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Abstract The Capacitated Vehicle Routing Problem (CVRP) is a well-known NP-

hard combinatorial optimization problem with numerous real-world applications in

logistics. In this work, we present a literature review with recent successful paral-

lel implementations of Variable Neighborhood Search regarding different variants

of vehicle routing problems. We conduct an experimental study for the CVRP using

well-known benchmark instances, and we present and investigate three parallelization

strategies that coordinate the communication of the multiple processors. We experi-

mentally evaluate a non-cooperative and two novel cooperation models, the managed

cooperative and the parameterized cooperative strategies. Our results constitute a first

proof-of-concept for the benefits of this new self-adaptive parameterized cooperative

approach, especially in computationally hard instances.
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1 Introduction

Combinatorial or discrete optimization problems have significant importance to many

industrial applications, with a vast number of uses and can be described as the effort

to find an optimal solution from a finite number of alternative solutions. The Vehicle

Routing Problem (VRP) is one of the most well-studied combinatorial optimization

problems, and it emerges when one seeks an optimal route for a fleet of vehicles to

accommodate a set of clients, given a set of constraints.

The CVRP, which was initially introduced by Dantzig and Ramser in 1959 [14]

is a variation of VRP, in which a fleet of homogenous delivery vehicles of limited

carrying capacity must service known client demands from a depot, at a minimum

transit cost. The CVRP is an NP-hard problem with significant impact on the fields of

transportation, distribution, and logistics since transportation is usually a significant

component of the cost of a product. One of the major concerns of the industry has

always been the minimization of the product cost, essential both for the achievement

of a more substantial profit as for the maintenance of a vantage over the competition.

In addition, a growing interest in reducing the environmental impact of their products

and services is also cultivated among companies, thus creating a trend towards a

greener management of the modern supply chain [32].

Finding an optimal solution for the CVRP is generally a computationally difficult

problem. Exact algorithms exist, but those are not considered efficient due to the com-

putational nature of all NP-hard problems, which leads to markedly long periods of

computation time when in the process of solving problems with many clients. Many

different exact algorithms are proposed in the literature for the CVRP [3]. Laporte

and Nobert [22] gave a survey covering early exact methods for the CVRP. Toth and

Vigo [35] delivered a complete overview of exact methods for the CVRP. For more

insight into the literature of exact methods, the interested reader is referred to the

work by Cordeau et al. [8].

Metaheuristics can find applications in complex problem solving in a wide array

of fields ranging from finance to production management and engineering and are

part of a very diverse group of algorithms including tabu search, genetic algorithms,

greedy randomized adaptive search, ant colony optimization, simulated annealing,

Variable Neighborhood Search (VNS), scatter search, and others [30]. As suggested

by the Greek prefix “meta”, metaheuristics are higher-level heuristics, in contrast with

problem-specific heuristics.

VNS is a metaheuristic proposed by Mladenović and Hansen in 1997 [25]. VNS

and its variants are widely recognized as a very efficient approach for many hard op-

timization problems. Its strategy consists in the exploration of dynamically changing

neighborhoods for a given solution. A systematic change of neighborhood happens

both within a descent phase in order to find a local optimum, as well as in a perturba-

tion phase so as to get out of the corresponding valley [20].

The purpose of this paper is threefold: Firstly, to survey recent successful parallel

implementations of VNS regarding different variants of the VRP. Secondly, to present

three parallel VNS methods using the General VNS variant to tackle the CVRP, in

which we examine different approaches of exchanging solutions among parallel exe-

cutions. Thirdly, to study how the level of cooperation can affect the performance.
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The remainder of this paper is organized as follows: We illustrate some basic

concepts and define a CVRP formulation in Section 2. In Section 3, we present related

works in parallel approaches of VNS on VRP variants. Next, in Sections 4 and 5

we present the GVNS method and three parallel GVNS models for the solution of

the CVRP and discuss their benefits and drawbacks. The results of this study are

presented in 6. Finally, the conclusions and prospects are summarized in Section 7.

2 CVRP mathematical formulation

Several mathematical formulations have been proposed for the VRP [34], such as the

Vehicle Flow Formulation (VFF), the Commodity Flow Formulation (CFF), and the

Set Partitioning Formulation (SPF).

The simplest version of the VRP is the CVRP. In this work, we use the VFF to

formulate the CVRP under the assumption that, the number of vehicles is unlimited

and the goal is to obtain a solution that minimizes the total travel cost. VFF uses

discrete variables associated with each arc that, count the number of times that the

edge is traversed by a vehicle. The number of variables is polynomially bounded, and

the number of constraints is exponential [35].

Let G = (V, E) be an undirected weighted graph where V = {0, n} is the set of

vertices (i = 0 the depot, and i = 1, . . . , n the clients). By E we denote the set of edges

(i.e., the roadways between the clients) and K is the available number of vehicles.

