
I N F O R M S
Transactions on Education

Vol. 10, No. 1, September 2009, pp. 34–40
issn 1532-0545 �09 �1001 �0034 informs ®

doi 10.1287/ited.1090.0026
©2009 INFORMS

Teaching Note

An Animated Demonstration of the
Uncapacitated Network Simplex Algorithm

Thanasis Baloukas, Konstantios Paparrizos
Department of Applied Informatics, University of Macedonia, GR-540 06 Thessaloniki, Greece

{thanasis@uom.gr, paparriz@uom.gr}

Angelo Sifaleras
Department of Technology Management, University of Macedonia, GR-592 00 Naousa, Greece,

sifalera@uom.gr

Operations Research (OR) instructors use visualizations to help teach graph algorithms and data structures.
Algorithm visualization is an illustration of abstract concepts included in computer algorithms, making

use of either static or dynamic (animated) computer graphics. In this paper we present new software that
includes an animated demonstration of the uncapacitated primal network simplex algorithm. The aim of the
animation software is twofold. First, it aims to help OR students understand the algorithm. The algorithm is
difficult to grasp for many students because it generates a sequence of rooted trees. Second, it aims to enable
OR instructors to explain each iteration of the algorithm visually with minimal effort. The software can be used
in combinatorial optimization, graph theory, and similar courses. The software has been implemented as a Java
applet, is freely available and highly interactive, and can be accessed through the Web. The software shows
the solution process through textual information and depicts the relevant steps in pseudo code using multiple
views.

Key words : OR education; combinatorial optimization; educational software
History : Received: April 2008; accepted: September 2008.

1. Introduction
Algorithm visualization (AV), a subcategory of soft-
ware visualization (SV), is a scientific discipline that
uses multimedia (graphics, animation, and sound)
to facilitate the understanding of abstract notions
in computer algorithms. AV can be either static or
dynamic (Stasko et al. 1998). Static AVs depict discrete
graphical snapshots that explain the computational
steps of an algorithm while it is being executed.
In these snapshots, AV programmers illustrate diffi-
cult points of the algorithm that they believe must
be explained more effectively. On the other hand,
dynamic AVs or algorithm animations use smooth
animations, to convey the temporal evolution of an
algorithm execution. Many AV tools also provide
program visualization (another subcategory of SV;
Stasko et al. 1998) by highlighting program code and
variables.
AV tools are often implemented in Java (Naps

1997, Boroni et al. 1997) because this permits them
to be used on every computer, independent of its
operating system, as long as the free Java Runtime

Environment (JRE, distributed by Sun Microsystems,
http://java.sun.com) has been installed. Furthermore,
a special category of Java programs, known as Java
applets, can be embedded in Web pages and can be
run in common Web browsers, making them well-
suited for distance learning courses.
The network simplex algorithm, hereinafter called

algorithm, is included in the syllabi of various post-
graduate courses such as network flows, linear pro-
gramming, and combinatorial optimization. These
courses are taught in such university departments as
operations research, mathematics, computer science,
and electrical engineering. The algorithm is consid-
ered complex by most students, compared to standard
graph and network algorithms.
In this paper, we present a smooth animation of

the algorithm through visualization software that we
have developed. We know of no other animation soft-
ware for the network simplex algorithm, either for the
uncapacitated or the capacitated version. Apart from
animation, software also provides static visualization
of the algorithm (Baloukas and Paparrizos 2006) and

34

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.

mailto:thanasis@uom.gr
mailto:paparriz@uom.gr
mailto:sifalera@uom.gr
http://java.sun.com


Baloukas et al.: Teaching Note: Animated Demonstration of the Uncapacitated Network Simplex Algorithm
INFORMS Transactions on Education 10(1), pp. 34–40, © 2009 INFORMS 35

static visualization for many other graph and net-
work algorithms (Baloukas et al. 2005). In tandem
with the visualization, the software displays algo-
rithm data for the current iteration and all previous
iterations. An important feature of the software, not
present in similar tools, is that it allows users to draw
arbitrary graphs and then to watch visualizations of
the implemented algorithms applied on those graphs.
Other tools typically only provide visualizations for
specific and predefined problem instances. Further-
more, OR instructors benefit from visual and interac-
tive educational tools that allow students to achieve a
deeper understanding than by simply reading a text-
book. Most OR instructors are interested in improving
their teaching (Scott 2001, 2002), and e-learning tech-
nologies are one means that operations researchers
have investigated recently to improve OR education
(Papamanthou et al. 2005). Broadband networks and
services (Varkas et al. 2005) have proved to be of great
assistance in the advancement of e-learning methods,
including enabling the use of Java applets like the one
we have developed.
The software can be used either by instructors

to explain the algorithm or by students as they strug-
gle to comprehend the algorithm. The software is
available as either a Java applet or a standalone
application.1

