
Advanced Algorithms for the Reclaimer Scheduling Problem
with Sequence-Dependent Setup Times and Availability

Constraints

Oualid Benbrik[0009−0009−3404−4136]1, Rachid Benmansour[0000−0003−2553−4116]1,2, Abdelhak
Elidrissi[0000−0002−5024−6610]3, and Angelo Sifaleras[0000−0002−5696−7021]4

1 SI2M Laboratory INSEA, Rabat, Morocco
{obenbrik,r.benmansour}@insea.ac.ma

2 LAMIH CNRS UMR 8201, INSA Hauts-de-France, Polytechnic University of Hauts-de-France (UVHC),
Campus Mont Houy, F-59313 Valenciennes Cedex 9, France

3 Rabat Business School, International University of Rabat, Parc Technopolis, Rabat, Morocco
abdelhak.elidrissi@uir.ac.ma

4 Department of Applied Informatics, University of Macedonia, School of Information Sciences, 156
Egnatias Str., 54636, Thessaloniki, Greece

sifalera@uom.gr

Abstract. Scheduling of reclaimers activities in dry bulk terminals significantly impact ter-
minal throughput, a crucial performance indicator for such facilities. This study addresses
the Reclaimer Scheduling Problem (RSP) while considering periodic preventive maintenance
activities for reclaimers. These machines are integral for reclaiming dry bulk materials stored
in stockyards, facilitating their loading onto vessels via ship-loaders. The primary aim of the
objective function entails the minimization of the overall completion time, commonly referred
to as the makespan. Since this problem is NP-hard, we propose a novel greedy constructive
heuristic. The solutions obtained from this heuristic serve as the starting point for an efficient
General Variable Neighborhood Search (GVNS) algorithm to handle medium-scale instances
resembling real stockyard configurations. Computational experiments are conducted by com-
paring the proposed methods across various problem instances. The results demonstrate that
the developed GVNS, coupled with the constructive heuristic for initial solution finding, effi-
ciently improves scheduling efficacy. Thus, it emerges as a new state-of-the-art algorithm for
this problem.

Keywords: Reclaimer Scheduling, Bulk Ports, Sequence-Dependent Setup Times, Availabil-
ity Constraints, Machine Eligibility Restrictions, Variable Neighborhood Search, Heuristic.

1 Introduction and Literature Review

Bulk terminals play a pivotal role in global trade by facilitating the efficient handling and stor-
age of large quantities of commodities, such as coal, minerals, grains, raw materials, and so on.
These terminals serve as crucial nodes in the logistics chain, ensuring the seamless flow of goods
between various modes of transportation. The importance of bulk terminals cannot be overstated,
given their pivotal role in maritime transport, which handles approximately 80% of the world’s
trade volume, as reported by the United Nations Conference on Trade and Development (UNC-
TAD 2022) [15]. Despite their indispensable contribution to global trade, bulk terminals have not
received proportionate attention in the research literature when compared to container terminals.

2 O. Benbrik et al.

While container terminals have been extensively studied, the operational challenges specific to bulk
terminals have been relatively understudied. However, recent research is placing a growing emphasis
on understanding and addressing the distinctive challenges faced by bulk terminals.

The overall configuration of dry bulk terminals involves a designated berth area where vessels an-
chor for the loading or unloading of materials, utilizing shiploaders or cranes. Complementing this,
the terminal features a yard where bulk cargoes are managed, either through addition as stockpiles
using stacker machines or complete reclamation using reclaimer machines, facilitating subsequent
delivery to ships at the berths. The research at hand is prompted by a keen interest in the opera-
tional intricacies of bulk ports, with a specific emphasis on the Newcastle Coal Infrastructure Group
(NCIG) terminal, a notable coal export terminal in Australia [7]. The NCIG stockyard incorporates
diverse stockpads, each tailored with specific positions for unloaded coal. Rail tracks are strategi-
cally positioned between parallel stockpads, accommodating stacker-reclaimer (SR) machinery for
effective material handling.

The effective scheduling of reclaimers constitutes crucial aspects of resource management in dry
bulk terminals, directly influencing terminal throughput—a key performance indicator for these
facilities. Despite its paramount significance, research on this subject is relatively underdeveloped,
with a limited number of papers addressing the RSP. To the best of our knowledge, Hu and Yao [10]
were the pioneers in addressing the SR scheduling problem at an iron ore terminal. They concen-
trated on minimizing the makespan for a given set of handling operations using a genetic algorithm
(GA). Similarly, Angelelli et al. [1] conducted a study on bulk material reclamation in stockyards.
They presented and analyzed multiple variants of an abstract scheduling problem for the reclaiming
operations and demonstrated the NP-hardness of these variants. Kalinowski et al. [11] extended the
work presented by Angelelli et al. [1], relaxing the assumption that all stockpiles must be stacked
at the beginning of the planning period. They further investigated the dynamic version of the prob-
lem, although they did not consider the setup times (i.e., traveling time) of reclaimers. Recently,
Ünsal [16] delved into the RSP within a realistic world setting. He posited that the problem is a
variant of the parallel machine scheduling problem and presented two versions—one with stacking
operations and one without. The author developed an arc-time indexed Mixed Integer Programming
(MIP) formulation to solve the problem.

The loading and unloading process at the yard-side presents risks to critical equipment like the
SR, necessitating periodic preventive maintenance to prevent breakdowns and accidents [2]. This
maintenance, including inspections, lubrication, and safety testing, is essential for terminal reliabil-
ity but leads to downtime affecting stockpile handling. Benbrik et al. [3] pioneered the integration
of preventive maintenance into reclaimer scheduling, developing mathematical formulations for the
RSP. They explored two cases: one with two stockpads and one reclaimer, resulting in two novel
formulations, and another with three stockpads and two reclaimers, leading to a unique model.
Their formulations, solved using CPLEX, successfully handled small instances but struggled with
medium ones. Therefore, this paper extends the scope of the second case of the configuration ad-
dressed in [3], with the primary objective of solving this problem with a real configuration of the
stockyard involving multiple stockpads.

