
Annals of Operations Research manuscript No.
(will be inserted by the editor)

Exterior Point Simplex-type Algorithms for Linear and
Network Optimization Problems

Konstantinos Paparrizos · Nikolaos Samaras ·
Angelo Sifaleras

Received: date / Accepted: date

Abstract Two decades of research led to the development of a number of efficient al-
gorithms that can be classified as exterior point simplex-type. This type of algorithms
can cross over the infeasible region of the primal (dual) problem and find an optimal
solution reducing the number of iterations needed. The main idea of exterior point
simplex-type algorithms is to compute two paths/flows. Primal (dual) exterior point
simplex-type algorithms compute one path/flow which is basic but not always primal
(dual) feasible and the other is primal (dual) feasible but not always basic. The aim
of this paper is to explain to the general OR audience, for the first time, the develop-
ments in exterior point simplex-type algorithms for linear and network optimization
problems, over the recent years. We also present other approaches that, in a similar
way, do not preserve primal or dual feasibility at each iteration such as the monotonic
build-up Simplex algorithms and the criss-cross methods.
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1 Introduction

The Linear Problem is one of the most useful and well-studied optimization prob-
lems, which is widely used in several areas of science. Lots of real world problems
can be formulated as Linear Programs (LPs). The popularity of linear programming
can be attributed to many factors such as the ability to model large problems, and the
ability to solve large problems in a reasonable amount of time. Many algorithms have
been invented for the solution of a Linear Program (LP). The majority of these al-
gorithms belong to two main categories: (i) Simplex-type or pivoting algorithms and
(ii) Interior-Point Methods (IPMs). All the algorithms presented in this paper belong
to the first category, except one that belongs to both categories.

The classical Primal Simplex Algorithm (PSA) [36,37] had been the most effi-
cient method for solving LPs until the mid 80’s. It performs sufficiently well in prac-
tice, particularly on LPs of small or medium size. PSA starts with a feasible basis of
the polyhedron P = {x|Ax ≤ b, x ≥ 0} where A ∈ �m×n, x ∈ �n, b ∈ �m, and use pivot
operations in order to preserve feasibility of the basis and guarantee monotonicity
of the objective value. Klee and Minty in their classical paper [74] showed that the
Dantzig’s largest coefficient pivoting rule performs exponentially on some specially
constructed LPs. The first polynomial time algorithm for linear programming is the
ellipsoid or russian algorithm which was developed by Khachyan [71]. In 1984, Kar-
markar [70] developed the first Interior Point Method (IPM). Subsequent research has
led to the development of efficient IPMs which outperform PSA on large-scale LPs,
practically as well. IPMs seek to approach the optimal solution through a sequence
of points inside the feasible region.

Despite this fact, the computational improvement of simplex-type algorithms re-
mained of great interest. Many pivoting rules are known for Simplex-type algorithms.
A complete presentation of them can be found in [119]. Pan [88] offers computational
results with large-scale sparse problems, demonstrating superiority of nested Dantzig
and Devex rules to commonly used pivoting rules. None of the existing simplex-type
algorithms admits polynomial worst case complexity. Borgwardt [23,24] proved that
the average case behavior of a shadow-vertex algorithm is polynomial under a prob-
abilistic model. Specifically, the number of iterations needed to solve an LP by the
simplex-type algorithms depends upon the pivot columns used. Fukuda and Terlaky
[47] using the existence of a known solution for the LP, proved that starting from
any basis, a short admissible pivot sequence exists, that contains at most n pivot steps
leading to an optimal basis. It remains an open question whether a strongly polyno-
mial algorithm for linear programming exists, whose running time depends only on
m and n.

A common feature of almost all simplex-type algorithms is that they can be inter-
preted as a procedure following simplex-type paths, that lead to the optimal solution.
An efficient way to improve a pivoting algorithm is by avoiding moving from one
feasible vertex to an adjacent one. This can be accomplished by avoiding the bound-
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ary of the polyhedron P = {x|Ax ≤ b, x ≥ 0} and constructing two paths to converge
to the optimal solution. One path is exterior to the feasible region while the other is
feasible. Such an algorithm is called an Exterior Point Simplex Algorithm (EPSA).

The first EPSA was originally developed by Paparrizos [94], for the Assignment
Problem (AP). Later, Paparrizos [96] generalized EPSA to the general LP. Dosios
and Paparrizos [42] showed that EPSA is closely related to successive shortest path
algorithms and Lemke’s algorithm and in [104] they showed that every cycling free
pivoting rule of the PSA is also cycling free for the dual EPSA. EPSA constructs two
paths to the optimal solution. One path consists of basic but not feasible solutions,
while the second path is feasible [43]. The key idea behind EPSA is that making
steps in directions that are linear combinations of attractive descent direction can
lead to faster convergence than that achieved by PSA. Paparrizos et al. [105] have
pointed out that the geometry of EPSA reveals that this algorithm is faster than PSA.
This conclusion was partially verified by preliminary computational experiments on
randomly generated dense and sparse LPs [101,103]. However, an intensive compu-
tational study on NETLIB LPs [81] is needed to show the practical value of EPSA.
Furthermore, in [103] new variations of EPSA using three different strategies to enter
Phase II are presented.

Several other approaches have exploited the above key idea. Mitra et al. [82] give
a survey of such methods including those within and outside simplex framework. An-
other similar method is the algorithm presented by Cardoso and Clı́maco [26]. Their
algorithm starts from an easily found face of the polytope of high dimension. At every
iteration the algorithm chooses a new direction among those belonging to one of the
faces of immediately higher dimension. This algorithm could be considered as be-
longing to a group of approaches designated as non-vertex simplex-type algorithms.
Gondzio [57] presented an active set algorithm that makes steps in the ascent direc-
tions that are the approximate projections on the objective function gradient onto the
face defined by the current set of active constraints or the linear combinations of such
directions. Al-Sultan and Murty [8] proposed an exterior penalty algorithm for the
nearest point problem. Sherali et al. [116] examined three exterior point approaches
for solving LPs. These algorithms have the advantage that they can be initialized
at arbitrary starting solutions and present a great degree of flexibility in designing
particular algorithmic variants.

Recently, Malakooti and Al-Najjar [80] proposed the hybrid-LP, a method for
solving LPs using both interior and boundary paths. Their method uses an interior
direction to pass to an improved basic feasible solution. Then, the PSA can be applied
in order to reach an optimal solution. As a consequence, the proposed method bypass
several extreme (boundary) points. Other simplex-type algorithms, that in one way or
other, avoid the feasible region can be found in [12,16,17,28,35,68,79,83,87,124].

A well established way of avoiding the previous computational disadvantages, is
the transformation of exterior path of EPSA into a dual feasible simplex path. The
algorithm that results from this transformation is called Primal-Dual Exterior Point
Simplex Algorithm (PDEPSA) [97,99]. The revised form of the PDEPSA can be
found in [102]. This algorithm requires an initial dual feasible basic solution. Since,
such solution does not exist for a generic LP, a modified big-M scheme is applied.
The main advantage of PDEPSA is its computational performance. Experimental in-
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vestigation on randomly generated sparse and dense LPs show the practical value of
PDEPSA [102,115]. The computational results are very promising.

Recently, Guerrero-Garcia and Santos-Palomo [59] presented a deficient-basis
dual counterpart of Paparrizos, Samaras, and Stephanides’ primal-dual simplex-type
algorithm [102]. In that paper they address what would be thought of as its deficient-
basis dual counterpart by showing how to take advantage of the knowledge of a dual
feasible point in a deficient-basis simplex-type environment.

PDEPSA requires an initial dual basic feasible solution and a feasible point of
an LP, as it is depicted in Fig. 1. This means that at every iteration the dual slack
variables s = c − AT w ≥ 0 holds. If point x1 is feasible to dual LP and point y1

is feasible to primal LP then the direction d1 = x1 − y1 is ascent for the objective
function cT x. The direction d1 creates a ray R1 = {x1 + td1 : t ≥ 0}, which enters the
feasible region from the boundary point y 2. The hyperplane from which ray R1 enters
the feasible region corresponds to the basic variable x k. Then a dual pivot operation
on which basic variable xk exits the basis, is performed. The fact that the points
yt, t = 1, 2, ... are boundary, leads to a serious computational disadvantage. This
disadvantage occurs because the point y belongs to more than one hyperplanes. This
means that ties (degenerate vertices) exist in the choice of leaving variable, which
in turn can lead to stalling and/or cycling. Degeneracy degrades efficiency as the
simplex-type algorithms could stall at a degenerate vertex for many iterations before
it moves to another vertex.