Each edge (i, j) is associated with a non-negative cost ci j and a binary variable xi j

(whether it is traversed or not). The CVRP formulation is as follows:

min

n
∑

i=0

n
∑

j=0

ci jxi j

subject to:

∑

i∈V

xi j = 1 ∀ j ∈ V\{0} (1)

∑

j∈V

xi j = 1 ∀i ∈ V\{0} (2)

∑

i∈V

xi0 = K (3)

∑

j∈V

x0 j = K (4)

∑

i<S

∑

j∈S

xi j ≥ r (S ) ∀S ⊆ V\{0}, S , 0 (5)

xi j ∈ (0, 1) ∀i, j ∈ V (6)

Constraints 1 and 2 impose the in-degree and out-degree constraints so that pre-

cisely one edge enters and leaves each vertex associated with a client, respectively.
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Constraints 3 and 4 impose client degree requirements for the depot. Constraint 5

is called the Capacity-Cut Constraint (CCC) and imposes both the connectivity of

the solution and the vehicle capacity requirements. Capacity-Cut Constraints (CCCs)

specify that each cut specified by vertex sets (S , S ′) is crossed by a number of edges

not less than r(S ), where r(S ) stands for the minimum number of vehicles needed to

serve set S . Constraint 6 describes the binary nature of variables xi j, in other words,

value 1 is assigned if edge (i, j) ∈ E belongs to the optimal solution and 0 otherwise.

3 Related Work in Parallel Strategies of VNS for VRP variants

Recently, the rise of multi-core processors along with cluster and grid computing

popularity attracted several researchers to design and develop new parallel meta-

heuristics. Parallel processing is considered to be a cost-effective method for the fast

solution of computationally hard problems. Except for the availability of computing

resources, the use of parallel metaheuristics has also increased since, as it has been

demonstrated by Bouthillier and Crainic in [23], such parallel algorithms are capable

of both speeding-up the search and improving the robustness and the quality of the

solutions obtained.

The VNS algorithm is a trajectory-based metaheuristic. The evaluation of con-

straints and objective components for each solution in the neighborhood in these

kinds of algorithms is an embarrassingly parallel task [31]. Thus, several strategies

for parallelizing a VNS algorithm have been already proposed and analyzed in the

literature [10,15,16,27].

Generally, contributions to the VRP using parallel metaheuristics published be-

fore the year 2000 are not as numerous as for other combinatorial optimization prob-

lems [11]. Besides the fact that, VNS consists an embarrassingly parallel task, one

is surprised to realize that even fewer works have targeted the VRP using VNS. For

more insight into the literature of solving hte VRP using additional metaheuristics

methods, the interested reader is referred to the work by Crainic [9].

Polacek et al. in 2008 [28] worked on producing parallel algorithms for the multi-

depot Vehicle Routing Problem with Time Windows (VRPTW). The authors pro-

vided two approaches for a parallel VNS by changing the configuration between

cooperation and asynchronous exchanges through a central memory. In the first ap-

proach, the VNS threads communicated their best solutions to the central memory

(serving as a “master”) at preset regular intervals (number of iterations). The objec-

tive was to reproduce the way the sequential method works, only faster. The second

approach used full VNS threads searching through a limited number of neighbor-

hoods. The VNS threads collaborated through exchanges of best solutions through

the central memory. Each VNS thread sent its best solution, and as soon as the over-

all best was improved, it was communicated to all threads. The performance was

satisfying, but the second, full cooperation method performed best, notably due to its

higher adaptability to the problem instance. Both cooperation algorithms displayed

satisfying run-time scalability. Specifically, utilizing 32 search threads, the runtime

was reduced from 48.7 to 1.7 hours, also for all 20 MDVRFTW instances the best-

known solution was obtained, and in 11 cases new best solutions were found.
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Coelho et al. in 2012 [7] proposed an approach for the Single Vehicle Routing

Problem with Deliveries and Selective Pickups based on a Hybrid General VNS

(HGVNS). The parallel solution is heterogeneous since it is implemented in CPU

and GPU and is called HP-HGVNS. The incentive behind this approach is based

on the decomposition and distribution of the HGVNS workload to the CPU and the

GPU. Since the most expensive part of GVNS is to perform the best improvement

local search in the VND method, the GPU is utilized in order to take advantage of

the fine-grain parallelism a GPU can offer. The CPU, on the other hand, is used for

creating an initial solution, choosing the operation to be performed, and checking

for the best solution generated by the GPU. Concerning performance, the 1Or-Opt

and 2Or-Opt local search scored a 27.26 and 43.75 speedup respectively, while the

Swap local search had the lowest speedup values, from 1.91 to 14.36. HP-HGVNS

achieved an average speedup from 2.73 to 16.23. Dissecting the quality of the results,

HGVNS produced better solutions than the best results obtained in literature. Other

recent works with hybrid CPU-GPU parallel VNS methods include [1].

Polat in 2017 [29], proposed a parallel metaheuristic algorithm for the Vehicle

Routing Problem with Divisible Deliveries and Pickups. In this approach, the author

used asynchronous cooperation with a centralized information exchange strategy for

the parallelization of the VNS (CVNS). Based on the Crainic and Hail taxonomy

[11], this approach was classified as pC/C/MPSS. In this strategy, medium-grained

parallelization was used. Data exchange was only performed after all local search

procedures were completed. Examining the quality of the results, solutions were im-

proved or reached the best-known solutions for 179 out of 220 benchmark instances

while using less computational time.

4 The proposed GVNS for solving CVRP

There are three main steps in parallel algorithm design: the decomposition of the

workload, the distribution of the tasks to the available processors and perhaps the

most crucial step, the coordination strategy of the components of the parallel pro-

gram. In our approach, we materialize three scenarios. Our intent is to study how

the level of coordination between the components of the parallel VNS affects perfor-

mance.