The paper is structured as follows. In §2, we review
several AV tools that have been developed by other
researchers. In §3, we describe the algorithm and the
data structures that are necessary for its effective visu-
alization. Section 4 provides details concerning the
animation of the algorithm. Section 5 describes stu-
dent reactions and comments after they watch the ani-
mation and discusses future research.

2. Related Work
Many AV tools have been developed for educational
purposes. These tools include static and dynamic
visualizations for sorting and searching, graph and
network algorithms, tree traversal, string matching,
distributed and parallel computing, computational
geometry, and automata theory.
JHAVE (Naps et al. 2000) is a software tool that

provides Web-based algorithm visualizations and also
displays the underlying pseudo code in a sepa-
rate graphical window. It is based on client-server
architecture and encompasses static and dynamic
visualizations. JHAVE interrupts visualizations with
“stop-and-think” questions to encourage students not
only to watch visualizations passively but also to

1 The Java applet can be obtained from http://eos.uom.gr/∼thanasis/
NetworkSimplex.html and the standalone version is at http://eos.
uom.gr/∼thanasis/NetworkSimplex.jar

engage actively, by trying to predict what will hap-
pen next. JHAVE contains visualizations for hashing,
searching, sorting, tree traversal, graph search, short-
est paths, and minimum spanning tree algorithms.
ANIMAL (Rößling et al. 2000) is a similar didactic

tool featuring animations for a wide range of algo-
rithms and data structures. The animations are pro-
duced with a visual editor, with a scripting language,
or through application programming interface (API)
calls.
PILOT (Bridgeman et al. 2000) is a Web-based inter-

active visualization program employed to test stu-
dents on their understanding of algorithms. It can
produce random instances of a problem, and it allows
students to solve the problem online. In addition,
PILOT can be used as an AV tool for minimum span-
ning tree, shortest path, and graph search algorithms.
EVEGA (Khuri and Holzapfel 2001) is a stand-

alone Java application that includes visualizations for
graph algorithms. One of its strengths is its high
degree of interactivity. Most AV systems allow users
to start or stop a visualization and adjust its execution
speed. In EVEGA users can also manipulate graphi-
cal objects through a built-in graph editor. The tool
includes visualizations for breadth-first search, depth-
first search, and a maximum flow algorithm.
Andreou et al. (2005) describe a novel Java appli-

cation that provides a static visualization of a spe-
cific algorithm (Achatz et al. 1991) for the assignment
problem. Karagiannis et al. (2006) describe an edu-
cational platform for solving network optimization
problems using Apache Web Server, PHP, and Mat-
lab Web Server. Lazaridis et al. (2007) describe Visual
LinProg, a didactic tool (Java applet) for the visual-
ization of the revised simplex algorithm.
In most algorithm animation systems, students

watch animations developed by an expert program-
mer. An alternative technique allows students to cre-
ate animations using a scripting animation language.
SAMBA (Stasko 1997) is a software tool that belongs
to the latter category. None of the software tools men-
tioned above includes a static or a dynamic visualiza-
tion of the network simplex algorithm.

3. Algorithm Description
3.1. The Minimum Cost Network Flow

Problem (MCNFP)
Let G = �N�A� be a network with n nodes �n = �N ��
and m arcs �m = �A��. The vector b consists of sup-
plies or demands b�i� of all nodes in the network.
In addition, there is a cost cij of shipping one unit
along arc �i� j�. The amount (flows) of a commodity
shipped directly from node i to j will be denoted
by xij . In this paper, the network simplex algorithm
is applied to uncapacitated and balanced MCNFPs.