The main contributions of this paper are as follows:

• Investigation of a real configuration of a coal export terminal involving the minimization of the
makespan.

Advanced Algorithms for the Reclaimer Scheduling Problem 3

• Development of a novel and innovative greedy constructive heuristic. Additionally, the design
of an efficient GVNS metaheuristic for solving medium-sized instances of the problem within a
reasonable computational time.

• Provision of empirical results from numerical experiments for reasonable computing times, con-
sidering both the literature and industrial practices.

The remaining sections of this paper are organized as follows. Section 2 presents the problem
addressed in this study. Section 3 introduces a version of the MIP model previously developed for
solving the problem. In Section 4, we describe the proposed greedy constructive heuristic proce-
dures. Section 5 presents the GVNS approach employed in this research. Numerical experiments
are conducted in Section 6. Finally, Section 7 concludes the paper by summarizing the findings and
discussing future perspectives.

2 Problem Description

This paper addresses the scheduling problem related to the reclamation of stockpiles using a
set of identical reclaimer machines, denoted as M = {M1,M2 . . . ,Mm}. The operational lay-
out consists of parallel stockpads on the yard-side of a dry bulk export terminal, represented by
P = {P1,P2, . . . ,Pm+1}. Each reclaimer machine is mounted on a rail track between two adjacent
stockpads. Let Pz = {n(z−1)+1, . . . , nz} represent the set of stockpiles in stockpad Pz, with n0 = 0
and nz denoting the number of stockpiles in Pz. The set N = {J1, J2, . . . , Jn} encompasses all
stockpiles across all stockpads, where n =

∑m+1
z=1 nz. Each stockpile i, where i ∈ [[1, n]], possesses a

length denoted by Li. The time required to reclaim a stockpile, pi, is determined as the ratio of its
length to the reclamation speed s (i.e., pi = Li/s). Introducing sequence-dependent setup times,
denoted as ti,j , accounts for the travel time between two consecutive stockpiles. The setup time is
the duration between completing the reclamation of Ji ∈ N and commencing the reclamation of
the subsequent stockpile Jj ∈ N . We assume t0,j = 0, signifying no setup before processing the first
reclaiming job. Additionally, the triangle property holds for setup times, ensuring ti,l + tl,j ≥ ti,j
for any three distinct jobs Ji, Jj , and Jl. Furthermore, strict adherence to the eligibility restrictions
of the machines is enforced; each machine possesses the capability to pivot its boom, facilitating
the processing of adjacent stockpiles along the rail track, while reclamation of stockpiles from other
stockpads is not allowed. On a reclaimer machine Mk, stockpile reclamation occurs during the in-
terval between consecutive preventive periodic maintenance activities, with the length denoted as
Tk. Each maintenance activity has a duration of σ. Reclaiming tasks are prohibited during mainte-
nance activities, and no breakdowns occur after maintenance. The problem is denoted as Reclaimer
Scheduling Problem with Preventive Periodic Maintenance Activities (RSP-PPMA), with the ob-
jective of finding a feasible schedule to minimize the makespan. In this problem, we refer to each
reclaimer as a machine, and each operation of reclaiming stockpile as a job.

Importantly, this paper expands upon the previous work conducted by Benbrik et al. [3]. The
main notations used to describe the problem are listed in Table 1.

Figure 1 displays a graphical representation of a feasible solution to the addressed RSP-PPMA.
In the figure, green rectangles represent Tk, indicating the duration between two consecutive main-
tenance activities on machine Mk ∈ M. The maintenance activities are denoted by PM in yellow
rectangles, with σ representing the duration of a maintenance activity. Jobs are scheduled within
batches denoted as {B1, B2, . . . , Bb, . . . , Bn}, each having a duration of Tk + σ ∀k ∈ [[1,m]].

4 O. Benbrik et al.

Table 1: Notations.
Sets and Indices

m Number of machines
nz Number of jobs in stockpad z

n Number of jobs (n =
∑m+1

z=1 nz)
M Set of machines (M1,M2, . . . ,Mk, . . . ,Mm)
P Set of stockpads (P1,P2, . . . ,Pz, . . . ,Pm+1)
Pz Set of jobs in stockpad z (Pz = {n(z−1) + 1, . . . , nz} with n0 = 0)
N Set of jobs in all stockpads (N = {J1, J2, . . . , Jn})

Parameters

A Large positive integer
pi Processing time of job Ji ∈ N
ti,j Travel time of machine between stockpile Ji and stockpile Jj , i.e., setup time
T Time interval between two consecutive maintenance activities
σ Duration of a maintenance activity

Decision variables

Ci,k The completion time of job Ji ∈ N on machine Mk ∈ M
Cmax Maximum completion time (makespan)

Fig. 1: Graphical representation of a feasible solution.

3 Mathematical Formulation

This section introduces a complex version of the MIP formulation previously proposed by Ben-
brik et al. [3], tailored for addressing the RSP-PPMA. The model is specialized for scenarios involv-
ing three parallel stockpads and two reclaimer machines. The scheduling strategy involves grouping
jobs into batches denoted as B = {B1, B2, . . . , Bb, . . . , Bn} for the two reclaimer machines, with the
overarching objective of minimizing the makespan. Each batch on machine Mk ∈ M has a capacity
constraint denoted as Tk, and the time allocated for each maintenance activity is represented by σ.
Throughout this formulation, the assumption Tk = T, ∀k ∈ J1,mK is adopted, where the notation

Advanced Algorithms for the Reclaimer Scheduling Problem 5

JX,Y K is used to indicate the interval of all integers between X and Y included. This problem can
be seen, as a variant of the parallel machine scheduling problem [16].