To describe parallel metaheuristic strategies, we adopt the classification of Crainic

and Hail [11] that generalizes that of Crainic et al. [12]. The classification consists

of three dimensions that indicate how the global process is controlled (search con-

trol cardinality), how information is exchanged among processes (search control and

communication), and the variety of solution methods involved in the search for solu-

tions (search strategies) [9].

4.1 Initial Solution

The Savings Algorithm of Clarke and Wright [6] was used to construct the initial

solution for all models, as it is one of the best approaches to solve the VRP. The
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algorithm starts with one route per client, and in each iteration, the number of routes

is reduced by merging two routes that give max savings (S ) (Figures 1). The classical

Savings formula (S i j) is depicted in Equation 7.

S i j = dist(D, i) + dist(D, j) − dist(i, j) (7)

In this equation, i and j represent a pair of clients, D is the depot, and the function

dist(x, y) calculates the distance between two given points.

Fig. 1 Savings algorithm. Start, first iteration, and last iteration.

4.2 General Variable Neighborhood Search (GVNS)

All models are using an identical neighborhood structure, consisting of three widely

used inter and intra-route operators (Figure 2):

– 2-opt (Intra-route) exchanging two edges with other two edges, in order to form

a tour again.

– Swap (Inter-route) exchanging nodes between routes.

– Relocate (Inter-route) moving nodes to other routes.

Fig. 2 Neighborhood structures.

The GVNS method (Hansen et al. [19]), described in Algorithm 1, is used to

improve the initial solution given by the Clarke and Wright algorithm for all the
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proposed methods. The Variable Neighborhood Descent (VND) in line 5 is described

in Algorithm 2. By tmax, kmax, and lmax we denote the maximum CPU time allowed

before termination, the maximum number of shaking iterations, and the number of

neighborhood structures, respectively.

Algorithm 1: GVNS

input : x, lmax, kmax, tmax

output: x

1 while t < tmax do

2 k ← 1;

3 while k < kmax do

4 x′ ← S hake (x, k);

5 x′′ ← VND (x′, lmax);

6 x, k ← NeighborhoodChange (x, x′′, k);

7 end

8 t ← CpuTime();

9 end

Algorithm 2: VND

input : x, lmax

output: x

1 l← 1;

2 while l < lmax do

3 x′ ← arg miny∈Nl(x)
f (y);

4 x, l← NeighborhoodChange (x, x′′, l);

5 end

4.3 Stopping conditions

Two stopping criteria have been adopted in the proposed methods. The first is the

total execution time (3,600 seconds = 1 hour) and the second is the completion of the

desired GVNS iterations. Only in special cases where an optimum value existed, the

achievement of the optimum value was an additional stopping criterion.

5 Parallel GVNS models

5.1 Parallel GVNS - The Non-Cooperative Model (NCM)

The proposed implementation employs an island-based scheme where, every thread

runs the GVNS completely isolated. Once the initial solution is generated using the

Clarke and Wright algorithm, it is given to each thread. All threads are using the same

search strategy (GVNS). Soon after, the GVNS algorithm begins executing without
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further communication between threads. As threads work independently and possible

solutions are improved in each one of them, their paths diverge as the shaking pro-

cedure takes place. As the time limit is reached or the max allowed iteration count is

reached, all threads terminate, and the best solution among all is reported.

Based on the classification of Crainic and Hail [11], the non-cooperative model

fits into the pC/RS/SPSS classification. The notation pC stands for “poly-Control”,

corresponds to the Search Control cardinality and indicates that, the search control

is distributed across many processes. In this model, each single thread has its own

search control. The notation RS stands for “Rigid Synchronization” and it means

that, little or no information exchange takes place in order to improve solutions at

the same level of the communication hierarchy. The notation SPSS stands for “Same

initial Point, Same search Strategy” and it indicates that, all threads had the same

initial solution as a starting point and followed the same search strategy. Figure 3,

depicts the execution timeline of this non-cooperative model.

Fig. 3 The non-cooperative model execution timeline.

5.2 Parallel GVNS - Managed Cooperative Model (MCM)

The initial solution produced by the Clarke and Wright algorithm is passed to all

threads, except for one, which will take up the role of the server manager, essentially

being a solution warehouse. Once a single thread improves a solution previously ac-

quired, it communicates with the server manager in order to ask if a better solution

exists. In the case that, the server manager holds a better solution, the thread rejects

the inferior one and continues its work with the one provided. Otherwise (i.e., if the
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thread holds a better solution than the server manager), the new and improved solu-

tion is stored in the server manager and the thread continues with the one it found. The

server manager stores and manages the best-found solution without broadcasting any

information to the other threads. Communication between the threads and the server

manager is very dense at the start of the GVNS algorithm, promoting intensification,

and sparse while the process continues, favoring diversification.

The cooperative model fits into the pC/C/SPSS classification. Each dimension in

this taxonomy is identical to the non-cooperative model except for the C class, which

stands for “Collegial” and indicates that, we extract and use only good solutions from

the Manager.

The cooperative model exchanges information asynchronously, at irregular inter-

vals dynamically determined by each process. The search process may change its

current solution using a solution that is received by the Manager, and for this reason,

the intensification level dynamically changes. Since no broadcasting occurs, informa-

tion will not spread any further.