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.

http://eos.uom.gr/~thanasis/NetworkSimplex.html
http://eos.uom.gr/~thanasis/NetworkSimplex.html
http://eos.uom.gr/~thanasis/NetworkSimplex.jar
http://eos.uom.gr/~thanasis/NetworkSimplex.jar


Baloukas et al.: Teaching Note: Animated Demonstration of the Uncapacitated Network Simplex Algorithm
36 INFORMS Transactions on Education 10(1), pp. 34–40, © 2009 INFORMS

The MCNFP aims to find the least expensive way to
ship prescribed amounts of a commodity from sup-
ply nodes �b�i� > 0� to demand nodes �b�i� < 0� and
satisfy the total demand; see Ahuja et al. (1993). Fur-
thermore, we denote by wi the dual variables and by
sij the reduced-cost variables. The mathematical for-
mulation of the balanced MCNFP is as follows:

min
∑

�i� j�∈A
cijxij

s.t.
∑

�k� �i� k�∈A�

xik − ∑
�j� �j� i�∈A�

xji = b�i�� i ∈ N

xij ≥ 0� �i� j� ∈ A

n∑
i=1

bi = 0

3.2. The Network Simplex Algorithm
The network simplex algorithm starts with a feasi-
ble tree solution T , meaning that xij ≥ 0 only for arcs
that are part of T . These arcs are known as basic arcs,
whereas the rest arcs, having zero flow, are referred
to as nonbasic arcs. The dual slack variables for the
basic arcs are each equal to 0 �sij = 0�.
Each iteration of the algorithm generates another

feasible tree T ′ that has a corresponding basic fea-
sible flow vector x′. At each iteration, also called a
pivot, the algorithm adds an entering nonbasic arc
to the tree, creating a single cycle. One arc, the leav-
ing arc, is removed from the cycle according to a
rule explained below. Table 1 illustrates the algo-
rithm pseudocode. Any characters following “%” are
comments/documentation.
If the algorithm first removed the leaving arc

instead of adding the entering arc, then the basis tree
would split into two subtrees. We denote by Tg the
subtree that contains nodes k and g and by Th the
subtree that contains nodes h and l. These two sets
can be used to update the wi and sij variables. We
use the artificial tree of the big-M problem (Ahuja
et al. 1993) as a starting feasible tree. Interpreting the
results of the big-M problem, we can draw conclu-
sions about the solution of the original problem. We
select the leaving arc using Cunningham’s anticycling
rule (Chvatal 1983).

3.3. Data Structures Used for the Visualization
To efficiently visualize the algorithm, we use the fol-
lowing data structures to store each rooted tree T :
1. The predecessor array p stores for each node i its

father p�i� in the tree T . That is, if p�i� = j , then node
j is the predecessor (father) of node i. We let p�root�
be equal to −1.
2. The direction array t stores for each node i the

number 0 if the arc �p�i�� i� ∈ T or the number 1 if
the arc �i� p�i�� ∈ T . In the former case the arc �p�i�� i�

Table 1 Network Simplex Algorithm Pseudocode

Start with a feasible tree T

Compute xij , wi , sij

% Optimality check
while there exist arcs �i� j	 � T such that sij = 
 < 0
Choose an arc �g� h	 � T such that sgh < 0
% e = �g� h	 is the entering arc
Let C be the unique cycle of the network T ∪ �g� h	

C+ = ��i� j	 ∈ C� �i� j	 has the same direction as �g� h	�

C− = C − C+

if C− = �
STOP % The problem instance is unbounded

else
� = xkl =min�xij � �i� j	 ∈ C−�

endif
% f = �k� l	 is the leaving arc
% Pivoting and data update
T ′ = T ∪ �g� h	 − �k� l	 % or T ′ = T + e − f

x ′
ij =





xij + �� �i� j	 ∈ C+

xij − �� �i� j	 ∈ C−

Compute the subtrees Tg , Th, and the sets of arcs �Tg � Th�

(arcs heading from the Tg towards to the Th set) and �Th� Tg �

(arcs heading from the Th towards to the Tg set)