Fig. 1 PDEPSA geometric interpretation.

In order to overcome this disadvantage, PDEPSA has to be modified. An im-
portant modification of the PDEPSA is to traverse across the interior of the feasible
region, at every iteration, in an attempt to avoid combinatorial complexities and de-
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generate vertices of vertex-following algorithms. This new algorithm is called Primal-
Dual Interior Point Simplex Algorithm (PDIPSA) and developed by Samaras [113].
PDIPSA can be also seen as a procedure to move from any interior point to an optimal
basic solution. It can be combined with IPMs, in order to develop a hybrid algorithm
consisting of two stages. At the first stage, an IPM is applied and at the second stage
PDIPSA is applied to compute an optimal basic solution. Computational studies on
randomly generated sparse LPs [51] and on a set of LPs (in mps format) available
through NETLIB [113] are used to establish the practical value of the PDIPSA. The
computational results are very encouraging.

The idea of an exterior point path was the motivation to try to develop similar
algorithms for network optimization problems. Network optimization [3] consists a
special type of linear optimization, that has certain computational benefits related to
linear optimization. Network flow problems not only can be solved very quickly even
with a large number of variables, but also their solution usually leads to integer solu-
tions due to the total unimodularity property. Moreover, a large number of real-world
applications in communications, informatics and transportation can be modeled as
network flow problems [4,106].

A non-dual signature method for the AP has been developed by Paparrizos [93]
with O(n4) complexity. This algorithm visits only strong trees that are obtained from
strongly feasible trees by dropping the feasibility requirement. A relaxation column
signature method for the solution of an AP has been reported in [95]. This algo-
rithm solves a sequence of relaxed transportation problems and generates strong dual
feasible bases. This algorithm has an O(n3) complexity and the average number of
iterations is bounded by n log(n).

Later, Paparrizos developed also EPSA for the Transportation Problem (TP) [98].
The research on initialization methods for EPSAs in TP led to the development of
three methods. The first method uses a Balinski’s dual feasible tree [94], the second
method starts from a simple start forest [1] that is neither primal nor dual feasible, and
the third method is based on a dual feasible forest [2]. These initialization methods
afterwards have been specialized for the solution of the AP. It is noteworthy, that each
one initialization method was proved to be faster than the classic PSA for the TP in
computational studies.

After the development of EPSAs for TP and AP, focus was given in generalizing
these results in other classic network optimization problems. Towards this direction,
the first primal EPSA for the Minimum Cost Network Flow Problem (MCNFP) was
recently presented in [100].

Section 2 discusses recent developments in strongly related research approaches
such as Monotonic Build-Up Simplex Algorithms (MBUSAs) and Criss-Cross Algo-
rithms (CCAs). Section 3 presents two EPSAs for LPs. EPSAs for network optimiza-
tion problems are presented in the following three sections. More specifically, Sects.
4, 5, and 6, present EPSAs for the solution of the MCNFP, TP, and AP respectively.
Section 7 presents some educational tools for the teaching of EPSAs, using visualiza-
tion and animation techniques. Finally, Sect. 8 provides some conclusions and open
research problems regarding the improvement of EPSAs.
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2 Related work

Since the sixties there was a strong interest in finding an efficient way to get to an
optimal basis via a series of infeasible ones. Algorithms, like criss-cross, monotonic
build-up Simplex algorithms, and others all belong to this exterior point “simplex-
like” category. A review paper summarizing the pros and cons of pivot, ellipsoid,
and interior point methods was presented by Illeś and Terlaky in [67]. The authors
summarized in their findings that, although the theoretical criteria (e.g., worst case
complexity) clearly favor IPMs, the pivot methods are keep competing in practice.
Furthermore, pivot algorithms are favorable for integer linear problems while the
IPMs win for very large, sparse LPs.

2.1 Criss-Cross Algorithms (CCAs)

2.1.1 Zionts’ criss-cross algorithm

A large number of solution approaches has been presented in the last decades, that did
not preserve primal or dual feasibility at each iteration. Zionts [126] first proposed in
1969 a criss-cross method for the solution of LPs. The efficiency of this method stems
from the fact that this type of algorithms do not require an initial feasible solution, as
does the classic Simplex algorithm. Therefore, since there is no need to solve either an
auxiliary problem, or use any artificial variable, the criss-cross method starts to work
towards the solution of the LP from the beginning (one phase). A formal description
of the Ziont’s method, as presented in their paper, is as follows:

Step 0 (Initialization). Partition the initial LP to the corresponding primal and
dual problem and start using any primal and/or dual infeasible basis.

Step 1 (Alternate pivoting in the primal and dual problem). Select any of the
primal or dual infeasible variables (since the basis is not optimal) as follows:

(i) If a dual infeasible variable is selected, then we have found the entering variable.
Afterward, we choose the leaving variable among the primal feasible variables,
in a manner that these variables preserve primal feasibility.

(ii) If a primal infeasible variable is selected, then we have identified the leaving
variable. Afterward, we choose the entering variable among the dual feasible
variables, so that dual feasibility of these variables is preserved.

Step 2 (Termination test). If either the primal or the dual basis is feasible, then the
criss-cross method reduces to the classic Simplex algorithm as follows:

(i) If the primal problem is feasible, STOP. Continue with the primal Simplex al-
gorithm.

(ii) If the dual problem is feasible, STOP. Continue with the dual Simplex algo-
rithm.

In this case, the computations are carried out until an optimal solution is achieved,
if there is one. Else, if neither the primal or the dual basis is feasible but a basis
exchange is possible, then select another infeasible variable and continue with Step
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1. Otherwise, if the current basis is infeasible and none of the infeasible variables
allows a pivot as described above, then no optimal solution exists for the LP.

A few years later in 1972, Zionts presented an improved version of his procedure
that accelerates the detection of unbounded and infeasible solutions. Computational
results on randomly-generated LPs were also presented in the same paper [127], that
clearly shown an improvement both in terms of computational time and also in the
number of total iterations.

2.1.2 Terlaky’s criss-cross algorithm

A new version of a criss-cross method, quite different from Ziont’s procedure was
developed by Terlaky in 1985 [118]. The main difference is that although Terlaky’s
criss-cross method starts from neither a primal or dual feasible solution and alternates
between primal or dual steps, it does not continue with the primal or dual Simplex
method in case of primal or dual feasibility (i.e., as in Step 2, of the following Ziont’s
method).

Furthermore, a worst-case example of Terlaky’s pivoting rule for the criss-cross
simplex method was presented by Roos in 1990 [111] who showed that the required
number of iterations may be exponential in the number of variables and constraints
of the LP. His example used the Klee-Minty polytope [74].

Although, the finiteness of the Terlaky’s criss-cross method was initially proved
by showing that it cannot cycle using the Bland’s pivoting rule [22], Fukuda and Mat-
sui [44] presented a new proof in 1991 by showing that at each iteration an explicit
improvement in the sense of lexicographic ordering is made by the algorithm. Fukuda
and Terlaky analytically presented the mathematical ideas and proof techniques be-
hind finite criss-cross pivot methods in [46]. Moreover, the authors presented an ele-
gant algorithmic proof of the LP strong duality theorem using the finiteness result of
the least-index criss-cross method, as also a series of open problems.

2.1.3 New variants of Criss-Cross Algorithm (CCA)

Klafszky and Terlaky in 1992 [73] generalized the CCA of Terlaky [118] to Quadratic
Programming (QP) problem. Valiaho in 1992 [121] gave a new and alternative way
of proving the finiteness of CCA for QP. Zhang [125] changed the minimal index
selection rule into “last-in-first-out” (LIFO) rule and “most-often-selected-variable”
(MOSV) rule and proved the finiteness of CCA for LP with these rules. Ills and
Mszros in 2001 [62] simplified the finiteness proves of Zhang [125] for CCA and
showed that Farkas lemma (published in 1894 in Hungarian and 1901 in German, see
[62] for more details) can be proved using a variant of CCA presented in Klafszky
and Terlaky in 1991 [72] using LIFO and MOSV rules, too. Paper of Akkeles et al. in
2004 [7] includes all of the ideas mentioned in these previous papers and show that
CCA with LIFO and MOSV anti-cycling rules guarantee finiteness of CCA for QP
problems.