The binary decision variables in this formulation are denoted as follows:

xi,j =

{
1 if job Jj follows job Ji in the sequence
0 otherwise

yi,k =

{
1 if job Ji is processed on machine Mk ∈ M
0 otherwise

αk
i,b =

{
1 if job Ji is in batch b ∈ B on machine Mk ∈ M
0 otherwise

(MIP)minCmax (1)
s.t. Cmax ≥ Ci,k ∀i ∈ [[1, n]],∀k ∈ [[1,m]] (2)
yi,1 = 1 ∀i ∈ P1 (3)
yi,2 = 1 ∀i ∈ P3 (4)
yi,1 + yi,2 = 1 ∀i ∈ P2 (5)
Ci,k ≥ piyi,k ∀i ∈ [[1, n]],∀k ∈ [[1,m]] (6)
xi,j + xj,i ≥ yi,k + yj,k − 1 ∀i, j ∈ [[1, n]], i ̸= j,∀k ∈ [[1,m]] (7)
Ci,k ≤ Ayi,k ∀i ∈ [[1, n]],∀k ∈ [[1,m]] (8)
Cj,k +A(3− xi,j − yi,k − yj,k) ≥ Ci,k + ti,j + pj ∀i, j ∈ [[1, n]], i < j,∀k ∈ [[1,m]] (9)
Cj,k + tj,i + pi ≤ Ci,k +A(2− yi,k − yj,k + xi,j) ∀i, j ∈ [[1, n]], i < j,∀k ∈ [[1,m]] (10)
n∑

b=1

αk
i,b = yi,k ∀i ∈ [[1, n]],∀k ∈ [[1,m]] (11)

Ci,k ≥ (b− 1)αk
i,b(Tk + σ) + tn+1,iα

k
i,b + piyi,k

∀i ∈ [[1, n]],∀b ∈ [[2, n]],

∀k ∈ [[1,m]]
(12)

Ci,k ≤ bαk
i,bTk + (b− 1)σ − ti,n+1 +A(1− αk

i,b) ∀i, b ∈ [[1, n]],∀k ∈ [[1,m]] (13)

Ci,k ≥ 0 ∀i ∈ [[1, n]],∀k ∈ [[1,m]] (14)
xi,j ∈ {0, 1} ∀i, j ∈ [[1, n]] (15)
yi,k ∈ {0, 1} ∀i ∈ [[1, n]],∀k ∈ [[1,m]] (16)

αk
i,b ∈ {0, 1} ∀i, b ∈ [[1, n]],∀k ∈ [[1,m]] (17)

The objective function (1) aims to minimize the makespan of each reclaimer machine. Constraint
set (2) ensures that the makespan of an optimal schedule is not less than the completion time of
all jobs that have been executed on each machine. The sets of constraints (3)-(5) impose eligibility
restrictions on the reclaimer machines. Constraints (3) and (4) specify that all jobs in the stockpad
P1 and the last stockpad P3 are processed on machines M1 and M2, respectively. Constraint set (5)
guarantees that each job Ji in stockpad P2 is assigned to exactly one reclaimer machine. Constraint
set (6) calculates the completion time of job Ji on each machine. Constraint set (7) ensures that no
two jobs Ji and Jj can overlap in time. Constraints (8)-(10) specify that a job can be processed only

6 O. Benbrik et al.

if the machines are available. Constraints (9) and (10) indicate that no two jobs Ji and Jj scheduled
on the same reclaimer machine (i.e., yi,k = yj,k = 1) can overlap in time. Constraint set (11) ensures
that each job Ji is assigned to exactly one batch on a corresponding machine Mk. Constraints (12)
and (13) guarantee that every job Ji processed by machine Mk must be executed within batch
Bb of this machine. Constraint (12) ensures that in batch Bb of machine Mk, with b ∈ [[2, n]], the
scheduling of any job Ji in this batch is performed after the end of preventive maintenance and
the setup time t(n+1),i spent after maintenance. Additionally, constraint (13) requires that each job
Ji processed by machine Mk should be finished before the starting time of preventive maintenance
activity and its related setup time ti,(n+1). Constraint set (14) defines the completion time of job
Ji on machine Mk as a positive continuous variable. Constraints (15), (16), and (17) define the
variables xi,j , yi,k, and αk

i,b as binaries.

4 Greedy Constructive Heuristic Procedure

In this section, we present a novel constructive heuristic algorithm tailored for solving the RSP-
PPMA (Algorithm 1). Constructive methods, widely used for generating feasible solutions from
scratch in optimization problems, serve as the foundation for our innovative approach. The algorithm
begins with an initialization phase, assigning jobs from the first and last stockpads, P1 and Pm+1,
to machines M1 and Mm, respectively. The core of our constructive heuristic procedure (Phase 2)
is an iterative process that traverses each intermediate stockpad Pz, where z ∈ [[2,m]]. Within this
phase, a job Ji is selected from a specific position (posi) within stockpad Pz. The selected job is
simultaneously allocated to both the current machine Mz and the preceding machine Mz−1, adhering
to eligibility constraints. Allocation decisions depend on the comparison of the last completion times
for jobs assigned to Mz and Mz−1. Based on this evaluation, the job either remains at Mz or is
transferred to Mz−1, striving for a locally optimal job-machine allocation. This iteration continues
until all positions within the stockpad have been considered. Moving to Phase 3, the algorithm
generates prioritized job sequences πk for each machine Mk, where k ∈ [[1,m]]. This prioritization is
achieved by sorting jobs using the Longest Processing Time (LPT) rule. The resulting prioritized
sequences πk are then concatenated, forming an ordered list that guides the creation of the final
schedule π as a feasible solution to the RSP.