w ′
i =





wi − 
� i ∈ Th

wi � otherwise

s′
ij =





sij − 
� �i� j	 ∈ �Tg � Th�

sij + 
� �i� j	 ∈ �Th� Tg �

sij � otherwise

T ← T ′ % Substitute T with T ′

endwhile

is oriented away from the root, whereas in the latter
case the arc �i� p�i�� is oriented toward the root. We
let t�root� be equal to −1.
3. The depth array d stores for each node i its depth

d�i� in the tree T . We let d�root� be equal to 0. Using the
arrays p, t, d and taking into account Cunningham’s
anticycling rule, we can identify the leaving arc f .
4. The array y, which is known as preorder or

thread, stores for each node i its successor y�i� in the
preorder traversal of tree T . If i is the last node in the
preorder, we let y�i� be the root. Array y is required
to update array d.
5. The subtree T ∗. As mentioned before, the removal

of the leaving arc from T splits T into two distinct
subtrees. One of these contains the root; the other,
which will be denoted by T ∗, is necessary to properly
update the dual variables wi, the dual slack variables
sij , and the array d. The subtree T ∗ can be easily iden-
tified using the arrays d and y.
6. The pivot stem or backpath z. The endpoints of the

entering arc e will be labeled as e1, e2, and the end-
points of the leaving arc f will be labeled as f1, f2
in such a way that e1 ∈ T ∗ and f1 ∈ T ∗. The path in
T joining the nodes e1 and f1 is called the pivot stem

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.



Baloukas et al.: Teaching Note: Animated Demonstration of the Uncapacitated Network Simplex Algorithm
INFORMS Transactions on Education 10(1), pp. 34–40, © 2009 INFORMS 37

or backpath and will be stored in array z. It is always
z�1� = e1 and z�u� = f1, where u is the length of z.
Array z is required to properly update the arrays p, t,
d, and y. It must be mentioned that the previous nota-
tion of the entering arc �g�h� cannot be used in this
point, because node g may not always belong in T ∗.
The same applies for the leaving arc �k� l�.
For a detailed description of the algorithm and data

structures we used, see Ahuja et al. (1993), Chvatal
(1983), Bazaraa et al. (2005), and Bertsekas (1998).

4. An Illustrative Example
In this section, we describe the animation of the algo-
rithm as it is carried out in our program. To help
students gain a comprehensive understanding of the
algorithm, the following elements, we believe, should
be visualized: the tree T produced at each iteration,
the entering arc �g�h�, the arcs that compose the cycle
C, the arcs in set C+, the arcs in set C−, the leaving arc
�k� l�, the nodes belonging to the subtree T ∗, and the
nodes belonging to the pivot stem z. These elements
are illustrated as follows.
The tree T is drawn as a rooted tree using a draw-

ing algorithm that makes optimal use of the graphical
window. The drawing algorithm is a modification of
a level-order traversal of a binary tree (described in

Figure 1 A Weighted Directed Graph

Standish 1997). The nodes of T are light blue and the
arcs are black.
The entering arc �g�h� is illustrated with a dot-

ted and a curved green arrow. A curve was cho-
sen instead of a straight line to prevent intersecting
the many nodes and arcs that may be lying between
nodes g and h, thus making the visualization more
aesthetically appealing.
The arcs in cycle C are illustrated in green. The

arcs in C+ (which are also green because C+ is a sub-
set of C) are indicated with a red “+” to symbolize
that these arcs are in the same direction as the enter-
ing arc. In contrast, the arcs in C− are indicated with a
red “−” to symbolize that these arcs are of the oppo-
site direction of the entering arc. The leaving arc �k� l�
is illustrated with two parallel red line segments that
are perpendicular to the arc. The nodes in subtree T ∗

are drawn in red. After deleting the leaving arc, the
subtree T ∗ is cut from tree T , and in the next iteration
of the algorithm it is placed under the entering arc.
The nodes in the pivot stem or backpath z are drawn
in red as well because they belong to subtree T ∗; but
to distinguish them from the remaining nodes in T ∗,
the pivot stem nodes are drawn inside an outer blue
circle.
In Figure 1 we provide a weighted directed graph

that was created with the graph editor in our tool.

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.



