
Dynamic trees in exterior-point Simplex-type
algorithms for network flow problems

George Geranis a,1 Angelo Sifaleras b,2

a Department of Applied Informatics, University of Macedonia, 156 Egnatia Str.,
54006 Thessaloniki, Greece

b Department of Technology Management, University of Macedonia,
Loggou-Tourpali, 59200 Naoussa, Greece

Abstract

Recently, a new Dual Network Exterior-Point Simplex Algorithm (DNEPSA) for the
Minimum Cost Network Flow Problem (MCNFP) has been developed. In extensive
computational studies, DNEPSA performed better than the classical Dual Network
Simplex Algorithm (DNSA). In this paper, we present for the first time how to utilize
the dynamic trees data structure in the DNEPSA algorithm, in order to achieve an
improvement of the amortized complexity per pivot. Our work constitutes a first
step towards the development of an efficient implementation of DNEPSA.

Keywords: Network Optimization, Computational Complexity, Data Structures.

Network optimization [1] is a core area of combinatorial optimization, con-
sisting of optimization problems that can be modeled using networks. Impor-
tant theoretical improvements in network optimization algorithms have been

1 Email: geranis@uom.gr
2 Email: sifalera@uom.gr

1 Introduction

Geranis G. and Sifaleras A., "Dynamic trees in exterior-point Simplex-type algorithms for network flow problems", Electronic Notes in

The final publication is available at: http://dx.doi.org/10.1016/j.endm.2013.05.080

Please, cite this paper as:

Discrete Mathematics, Elsevier B.V., Vol. 41, pp. 93-100, 2013

achieved using well-known efficient data structures like dynamic trees [9], or
Fibonacci heaps [2]. The MCNFP [8] is the problem of finding a minimum
cost flow of product units, through a number of source nodes, sinks and trans-
shipment nodes.

Let G = (N,A) be a directed network, where two finite sets N and A
consist of n nodes and m directed arcs, respectively. For each node i ∈ N ,
there is an associated numeric value bi. A node i is a source node if it is bi > 0,
a sink node if it is bi < 0 and a transshipment node otherwise. The problem
will be called balanced, if the total supply is equal to the total demand, i.e.,∑

i∈N bi = 0. For each arc (i, j) ∈ A, there is an associated flow xij and
an associated cost cij , showing the amount of product units transferred from
node i to node j and the flow cost per product unit, respectively. An optimal
solution of the problem is a flow consisting of arc flows xij ≥ 0 that mini-
mize the total cost

∑
(i,j)∈A cijxij , subject to the flow conservation equations∑

(i,j)∈A xij−
∑

(j,i)∈A xji =bi, ∀i ∈ N . In this paper, DNEPSA algorithm with

dynamic trees, is applied to uncapacitated MCNFPs (i.e., 0 ≤ xij ≤ +∞).
The dual problem can be formulated using a set of dual variables wi and a
set of reduced cost variables sij, one for each node i ∈ N and for each arc
(i, j) ∈ A, respectively.

A number of different algorithmic approaches have been developed for the
MCNFP, including the well-known Primal and Dual Network Simplex Meth-
ods. A primal exterior-point Simplex-type algorithm for the MCNFP was
presented in [7] extending other approaches, e.g., to the assignment problem
[6]. The DNEPSA [3] for the MCNFP is an exterior Simplex-type algorithm
that starts from an initial dual feasible tree-solution and, after a number
of iterations, it reaches an optimal solution by producing a sequence of tree-
solutions that can be both dual and primal infeasible. This paper describes the
representation of the tree-solutions produced by DNEPSA by using dynamic
trees. Section 2 presents a short description of DNEPSA. The tree opera-
tions that improve the algorithm’s theoretical performance, are described in
detail for each step of the algorithm in Section 3. Finally, Section 4 presents
conclusions and ongoing research efforts.

Computational results [3] on randomly generated network problems, have al-
ready shown the superiority of DNEPSA to DNSA (both on the number of the
iterations and on the time needed in order to find an optimal solution), even
using the Augmented Thread Index method (ATI method) [4] rather than
the more efficient data structure of dynamic trees. However, it is well known
that the use of special data structures for storing and updating the neces-
sary variables can improve the algorithm’s amortized complexity and also its
computational performance.

