60-5 94286.66 92886.35 -0.65 -0.59

8-65-7 249722.7 248333.5 1.11 1.17

9-70-5 72037.95 71681.4 3.17 -0.48

9-75-7 51536.19 51314.25 11.67 11.92

9-85-5 46006.43 45953.77 2.16 2.05

9-88-7 64279.82 63211.97 -3.06 -1.63

10-90-7 44038.39 43900.62 0 0

15-100-7 36894.5 32459.81 25.28 32.55

15-100-10 68180.36 67422.41 4.42 4.77

15-120-10 82139.7 81899.34 -6.82 -10.35

20-150-10 85949.9 83769.98 0 0

20-180-12 187034.1 186467.2 -0.05 0.04

25-200-12 148209 147419.9 8.84 7.59

30-250-10 78958.62 78463.9 -3.22 -3.49

30-270-10 89426.97 88609.33 -3.01 -3.05

35-300-10 182873.9 181887.7 6.38 6.48

35-310-12 115865 115465 12.71 12.14

The obtained results accentuate the impact of using different initialization rules. Fo-

cused on the large-sized instances the quality gap between GVNS 5∗ and GVNS 5∗Init2 is

approximately 5%. It has been observed that, by applying this alternative initialization rule,

better routes can be built. The potential efficient geographic segmentation of customers can

be a reasonable justification of the reported improvements. It is also interesting to focus on
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the potential effect of different initialization methods on fuel- and emissions-based details.

Figures 9, 11 and 12 illustrate the observed differences.
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Figure 9: The average fuel consumption cost using different initialization rules.

Figure 9 cannot provide a clear view on fuel cost changes for the case of the ten small-

sized instances. Thus, a more focused view on these instances is given in Figure 10.
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Figure 10: The average fuel consumption cost of ten small-sized instances using different initialization rules.

4-9
-3

4-1
0-3

4-1
0-5

4-1
2-5

4-1
5-3

5-1
2-3

5-1
5-3

5-1
5-5

5-1
8-3

5-2
0-3

6-4
0-5

7-5
2-5

7-5
5-7

8-6
0-5

8-6
5-7

9-7
0-5

9-7
5-7

9-8
5-5

9-8
8-7

10-
90-

7

15-
100

-7

15-
100

-10

15-
120

-10

20-
150

-10

20-
180

-12

25-
200

-12

30-
250

-10

30-
270

-10

35-
300

-10

30-
310

-12

Problem Instances

0

1000

2000

3000

4000

5000

6000

7000

8000

Av
g.
 F
ue

l C
on

su
m
pt
io
n

Mix-fleet_Init1
Mix-fleet_Init2

Figure 11: The average fuel consumption (L) using different initialization rules.
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Figure 12: The average CO2 emissions (kg) using different initialization rules.

It is noted that theGVNS 5∗Init2 mainly leads to more environmentally efficient solutions.

4.5. Opened depots and fleet composition

This section summarizes the number of opened depots, the capacity levels and the number

(and type) of vehicles as they reported in the best found solutions for each problem instance.

Thus, Table 16 provide the number of opened depots for each case of the studied problem

and each solution method (CPLEX & GVNS).
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Table 16: Number of opened depots per instance.

Instance CPLEX Light GVNS 2 (Light) CPLEX Medium GVNS 2 (Medium) CPLEX MixedFleet GVNS 5∗Init2