5.3 Parallel GVNS - Parameterized Cooperative Model (PCM)

The previous models were each at the other end of the spectrum of the communi-

cation strategy. The cooperative model favors intensification without any insight of

the search space, while the non-cooperative model promotes exploration. In order to

bridge the gap, a parameterized cooperative GVNS model is proposed. This time, the

cooperative model will accept a solution from the server manager only if the normal-

ized distance between two solutions is greater than a parameter θ (distance > θ). The

Damerau – Levenshtein distance [13] is used to compute the distance between two

solutions.

This metric can be described as a search space distance rather than a solution

space distance due to the fact that, the edit operations applied in the solution repre-

sentation can be considered to be neighborhood operations. Figure 4 illustrates the

normalized Damerau – Levenshtein distance calculation between two solutions for a

CVRP instance.

Fig. 4 Levenshtein distance for solutions that are two inter-route relocations apart.
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The normalized Damerau – Levenshtein algorithm returns a float (between 0.0

and 1.0) by evaluating Equation 8.

Normalized distance =
Levenshtein distance(sol1, sol2)

maxLength(Len1, Len2)
(8)

As seen in the above example of Figure 4 the solution of the CVRP is represented

as a string of size n + 2 × k, where n, k are the numbers of clients and vehicles, re-

spectively. Thus, the string length of both the first solution Len1(“06700810023450′′)

and the second solution Len2(“06700810023450′′) is equal to 8+ 2× 3 = 14, and the

maximum length max(Len1, Len2) = 14. The Levenshtein distance is equal to four,

since only four edit operations are needed to get Solution 2 from Solution 1. Hence,

by using the above values we get the normalized distance equal to 4
14
= 0.2857.

The parameter θ ranges from value 1.0 (non-cooperative) to 0.0 (cooperative). In

the beginning, it promotes exploration by ignoring solutions stored in the solution

warehouse (distance ≤ θ = 1), and as the time passes, θ value gradually decreases

and the parameterized cooperative method starts to accept values even with small

error distances. In our tests, a cut off was selected either at the 20% of the max

GVNS iterations (nitermax) or the maximum time (timemax) allowed. The optimal

cut-off value was found by performing several tests, spanning from 10% to 40% of

the max iterations or the max time. The best results for all instances were obtained

around 20%. Thus, the self-adaptation of the parameter θ is based on the remaining

time and GVNS iterations as depicted in Algorithm 3:

Algorithm 3: Parameter θ self-adaptation

input : Current time (time), current number of iterations (niter)

output: θ

1 θ = 1 ;

2 if (niteri > 0.2 × nitermax) ∨ (currenttime > 0.2 × timemax) then

3 θ = min
(

(1 − niter
nitermax

), (1 − time
timemax

)
)

;

4 end

The parameterized cooperative model fits into the pC/KC/SPSS classification. KC

class stands for “Knowledge Collegial” and indicates an asynchronous communica-

tion scheme in which the contents of communications are analyzed to infer good so-

lutions. Figure 5 describes the execution timeline of both cooperative schemes, MCM

and PCM, where each horizontal line represents the execution of a single event criti-

cal for the execution flow.
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Fig. 5 Managed and parameterized cooperation model execution timeline.

5.4 Cooperation strategies

For the needs of the proposed cooperation models, asynchronous cooperation was

selected since synchronous methods have a more significant computational cost and

are unaware of the findings during the search process. Since no broadcasting takes

place, each thread can dynamically guide the diffusion of information, depending

on its state. The connection pattern in both the proposed communication models is

undetermined and adopts a less obtrusive method, where no thread gets interrupted

so to display the clear benefits of communication.

In order to better manipulate the interplay between exploration and exploitation,

a parameterized cooperation is proposed. This is a fine-grained cooperation method,

where a process may discard the best solution collected by the Manager based on the

iterations it has performed and its current status.

The asynchronous cooperation strategy followed in the managed cooperation

model is novel compared to the previous works reported by Coelho et al. [7], Polacek

[28], and Polat [29]. Furthermore, the strategy that follows the principle of controlled

diffusion of information at the process level in the parameterized cooperative model

is a completely new cooperation strategy with promising results.
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5.5 Parallel Technologies

The parallelization of the GVNS method for the proposed models utilized the stan-

dard multiprocessing library of Python 3.7. In the cooperative models, instead of

using shared memory, a Manager class was used. Manager objects control a server

process which handles shared objects and enables other processes to manage them

using proxies. Server process managers are more flexible than shared memory ob-

jects since they support arbitrary objects and direct manipulation from processes on

the same or different computers over a network.

6 Computational experiments

This section reports and analyzes the computational experiments related to the ef-

ficiency of the three proposed parallel GVNS models for solving the CVRP. All

the algorithms were implemented using Python 3.7. An additional speedup (∼35%)

was achieved using Cython. The experiments were conducted using an Intel Core

i9 7940X CPU (28 threads at 3.50 GHz) and 32GB RAM. All computational tests

were carried out on 76 instances of the CVRP library [36] available at http://vrp.

atd-lab.inf.puc-rio.br.

In order to evaluate the performance of the proposed models, we have focused

our analysis in two parts. Firstly, we analyze the performance based on the overall

quality of solutions of all instances, and secondly, we select some representative,

computationally difficult instances and check the quality of solutions in relation to

this difficulty.

In the first part of this analysis, the effect of the cooperation strategy of each

algorithm is studied on 65 instances from the set A and set B [2], set E [4], a subset

of set M (M-n101-k10, M-n200-k16) [5] and 11 instances from the Golden set [17].