Once a starting dual feasible tree solution has been computed, i.e., the
flows xij , the node potentials (dual variables) wi, and the reduced costs sij,
as described in [5], then the steps of DNEPSA are as follows:

Step 0 (Initialization). Start with a partition of the basic arcs into two
subsets as follows I = {(i, j) ∈ T : xij < 0} and I+ = {(i, j) ∈ T :
xij ≥ 0}. Compute a direction flow vector d, towards the feasible region
of the dual problem, using the following relations: d(I) = 1, d(I+) = 0, dij =∑

(u,v)∈I huv, ∀(i, j) /∈ T .

Step 1 (Termination test). If I = ∅, this means that the current tree-
solution is optimal. Otherwise, create a set J = {(i, j) /∈ T : sij > 0∧dij < 0}.
If (J = ∅) ∧ (I 	= ∅), then the problem is infeasible.

Step 2 (Choice of entering arc). Choose the entering arc (g, h) using the

following minimum ratio test: α =
sgh
−dgh

= min
{

sij
−dij

: (i, j) ∈ J
}
. An enter-

ing arc can be found in O(m) time.

Step 3 (Choice of leaving arc). Find the minimum ratios: θ1 = −xk1l1 =
min {−xij : (i, j) ∈ I ∧ (i, j) ↑↑ (g, h)} and θ2 = xk2l2 = min {xij : (i, j) ∈ I+
∧(i, j) ↑↓ (g, h). Choose the leaving arc (g, h) = (k1, l1) or (k2, l2), in case that
θ1 ≤ θ2 or not respectively. A leaving arc can be found in O(n) time

Step 4 (Pivoting). If θ1 ≤ θ2, the pivot will be called “Type A iteration”.
In this case, set I = I \ (k, l) and I+ = I+ ∪ (g, h). An arc of negative flow
xkl = −θ1 is leaving the basic tree-solution T and an arc of positive flow xgh =
θ1 is entering T . Otherwise, if it is θ1 > θ2, then (k, l) = (k2, l2) is the leaving
arc and we have a type B iteration. In this case, set I+ = I+∪(g, h)\(k, l). An
arc of positive flow xkl = θ2 is leaving T and an arc with positive flow xgh = θ2
is entering T . Let T ∗ be the sub-tree that is being cut off from the basic tree
solution, if we first remove the leaving arc. Values xij , sij , dij or sets I , and
I+ can be efficiently updated from iteration to iteration as described in [3],
rather than computed from scratch in each iteration. The update of the basic
tree solution using ATI method requires O(n) time [1]

2 Description of DNEPSA

3 Using Dynamic Trees in DNEPSA

3.1 Description of DNEPSA using dynamic trees

Dynamic trees [9], are data structures that maintain a set of vertex disjoint
rooted trees and allow us to easily change their structure by using mainly
three kinds of operations:

• link(u, v): links together two dynamic trees, where u is the root of the first tree
and v a vertex of the second tree, by adding the edge (u, v).

• cut(v): divides a dynamic tree into two subtrees by deleting the edge that con-
nects v to its parent.

• evert(v): makes v the root of the tree by turning the tree “inside out”.

Beyond these three basic operations, there are other useful operations that
can be implemented, such as:

• parent(v): returns the parent of a vertex.

• root(v): returns the root of the dynamic tree containing v.

• cost(v): returns the cost of the edge (v, parent(v)).

• mincost(v): finds the edge of minimum cost on the path joining v to root(v).

• update(v, x): adds value x to all edges on the path from v to root(v).

A dynamic tree can be partitioned into a collection of vertex-disjoint dy-
namic paths by dividing its edges into two types: solid and dashed edges. At
most one solid path can enter any vertex of the tree. Thus, a dynamic path is
determined by a sequence of solid edges and a dynamic tree is partitioned into
a number of dynamic paths connected together by dashed edges. Each tree-
solution is a collection of dynamic paths connected to each other by dashed
lines where, each dynamic path is implemented by a biased binary tree. A
basic tree solution in DNEPSA can be represented by a directed dynamic tree
consisting of a set of vertex-disjoint dynamic paths. Figure 1 shows a possible
initial dual feasible tree-solution used by DNEPSA in order to solve a MC-
NFP problem. The value next to a vertex v represents its supply or demand
and the value next to an arc (i, j) represent the flow xij for that arc. Such a
tree-solution can be built by a special algorithm, like the algorithm described
in [5], that starts from a collection of |N | single-vertex dynamic trees and uses
link operations to construct the final tree. The type of the arcs of the tree
(solid or dashed) depends on the order that linking operations take place.