The preventive maintenance assignment scheduler algorithm (PMAS) (Algorithm 2) is devised
to incorporate Preventive Maintenance (PM) considerations into the initial job sequence π gener-
ated by the constructive heuristic procedure. In Phase 4 of the Algorithm 1, PMAS is applied to
seamlessly integrate PM and calculate the makespan with the final sequence πPM. The input in-
cludes the initial sequence π and the batch duration representing the time between two consecutive
preventive maintenance activities (i.e., T). The algorithm iterates through each machine Mk, ap-
plying the algorithm 1 to generate individual sequences πk. Subsequently, the completion times for
each job in πk are calculated, and jobs exceeding the batch duration are moved to the next batch.
The algorithm maintains track of completion times, and the last completion time of each machine
is reported (i.e., makespan). The final sequence πPM is generated by incorporating the PM strategy,
ensuring that jobs are appropriately scheduled within batches. This is achieved by updating πPM
through the union operation with the sequences πk,PM for each machine Mk. The output includes
πPM and the makespan Cmax, providing a feasible solution to the RSP that seamlessly integrates
both job sequencing and PM considerations.

Advanced Algorithms for the Reclaimer Scheduling Problem 7

Algorithm 1 Constructive heuristic algorithm (Constructive)
Input: z, nz,Pz,m

1: Phase 1: Initialization
2: if z = 1 then
3: Assign(M1, P1)
4: end if
5: if z = m + 1 then
6: Assign(Mm, P(m+1))
7: end if
8: for k = 2 to m− 1 do
9: πk ← ∅
10: end for
11: Phase 2: Constructive Heuristic Procedure
12: z ← 2 , pos← 1
13: while

(
pos ≤ nz

)
do ▷ z ∈ [[2,m]]

14: for each z ∈ [[2,m]] do
15: Choose the job Ji situated at the position pos within the stockpad Pz .
16: Assign(Mz−1, Ji)
17: Assign(Mz , Ji)
18: if

(
Cmax(Mz) < Cmax(Mz−1)

)
then

19: Assign(Mz , Ji)
20: Remove(Mz−1, Ji) ▷ Local search procedure
21: else
22: Assign(Mz−1, Ji)
23: Remove(Mz , Ji)
24: end if
25: end for
26: pos← pos + 1
27: end while
28: Phase 3: Schedule jobs using the LPT rule
29: π ← ∅
30: for each k ∈ [[1,m]] do
31: πk ← Sort(Mk, LPT)
32: π ← π ∪ πk

33: end for
34: Phase 4: Integration of preventive maintenance and makespan calculation using PMAS
35: (πPM, Cmax)← PMAS(π, T)

Output: πPM, Cmax

Algorithm 2 Preventive maintenance assignment scheduler algorithm (PMAS)
Input: π, T ▷ Initial sequence and batch duration

1: πPM ← ∅ ▷ Initialize final sequence
2: for k = 1 to m do
3: πk ← Constructive(N ,P,M) ▷ Individual sequences for each Mk

4: Cmax ← 0
5: batchk ← 1
6: for each Ji ∈ πk do
7: Calculate the completion time Ci,k of job Ji

8: if Ci,k > batchk × Tk then
9: Move the current job Ji to the next batch
10: Update the completion time Ci,k

11: batchk ← batchk + 1
12: end if
13: end for
14: Report the last completion time Ci,k of machine Mk

15: if Ci,k > Cmax then
16: Update Cmax with the last completion time Ci,k

17: end if
18: πPM ← πPM ∪ πk,PM ▷ Sequence with PM
19: end for

Output:
20: Final sequence πPM and Makespan Cmax

8 O. Benbrik et al.

5 General Variable Neighborhood Search

Advanced optimization techniques, such as Simulated Annealing (SA), Tabu Search (TS), and
Variable Neighborhood Search (VNS), constitute sophisticated metaheuristic approaches. These
methods are strategically crafted to navigate beyond local optima within the search space while
steering other heuristics. The VNS is a metaheuristic method initially introduced by Mladenović
and Hansen [12]. It incorporates a local search procedure and dynamically adjusts neighborhood
structures throughout the solution process. Over time, VNS has transcended its status as just a
metaheuristic, transforming into a general framework for heuristic development. Numerous variants
have emerged from the original schema [9], rendering this methodology a robust and potent tool in
the optimization context. The VNS method has been widely employed in a diverse set of optimiza-
tion problems (see Sifaleras and Konstantaras [14]; Benmansour and Sifaleras [5]; Benmansour et
al.[4]; Benmansour et al.[6]; Elidrissi et al. [8]).

In this paper, we utilize the primary framework of the methodology known as GVNS. However,
as mentioned earlier, various well-known variants exist alongside the general design. Some of the
classical and widely adopted ones include Basic VNS (BVNS), Reduced VNS (RVNS), and Variable
Neighborhood Descent (VND). For a recent survey on VNS, we direct the reader to the work by
Hansen et al. [9]. The GVNS proposed in this paper for the RSP-PPMA generally incorporates
advanced local search procedures, such as pipe VND, sequential VND, cyclic VND, and others, in
the algorithm’s improvement phase (cf. Hansen et al., [9]).

5.1 Neighborhood Structures

The efficiency of the GVNS metaheuristic relies on defining suitable neighborhood structures. In
this paper, we categorize permutation-based neighborhoods into two types: intra-machine and inter-
machine. Intra-machine neighborhoods concentrate on single-reclaimer machine impacts, comprising
the Intra-machine exchange (N1), Intra-machine insert (N2), and Intra-machine reverse (N3) neigh-
borhoods. The Intra-machine exchange involves swapping positions of two jobs πJi

k,PM and π
Jj

k,PM
on a single machine Mk ∈ M. Intra-machine insert moves a job within the same machine, which
involves taking a job from its current position and inserting it into another position within the same
machine Mk ∈ M. Intra-machine reverse chooses two jobs πJi

k,PM and π
Jj

k,PM and reverses the order of
the jobs between them on a machine. Inter-machine neighborhoods, affecting two machines, consist
of the Inter-machine exchange (N4) and Inter-machine insert (N5). The Inter-machine exchange
chooses jobs πJi

k−1,PM and π
Jj

k+1,PM, where Ji, Jj ∈ Pk ∪ Pk+1, and exchanges them, while Inter-
machine insert removes a job from one machine and inserts it into another, adhering to eligibility
restrictions.