Baloukas et al.: Teaching Note: Animated Demonstration of the Uncapacitated Network Simplex Algorithm
38 INFORMS Transactions on Education 10(1), pp. 34–40, © 2009 INFORMS

Figure 2 Algorithm Visualization at Step 5

The software allows users to enter arc costs and
node supplies/demands (the sum of the node sup-
plies/demands must equal to zero).
The Solve A Problem menu (Figure 1) allows one to

visualize a specific graph or network algorithm. To
see a static visualization of the network simplex algo-
rithm, one chooses Solve A Problem→Network Simplex.
To see the animation of the algorithm, one chooses
Solve A Problem → Network Simplex Animation. After
choosing either of these visualizations, one sees a tool-
bar containing four buttons, one slider, and two labels,
as shown in Figure 2. Using this toolbar, one can
opt to see either a nonstop visualization (by clicking
the button labeled RUN ALGORITHM and specifying
an execution speed) or a stepwise visualization. The
stepwise visualization can be run either step-by-step
forwards by pressing the button labeled STEP FOR-
WARD �>> or step-by-step backwards by pressing the
button labeled<<� STEP BACKWARD. In Figure 2 we
provide a snapshot of the algorithm visualization after
a user has stepped forward five times.
At this point we consider it useful to provide some

implementation details regarding the tree T anima-
tion. For the tree T to be smoothly animated, we have
to compute appropriate coordinates for its nodes and
arcs. To accomplish this, we followed the next steps:
• We stored the coordinates of the arcs and nodes

in the current tree T .

• We calculated the coordinates of the arcs and
nodes of the next tree T ′.
• For each pair of elements in the two trees, we

calculated coordinates for 50 intermediate points. We
used these intermediate points to display a sequence
of 50 images that gives an impression of continuous
motion from T to T ′.
Initially, the subtree T ∗ is under the leaving arc.

After the leaving arc is deleted, the subtree T ∗ is
placed under the entering arc. This removal entails a
number of visual changes:
• The parent nodes p�i� for all nodes i on the pivot

stem change value.
• The arcs �i� p�i�� or �p�i�� i� that connect some

nodes i in the pivot stem with their parents p�i�
change direction. That is, some arcs that in the current
iteration are oriented toward the root will be oriented
away from it in the next iteration and vice versa.
• The above changes suggest that between two

successive algorithm iterations, a rotation of the pivot
stem z is carried out.
Indeed, as we observe in Figure 2, the parent

nodes p�i� of nodes i composing the pivot stem z
are p�2� = 4, p�4� = 3, p�3� = 6. However, in Figure 3
the new parent nodes p′�i� become p′�2� = 5, p′�4� = 2,
p′�3� = 4. In addition, we notice a change in the ori-
entation of arcs �3�4� and �4�2�. For example, we
observe that for arc �3�4� in Figure 2, t�4� = 0, whereas

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.



Baloukas et al.: Teaching Note: Animated Demonstration of the Uncapacitated Network Simplex Algorithm
INFORMS Transactions on Education 10(1), pp. 34–40, © 2009 INFORMS 39

Figure 3 A Sequence of the Subtree T ∗ Rotations

Note. The images depicting the sequence of the subtree T ∗ rotations can be found online (in Figure3images.zip) at http://ite.pubs.informs.org/.

in the last screenshot of Figure 3, t′�3� = 1. Also for
arc �4�2�, whereas in Figure 2 t�2� = 0, in Figure 3
t′�4� = 1.
A static visualization simply displaying the trees T

and T ′ might not be so helpful for students to com-
prehend the rotation of the pivot stem that occurs at
the same time with the movement of the subtree T ∗.
A more effective way for students to understand this
rotation would be through a smooth animation of
tree T .
For students to distinguish the above operations

during the animation, the nodes in T ∗ are displayed
in red; the nodes belonging to the pivot stem are indi-
cated with an extra outer blue circle; and the remain-
ing nodes of T are blue.
In Figure 3 we display graphical snapshots of the

animated transition from T to T ′. In parallel with the
animation, the pivot stem (consisting of nodes 2, 3,
and 4) is rotated. During the animation we also dis-
play the entering arc, to show the final position where
the subtree T ∗ will be placed. Finally, in the lower-
right screenshot of Figure 3, one can see the next
tree T ′ generated by the algorithm.

During the visualization process, the values of the
algorithm variables are also displayed inside the blue
vertical window that lies beside the main visualiza-
tion window. The values of these variables are shown
not only for the current algorithm iteration but also
for all iterations from the beginning of the algorithm
execution.