4-9-3 2 2 2 2 2 2

4-10-3 2 2 2 2 2 2

4-10-5 2 2 2 2 2 2

4-12-5 3 2 2 2 2 2

4-15-3 1 1 1 1 2 1

5-12-3 1 1 1 1 1 1

5-15-3 1 1 1 1 - 1

5-15-5 2 2 2 2 - 2

5-18-3 2 2 2 2 - 2

5-20-3 3 2 - 2 - 2

6-40-5 - 2 - 2 - 2

7-52-5 - 2 - 2 - 2

7-55-7 - 2 - 2 - 2

8-60-5 - 2 - 2 - 2

8-65-7 - 2 - 2 - 2

9-70-5 - 2 - 2 - 2

9-75-7 - 2 - 2 - 2

9-85-5 - 2 - 2 - 2

9-88-7 - 2 - 2 - 2

10-90-7 - 2 - 2 - 2

15-100-7 - 2 - 2 - 2

15-100-10 - 2 - 2 - 2

15-120-10 - 2 - 2 - 2

20-150-10 - 2 - 2 - 2

20-180-12 - 1 - 1 - 1

25-200-12 - 2 - 2 - 2

30-250-10 - 2 - 2 - 2

30-270-10 - 2 - 2 - 2

35-300-10 - 2 - 2 - 2

35-310-12 - 2 - 2 - 2

Solution by the proposed GVNS-based heuristic algorithms lead to opening the minimum

required number of depots. As shown in Table 16, the proposed GVNS algorithms managed

to open equal or less depots than the CPLEX solver for the case of small-sized instances. In

all problem cases the same depots are selected to be opened. The reason behind this fact,

is that in all these cases the structure of locations are kept unmodified. A more detailed

information about the opened depots and their planned capacity levels is given in Table 17.

48



Table 17: The opened depots and their capacity levels.

Instance Decisions Values Instance Decisions Values

4-9-3
depots

cap. level

depot 2 depot 3

level 2 level 3
9-70-5

depots

cap. level

depot 4 depot 5

level 3 level 3

4-10-3
depots

cap. level

depot 3 depot 4

level 2 level 1
9-75-7

depots

cap. level

depot 3 depot 9

level 2 level 3

4-10-5
depots

cap. level

depot 1 depot 3

level 2 level 2
9-85-5

depots

cap. level

depot 3 depot 9

level 4 level 4

4-12-5
depots

cap. level

depot 1 depot 4

level 1 level 2
9-88-7

depots

cap. level

depot 1 depot 2

level 3 level 2

4-15-3
depots

cap. level

depot 4

level 2
10-90-7

depots

cap. level

depot 2 depot 4

level 1 level 3

5-12-3
depots

cap. level

depot 1

level 3
15-100-7

depots

cap. level

depot 8 depot 9

level 2 level 4

5-15-3
depots

cap. level

depot 5

level 2
15-100-10

depots

cap. level

depot 7 depot 14

level 2 level 4

5-15-5
depots

cap. level

depot 4 depot 5

level 1 level 1
15-120-10

depots

cap. level

depot 9 depot 15

level 3 level 4

5-18-3
depots

cap. level

depot 1 depot 3

level 3 level 2
20-150-10

depots

cap. level

depot 1 depot 11

level 3 level 5

5-20-3
depots

cap. level

depot 1 depot 4

level 1 level 2
20-180-12

depots

cap. level

depot 14

level 2

6-40-5
depots

cap. level

depot 3 depot 6

level 2 level 1
25-200-12

depots

cap. level

depot 11 depot 13

level 5 level 5

7-52-5
depots

cap. level

depot 4 depot 6

level 3 level 2
30-250-10

depots

cap. level

depot 4 depot 20

level 3 level 3

7-55-7
depots

cap. level

depot 3 depot 7

level 2 level 4
30-270-10

depots

cap. level

depot 13 depot 27

level 2 level 2

8-60-5
depots

cap. level

depot 3 depot 6

level 2 level 2
35-300-10

depots

cap. level

depot 16 depot 24

level 1 level 4

8-65-7
depots

cap. level

depot 2 depot 5

level 3 level 3
35-310-12

depots

cap. level

depot 26 depot 29

level 4 level 3

Table 18 provides the fleet composition for the mixed-fleet problem case as it has been

obtained by CPLEX solver for some of the small-sized instances and the GVNS 5∗Init2 for

all problem instances. The fleet composition decided by GVNS 5∗Init2, corresponds to the

best found solution for each problem instance. The letter “L” means light-duty vehicle and

the letter “M” is used for medium-duty vehicles.
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Table 18: The fleet composition by each method.