Since then, criss-cross methods have been extended for different type of prob-
lems (e.g., oriented matroid programming), and also attracted the interest of several
researchers who seek to find if there is a polynomial criss-cross algorithm. Recently,
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Li [78] in 2010 introduced a new practical variant of the finite criss-cross algorithm.
Li’s method used a generalization of a known heuristic method about optimal basic
variables and optimal nonbasic variables of an LP in standard form, that tend to be
characterized by bearing lower and higher pivoting indices, respectively. Thus, by
using reordering variable indices, Li’s new least pivoting index criss-cross algorithm
was proved to be efficient in a preliminary computational study using randomly con-
structed problems and sparse NETLIB problems [48].

2.2 MBUSAs

The first version of EPSA introduced by Paparrizos [94] in 1991 is almost the same
as the Monotonic Build-Up Simplex Algorithm (MBUSA) that was independently
developed by Anstreicher and Terlaky [13], and published a few years later [14]. The
most distinctive characteristic of both EPSA and the MBUSA, is that they produce
a sequence of basic solutions, some of which are neither primal nor dual feasible.
Thus, MBUSA can be also viewed as an exterior point method.

Bilen et al. [21] followed the main idea of the MBUSA of Anstreicher and Terlaky
[14] and presented a finite MBUSA for linear feasibility problems and a recursive
anti-degeneracy procedure. The same authors also studied new monotone Simplex
algorithms for feasibility problems in their recent work [31].

Csizmadia [30] studied pivot based solution techniques of LPs, linear comple-
mentarity problems, and linear feasibility problems. He also computed, under a weaker
degeneracy concept, a new upper bound for the number of iterations of the MBUSA
developed by Anstreicher and Terlaky [14] for LPs. An interesting real-world ap-
plication of MBUSAs regarding a blending problem of the Hungarian oil company
(MOL Plc.), was also presented in the same PhD Thesis.

A new concept of s-monotone index selection rule for LPs was recently intro-
duced by Csizmadia et al. [33]. The authors proved the finitness of several known
methods such as the primal (dual) Simplex, MBUSAs, and criss-cross algorithm with
s-monotone pivot rules. Moreover, the practical efficiency of the MBUSAs with var-
ious s-monotone pivoting rules was also shown by numerical experiments using test
problems from the NETLIB data set.

Additionally, computational aspects of Simplex and MBUSAs using different
anti-cycling pivot rules have also been recently studied by Illés and Nagy in [64].
The authors evaluated the flexibility of several variations of index selection rules
(e.g., minimal index/Bland, last-in-first-out, most-often-selected-variable) for Sim-
plex type algorithms using the publicly available benchmark collections NETLIB and
MIPLIB [75] (the linear relaxation of the problems). Their computational study used
108 test problems in total and it was shown that, the MBUSA can be a practically
competitive alternative to the classic PSA. More specifically, the hybrid most-often-
selected-variable MBUSA version was proved to be the most efficient among the
theoretically finite index selection rules. Furthermore, although the MBUSA requires
fewer iterations in average, it spends more time per iteration.

An interesting new variant of the MBUSA for the maximum flow problem with
non-zero lower bounds, have also been presented by Illés and Molnár-Szipai in [63].
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The authors showed that this new variant runs in strongly polynomial time on the
original network, without any transformation.

Finally, it is worth mentioning that, EPSAs and MBUSAs are quite different from
the criss-cross methods. This is due to the fact that, the trace of a criss-cross method is
not monotonic with respect to the objective function. Also, both EPSA and MBUSA
differ from criss-cross methods, since the formers require a basic feasible solution for
their initialization.

3 EPSAs for LPs

The algorithms presented in this section belong to a special “exterior point simplex-
type” category. These algorithms differ radically from the classical simplex algo-
rithm. The distinguished characteristic of these algorithms is their flexibility of gen-
erating two paths to the optimal solution. One path consists of basic solutions but
not feasible while the other is feasible. As a consequence these algorithms avoid the
movement between adjacent vertices and, in fact, follows shortcuts to the optimal
solution. Although, IPMs are currently the fastest approach for the solution of LPs,
simplex-type algorithms remain a good choice for solving LPs. Computational re-
sults on randomly generated sparse and dense LPs have shown that EPSA is up to
ten times faster than the classical PSA. This computational improvement is due to the
essential reduction on the number of iterations.

3.1 Notations and definitions about LP

Consider the following LP in the standard form:

min cT x

s.t. Ax = b (L.P.1)

x ≥ 0

where c, x ∈ �n, b ∈ �m, A ∈ �m×n and T denotes transposition. Moreover, by e we
denote a unit column vector, (e.g., the unit row vector is e T = (1, 1, ..., 1)). Without
loss of generality, we assume that the coefficient matrix A is of full row rank (rank(A)
= m, m < n). The dual problem associated with (L.P.1) is:

max bT w

s.t. AT w + S = c (D.P.)

s ≥ 0

where w ∈ �m and s ∈ �n. Also, the cardinality of a set P will be denoted by |P|.
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3.2 Primal EPSA for LPs

Let B be a subset of the index set {1,2,...,n} with |B| = m. The partition of the coef-
ficient matrix A as (B,N), where N = {1,2,...,n} \ B is called a basic partition. The
ith row and the jth column of A will be denoted by A i. and A. j respectively. If A is a
matrix, AB denotes the submatrix of A containing the columns A . j such that j ∈ B.
Similarly, AN denotes the submatrix of A containing the columns A . j such that j ∈ N.
By partitioning and ordering the vectors x and c, (L.P.1) can be written as:

min cT
B xB + cN

N xN

s.t. ABxB+AN xN = b (L.P.2)

xB, xN ≥ 0

If AB is an m × m non-singular submatrix of A, then B is called a basis and A B is
a basic matrix. The submatrix AN is called a non-basic matrix. Consequently, the
columns of A which belong to B are called basic and the remaining ones are called
non-basic. Given a basis B, the associated solution x B = (A−1

B )b, xN = 0 is called a
basic solution. Clearly, a basic solution is feasible iff xB ≥ 0. Otherwise, it is called
infeasible. Geometrically, a basic feasible solution of (L.P.2) corresponds to a vertex
of the polyhedral set of the feasible region. The solution of the (D.P.) is given by
s = c − AT w, where wT = (cB)T (AB)−1 are the simplex multipliers and s are the dual
slack variables. The solution w is feasible to (D.P.) iff s ≥ 0. The current basis B is
optimal if the primal solution (xB,xN) is feasible to (L.P.1) and the dual solution (w,s)
is feasible to (D.P.).

Each iteration of a simplex-type algorithm requires the computation of the basis
inverse (AB)−1. This can be done efficiently if (AB)−1 is maintained in some factorized
form. At every iteration its factors have to be updated. The simplest updating scheme
is the Product Form of the Inverse (PFI). The current inverse (A B)−1 can be computed
from the previous inverse (AB)−1 with a simple pivoting operation. It is well known
that:

(AB)−1 = E−1(AB)−1 (1)

where E−1 is the inverse of the eta-matrix. Eta-matrix is an m × m identity matrix by
replacing the r-th column with the column vector h l = (A−1

B )A.l. A formal description
of EPSA follows:

Step 0 (Initialization). Start with a primal feasible basic partition (B,N). Compute
the basis inverse (AB)−1 and the vectors xB, w, and sN . Find the sets of indices P = { j ∈
N : s j < 0} and Q = { j ∈ N : s j ≥ 0}. Define an arbitrary vector λ = (λ1, λ2, ..., λ|P|) >
0 and compute s0 =

∑
j∈P
λ j s j. Compute the improving feasible direction d B using the

relation:

dB = −
∑
j∈P
λ jh j
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where h j = B−1A. j.
Step 1 (Termination test).

(i) (Optimality test). If P = ∅, STOP. Problem (L.P.2) is optimal.
(ii) (Choice of leaving variable). If dB ≥ 0, STOP. If s0 = 0, problem (L.P.2) is

optimal. Otherwise, choose the leaving variable x B[r] = xk using the relation:

α =
xB[r]

−dB[r]
= min

{
xB[i]

−dB[i]
: dB[i] < 0

}

If α = +∞, problem (L.P.2) is unbounded.