The selected 76 CVRP instances have a number of clients ranging from 32 to 360,

known optimum number of vehicles, fixed vehicle capacity, and known optimal solu-

tion. Since all the 65 instances from the sets A, B, E, and M have optimal solutions,

reaching the optimum value consists an additional stopping criterion. In order to have

a fair comparison and evaluate the performance and the quality of the solutions, all

the experiments were repeated ten times, and an average value was reported.

In the results shown in Table 1 (on sets A, B, E, and M), essential differences

among the compared methods can be observed. The first row of the Table 1 refers to

the average error of each parallel model. The parameterized model surfaces as the best

strategy, producing better solutions. In the second row, we report the average CPU

time needed to complete 300 GVNS iterations. The non-communicative model is the

fastest method, completing the task after 76.880 seconds. A theoretical explanation of

this speedup in the non-cooperative process is that communication deprives the search

procedure of some CPU cycles. In the third row, we list the number of instances (with

known optimal solution) in which the model found the optimal solution in less than

300 iterations. The full benefits of communication are not particularly evident as the

non-cooperative model produces comparable results.
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Table 1 Comparison of the three GVNS parallel variants at 300 GVNS iterations

NCM MCM PCM

Average error 0.837% 1.260% 0.729%

Average CPU time (secs) 76.880 92.100 88.640

Number of optimal solutions 21 16 21

At first glance, even though the parameterized model produces better results, the

complete absence of communication between processes appears to yield promising

results. The non-cooperative model is probing a much more significant portion of

the search space with the hope of finding promising solutions; thus having a lower

probability of being trapped in a local optimum.

In Figure 6, we plot the average error of each parallel model on instances with

smaller size and known optimal value. The instances are grouped by their set (sets A,

B, E, and M). It should be noted that, all algorithms achieved the optimum value for

14 out of 65 instances; thus, these instances have been omitted. An emerging pattern

from this data visualization indicates that, the gap between the three models closes,

especially when dealing with computationally harder instances.

Fig. 6 Algorithm performance on instances grouped by sets. Methods supporting communication close

the performance gap on computationally difficult instances.

The assumption of normality was tested with the Kolmogorov-Smirnov test. The

results indicate that, the distribution of the data deviates significantly from the normal

distribution; therefore, the analysis proceeded with non-parametric tests. For inferen-

tial statistics, the Friedman test was applied to the performance results collected by

the execution of the three parallel models. The obtained p-value was almost zero (3×

∗ 10−11), thus showing that there is enough statistical evidence to consider the three

algorithms different. A typical significance level of α = 0.05 was regarded as the

threshold for rejecting the null hypothesis.

Having established the diversity between the models, the observed trend was fur-

ther analyzed. The instances were classified into four categories (i.e., easy, medium,

hard, and very hard) mainly according to the size of each instance (number of clients)
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and the number of routes (tracks). However, other important factors (i.e., depot posi-

tioning, high coefficient of variation in demands, and formation of clusters due to the

clients’ positions) also play an essential role in this classification. Thus, the remain-

ing 51 instances, based on their computational difficulty, formed the following four

categories as follows:

– Easy (A-n36-k5, A-n37-k6, A-n38-k5, A-n39-k5, A-n39-k6, A-n55-k9, B-n31-

k5, B-n34-k5, B-n45-k6, B-n52-k7, B-n57-k9, E-n22-k4, E-n33-k4),

– Medium (A-n44-k6, A-n45-k6, A-n45-k7, A-n46-k7, A-n48-k7, A-n53-k7, A-

n54-k7, A-n60-k9, A-n61-k9, A-n62-k8, A-n63-k10, A-n63-k9, A-n69-k9, B-

n38-k6, B-n41-k6, B-n43-k6, B-n45-k5, B-n50-k8, B-n56-k7, B-n64-k9, B-n66-

k9, B-n78-k10, E-n31-k7, E-n51-k5),

– Hard (A-n64-k9, A-n65-k9, A-n80-k10, B-n63-k10, B-n67-k10, B-n68-k9, E-

n76-k7, E-n76-k8, E-n76-k10, E-n76-k14, E-n101-k14, E-n101-k8, M-n101-k10,

M-n200-k16)

– Very hard, with unknown optimum values (Golden 1, Golden 5, Golden 9, Golden

10, Golden 11, Golden 13, Golden 14, Golden 15, Golden 17, Golden 18, Golden

19)

Table 2 summarizes the results and makes it easier for one to observe the effect

of communication on instances with greater difficulty.

Table 2 Comparison of the three parallel GVNS algorithms on all instances classified by difficulty.

Instance Class Model Avg. Error % GVNS iterations

Easy NCM 0.042% 300

MCM 0.351% 300

PCM 0.103% 300

Medium NCM 0.990% 300

MCM 1.731% 300

PCM 1.059% 300

Hard NCM 2.043% 300

MCM 3.386% 300

PCM 1.978% 300

Very hard NCM 9.620% 500

MCM 9.380% 500

PCM 8.270% 500

The well-known Wilcoxon non-parametric test was performed for pairwise com-

parisons within each category, in order to analyze whether the four parallel models

produce different results or not. In order to have a fair comparison and evaluate the

performance and the quality of the solutions, each parallel algorithm was executed ten

times, with each execution thread reaching either 300 GVNS iterations (for sets A,

B, E, and M) or 500 GVNS iterations (for the Golden set). The results are presented

in Table 3.
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Table 3 Results from pairwise Wilcoxon tests, where the groups of algorithms that differ significantly are

underlined.