Instance CPLEX GVNS 5∗Init2 Instance CPLEX GVNS 5∗Init2

4-9-3 3 L & 1 M 2 L & 2 M 9-70-5 - 8 L

4-10-3 3 L & 3 M 4 L & 4 M 9-75-7 - 3 L

4-10-5 2 L & 1 M 2 L & 1 M 9-85-5 - 4 L

4-12-5 3 L & 1 M 2 L & 2 M 9-88-7 - 5 L

4-15-3 2 L & 1 M 2 L 10-90-7 - 1 L & 1 M

5-12-3 4 L & 1 M 5 L 15-100-7 - 2 L & 1 M

5-15-3 - 4 L & 3 M 15-100-10 - 2 L & 1 M

5-15-5 - 10 L 15-120-10 - 4 L & 1 M

5-18-3 - 8 L 20-150-10 - 5 L & 1 M

5-20-3 - 4 L & 1 M 20-180-12 - 9 L & 1 M

6-40-5 - 7 L 25-200-12 - 8 L & 1 M

7-52-5 - 4 L 30-250-10 - 4 L & 1 M

7-55-7 - 3 L 30-270-10 - 3 L & 1 M

8-60-5 - 13 L & 2 M 35-300-10 - 10 L

8-65-7 - 28 L 35-310-12 - 4 L & 1 M

Despite the efficiency of the proposed solution methods, a few limitations of this work

should be mentioned. First, an alternative initial order of shaking operators in the adaptive

shaking mechanisms may lead to further improvements. Moreover, focused on the strength

of the shaking, five different values were examined. Further improvements can potentially

achieved by investigating other values. Finally it is not possible to formally assess the quality

of the obtained solution with respect to the truly optimal.

5. Conclusions

Sustainability is a crucial factor of a company’s growth. In this regard, this work studies

a new complex supply chain network optimization problem, which integrates both economic

and environmental decisions. As commercial solvers cannot solve realistic cases of such

complex problems, GVNS-based heuristic algorithms were developed for solving medium-

and large-sized instances. The shaking mechanism in a VNS-based heuristic has a significant

role in its performance. Thus, new adaptive shaking techniques are proposed, as a crucial
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intelligent learning component of the proposed solution method. This intelligent mechanism

uses past experience in order to improve the performance of the algorithm. In these shaking

methods, the shaking operators are ordered following two different rules. According to the

first one, the operators set in an order, based on their complexity, while in the second

one their ordering is performed randomly. During the execution of the algorithms, the

shaking operators are re-ordered in accordance with the number of improvements achieved

by using each of them in the previous iteration. The GVNS schemes using the proposed

adaptive shaking mechanisms are proved more efficient on the solution of such complex

supply chain network optimization problems than the GVNS using the classic intensified

shaking. Furthermore, the impact of using homogeneous fleet (either light- or medium-

duty vehicles) and mixed-fleet is examined not only from an economic perspective, but also

from an environmentally point of view. A computational analysis illustrates that by using

a mixed-fleet both economical and environmental benefits can be achieved. The impact

of using an alternative initialization rule is also investigated and the obtained solutions,

especially on ten large-sized instances, were further improved by 5%. The results from the

extended numerical analysis illustrate the integration of the proposed models and solution

techniques in an intelligent tool which can assist decision makers to derive fast and reliable

decisions for the optimal design and operation of complex supply chains.

The efficiency of the proposed solution methods which use intelligent learning shaking

mechanisms, highlights promising future work directions. One could focus on the imple-

mentation of a parallel version of the proposed algorithms in order to accelerate the intelli-

gent re-ordering of the shaking operators. Also, the development of adaptive improvement

mechanisms and alternative local search and shaking operators constitutes a promising re-

search direction for the solution of such complex optimization problems of practical interest.

Additionally, a systematic combination of the proposed solution methods with exact MIP

techniques is expected to lead to a powerful matheuristic approach with improved solutions.

The extension of the MIP model to account for further practical features, such as intermedi-

ate stops for refueling purposes and delivery lead times, is also another direction for future

work.
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