Step 2 (Choice of entering variable). Compute the row vectors H rP = (AB)−1
r. AP

and HrQ = (AB)−1
r. AQ. Also, compute the ratios θ1 and θ2 using the relations:

θ1 =
−sp

hrp
= min

{−s j

hr j
: hr j > 0 ∧ j ∈ P

}

θ2 =
−sq

hrq
= min

{−s j

hr j
: hr j < 0 ∧ j ∈ Q

}

Determine the indices t1 and t2 such that P(t1) = p and Q(t2) = q. If θ1 ≤ θ2, set
l = p. Otherwise, set l = q. The non basic variable xl enters in the basis.

Step 3 (Pivoting). Set B[r] = l. If θ1 ≤ θ2 set P = P\{l} and Q = Q ∪ {k}.
Otherwise, set Q[t2] = k. Using the new partition (B,N) where N = (P,Q) update
the basis inverse (AB)−1 using relation (1) and compute the vectors x B, w, and sN .
Also, update the new direction d B using the relation dB = E−1dB. If l ∈ P, set dB[r] =

dB[r] + λl. Go to Step 1.
A complete proof of correctness of the above algorithm can be found in [97]

and [105]. In order to solve general LPs, a modified big-M method with one artificial
variable is applied. A presentation of this method can be found in [101]. Furthermore,
EPSA can be initiated by any basis (not necessarily feasible) iff the initial d B direction
crosses the feasible region. This can be checked using the following relation:

β = max

{
xB[i]

−dB[i]
: xB[i] < 0

}
≤ α = min

{
xB[i]

−dB[i]
: dB[i] < 0

}

where 1 ≤ i ≤ m. If the above relation holds, then Primal EPSA can be applied
directly to (LP.2) even when the initial basic partition (B,N) is not feasible [120].

Computational results on randomly generated sparse and dense LPs show that
EPSA is up to 10 times faster than PSA [101]. This translates into corresponding sav-
ings in CPU time. The computational results show that EPSA works well in practice.
These results indicate that as the problem size increases and the density of problem
decreases, the frequency of EPSA outperforming the PSA increases. In [103] new
variations of EPSA using three different strategies to enter Phase II are presented.
These variations were tested on randomly generated sparse LPs of various sizes and
densities. In particular, the best variation of EPSA is about up to 12 times faster than
PSA on LPs of size 1,500 × 1,500. Additionally, for the same LPs, EPSA is about up
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to 120 times faster than the built-in implementation of PSA in Matlab. Parallelizing
simplex-type algorithms is one of the most challenging problems. Recently, a parallel
implementation of the revised EPSA [108] on a multicore machine was presented. In
this approach the basis inverse is computed in parallel. The parallel implementation
uses the Parallel Computing Toolbox of the Matlab R2009a x86 environment. The
speed-up gained from the parallelization of the basis inverse is of average 4.72.

3.3 Primal-Dual EPSA for LPs

Forcing the exterior path of an EPSA to become a dual feasible simplex path results
in an algorithm free of the following two computational disadvantages: i) It is difficult
to construct good moving directions and ii) there is no known way of moving into the
interior of the feasible region. This algorithm, PDEPSA, geometrically moves from
an exterior dual feasible point towards the interior of the feasible region using either a
boundary or an interior starting point. PDEPSA can be described formally as follows.

Step 0 (Initialization). Start with a primal feasible solution y for problem (L.P.2)
and a dual feasible basic partition (B,N) to problem (L.P.2). Compute the basis in-
verse (AB)−1 and the vectors xB, w, and sN . Set P = N and Q = ∅. Compute the
direction dB = yB − xB.

Step 1 (Termination test).

(i) (Test of optimality). If xB ≥ 0, STOP. Problem (L.P.2) is optimal.
(ii) (Choice of leaving arc). Choose the leaving variable x B[r] = xk using the rela-

tion:

α =
xB[r]

−dB[r]
= max

{
xB[i]

−dB[i]
: dB[i] > 0 ∧ xB[i] < 0

}

Step 2 (Choice of entering variable). Compute the pivoting row H rN = (AB)−1
r. AN .

Choose the entering variable xl from the relation:

μ =
−sl

Hrl
= min

{−s j

Hr j
: Hr j < 0 ∧ j ∈ N

}

Step 3 (Pivoting). Set B[r] = l and Q = Q∪{k}. If l ∈ P, set P = P\{l}. Otherwise,
set Q = Q\{l}. Using the new partition (B,N), where N = (P,Q) update the basis
inverse (AB)−1 using relation (1) and compute the vectors x B, w, and sN . Update the
new direction dB using the relation dB = E−1dB. If l ∈ P and yl > 0, set dB[r] =
dB[r] + yl and yl = 0. Go to Step 1.

A complete proof of correctness of the above algorithm in tableau format can
be found in [97,99] and in revised form in [102]. In order to solve general LPs,
a modified big-M method with one artificial variable is applied. A presentation of
this method can be found in [102]. An efficient modification of PDEPSA, namely
PDIPSA [113], traverses across the interior of the feasible region in an attempt to
avoid combinatorial complexities of vertex-following algorithms. Also, moving into
the interior of the feasible region is translated into an important reduction of number
of iterations and CPU time, particularly in LPs, that are degenerate.
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Numerical experiments on randomly generated sparse LPs are presented in [102,
115] to verify the practical value of PDEPSA. Compared to the classical PSA, PDEPSA
found to be faster both in terms of number of iterations and in terms of CPU time on
randomly generated sparse LPs. Also, computational experiments on randomly gen-
erated sparse LPs [51] and on a subset of LPs from Netlib [113] have been used to
establish the practical value of the PDIPSA. Ploskas and Samaras [107] recently pro-
posed an efficient parallel implementation of a primal-dual exterior point algorithm
(PDEPSA) on GPUs in order to take advantage of the GPUs increasing computa-
tional capabilities. This is the first parallel exterior point algorithm developed for
the solution of a linear programming problem. This algorithm shows superior com-
putational results compared to the sequential implementation of the same algorithm
and the sequential MATLABs interior point method on randomly generated optimal
sparse and dense linear programming problems and on a set of benchmark prob-
lems (netlib, kennington, Meszaros). The maximum speedup gained over MATLABs
interior point method is on average 143 on dense LPs and 15 on sparse LPs. The
GPU-based PDEPSA is on average 2.30 times faster than MATLAB’s interior point
method and 32.25 times faster than the CPU-based PDEPSA on a set of benchmark
problems (netlib, kennington, Meszaros).

4 EPSAs for the MCNFP

A wide category of network optimization problems is the MCNFP [117]. Further-
more, other well known problems like the TP and the AP are special cases of MC-
NFP. This section presents a primal and a dual EPSA in Sects. 4.3 and 4.4 respec-
tively. Both algorithms are well defined under the assumption that all the problems,
which they are applied to, are not degenerate. However, a method similar to the rule
of Bland [22] for the general LP, was applied in their implementation in order to avoid
stalling or cycling.