5. Conclusions and Future Work
Many other algorithms included in the syllabus for
our network optimization course (which is taught
to second-year students at our department) can be
visualized using similar techniques. These algorithms
solve transportation and assignment problems; like
the network simplex algorithm, they start with a fea-
sible tree T . At each iteration they select an enter-
ing and a leaving arc. Subsequently, the leaving arc
is deleted, and the subtree T ∗ moves from its origi-
nal position and is placed under the entering arc. In
the future, we intend to visualize more algorithms
for the MCNFP by means of animation, using similar
implementation techniques. For example, we could
include an animation for new network exterior point

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.

http://ite.pubs.informs.org/


Baloukas et al.: Teaching Note: Animated Demonstration of the Uncapacitated Network Simplex Algorithm
40 INFORMS Transactions on Education 10(1), pp. 34–40, © 2009 INFORMS

simplex algorithms (see Paparrizos et al. 2009). Also,
in this algorithm type there are many tree modifica-
tions from iteration to iteration. It would additionally
be useful to animate the capacitated network simplex
algorithm, but this is complicated by the need to dis-
tinguish between arcs that are nonbasic at their upper
bound from arcs that are nonbasic at their lower
bound. This future improvement must be very care-
fully designed so that the proposed software main-
tains its simple and easy-to-understand look.
Several empirical studies (Lawrence et al. 1994,

Byrne et al. 1999, Kehoe et al. 2001) have assessed the
educational effectiveness of algorithm visualizations.
Although some of these studies have yielded contra-
dictory results, it is commonly believed among AV
researchers that visualizations do help students com-
prehend algorithms in a more effective way. At the
Department of Applied Informatics at the University
of Macedonia, we have demonstrated the animation
of the algorithm to a number of postgraduate students
who were assigned theses related to the algorithm.
The students’ comments about the proposed anima-
tion were positive; most appreciated that they could
choose to see either a static or an animated visual-
ization of the algorithm. Furthermore, they remarked
that smooth animation enabled them to understand
the rotation of the pivot stem as well as the movement
of the subtree T ∗. Students mentioned that the use of
colors contributed positively to their comprehension
of the algorithm.
In the future, we intend to conduct a thorough

empirical study to evaluate the pedagogical useful-
ness of our tool. While assessing the educational tool
JHAVE (Naps et al. 2000), the researchers found that
some students preferred a smooth animation, whereas
other students preferred a static visualization. As part
of our empirical assessment, we plan to pay special
attention to the relative merits of dynamic and static
visualization.

Supplementary Files
Files that accompany this paper can be found and down-
loaded from http://ite.pubs.informs.org/.

Acknowledgments
We thank the anonymous referees for some very valuable
comments and suggestions that helped us to improve the
quality of the paper.

References

Achatz, H., P. Kleinschmidt, K. Paparrizos. 1991. A dual forest algo-
rithm for the assignment problem. DIMACS Ser. Discrete Math.
Theoret. Comput. Sci. 4 1–12.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory,
Algorithms and Applications. Prentice-Hall, Upper Saddle River,
NJ.

Andreou, D., K. Paparrizos, N. Samaras, A. Sifaleras. 2005. Appli-
cation of a new network-enabled solver for the assignment

problem in computer-aided education. J. Comput. Sci. 1(1)
19–23.

Baloukas, T., K. Paparrizos. 2006. A visualization software for
the network simplex algorithm. Proc. 2006 ACM Sympos. Soft-
ware Visualization—Software Visualization Poster Session, ACM,
Brighton, UK, 153–154.

Baloukas, T., K. Paparrizos, A. Sifaleras. 2005. Promoting operations
research education using a new Web—Accessible didactic tool.
Proc. 7th Balkan Conf. Oper. Res., Constanta, Romania, 393–398.

Bazaraa, M. S., J. J. Jarvis, H. D. Sherali. 2005. Linear Programming
and Network Flows, 3rd ed. John Wiley & Sons, Inc., Hoboken,
NJ.

Bertsekas, D. 1998. Network Optimization: Continuous and Discrete
Models. Athena Scientific, Belmont, MA.