Parallel GVNS models Easy Medium Hard Golden

p-value p-value p-value p-value

NCM vs MCM 0.014 0.089 0.021 0.678

NCM vs PCM 0.944 0.409 0.002 0.000

MCM vs PCM 0.032 0.014 0.032 0.009

Best method NCM PCM, NCM PCM PCM

The resulting p-values obtained from the Easy class analysis demonstrate that, the

managed cooperative model differs significantly from both the non-cooperative and

the parameterized model when solving easier instances. The non-cooperative method

delivers better results in this category. The unfiltered cooperation method performed

poorly while on the other hand, the parameterized cooperation yielded better results

but still didn’t exceed the solution quality of the non-cooperative method, and accord-

ing to the Wilcoxon test, the solutions obtained from the parameterized cooperation

and the non-cooperative method do not represent two different populations.

When solving instances characterized as of medium difficulty, the parameterized

cooperation method managed to produce almost the same quality of solutions as the

non-cooperative method. All models fail to differentiate between one another accord-

ing to the Wilcoxon test.

In the more difficult instance category classified as Hard, the parameterized co-

operation model produced superior solutions regarding quality. This time, the non-

cooperative algorithm performed worse than the managed cooperative model. At this

point, all algorithms produced solutions that represent different populations accord-

ing to the Wilcoxon test.

Furthermore, when analyzing the most difficult instances from the Golden set,

unfiltered communication seems to have no statistically significant differences when

compared to the non-cooperative model, even though it generally leads to better solu-

tions. In particular, after ten repeats the managed cooperation model had an average

improvement of 2.494%, but the Wilcoxon test returned a p-value of 0.678 which

indicates that, there are no statistically significant differences between the two meth-

ods.

The PCM had an average improvement of 14.033% at the Golden subset, and

3.181% at the Hard class when compared to the NCM (Table 2). The performance

of the three models on very hard instances, is depicted in Figure 7. According to the

Wilcoxon test, there are statistically significant differences between the other models

(Table 3).
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Fig. 7 Average error after ten repeats of 500 GVNS iterations in 11 Golden instances.

In conclusion, information sharing seems to outperform the independent search

method and is a valuable strategy for tackling hard instances. The parameterized

model is achieving better convergence rate and solution quality by reducing the level

of interaction between the threads. Sparse information sharing in the parameterized

cooperation model (Figure 8) leads to a better performance than dense solution ex-

change (Figure 9).

Fig. 8 Solution exchange in parameterized model is sparse. This leads to better exploration through partial

thread isolation.

Fig. 9 Solution exchange in managed cooperation is dense. Generation of new global solutions stabilizes

in a lower plateau.

In order to determine the communication overhead between processors, the total

execution time was measured. The time window with the most intensive information

sharing is located at the first GVNS iterations. Separately timing the messages passed

from the processors to the solution warehouse at irregular intervals, dynamically de-

termined by each process, consists a non-trivial task using Python multithreading
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library. Therefore, a total time execution measurement should reflect the communi-

cation overhead with better accuracy. To get this measurement, ten GVNS iterations

for the three models were executed and this experiment was repeated 40 times. The

additional, average, execution time of MCM compared to NCM (no communication

overhead) is depicted in the third column of Table 4.

Table 4 MCM model performance and communication overhead

.

Set Avg. relative error Avg. additional time due to

communication overhead

Set A 1.289% 11.460%

Set B 3.135% 15.138%

Set E 5.101% 5.077%

Set M 15.269% 10.713%

Golden 11.959% 9.623%

By comparing the MCM model with the NCM model we find that, on average,

communication requires an extra 10% in overall execution time (Figure 10). For ex-

ample, as seen in Table 4, upon completing the first ten GVNS iterations in the Golden

set, the MCM model had a completion time of 227.969 seconds (9.623% more than

NCM). Thus, it is safe to assume that, the communication overhead for the PCM

model lies somewhere in between that of the NCM model and the MCM model,

since the communication is far more sparse while delivering better results with less

communication.

Fig. 10 Communication overhead expressed in total time execution

The best performance of the three models at 800 GVNS iterations after ten repeats

are depicted in Table 5. For the Golden subset, 500 GVNS iterations were executed.

All instances completed under 3,600 seconds.
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Table 5 Best performance of the three models

.

Instance name

CVRPLIB

GVNS

iterations

Best-known

solution

Initial solution

by

Clarke & Wright

Solution

by

GVNS

Relative

error (%)