4.1 Efficient solution algorithms for the MCNFP

Several variants of pivoting algorithms for various subclasses of network optimiza-
tion problems with polynomial number of iterations and with polynomial number
of arithmetic operations exist. Regarding the MCNFP, Ahuja and Orlin presented a
scaling network Simplex algorithm [5]. The first polynomial time specialization of
the Network Primal Simplex Algorithm (NPSA) for the MCNFP using cost-scaling
techniques was proposed by Orlin [85]. Other polynomial time dual network sim-
plex algorithms for the MCNP include the works by Orlin et al. [86] and Armstrong
and Jin [15]. Currently, the fastest strongly polynomial time algorithms for the ca-
pacitated MCNFP are the algorithms by Orlin [84] and Vygen [122]. Although, both
algorithms obtain a running time of O(m log m(m+ n log n)), the algorithm by Vygen
works directly with the capacitated network without any transformation to transship-
ment problem.
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4.2 Notations and definitions about MCNFP

Let G = (V, E) be a directed network with m nodes and n arcs, where V and E are
the sets of nodes and arcs respectively. Each arc (i, j) ∈ E has a cost c i j which de-
notes the unit shipping cost along arc (i, j). Associated with each arc (i, j) is also an
amount xi j of flow on the arc (contrary to NPSA, xi j might become negative). EPSA
algorithms for the MCNFP have been applied to uncapacitated MCNFPs. This means
that li j ≤ xi j ≤ ui j, where li j = 0 and ui j = +∞. We associate with each node i ∈ V a
number bi which indicates its available amount of supply or demand. Node i will be
called a source, sink or transshipment node, depending upon whether b i > 0, bi < 0,
or bi = 0 respectively. Source nodes produce more flow than they consume. Sink
nodes consume more flow than they produce and transshipment nodes produce as
much flow as they consume. We make the assumption that G is a balanced network,
that is

∑
i∈V

bi = 0. The MCNFP can be formulated as the following LP:

min
∑

(i, j)∈E
ci jxi j

s.t
∑

k:(i,k)∈E
xik − ∑

j:( j,i)∈E
x ji = bi, i ∈ V (N.P.)

xi j ≥ 0, (i, j) ∈ E

In the above formulation, constraints of type
∑

xki −∑ x jk = bk are known as the
flow conservation equations, while constraints of type 0 ≤ x i j ≤ +∞ are called the
flow capacity constraints. In matrix notation MCNFP can be formulated as a linear
program of the form min

{
cT x : Ax = b, l ≤ x ≤ u

}
where A ∈ �m×n, c, x, l, u ∈

�n, b ∈ �m.

Furthermore, in this section, notations such as paths (directed or not), cycles (di-
rected or not) and trees, are defined as in [20]. The basic solution for the MCNFP can
be represented using a tree. Each basis tree of a MCNFP consists of a flow vector x,
which is the unique solution of problem. Henceforth, the basis tree of a MCNFP will
be denoted by T , while the basic flow of each T will be denoted by x(T ). We say that
T is a primal feasible tree, iff x(T ) ≥ 0. Otherwise, it will be called a primal infeasi-
ble tree. A starting primal or dual feasible tree solution T consists of n − 1 directed
arcs that form a tree. These arcs and the corresponding flows are called basic arcs
and basic variables, respectively. Similarly, if for a tree-solution T , s i j ≥ 0 for every
arc (i, j) � T then it is said to be dual feasible. Network Simplex-type algorithms
compute basic solutions x and (w, s) which are complementary.

Since a basic solution in Simplex-type algorithms for the MCNFP are represented
as tree solutions, we will denote by C the cycle that is created when an arc enters
the basic tree T . The notation ↑↑ or ↑↓ will used for arcs that have the same or the
opposite orientation to each other in the cycle C, respectively. For simplicity reasons,
from now on the leaving arc and the entering arc will be denoted by (k, l) and (g, h)
respectively. Moreover, each non basic arc h i j can be represented in terms of the basic
arcs as a column vector of the classical network simplex tableau. An element h gh(k, l)
of this column vector hgh is equal to −1, 1, or 0, depending whether for the non basic
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arc (g, h) it holds (g, h) ↑↑ (k, l) in C, or (g, h) ↑↓ (k, l) in C, or (k, l) � C respectively.
Detailed description of these computations can be found in [20].

Finally, by T ∗ we will denote the tree that contains the nodes that are “cut off”
from the current tree solution, when the leaving arc is discarded. In simplex-type
algorithms only the reduced cost variables of arcs with one node belonging to the
tree T ∗ and the other to the subtree T\T ∗ usually need to be updated.

4.3 Primal EPSA for the MCNFP

A Primal Network Exterior Point Simplex-type Algorithm (NEPSA) was presented
in [100]. The main difference between NEPSA and the classical Network Primal Sim-
plex Algorithm (NPSA) is that the basic flow of the former does not always remain
feasible. NEPSA constructs two flows to the optimal solution. One flow is basic but
not always feasible; so this is an “exterior flow”. The other flow is feasible but not
always basic. Contrary to NPSA, NEPSA first selects a leaving arc and afterwards
selects an entering arc. A description of NEPSA follows.

Step 0 (Initialization). Start with a primal feasible tree T , which can be con-
structed using the well known big M method [20]. Compute the flows x i j, the node
potentials (dual variables) wi, and the reduced costs si j, as described in [3]. Continue
with a partition of the initial arc set E into three subsets (E = T ∪ P ∪ Q), as fol-
lows: P = {(i, j) : si j < 0}, Q = {(i, j) : si j ≥ 0}, ∀ (i, j) � T . Next, compute
the column vectors hi j and the “complemental” flow vector d, which assists NEPSA
to compute the second feasible but not always basic flow. In a similar way, vector d
is partitioned as d = {d(T ), d(P), d(Q)}. The elements of d are computed using the
following relations:

d(T ) = −
∑

(i, j)∈P
hi j, d(P) = (λ1, λ2, ..., λ|P|), d(Q) = (0, 0, ..., 0).

Step 1 (Termination test). If P = ∅, then an optimal solution has been found for
problem (N.P.) and the algorithm terminates. Otherwise, the algorithm continues. If
∃(i, j) ∈ T : di j < 0, then the algorithm proceeds to the next step. Otherwise the
problem (N.P.) is unbounded and therefore negative cost cycles have been identified.

Step 2 (Choice of leaving arc). Choose the leaving arc (k, l) using the following
minimum ratio test:

a =
xkl

−dkl
= min

{
xi j

−di j
: (i, j) ∈ T, di j < 0

}

Compute the second flow y = x + ad. This second flow remains feasible, but not
always basic, since y corresponds to a network and not to a tree. Elements of vector
λ = (λ1, λ2, ..., λ|P|) can have any value, so long as vector d has appropriate values
in order to compute a feasible flow y. In our implementation, vector λ is initialized
using the values λ = (1, 1, ..., 1).

Step 3 (Choice of entering arc). Find the minimum ratios:

θ1 = −sp1 p2 = min
{
−si j : hi j(k, l) = 1 ∧ (i, j) ∈ P

}
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θ2 = sq1q2 min
{
si j : hi j(k, l) = −1 ∧ (i, j) ∈ Q

}

Choose the entering arc (g, h) = (p1, p2) or (q1, q2), in case that θ1 ≤ θ2 or not
respectively.

Step 4 (Pivoting). If θ1 ≤ θ2, then the pivot will be called “Type A iteration”.
In this case since the entering arc will be (g, h) = (p1, p2), set P = P \ (p1, p2).
Otherwise, the pivot will be called “Type B iteration”. In the latter case since the
entering arc will be (g, h) = (q1, q2), set Q = Q \ (q1, q2). Using the new partition
(T P Q), where T = T \ (k, l)∪ (g, h) and Q = Q∪ (k, l) the values x i j, si j, hi j and di j

are updated. The new d vector can be updated using the relation d = y − x. However,
if (g, h) ∈ P, dgh = dgh + λgh. A faster update method for the d vector, is described in
[100].

4.4 Dual EPSA for the MCNFP

A Dual Exterior Point Simplex-type Algorithm for the MCNFP (DNEPSA) have been
recently developed. A preliminary geometrical interpretation of DNEPSA was de-
scribed in [49]. Furthermore, the mathematical proof of correctness of DNEPSA,
a detailed comparative computational study of DNEPSA and DNSA on sparse and
dense random problem instances, a statistical analysis of the experimental results, and
finally some new results on the empirical complexity of DNEPSA, were published in
[50]. The analysis proves the superiority of DNEPSA compared to DNSA in terms
of cpu time and iterations. The main difference between DNEPSA and the classical
Dual Network Simplex Algorithm (DNSA), is the fact that the tree-solutions formed
during the iterations of DNEPSA are not necessarily always dual feasible. In other
words, DNEPSA starts from a dual feasible tree solution T and reaches an optimal
solution by following a route consisting of solutions that do not always belong to the
feasible area of the dual solution. Furthermore, DNEPSA contrary to the DNSA first
selects the entering arc and afterwards selects the leaving arc. Finally, both entering
and leaving arcs are selected using different rules for the DNEPSA and DNSA algo-
rithms respectively. Various methods can be used to find a starting dual feasible tree
solution. An algorithm that can construct a dual feasible tree-solution for the gen-
eralized network problem (and also for pure networks) is described in [53], and an
improved version of the algorithm is presented in [60], which gives a dual feasible
solution that is closer to an optimal solution.