The dynamic tree in Figure 1 consists of three dynamic paths: (8, 2, 4, 6),
(7, 3), and (5,1). The head of a path is its bottommost vertex and the tail

3

37 6

5 8

21

4

-5

4

-3

3

5

-5
-1

2

5 -1

-4

01

1 5

Fig. 1. Representation of the initial dual feasible tree as a dynamic tree.

of the path is its topmost vertex. A set of primitive dynamic path operations
have to be implemented:

• path(v): returns the path containing vertex v.

• head(p) and tail(p): return the first and the last node of path p.

• before(v) and after(v): return the previous and next node of v.

• pcost(v): returns the cost of edge (v, after(v)).

• pmincost(p): finds a node v on path p so that the edge (v, after(v)) has the
minimum cost.

• pupdate(p, x): adds x to the cost of every edge of path p.

• reverse(p): reverses the direction of the path.

• concatenate(p, q, x): concatenates two paths p and q by adding a new edge of
cost x.

• split(v): deletes edges (before(v), v) and (v, after(v)) producing two subpaths.

In addition, two composite path operations are needed:

• splice(p): transforms the dashed edge leaving tail(p) into a solid edge; thus the
path is being extended this way.

• expose(v): transforms every dashed edge from v to root(v) into a solid edge.

These composite operations are implemented by using the primitive opera-
tions described before. The dynamic tree operations we need, are implemented
by using some of the above primitive and composite path operations. Dynamic
paths can be implemented as biased binary trees. Figure 2 shows the repre-
sentation of the dynamic tree in Figure 1 as three different binary trees, one
for each dynamic path. The external nodes of a dynamic path in left-to-right

order correspond to the vertices of the path from head to tail. An internal
node w of the tree corresponds to the edge of the path that connects nodes
u and v, where u and v are the previous and next node of the tree when it
is traversed in symmetric order (inorder traversal). For all vertices of the dy-
namic tree with an outgoing dashed line, there is a field named dparent that
connects a vertex to its parent in the original dynamic tree and a field named
dcost that stores the corresponding cost.

(2,4)

(8,2) (4,6) (7,3) (5,1)

8 2 4 6 7 3 5 1

Fig. 2. Representation of dynamic paths (8, 2, 4, 6), (7, 3) and (5,1) as binary trees.

For each node of the binary trees used to represent dynamic paths, a num-
ber of fields can be used in the data structure to store the required information:

• external field: indicates if the node is internal or external (values 0 or 1).

• direction field: stores the direction of the arc that corresponds to an internal
node.

• reversed field: shows if an arc was reversed.

• bparent field: points to the parent of a node (it is null for the root).

• bhead and btail fields: point to the head and tail of the path.

• bleft and bright fields: point to the left and right child of an internal node of the
tree.

When used in DNEPSA, we need more fields in order to store information
about the flow of the arc that corresponds to an internal node and a flag
indicating whether it belongs to I or I+. We need also to store supply values
bi and dual variable values wi in every external node of a binary tree.

Sleator and Tarjan presented an implementation of dynamic trees, based on
self-adjusting binary trees (splay trees), that requires O(logn) amortized time
per one dynamic-tree operation, by representing solid paths as locally biased
binary trees. Thus, by using dynamic trees and utilizing these results it is
possible to improve the amortized time complexity of DNEPSA per iteration
for updating the basic tree solution, as it is described in subsection 3.2.

3.2 Analysis of DNEPSA using dynamic trees

In step 0, the partition of subsets I and I+ requires O(n) time, and the
computation of the flow vector d requires O(m) time. In step 1, if I 	= ∅ then
we need to compute the J set and the reduced cost variables sij , that requires
O(m) time. In step 2, finding the entering arc (g, h) using a minimum ratio
α, also require O(m) time.