Model

with the

best solution

A-n32-k5 800 787.0819 1595.1053 787.0819 0 All models

A-n33-k5 800 662.1101 1160.8442 662.1101 0 All models

A-n33-k6 800 742.6932 1214.5044 742.6932 0 All models

A-n34-k5 800 780.9361 1750.1267 780.9361 0 All models

A-n36-k5 800 802.1318 1347.7531 802.1318 0 NCM,PCM

A-n37-k5 800 672.4652 1615.9513 672.4652 0 All models

A-n37-k6 800 950.8522 1467.1614 950.8522 0 All models

A-n38-k5 800 734.1846 1688.6356 734.1846 0 All models

A-n39-k5 800 828.9891 1328.892 829.4375 0 All models

A-n39-k6 800 833.2046 1665.7231 833.2046 0 All models

A-n44-k6 800 939.3346 1418.0345 939.3346 0 NCM, PCM

A-n45-k6 800 944.8763 1807.3193 944.8763 0 NCM, PCM

A-n45-k7 800 1146.9089 1683.5652 1146.9089 0 NCM

A-n46-k7 800 917.9073 1720.1586 917.9073 0 NCM, PCM

A-n48-k7 800 1074.3378 1805.8584 1074.3378 0 All models

A-n53-k7 800 1012.3255 2348.7395 1012.2490 0 NCM, PCM

A-n54-k7 800 1171.7843 2396.2949 1183.5745 0.3996 NCM

A-n55-k9 800 1074.4636 2218.6536 1074.4636 0 NCM, PCM

A-n60-k9 800 1355.7992 2839.9319 1355.7992 0 MCM,PCM

A-n61-k9 800 1039.0784 1989.6459 1040.3088 0.1182 MCM,PCM

A-n62-k8 800 1294.2821 2548.6326 1313.0479 0.7362 PCM

A-n63-k10 800 1313.7294 2656.6606 1316.8519 0.2371 PCM

A-n63-k9 800 1622.1446 2715.2231 1633.9357 0.7216 PCM

A-n64-k9 800 1400.832 2402.5803 1403.2783 0.1743 MCM

A-n65-k9 800 1181.6874 2743.033 1181.6874 0 PCM

A-n69-k9 800 1165.9945 2630.5024 1170.5383 0.3881 MCM,PCM

A-n80-k10 800 1766.4999 3167.9758 1790.4506 1.3376 PCM

B-n31-k5 800 676.0884 1870.3339 676.0884 0 All models

B-n34-k5 800 790.1838 1272.2225 790.1838 0 All models

B-n35-k5 800 956.2941 1918.5958 956.2941 0 All models

B-n38-k6 800 807.8788 1780.4048 807.8788 0 All models

B-n39-k5 800 553.1564 1165.3777 553.1564 0 All models

B-n41-k6 800 833.8063 1436.605 833.8063 0 All models

B-n43-k6 800 746.9838 1137.7297 746.9838 0 All models

B-n44-k7 800 914.9648 1484.5364 914.9648 0 All models

B-n45-k5 800 754.4388 1690.8717 754.4388 0 All models

B-n45-k6 800 680.4379 1449.5807 680.4379 0 NCM ,PCM

B-n50-k7 800 744.228 1687.9685 744.228 0 All models

B-n50-k8 800 1321.5236 1743.5549 1319.5033 0 PCM

B-n51-k7 800 1019.3251 2995.2715 1022.6471 0 All models

B-n52-k7 800 749.9697 1859.6626 749.9697 0 All models

B-n56-k7 800 712.9161 1714.6548 712.9161 0 NCM,PCM

B-n57-k7 800 1143.9458 2814.8279 1143.3284 0 All models

B-n57-k9 800 1603.3706 2676.2986 1603.3706 0 All models

B-n63-k10 800 1501.2707 2125.509 1506.8827 0.3724 MCM

B-n64-k9 800 869.3157 2688.2004 869.3157 0 All models

B-n66-k9 800 1325.355 3410.4368 1327.4408 0.1571 PCM

B-n67-k10 800 1039.3589 1727.8862 1039.3589 0 PCM

B-n68-k9 800 1278.2107 2303.6853 1283.8157 0.4365 MCM

B-n78-k10 800 1229.2734 3301.4128 1232.6011 0.2699 PCM

E-n13-k4 800 247 371 247.0000 0 All models

E-n22-k4 800 375.2798 660.4315 375.2798 0 All models

E-n23-k3 800 568.5625 1305.4011 568.5625 0 All models

E-n30-k3 800 538.7947 1353.3146 538.7947 0 All models

E-n31-k7 800 379 1036 379.0000 0 All models

E-n33-k4 800 837.6716 1234.9409 837.6716 0 All models

E-n51-k5 800 524.9442 1440.7513 524.9442 0 NCM

E-n76-k7 800 666.8325 2069.3508 697.7697 2.26 PCM

E-n76-k8 800 740.6554 2067.9832 740.6554 0 PCM

E-n76-k14 800 1026.7063 2355.0591 1026.706 0 PCM

E-n76-k10 800 837.3556 2431.7793 838.9785 0.1934 PCM

E-n101-k14 800 1082.6501 3000.6836 1094.6382 1.0951 PCM

E-n101-k8 800 826.908 2453.4512 832.7041 0.6960 PCM

M-n101-k10 800 819.5575 2482.2693 819.5575 0 PCM

M-n200-k16 800 1274 5038.9443 1331.2376 2.7471 PCM

Golden 1∗ 500 5627.54 23137.2109 5742.6367 2.0751 PCM

Golden 5∗ 500 6460.98 29397.4941 7194.6733 10.1977 PCM

Golden 9∗ 500 585.43 1614.6719 646.8176 10.375 PCM

Golden 10∗ 500 741.56 2034.4878 827.7824 11.1288 PCM

Golden 11∗ 500 918.45 2970.5544 1029.8816 11.4432 PCM

Golden 13 500 859.11 3563.9204 894.5257 4.1738 PCM

Golden 14 500 1081.31 5387.9766 1160.2756 6.8712 PCM

Golden 15∗ 500 1345.23 6892.6626 1446.0418 7.4805 PCM

Golden 17 500 707.79 2578.7881 727.8627 2.7618 PCM

Golden 18 500 997.52 3751.8257 1053.2850 5.5213 MCM

Golden 19 500 1366.86 5227.4507 1464.723 6.7674 MCM
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In the first column, the instance name is shown. The second column refers to

the number of GVNS iterations completed in each instance. The third column shows

the best-known solution available in the recent literature. In the fourth and the fifth

column, we report the first solution given by Clarke and Wright algorithm and the fi-

nal solution provided by GVNS. The sixth column shows the average (relative) error

compared to the best-known solution in the literature, and the last column shows the

best method in respect to the solution quality. Instances with no known optimum are

marked with (*) and the best-known values are taken from the solutions provided in