Step 0 (Initialization). Compute the flows xi j, the node potentials (dual variables)
wi, and the reduced costs si j, as described in [3]. Start with a partition of the basic arcs
into two subsets as follows I = {(i, j) ∈ T : xi j < 0} and I+ = {(i, j) ∈ T : xi j ≥ 0}.
Compute a direction flow vector d, towards to the feasible region of the dual problem,
using the following relations:

d(I ) = 1, d(I+) = 0, di j =
∑

(u,v)∈I
huv,∀(i, j) � T
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Step 1 (Termination test). If I = ∅, this means that the current tree-solution is
optimal. Otherwise, create a set J = {(i, j) � T : si j > 0 ∧ di j < 0}. If (J = ∅) ∧
(I � ∅), then the problem is infeasible.

Step 2 (Choice of entering arc). Choose the entering arc (g, h) using the following
minimum ratio test:

α =
sgh

−dgh
= min

{
si j

−di j
: (i, j) ∈ J

}

Step 3 (Choice of leaving arc). Find the minimum ratios:

θ1 = −xk1l1 = min
{
−xi j : (i, j) ∈ I ∧ (i, j) ↑↑ (g, h)

}

θ2 = xk2l2 = min
{
xi j : (i, j) ∈ I+ ∧ (i, j) ↑↓ (g, h)

}
Choose the leaving arc (g, h) = (k1, l1) or (k2, l2), in case that θ1 ≤ θ2 or not

respectively.
Step 4 (Pivoting). If θ1 ≤ θ2, the pivot will be called “Type A iteration”. In this case,
set I = I \ (k, l) and I+ = I+ ∪ (g, h). Otherwise, the pivot will be called “Type B
iteration”. In this case, set I+ = I+ ∪ (g, h) \ (k, l). It is not necessary for the algorithm
in every iteration to compute the values xi j, si j, and di j or to create sets I and I+ from
scratch. These variables and sets can be efficiently updated from iteration to iteration
as described in [49].

Preliminary computational results [50] have shown that DNEPSA is about 1.22
times faster than DNSA in terms of the number of iterations and about 1.57 times
faster in terms of the CPU time. This computational study was based on several ran-
dom generated MCNFP instances by NETGEN with varying density ranging from
sparse problems (2%) to dense problems (40%), varying number of nodes from 200
to 700, and varying number of arcs approximately from 800 to 195,000. Although,
these results have been based only on random problems, they clearly illustrate a very
promising computational performance. However, more computational results that are:
i) based on standard benchmark problems (e.g., NETLIB), and ii) use the polynomial
version of DNSA, will help in order to derive more general conclusions.

5 EPSAs for the transportation problem (TP)

5.1 Efficient solution algorithms for the TP

The simplex algorithm for solving the TP was adapted by Dantzig in [38]. A few years
later Charnes and Cooper presented a more easily comprehended approach, known
as the stepping-stone method [27]. Also, several methods have been proposed in the
literature for finding an near-optimal basis for the TP, such as the method by Russel
[112]. The importance of finding such quality initial solutions for the TP (as also
for any optimization problem) is commonly accepted, since it permits us to reduce
the time required to find the optimal solution. Arshom and Khan [18] proposed a
simple and fast method for solving general TPs, as an alternative to the previous
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methods [27], [38]. Also, Portugal et al. [109] presented a computational investigation
of interior-point algorithms for the Linear TP. However, since the TP is a special case
of the MCNFP, several polynomial-time algorithms for the MCNFP can also be used
for efficiently solving the TP.

5.2 Notations and definitions about the TP

A TP is a special case of the MCNFP and can be represented by a bipartite graph
G(S ,D, E) = G(V, E), where S , D are two disjoint sets of nodes such |S | = m, |D| = n
and V = S ∪ D. Notations |S | and |D| stand for the cardinality number of the sets S
and D respectively. The supply and demand nodes are denoted with i ∈ S and j ∈ D
respectively. Here, E is the arc set. An arc (i, j) ∈ E is directed from nodes of S to
nodes of D. The mathematical formulation of the TP with an m × n cost matrix c, an
m×1 supply vector a and an n×1 demand vector b such as

∑
i∈S

ai =
∑
j∈D

bi is as follows:

min
∑

(i, j)∈E
ci jxi j

s.t.
∑

(i, j)∈E
xi j = ai, i ∈ S (T.P.)

∑
(i, j)∈E

xi j = b j, j ∈ D

xi j ≥ 0, i ∈ S , j ∈ D

The decision variables xi j denote the number of product units transported from the
supply node i ∈ S to the demand node j ∈ D. Each basic solution to TP corresponds
to a spanning tree of the bipartite network G = (S ,D, E). Each basic solution T is
associated to the decision variables xi j(T ),∀(i, j) ∈ E, the dual row (supply) variables
ui(T ),∀i ∈ S , the dual column (demand) variables υ j(T ),∀ j ∈ D, and the reduced
cost variables si j(T ) = ci j − ui(T ) − υ j(T ),∀(i, j) ∈ E.

Furthermore, by si. we denote a row vector corresponding to the i row of that (m×
n) matrix. For example, by s5. we denote a row vector containing all the reduced cost
variables which corresponds to arcs leaving from the fifth supply node. Therefore,
s5. = (s51, s52, s53, ..., s5n). Similarly, by s. j we denote a column vector corresponding
to the j column of that (m×n) matrix. For example, by s .5 we denote a column vector
containing all the reduced cost variables which corresponds to arcs coming to the
fifth demand node. Therefore, sT

.5 = (s15, s25, s35, ..., sm5).

5.3 Dual EPSAs for the TP

An exterior point algorithm has been developed for the TP by Paparrizos [98]. Fur-
thermore, signature methods for the TP have also been reported in [93,41]. EPSA
for the TP may be initialized either with (1) a Balinski’s dual feasible tree [94], (2)
a simple start forest [1] that is neither primal nor dual feasible, and (3) a dual feasi-
ble forest [2]. The latter algorithm requires at most μD − μ(μ−1)

2 iterations, and has a
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O(μ(m+n)D) worst case complexity, where μ = min {m, n} and D is the total demand.
A description of the EPSA for the TP, follows:

Step 0 (Initialization). Start with a special solution T . The set V of nodes is parti-
tioned into two subsets F and T \ F, that depend on the initialization method. Deter-
mine the subsets F, T \ F and compute the reduced cost variables s i j according to the
initialization method.

Step 1 (Test of optimality). If F = ∅, this means that the current solution T is
optimal for problem (T.P.).

Step 2 (Choice of entering arc). Choose the entering arc (g, h) by s gh = δ =

min
{
si j : i ∈ F ∧ j ∈ T\F

}
Step 3 (Choice of leaving arc). Choose the leaving arc (k, l) according to the

special rules of each initialization method.
Step 4 (Pivoting). Set T = T ∪ (g, h)\(k, l). Then if h � T ∗, for every row node

i ∈ T ∗ and column node j ∈ T ∗ set si.(T ) = si.(T ) + δeT , and s. j(T ) = s. j(T ) + δe
respectively. Finally, update F, T\F and set T = T .

The differences of these three different initialization methods, are due to the way
their starting tree structures T are initialized, the way subset F is constructed, and
the way the leaving arc is chosen. Moreover, a computational study of a dual exterior
point algorithm for the TP, using randomly generated TPs, was presented in [89]. In
that study it was shown that, the initialization method of a dual feasible forest [2] had
the best performance, followed by the Balinski’s dual feasible tree [94]. The third ini-
tialization method of simple start forest [1] was the worst among the three compared
methods on all test instances. However, each one initialization method was proved to
be faster than the classic PSA for the TP. More precisely, the dual feasible forest [2]
initialization in TPs of size 300 × 300, was about 4.5 and 4.86 times faster than the
classic PSA for the TP, in terms of number of iterations and CPU time respectively.

5.3.1 EPSA with a Balinski’s dual feasible tree for the TP

Balinski tree is dual feasible. Its root is row–node 1 and all column nodes lie below
the root at depth 1. The remaining row nodes are connected to the column nodes of
the tree and thus lie at depth 2. Let T denote the Balinski tree. The standard arcs of the
tree are the arcs of type (1, j), where j is a column node. Initially, we set u 1(T ) = 0
and υ j(T ) = c1 j, j = 1, 2, ..., n. Thus, for each arc (1, j) we have s1 j(T ) = c1 j−u1(T )−
υ j(T ) = 0. Given a row index i, the column index associated with the minimum c i j−υ j

value of row i is j(i) = argmin{ci j − υ j : j = 1, 2, ..., n}. The remaining dual variables
ui(T ) can be computed by setting ui(T ) = min

{
ci j − υ j(T ) : j = 1, ..., n

}
, i = 1, ...,m.