5.2 Variable Neighborhood Descent

We propose incorporating the neighborhood structures detailed in Section 5.1 collectively within the
context of a VND heuristic to locally refine a given solution πPM. The general framework of the VND
is delineated in Algorithm 3. It initiates with an initial solution πPM derived from a constructive
heuristic, extensively discussed in Section 4. Subsequently, the algorithm persistently endeavors to
construct an improved solution from the current state πPM by exploring its neighborhood Nl(πPM).
Thus, the effectiveness of the VND variants proposed in this study relies on the sequence of five

Advanced Algorithms for the Reclaimer Scheduling Problem 9

neighborhood structures (N1, N2, N3, N4, N5) and the chosen search strategy (first or best improve-
ment), known as the neighborhood change step. The approach chosen for transitioning between
neighborhoods is the pipe strategy. The steps of this strategy are outlined in Algorithm 4. Follow-
ing preliminary tests, we opted for the best improvement in the search strategy, and in our proposed
GVNS, the selected neighborhood order is N4(πPM), N5(πPM), N3(πPM), N1(πPM), N2(πPM).

Algorithm 3 Variable Neighborhood Descent VND
Data: πPM, lmax

Result: πPM
1: while There is no improvement do
2: l← 1
3: while l ≤ lmax do
4: π′

PM ← Local Search(πPM, Nl)
5: ChangeNeighborhood-Pipe(πPM, π′

PM, l)
6: end while
7: end while
8: return πPM

Algorithm 4 ChangeNeighborhood-Pipe (πPM, π′PM, l)

1: if
(
Cmax(π

′
PM) < Cmax(πPM)

)
then

2: πPM ← π′
PM

3: else
4: l← l + 1
5: end if
6: return πPM

5.3 Shake Strategy

The shaking phase, pivotal for escaping local optima during convergence, is integral to the algo-
rithm’s effectiveness (Mladenović and Hansen, [12]). This phase systematically generates k random
jumps from the current solution πPM. Based on our experiments, we adopted a diversification ap-
proach involving the random selection from a set of predefined neighborhood structures, namely
N3, N1, and N2. Subsequently, we apply the selected structure k times, where 1 ≤ k ≤ kmax. It’s
worth noting that introducing additional neighborhood structures in the shaking method has been
observed to detrimentally impact result quality. The procedures of the shaking phase are outlined
in Algorithm 5.

Algorithm 5 Shaking
Data: πPM, k

1: p← randomInteger(1, 3)
2: for j = 1 to k do
3: if (p = 1) then
4: Generate a random π′

PM ∈ N3(πPM)
5: end if
6: if (p = 2) then
7: Generate a random π′

PM ∈ N1(πPM)
8: end if
9: if (p = 3) then
10: Generate a random π′

PM ∈ N2(πPM)
11: end if
12: end for
13: return π′

PM

10 O. Benbrik et al.

5.4 GVNS for the RSP-PPMA

In this section, we present the overall pseudocode of GVNS as it is implemented to solve the
RSP-PPMA, which is presented in Algorithm 6. This scheme has three input parameters: the
initial solution (πPM), the maximum perturbation level (kmax), and the maximum computing time
(Tmax). The parameters (Tmax) and (kmax), determined after preliminary experimentation, will be
provided in Section 6.2. The diversifcation and intensifcation ability of GVNS relies on the shaking
phase and VND, respectively. Shaking step of GVNS consists of three neighbohood structures N3,
N1, and N2. In the VND step, the five proposed neighborhood structures are used. The stopping
criterion is a CPU time limit Tmax. It is worth noting that the construction of the initial solution lies
outside the GVNS framework. Typically, this initial solution can be generated randomly, following
the common practice in the VNS community. However, a more sophisticated constructive procedure,
as supported by literature (see Sánchez-Oro et al. [13]), can significantly enhance the quality of the
best solution. A well-designed starting point is often more promising than a simple random solution.
In Section 4, we detailed the constructive procedures proposed for the RSP-PPMA, which furnish
the initial solutions for the GVNS.

Algorithm 6 General variable neighborhood search GVNS
Data: πPM, kmax, Tmax

Result: πPM
1: while CPU ≤ Tmax do
2: k ← 1
3: while k ≤ kmax do
4: π′

PM ← Shaking(πPM, k)
5: π′′

PM ← VND(π′
PM)

6: if
(
Cmax(π

′′
PM) < Cmax(πPM)

)
then

7: πPM ← π′′
PM

8: k ← 1
9: else
10: k ← k + 1
11: end if
12: end while
13: end while
14: return πPM

6 Computational Results

To evaluate and showcase the effectiveness of the proposed algorithm on problem instances of
different sizes, extensive computational experiments were carried out. The MIP model for the RSP-
PPMA, as employed in a prior study by Benbrik et al. [3], was implemented using the CPLEX 22.1
MIP solver with default configurations. Simultaneously, all other algorithms were coded in C++.