[36]. In the above table, regarding the instances with known optimum solution, the

stopping criterion for the instances with zero error was proved to be the achievement

of the optimum value (rather than the maximum CPU time or the maximum number

of iterations). Furthermore, the stopping criterion for the instances with non-zero er-

ror, was proved to be the maximum CPU time or the maximum number of iterations

(rather than the achievement of the known optimum value). On the other hand, re-

garding the instances with not known optimum solution, the stopping criterion was

obviously the maximum CPU time or the maximum number of iterations.

7 Conclusions and future work

In this paper, a literature review with recent successful parallel implementations of

VNS regarding different variants of VRPs was presented. Also, three models for the

parallelization of VNS for the efficient solution of CVRP were proposed. Several

well known instances for the CVRP were used in order to compare and analyze the

cooperation strategies between the three parallel metaheuristic models.

A strong indication that, the cooperation strategy can have a decisive influence on

the quality of the solutions, seems to exist. Specifically, partial cooperation through

filtered communication seems to provide better quality solutions on harder problems.

Finally, the impact of communication appears to be a function of two factors: the

time of communication and the size of solution space (the size of the neighborhood

to explore). It appears that filtered or no communication near the end of the search

yields better results and communication favors vast neighborhoods.

The findings presented in Section 6, are in line with previous findings by other

researchers working with different solution methods and on different optimization

problems. Thus, an observation supporting our findings was also made by Groër et

al. [18]. The authors examined the gain provided by cooperation by studying solu-

tion quality within two versions of the same algorithm. Both versions used the same

metaheuristic solution methods except that one variant did not use information shar-

ing among the processors. The authors noticed that the cooperative algorithm did

not perform well on small problems, specifically on the instances of [4,5]. Their co-

operative algorithm produced solutions with almost two times better quality on the

problem sets of Taillard [33], Golden et al. [17] and Li et al. [24].

In another study by Davidović et al. [16], the researchers examine several paral-

lel local search strategies. The authors conclude that, a parallel approach which dy-

namically partitions the neighborhoods among the processors yields the best results.

This method uses a supervisor that, broadcasts a new solution among the workers. A
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negative aspect of this approach is the significant increase in communication. Even

though the best results were obtained using a modest number of processors due to less

communication overhead, the authors noticed that, the use of a large number of pro-

cessors is beneficial when the instance dimensions grow. Thus, the communication

cost proves to be not an important factor in the solution of large-scale hard instances.

Munera et al. in their recent paper in 2016 [26] presented a cooperative paral-

lel extremal optimization for the solution of the quadratic assignment problem. The

authors mention that, they have performed the tuning process in a manual way with-

out parameter self-adaptation. Therefore, the self-adaptive mechanism presented in

this work constitutes a step towards this direction. To the best of the authors’ knowl-

edge, the proposed cooperative search mechanism presented in this paper is a novel

approach.

Such cooperative parallelization strategies may help to compute solutions for

even more complicated integrated problems, e.g., location-inventory-routing prob-

lems [21]. Future studies may include the use of machine learning and artificial intel-

ligence in order to achieve even better algorithm configuration and parameter tuning.

Also, the use of smarter memory-based strategies could provide better solutions.
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16. Davidović, T., Crainic, T.G.: Parallel local search to schedule communicating tasks on identical pro-

cessors. Parallel Computing 48, 1–14 (2015)

17. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M.: The impact of metaheuristics on solving the vehicle

routing problem: algorithms, problem sets, and computational results. In: T.G. Crainic, G. Laporte

(eds.) Fleet management and logistics, pp. 33–56. Springer US, Boston, MA (1998)
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20. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and

variants. EURO Journal on Computational Optimization 5(3), 423–454 (2017)

21. Karakostas, P., Sifaleras, A., Georgiadis, M.C.: A general variable neighborhood search-based solu-

tion approach for the location-inventory-routing problem with distribution outsourcing. Computers &

Chemical Engineering 126, 263–279 (2019)

22. Laporte, G., Nobert, Y.: Exact algorithms for the vehicle routing problem. In: S. Martello, G. Laporte,

M. Minoux, C. Ribeiro (eds.) Surveys in Combinatorial Optimization, North-Holland Mathematics

Studies, vol. 132, pp. 147–184. North-Holland (1987)

23. Le Bouthillier, A., Crainic, T.G.: A cooperative parallel meta-heuristic for the vehicle routing problem

with time windows. Computers & Operations Research 32(7), 1685–1708 (2005)

24. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: new test problems, algorithms, and

results. Computers & Operations Research 32(5), 1165–1179 (2005)
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