Let now ui(T ) = ci j(i) − υ j(i), i = 2, 3, ..., n. Then (i, j(i)) ∈ T . At this point all arcs
belonging to the Balinski tree have been determined and the reduced costs of the non-
basic variables can now be easily computed. The decision variables x i j corresponding
to basic arcs (i, j) of the tree are computed easily by setting x i j = α(i), i = 2, ..., n and
x1 j = b( j), if j is a leaf of the tree. For the remaining arcs of type (1, j) (where column
node j has at least one child), we set x1 j = b( j) − ∑

(i, j)∈T,i�1
xi j. Finally, the forest F

is the set of trees {T j : x1 j < 0}, where T j is the subtree rooted on column node j.
Obviously, T\F is a subtree of T .
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5.3.2 EPSA with a simple start forest for the TP

Let F denote this forest. We partition the nodes into two sub-forests F S and FD.
The set FS consists of all the row-nodes, while the set F D of all the column nodes.
Additionally, we set ui(FS ) = υ j(FD) = 0, i ∈ S , j ∈ D. Thus, we have si j(F) = ci j.
To adjust the forest to the needs of our algorithm, we need to transform the forest F
to a tree T . This can easily be done by inserting an artificial node 0 (which is the root
of tree T ) and adding m + n artificial arcs. We also set u0(T ) = 0, for the artificial
transshipment node. For each row node i an artificial arc (i, 0) with unit cost c i0 = 0
is introduced. Similarly, for each column node j an artificial arc (0, j) with unit cost
c0 j = 0 is introduced. All the basic decision variables of type x i0, i = 1, 2, ..., n are
initially set equal to xi0 = α(i) > 0. Similarly, all the basic decision variables of type
x0 j, j = 1, 2, ..., n are initially set equal to x0 j = b( j) > 0. Moreover, the dual exterior
point Simplex-type algorithm for the AP updates the sets F S , FD in such a way that
F = {Ti : i ∈ S } and FD = {T j : j ∈ D}.

5.3.3 EPSA with a dual feasible forest for the TP

The initial forest F consists of small trees, each one of them rooted on a column
node. By T j we denote the tree belonging in forest F, that is rooted on column node
j. We partition the trees T j into two sets FS and FD. The set FS consists of all the row-
nodes, while the set FD of all the column nodes. Additionally, we set υ j(F) = 0, j ∈ D

and ui(F) = min
{
ci j : j = 1, ..., n

}
, i ∈ S . The forest will include basic arcs (i, t),

where t is a column node computed from the equation u i(F) = cit. Each such arc (i, t)
will have xi j = α(i). Since si j(F) ≥ 0, the forest F is dual feasible. Initially we set:
FS = {T j : b j <

∑
i∈T j

ai} and FD = {T j :
∑

i∈T j

ai ≤ b j}. To adjust the forest to the needs

of our algorithm, we need to transform the forest F to a tree T . This can easily be
done by inserting an artificial transshipment node 0 (which is the root of tree T ) and
adding n artificial arcs. If T j ∈ FS , then T includes an artificial arc ( j, 0) with unit cost
c j0 = 0, such that x j0 =

∑
i∈T j

α(i)−b( j) > 0. If on the contrary, T j ∈ FD, then T includes

an artificial arc (0, j) with unit cost c0 j = 0, such that x0 j = b( j) − ∑
i∈T j

α(i) ≥ 0.

6 EPSAs for the assignment problem (AP)

6.1 Efficient solution algorithms for the AP

Several algorithm categories exist for the AP, such as the primal-dual, simplex type,
cost operator, recursive, forest, and interior point algorithms. Kuhn presented the first
non-simplex algorithm for the AP, known as the Hungarian method. Goldfarb [54]
presented special variants of the dual simplex method, that are based upon Balinski’s
signature method [19], and have computational bounds of O(n 3) for solving the AP.
Other polynomial algorithms for the AP include the works of Hung [61] and Glover
et al. [52]. Also, Akgül in [6] presented a genuinely polynomial primal simplex algo-
rithm for solving the AP in at most 1

2 n(n + 3) − 4 pivots. Furthermore, this algorithm
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can be implemented to run in O(n3) time for dense graphs and O(n2 log n + nm) for
sparse graphs.

6.2 Notations and definitions about the AP

The AP is a special case of the TP, where m = n,
∑
i∈S

ai = 1, and
∑
j∈D

bi = 1, [25]. The

mathematical formulation of the AP is as follows:

min
∑

(i, j)∈E
ci jxi j

s.t.
∑

(i, j)∈E
xi j = 1, i ∈ S (A.P.)

∑
(i, j)∈E

xi j = 1, j ∈ D

xi j ∈ {0, 1} , (i, j) ∈ E

The AP can be represented by a bipartite graph G(S ,D, E) = G(V, E), where S ,
D are two disjoint sets of nodes such that |S | = |D| = n and V = S ∪ D.

6.3 Dual EPSAs for the AP

Paparrizos [94] developed the first exterior point algorithm algorithm for the AP.
This algorithm has a O(n3) worst case complexity and solves an n × n AP in at most
n(n−1)

2 iterations. A systematic procedure to construct worst case examples for this
algorithm was presented in [92]. EPSA for the AP may be initialized either with (1)
a Balinski’s dual feasible tree [94], (2) a simple start forest [1] that is neither primal
nor dual feasible, and (3) a dual feasible forest [2]. A description of the EPSA for the
AP, follows:

Step 0 (Initialization). Start with a special solution T . The set V of nodes is parti-
tioned into two subsets F and T \ F, that depend on the initialization method. Deter-
mine the subsets F, T \ F and compute the reduced cost variables s i j according to the
initialization method.

Step 1 (Test of optimality). If F = ∅, this means that the current solution T is
optimal for problem (A.P.).

Step 2 (Choice of entering arc). Choose the entering arc (g, h) by s gh = δ =

min
{
si j : i ∈ F ∧ j ∈ T\F

}
Step 3 (Choice of leaving arc). Choose the leaving arc (k, l) according to the

special rules of each initialization method.
Step 4 (Pivoting). Set T = T ∪ (g, h)\(k, l). Then set q = −δ or q = δ depending

whether h ∈ T ∗ or h � T ∗ respectively. Then for each row node i ∈ T ∗ and for each
column node j ∈ T ∗, set si.(T ) = si.(T ) − qeT and s. j(T ) = s. j(T ) + qe respectively.
Finally, update F, T\F and set T = T .
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The differences of these three different initialization methods, are due to the way
their starting tree structures T are initialized, the way subset F is constructed, and the
way the leaving arc is chosen.

Two computational studies using benchmark and randomly generated APs, on the
initialization methods of the EPSA for the AP were presented in [91] and [114] re-
spectively. These experimental evaluations of the three initialization methods showed
the same ranking. More precisely, the initialization method of a dual feasible for-
est [2] showed the best performance, followed by the simple start forest [1]. The
third initialization method of Balinski’s dual feasible tree [94] was the worst among
the three compared methods on all test instances. More precisely, the computational
study using randomly generated APs, showed that the initialization method of a dual
feasible forest was constantly faster independently of the problem dimension. This
constant factor varied between 1.58 and 1.72 in terms of number of iterations and
between 1.66 and 1.58 in terms of CPU time. Additionally, the computational study
using benchmark problems from TSPLib95 [110] showed that the third initialization
method of a dual feasible forest was about 1.940 times faster than the second initial-
ization method of a simple start forest in terms of the number of iterations and about
2.105 times faster in terms of the CPU time. In the same study it was shown that, the
third initialization method of a dual feasible forest was about 3.176 times faster than
the second initialization method of the Balinski’s dual feasible tree in terms of the
number of iterations and about 3.238 times faster in terms of the CPU time.

The following three initialization methods, consist specializations of the three
initialization methods for the TP, especially for the AP.