During the experiments, a personal computer with an Intel(R) Core(TM) i7-7700HQ CPU
operating at 2.8 GHz and 8 GB of RAM was used. The MIP formulations are analyzed based on
the following metrics: the objective value (Opt) of the test instances solved to optimality within
1800 s, the time required for solving these optimally solved instances (CPU) in seconds (s), the
objective function value of the instances unsolved within 1800 s (instances with feasible solutions),
denoted as Best Integer, and the optimality gap for the test instances which could not be solved
within 1800 s, denoted as Gap(%). Importantly, optimal solutions were only achievable for small
instances with n = 15 jobs and m = 2 stockpads due to the NP-hard nature of the RSP-PPMA. As
a result, the constructive heuristics and GVNS versions were adapted for medium instances. It is

Advanced Algorithms for the Reclaimer Scheduling Problem 11

crucial to emphasize that, to mitigate the influence of stochastic variations, 10 runtime executions
of the GVNS were performed for each problem instance. Consequently, the Best (Best.), Maximum
(Max.), and Average (Avg.) objective function values were determined from these 10 runs and
reported. Additionally, the average computation times (CPU) were calculated based on the 10 runs,
with each run’s computation time corresponding to the moment when the best solution encountered
during that specific run was identified.

6.1 Benchmark Instances

The characteristics of the test instances derived from the scheduling environment of the NCIG
terminal in Australia. These instances possess the following characteristics:

• The processing times of reclaiming stockpiles pi, the setup times ti,j , the time interval T , and
the duration of a maintenance activity σ are generated following the approach proposed by
Benbrik et al. [3]. Specifically, pi ∼ U(60, 140), ti,j = β ×min(pi, pj), where β ∼ U(0.05, 0.15),
σ ∼ U(20, 90), and T = max (maxi∈N pi, 4×

∑n
i=1 pi/n).

• The number of jobs in the stockpads is categorized into two sets of test problem instances. For
small problem instances, the number of jobs n is chosen from {10, 15}, while the number of
machines m is fixed at 2 (i.e., P = P3). In the case of medium problem instances, the number of
jobs n varies from 30 to 100. Specifically, n takes values from {30, 40, 50, 60} when m equals 3
(i.e, P = P4). It is essential to note that, for each combination of values (n,m), a total of 10
distinct problem instances were generated for both the small and medium-scale cases.

• In total, 60 unique problem instances were generated for every combination of values (n, T, σ,P).
These instances were evenly distributed across the two problem categories, with 20 instances
designated for the small problem set, and 40 instances assigned to the medium problem set.

6.2 Tuning Parameters

A series of experiments were conducted to identify optimal parameter values for the GVNS algo-
rithm. The algorithm relies on two key tuning parameters: kmax denotes the maximum perturbation
level, and Tmax represents the maximum time allotted to the GVNS. After preliminary experimen-
tation, a thoughtful selection was made for the parameter configuration. Specifically, kmax is set
to 20, chosen for its ability to strike a balance between solution quality and computational time
(CPU). For small-sized instances

(
n ∈ {10, 15}, T, σ,P = P3

)
, Tmax is set to the computation time

required to find an optimal solution using the CPLEX solver. For medium-sized instances, Tmax is
determined by the formula Tmax =

(
n ×m

)
/5, indicating a polynomial increase in time with the

growth of jobs and machines.

6.3 An Analysis of the Effectiveness of the Proposed Constructive Heuristic for
Small Problems

In this section, we conduct an analysis of the performance of the developed greedy constructive
heuristics for small-scale instances. For this heuristic, we calculate the percentage deviation for
every problem instance from its optimum using the following formula:

Dev = 100×
(
CH

max − opt

opt

)

12 O. Benbrik et al.

Here, CH
max represents the makespan achieved by the greedy constructive heuristic, and opt

denotes the optimum value obtained through the MIP formulation proposed in Benbrik et al. [3].
As anticipated, the computational experiment results presented in Table 2 demonstrate that the

Dev values of the proposed greedy constructive heuristic, aimed at minimizing the makespan for
small problem instances, generally fall within the range of 1.78 % to 13.29 % for the combination of
values (n = 10, T, σ,P = P3), and 7 % to 22.72 % for the combination of values (n = 15, T, σ,P =
P3).

In addition to evaluating the efficacy of heuristic based on their performance in addressing
medium problem instances, the obtained outcomes for small-scale problems are deemed reasonably
satisfactory and promising. This heuristic, furthermore, can be regarded as a robust initial solution
for the GVNS metaheuristics.

Table 2: Evaluation of the heuristic algorithm for the RSP-PPMA in small scale instances for
P = P3.

Problem Instance MIP Constructive Heuristic

P n T σ
Objective value

Gap (%) CPU (sec) CH
max CPU (sec) Dev (%)Opt Best integer

10 370.00 22 550.70 - 0.0 1.36 583.70 0.001 5.99
10 378.00 54 627.90 - 0.0 2.87 639.90 0.001 1.91
10 366.61 31 557.45 - 0.0 7.07 602.45 0.001 8.07
10 378.61 47 612.40 - 0.0 1.40 639.60 0.001 4.44
10 295.20 60 525.10 - 0.0 0.69 594.90 0.001 13.29
10 355.40 87 672.90 - 0.0 0.83 684.90 0.001 1.78
10 323.80 65 580.50 - 0.0 2.02 627.50 0.001 8.10
10 339.80 81 606.80 - 0.0 1.01 664.00 0.001 9.43
10 424.40 22 650.10 - 0.0 1.41 684.30 0.001 5.26

P3 10 404.00 60 582.45 - 0.0 1.27 621.90 0.001 6.77
15 321.00 87 813.00 - 0.0 3.51 952.85 0.001 17.20
15 395.86 31 837.11 - 0.0 87.20 1003.21 0.001 19.84
15 397.43 22 920.51 - 0.0 145.25 984.91 0.001 7.00
15 349.71 60 893.03 - 0.0 824.38 1025.83 0.001 14.87
15 416.43 31 874.23 - 0.0 54.61 1052.41 0.001 20.38
15 394.00 58 880.20 - 0.0 120.50 1063.85 0.001 20.86
15 365.29 65 859.58 - 0.0 1050.22 946.82 0.001 10.15
15 393.43 22 804.98 - 0.0 56.23 986.11 0.001 22.50
15 396.29 58 884.69 - 0.0 28.75 1085.67 0.001 22.72
15 402.14 47 870.94 - 0.0 370.20 1039.74 0.001 19.38

Avg. 730.23 - 0.0 138.04 824.22 0.001 11.99

6.4 Assessing the Efficiency and Impact of GVNS Metaheuristics for Small
Problems

The performance evaluation of the GVNS algorithm applied to solving the RSP-PPMA in small-
scale instances is presented comprehensively in Table 3.