In step 3, DNEPSA has to select the leaving arc. The flows in cycle C
existing in T ∪ (g, h) have to be checked so that θ1 and θ2 are computed. By
using dynamic trees, in order to compute θ1 and θ2, we can first make h to
be the root of the dynamic tree (by using operation evert(h)), then expose(g),
and then apply a “modified” operation mincost(g), that checks also if a basic
arc belongs in I or I+ and compares the orientation of these arcs.

In step 4, after finding the entering and the leaving arc, the new tree-
solution T \ (k, l) ∪ (g, h) has to be built. This can be easily done by using
the cut and link dynamic tree operations. The entering arc (g, h) is added into
I+ by setting the proper bit in the node’s structure and its flow xgh becomes
equal to θ1 or θ2, depending on the type of iteration (type A or type B).

The flows xij for the basic arcs (i, j) /∈ C do not change. On the other hand,

for a basic arc (i, j) ∈ C the flow xij changes and its new value x
(t+1)
ij is either

x
(t)
ij − x

(t)
kl or x

(t)
ij + x

(t)
kl depending on the orientation of (i, j) compared to the

orientation of (g, h). These operations can be also done by using operations

evert(h), expose(g), and finally apply a “modified” operation update(g, x
(t)
kl).

Dynamic tree operations, in the same way as previously described, can help
in determining the orientation of an arc (i, j) ∈ C in O(logn) time.

The dual variables wi corresponding to the nodes belonging in T ∗ can be
also updated in a similar way; the value of the remaining dual variables do
not change. Again the time complexity for these “modified” tree operations is
O(logn). Thus, DNEPSA overall has an O(logn) amortized time complexity
bound per iteration for updating the basic tree solution, by using dynamic
trees.

4 Conclusions and Future Work

By using dynamic trees in DNEPSA as described in the previous section, the
amortized time complexity per pivot for updating the basic tree solution is
O(logn), giving an improvement over the previous algorithm implementation
using the ATI method. However, the overall running time is not improved,
since it is dominated by the selection of the entering arc.

Apart from the theoretical findings, regarding the amortized time com-
plexity bound per iteration, experimental results demonstrating the efficiency
of the proposed approach are also of equal importance. Therefore, our ongoing
research efforts focus on computational testing of the DNEPSA performance
using dynamic trees in order to provide empirical support for the reduction in
time per iteration.

Acknowledgement

This research has been partly funded by the Research Committee of the Uni-
versity of Macedonia, Economic and Social Sciences, Greece, under grant
80749 for the advance of Basic Research.

References

[1] Ahuja, R. K., T. L. Magnanti and J. B. Orlin, “Network Flows: Theory,
Algorithms and Applications,” Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] Fredman, M. L. and R. E. Tarjan, Fibonacci heaps and their uses in improved
network optimization algorithms, Journal of the ACM 34 (1987), pp. 596–615.

[3] Geranis, G., K. Paparrizos and A. Sifaleras, On a dual network exterior point
simplex type algorithm and its computational behavior, RAIRO - Operations
Research 46 (2012), pp. 211–234.

[4] Glover, F., D. Karney and D. Klingman, The augmented predecessor index
method for locating stepping stone paths and assigning dual prices in distribution
problems, Transportation Science 6 (1972), pp. 171–180.

[5] Hultz, J., D. Klingman and R. Russell, An advanced dual basic feasible solution
for a class of capacitated generalized networks, Operations research 24 (1976),
pp. 301–313.

[6] Papamanthou, C., K. Paparrizos, N. Samaras and A. Sifaleras, On the
initialization methods of an exterior point algorithm for the assignment problem,
International Journal of Computer Mathematics 87 (2010), pp. 1831–1846.

[7] Paparrizos, K., N. Samaras and A. Sifaleras, A new exterior simplex type
algorithm for the minimum cost network flow problem, Computers & Operations
Research 36 (2009), pp. 1176–1190.

[8] Sifaleras, A., Minimum cost network flows: Problems, algorithms, and software,
Yugoslav Journal of Operations Research 23 (2013), pp. 3–17.

[9] Sleator, D. D. and R. E. Tarjan, A data structure for dynamic trees, Journal of
Computer and System Sciences 26 (1983), pp. 362–391.

	Introduction
	Description of DNEPSA
	Using Dynamic Trees in DNEPSA
	Description of DNEPSA using dynamic trees
	Analysis of DNEPSA using dynamic trees

	Conclusions and Future Work
	References