6.3.1 EPSA with a Balinski’s dual feasible tree for the AP

Balinski tree is dual feasible. Its root is row - node 1 and all column nodes lie below
the root at depth 1. The remaining row nodes are connected to the column nodes of
the tree and thus lie at depth 2. Let T denote the Balinski tree. The standard arcs of the
tree are the arcs of type (1, j), where j is a column node. Initially, we set u 1(T ) = 0
and υ j(T ) = c1 j, j = 1, 2, ..., n. Thus, for each arc (1, j) we have s1 j(T ) = c1 j−u1(T )−
υ j(T ) = 0. Given a row index i, the column index associated with the minimum c i j−υ j

value of row i is j(i) = argmin{ci j − υ j : j = 1, 2, ..., n}. The remaining dual variables
ui(T ) can be computed by setting ui(T ) = min

{
ci j − υ j(T ) : j = 1, ..., n

}
, i = 1, ..., n.

Let now ui(T ) = ci j(i) − υ j(i), i = 2, 3, ..., n. Then (i, j(i)) ∈ T . At this point all arcs
belonging to the Balinski tree have been determined and the reduced costs of the non-
basic variables can now be easily computed. The decision variables x i j corresponding
to basic arcs (i, j) of the tree are computed easily by setting x i j = 1, i = 2, ..., n and
xi j = 1, if j is a leaf of the tree. For the remaining arcs of type (1, j) (where column
node j has at least one child), we set x1 j = 1 − m j ≤ 0, where m j is the number of
children of column node j. Finally, the forest F is the set of trees {T j : x1 j < 0},
where T j is the subtree rooted on column node j. Obviously, T\F is a subtree of T .
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6.3.2 EPSA with a simple start forest for the AP

Let Q be the simple start forest. Forest Q consists of the 2n isolated nodes. The set
F consists of all the row-nodes, while the set T\F of all the column nodes. Thus,
F = {i : i ∈ S } and T\F = { j : j ∈ D}. Additionally, we set ui(Q) = υ j(Q) = 0, i ∈
S , j ∈ D. Thus, we have si j(Q) = ci j. To adjust the forest to the needs of our algorithm,
we need to transform the forest Q to a tree T . This can easily be done by inserting
an artificial node 0 (which is the root of tree T ) and adding 2n artificial arcs. For
each row node i an artificial arc (i, 0) with unit cost ci0 = 0 is introduced. Similarly,
for each column node j an artificial arc (0, j) with unit cost c 0 j = 0 is introduced.
All the basic decision variables of type xi0, i = 1, 2, ..., n and x0 j, j = 1, 2, ..., n are
initially set equal to 1. Moreover, the dual exterior point Simplex-type algorithm for
the AP updates the sets F, T\F in such a way that F = {T i : i ∈ S , (1, 0) ∈ T } and
T\F = {T j : j ∈ D}.

6.3.3 EPSA with a dual feasible forest for the AP

Let Q denote this forest. Forest Q consists of n subtrees T j and is computed as fol-
lows: Let ui(Q), υ j(Q), i, j = 1, 2, ..., n, denote the dual variables that correspond to
the column and the row nodes of the forest respectively. Initially we set υ j(Q) =
0,∀ j ∈ D. In succession, we compute the dual variables of the column nodes u i(Q)
by setting ui(Q) = min{ci j : j = 1, ..., n},∀i ∈ S .

Let t be the column node such that ui(Q) = cit. Then, the arc (i, t) is a basic arc of
the forest Q. For each arc (i, t) we set xit = 1. The reduced costs si j can now easily be
computed. Note that si j(Q) ≥ 0, which means that forest Q is dual feasible. The initial
set F, is F = T j : d( j) ≥ 2 where d( j) is the degree of column node j. Accordingly,
T\F = T j : d( j) < 2. For the same reason referred at the simple start method, we
need to transform the forest Q to a tree T . This can easily be done by inserting an
artificial node 0 (root of the tree T ) and n artificial arcs. For each column node j such
that T j ∈ F ( j is the root of subtree T j) an artificial arc ( j, 0) with unit cost c j0 = 0
is introduced. Similarly, for each column node j � F an artificial arc (0, j) with unit
cost c0 j = 0 is introduced. Finally, it is set x0 j(T ) = |d( j) − 2| and x j0(T ) = |d( j) − 2|,
where d( j) is the degree of node j after the insertion of the artificial arcs.

7 Web-based educational software packages for EPSAs

It is well known that the traditional face-to-face teaching of algorithms, for the so-
lution of optimization problems is considered difficult by most students. Since the
improvement of OR teaching is always a goal for any OR instructor [9,29,77], e-
learning technologies have become a very active research area for many OR scientists
[40,58,69,76].

Visualization software tool for NEPSA has been implemented by Andreou et al.
[11] (available at: http://users.uom.gr/ s̃ifalera/ORIJ). Furthermore other
didactic applications, utilizing animation and visualization techniques, have been de-
veloped for EPSAs for the AP by Andreou et al. [10] and by Papamanthou et al. [90]
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(available online at: http://www.assignmentproblems.com/linearAPdidactic.
htm#links and http://users.uom.gr/˜samaras/gr/yujor/yujor.htm).

8 Conclusions and open research problems in EPSAs

The importance of the results of the papers on the new variants of the criss-cross
algorithms is that, an algorithm, i.e. CCA, has such variants which are finite for the
whole, quite general class of problems with several different anti-cycling rules. This
leads to an interesting question: Could such variants of EPSA or MBUSA be defined
that solve QP or some more general classes of Linear Complementarity Problems
(LCP) in finite number of iterations? An equally important open research question is
whether the DNEPSA variant has a polynomial variant or not.

Additionally, the finiteness of the original quadratic simplex method developed
by Wolfe [123] was ensured by the means of perturbation. Recently, Illés & Nagy
have proved that the quadratic primal simplex algorithm is finite when s-monotone
index selection rules are applied [65]. Thus, another interesting research direction, as
it is illustrated in several papers [7], [32], [34], [45], [46], [39], is whether a variant
of EPSA (MBUSA) exist that solves QP (or sufficient LCP) in finite number of steps?

Goldfarb et al. [56] analyzed two pivot rules, the Inward Most Negative (IMN)
and the Altered IMN (AIMN) rules, for specializing the primal simplex algorithm for
the shortest path problem. Both versions require at most O(n 2) pivots and O(n3) time.
Also, Goldfarb & Hao [55], presented the first strongly polynomial primal simplex
algorithm for solving the maximum flow problem. Thus, another important question
that deserves to be investigated is whether an EPSA (or MBUSA) variant exist for
maximal flow problem (or MCNFP) with polynomial worst case complexity?. Some
preliminary work on this question has been already reported in [63], for feasibility
sub-problem of maximal flow problem with non-zero lower bounds. Also, other in-
teresting future research direction is the practical and theoretical comparison of these
polynomial variants of Simplex Algorithms (SAs) with the best variants of EPSAs
(or MBUSAs).

Also, fractional linear programming problems constitute another important class
of optimization problems that can be solved by applying pivot algorithms. This prob-
lem class and a variant of CCA for fractional linear programming problems have
been studied by Illés et al. in [66]. Following the ideas presented in this paper, one
more interesting question that deserves further investigation is whether an EPSA (or
MBUSA) variant exist for solving fractional linear programming problems in finite
number of iterations?

It is well known that simplex-type algorithms’ computational behavior can be
improved by modifying: (1) the initial solution and (2) the pivoting rule. Although
EPSA outperforms clearly the PSA, it has two major computational disadvantages.
These are:

– It is difficult to construct “good moving directions”. The two paths generated by
EPSA depend on the initial feasible direction, that is closely related to the initial
feasible vertex.
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– There is no known way of moving into the interior of the feasible region. This
movement will provide more flexibility in the searching of computationally good
directions.

However, more comprehensive computational investigations of EPSAs are still
required to be done on LP problems selected from NETLIB repository [48]. Further-
more, the performance of exterior-point algorithms for the MCNFP (i.e., NEPSA and
DNEPSA) can be improved by using special data structures for storing and updating
the necessary variables, (e.g., Fibonacci heaps). Moreover, it would be interesting to
develop a capacitated version of NEPSA and DNEPSA. Finally, another future re-
search direction is the parallel implementation of EPSAs. Parallelizing Simplex-type
algorithms is one of the most challenging problems.
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