Bridgeman, S., M. T. Goodrich, S. G. Kobourov, R. Tamassia. 2000.
PILOT: An interactive tool for learning and grading. ACM
SIGCSE Bull. 32(1) 139–143.

Byrne, M. D., R. Catrambone, J. T. Stasko. 1999. Evaluating anima-
tions as student aids in learning computer algorithms. Comput.
Ed. 33(4) 253–278.

Chvatal, V. 1983. Linear Programming. W. H. Freeman, New York.
Karagiannis, P., I. Markelis, K. Paparrizos, N. Samaras, A. Sifaleras.

2006. E-learning technologies: Employing Matlab Web server to
facilitate the education of mathematical programming. Internat.
J. Math. Ed. Sci. Tech. 37(7) 765–782.

Kehoe, C., J. Stasko, A. Taylor. 2001. Rethinking the evaluation of
algorithm animations as learning aids: An observational study.
Internat. J. Human-Comput. Stud. 54(2) 265–284.

Khuri, S., K. Holzapfel. 2001. EVEGA: An educational visualization
environment for graph algorithms. ACM SIGCSE Bull. 33(3)
101–104.

Lawrence, A. W., A. M. Badre, J. T. Stasko. 1994. Empirically eval-
uating the use of animations to teach algorithms. Proc. IEEE
Sympos. Visual Languages, St. Louis, MO. Institute of Electrical
and Electronics Engineers, Washington, DC, 48–54.

Lazaridis, V., K. Paparrizos, N. Samaras, A. Sifaleras. 2007. Visual
LinProg: A Web-based educational software for linear pro-
gramming. Comput. Appl. Engrg. Ed. 15(1) 1–14.

Naps, T. 1997. Algorithm visualization on the World Wide Web—
The difference Java makes! ACM SIGCSE Bull. 29(3) 59–61.

Naps, T., J. Eagan, L. Norton. 2000. JHAVE—An environment to
actively engage students in Web-based algorithm visualiza-
tions. ACM SIGCSE Bull. 32(1) 109–113.

Papamanthou, Ch., K. Paparrizos, N. Samaras. 2005. A paramet-
ric visualization software for the assignment problem. Yugoslav
J. Oper. Res. 15(1) 1–12.

Paparrizos, K., N. Samaras, A. Sifaleras. 2009. An exterior simplex
type algorithm for the minimum cost network flow problem.
Comput. Oper. Res. 36(4) 1176–1190.

Rößling, G., M. Schüer, B. Freisleben. 2000. The ANIMAL algorithm
animation tool. ACM SIGCSE Bull. 32(3) 37–40.

Ross, R. J., C. M. Boroni, F. W. Goosey, M. Grinder, P. Wissenbach.
1997. WebLab! A universal and interactive teaching, learning
and laboratory environment for the World Wide Web. ACM
SIGCSE Bull. 29(1) 199–203.

Scott, J. L. 2001. Education and a future for OR—A viewpoint.
J. Oper. Res. Soc. 52(10) 1170–1175.

Scott, J. L. 2002. Stimulating awareness of actual learning processes.
J. Oper. Res. Soc. 53(1) 2–10.

Standish, T. 1997. Data Structures in Java. Addison-Wesley, Boston.
Stasko, J. T. 1997. Using student-built algorithm animations as

learning aids. ACM SIGCSE Bull. 29(1) 25–29.
Stasko, J. T., J. B. Domingue, M. H. Brown, B. A. Price. 1998. Software

Visualization. The MIT Press, Cambridge, MA.
Varkas, G., V. Kostoglou, K. Paparrizos. 2005. Broadband networks

and services: Innovative means of human communication.
Proc. 4th Internat. Conf. New Horizons Indust. Ed., Corfu, Greece,
52–57.

A
d
d
it
io
n
al

in
fo
rm

at
io
n
,
in
cl
u
d
in
g
su

p
p
le
m
en

ta
l
m
at
er
ia
l
an

d
ri
g
h
ts

an
d
p
er
m
is
si
o
n
p
o
lic

ie
s,

is
av

ai
la
b
le

at
h
tt
p
:/
/it
e.
p
u
b
s.
in
fo
rm

s.
o
rg
.

http://ite.pubs.informs.org/