To quantify the percentage deviation for every problem instance from its optimum, we compute
the percentage deviation (Dev) using the formula:

Dev = 100×
(
CGVNS

max − opt

opt

)
Here, CGVNS

max represents the Best makespan obtained by the modified algorithm—GVNS (i.e.,
GVNS with the constructive heuristic as the initial solution), while opt denotes the optimum value

Advanced Algorithms for the Reclaimer Scheduling Problem 13

obtained through the MIP formulation proposed by Benbrik et al. [3]. The objective of this anal-
ysis is to gain insights into the efficacy of this algorithm in finding optimal or near-optimal solu-
tions. A detailed examination of the objective function values reveals that the GVNS algorithm
demonstrates competitive performance across the considered problem instances. These results un-
derscore the superior effectiveness of GVNS in identifying optimal solutions for the RSP-PPMA
in small-scale instances. Additionally, it is crucial to highlight the computational time aspect.
While the MIP formulation provides optimal solutions, the associated CPU times are consider-
ably longer compared to the GVNS approaches. For instance, in the case of the problem instance
(n = 15, T = 365.29, σ = 65,P = P3), the MIP model took 1050.22 seconds to find the optimal
solution, whereas GVNS identified the same solution in 3.67 seconds. The deviation column (Dev)
also provides valuable insights into the optimality of the solutions. Notably, the last row of the table
indicates the average performance across all problem instances, revealing consistently low deviations
from the optimum solution, with an average deviation of 0.13 %. This indicates that the solutions
produced by GVNS are highly reliable and close to optimality, further affirming its effectiveness in
solving small-scale instances of the BWRS problem.

Table 3: Evaluation of the GVNS algorithm for the RSP-PPMA in small-scale instances for P = P3.
Problem Instance MIP GVNS

P n T σ
Objective value

Gap (%) CPU (sec) Best. Max. Avg. CPU (sec) Dev (%)Opt Best integer
10 370.00 22 550.70 - 0.0 1.36 550.70 550.70 550.70 1.63 0.0
10 378.00 54 627.90 - 0.0 2.87 627.90 627.90 627.90 0.67 0.0
10 366.61 31 557.45 - 0.0 7.07 557.45 557.45 557.45 0.44 0.0
10 378.61 47 612.40 - 0.0 1.40 612.40 612.40 612.40 0.14 0.0
10 295.20 60 525.10 - 0.0 0.69 525.10 546.10 527.20 0.58 0.0
10 355.40 87 672.90 - 0.0 0.83 672.90 674.90 673.30 0.15 0.0
10 323.80 65 580.50 - 0.0 2.02 580.50 590.50 585.04 1.14 0.0
10 339.80 81 606.80 - 0.0 1.01 606.80 615.90 607.71 0.62 0.0
10 424.40 22 650.10 - 0.0 1.41 650.10 665.10 651.60 0.31 0.0

P3 10 404.00 60 582.45 - 0.0 1.27 582.45 582.45 582.45 0.67 0.0
15 321.00 87 813.00 - 0.0 3.51 825.20 926.41 903.86 9.54 1.48
15 395.86 31 837.11 - 0.0 87.20 837.11 837.11 837.11 4.34 0.0
15 397.43 22 920.51 - 0.0 145.25 920.51 923.96 921.20 3.29 0.0
15 349.71 60 893.03 - 0.0 824.38 893.03 893.03 893.03 7.22 0.0
15 416.43 31 874.23 - 0.0 54.61 874.23 874.23 874.23 5.65 0.0
15 394.00 58 880.20 - 0.0 120.50 880.20 891.95 887.10 3.00 0.0
15 365.29 65 859.58 - 0.0 1050.22 859.59 946.82 876.57 3.67 0.0
15 393.43 22 804.98 - 0.0 56.23 804.98 817.03 806.89 5.31 0.0
15 396.29 58 884.69 - 0.0 28.75 884.69 993.67 921.44 3.66 0.0
15 402.14 47 870.94 - 0.0 370.20 877.24 880.99 879.11 1.98 0.72

Avg. 730.23 - 0.0 138.04 731.15 750.43 738.81 2.70 0.13

6.5 Evaluating the Enhancement of Solutions from the Proposed Constructive
Heuristic with Metaheuristics for Medium-Scale Problems

In our computational analysis, we integrated a greedy constructive heuristic to generate initial
solutions for the GVNS algorithm. This integration aimed to explore potential improvements in the
heuristic’s effectiveness when utilized within the metaheuristic framework.

To quantify the enhancement achieved, we compute the percentage improvement (Imp) using
the formula:

Imp = 100×
(
CH

max − CGVNS
max

CGVNS
max

)

14 O. Benbrik et al.

Here, CH
max represents the makespan obtained by the constructive heuristic, while CGVNS

max de-
notes the Best makespan achieved by the modified algorithm—GVNS incorporating the constructive
heuristic.

The comprehensive results are presented in Table 4. The table illustrates the average values ob-
tained across all problem instances. Based on the observed variation in the average Imp values across
different problem instances, ranging from 8.83 % to 14.40 %, it can be concluded that the modified
algorithm—GVNS, effectively enhances the solutions derived from the constructive heuristic. No-
tably, the last row of the table demonstrates an average improvement (Imp) of 12.11 %, providing
a benchmark for the effectiveness of GVNS in enhancing solutions derived from the constructive
heuristic, especially for medium-sized instances. Additionally, it’s noted that the average Imp values
tend to decrease as the number of jobs increases. This trend suggests that the proposed heuristic
remains quite competitive when compared to the metaheuristic approach.

Table 4: Average Imp values for enhancing solutions from the proposed constructive heuristic with
metaheuristic

Problem Instance Constructive Heuristic GVNS

P n CH
max CPU (sec) Best. Max. Avg. CPU (sec) Imp(%)

P4

30 1299.35 0.001 1146.44 1180.8 1160.38 14.09 13.38
40 1828.26 0.001 1599.15 1649.38 1616.26 15.65 14.40
50 2390.59 0.001 2138.20 2179.92 2153.14 22.50 11.84
60 2689.82 0.001 2476.98 2536.86 2501.34 29.53 8.83

Avg. 2052.01 0.001 1840.19 1886.74 1857.78 20.44 12.11

7 Conclusion

In this paper, we addressed the problem of scheduling stockpile reclamation considering the PPMA
in bulk ports. The objective function considered was to find a feasible schedule which minimizes the
latest completion time (i.e., makespan). Given the NP-hard nature of the problem, a novel greedy
constructive heuristic has been devised. This heuristic relies on iterative job allocation to machines
and prioritized sequencing, all while considering the integration of PPMA into the scheduling pro-
cess. Consequently, it ensures the appropriate scheduling of jobs within batches. The solutions
generated through constructive procedures serve as excellent initial foundations for GVNS algo-
rithm, tailored to handle medium-sized instances with up to 60 jobs and 3 machines (i.e., P = P4).
Computational experiments conducted on 60 new instances demonstrate that for small-sized in-
stances, GVNS algorithm outperform the MIP formulation in terms of the computing time required
to find an optimal solution. Furthermore, for medium-sized instances, GVNS consistently yields
superior solutions compared to the proposed constructive heuristic.

Potential future research directions could involve several aspects. Firstly, there is a need to
develop further metaheuristic algorithms to allow for a comprehensive comparison and evaluation
of the proposed GVNS algorithm. Secondly, exploring the stochastic version of the problem would
be relevant. Lastly, exploring the integration of advanced optimization techniques, such as multi-
objective optimization methods, could offer valuable insights into addressing the complexities of the
RSP-PPMA problem. Moreover, it would be beneficial to develop lower and upper bounds for this
problem to facilitate a more thorough comparison of the effectiveness of the proposed algorithms.

Advanced Algorithms for the Reclaimer Scheduling Problem 15

References

1. Angelelli, E., Kalinowski, T., Kapoor, R., Savelsbergh, M.W.: A reclaimer scheduling problem arising
in coal stockyard management. Journal of Scheduling 19, 563–582 (2016)

2. Belov, G., Boland, N.L., Savelsbergh, M.W., Stuckey, P.J.: Logistics optimization for a coal supply
chain. Journal of Heuristics 26(2), 269–300 (2020)

3. Benbrik, O., Benmansour, R., Elidrissi, A.: Mathematical programming formulations for the reclaimer
scheduling problem with sequence-dependent setup times and availability constraints. Procedia Com-
puter Science 232, 2959–2972 (2024). https://doi.org/10.1016/j.procs.2024.02.112

4. Benmansour, R., Braun, O., Hanafi, S., Mladenovic, N.: Using a variable neighborhood search to solve
the single processor scheduling problem with time restrictions. In: International Conference on Variable
Neighborhood Search. pp. 202–215. Springer (2018)

5. Benmansour, R., Sifaleras, A.: Scheduling in parallel machines with two servers: the restrictive case.
In: Variable Neighborhood Search. ICVNS 2021. Lecture Notes in Computer Science. vol. 12559, pp.
71–82. Springer (2021)

6. Benmansour, R., Todosijević, R., Hanafi, S.: Variable neighborhood search for the single machine
scheduling problem to minimize the total early work. Optimization Letters 17(9), 2169–2184 (2023)

7. Boland, N.L., Savelsbergh, M.W.: Optimizing the hunter valley coal chain. In: Supply chain disruptions:
theory and practice of managing risk, pp. 275–302. Springer (2011)

8. Elidrissi, A., Benmansour, R., Sifaleras, A.: General variable neighborhood search for the parallel ma-
chine scheduling problem with two common servers. Optimization Letters 17(9), 2201–2231 (2023)

9. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and vari-
ants. EURO Journal on Computational Optimization 5(3), 423–454 (2017)

10. Hu, D., Yao, Z.: Stacker-reclaimer scheduling in a dry bulk terminal. International Journal of computer
integrated manufacturing 25(11), 1047–1058 (2012)

11. Kalinowski, T., Kapoor, R., Savelsbergh, M.W.: Scheduling reclaimers serving a stock pad at a coal
terminal. Journal of Scheduling 20, 85–101 (2017)

12. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & operations research 24(11),
1097–1100 (1997)

13. Sánchez-Oro, J., Pantrigo, J.J., Duarte, A.: Combining intensification and diversification strategies in
vns. an application to the vertex separation problem. Computers & Operations Research 52, 209–219
(2014)

14. Sifaleras, A., Konstantaras, I.: A survey on variable neighborhood search methods for supply network
inventory. In: Bychkov, I., Kalyagin, V.A., Pardalos, P.M., Prokopyev, O. (eds.) Network Algorithms,
Data Mining, and Applications. NET 2018. Springer Proceedings in Mathematics & Statistics. vol. 315,
pp. 71–82. Springer (2018)

15. UNCTAD: Review of maritime transport. United Nations Conference on Trade and Development (2022),
http://www.unctad.org.

16. Ünsal, Ö.: Reclaimer scheduling in dry bulk terminals. IEEE Access 8, 96294–96303 (2020)

https://doi.org/10.1016/j.procs.2024.02.112
https://doi.org/10.1016/j.procs.2024.02.112
http://www.unctad.org.

