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a b s t r a c t 

In this paper, a well known NP-hard problem, the Constrained Shortest Path problem, is studied. As effi- 

cient metaheuristic approaches are required for its solution, a new hybridized version of Particle Swarm 

Optimization algorithm with Variable Neighborhood Search is proposed for solving this significant com- 

binatorial optimization problem. Particle Swarm Optimization (PSO) is a population-based swarm intelli- 

gence algorithm that simulates the social behavior of social organisms by using the physical movements 

of the particles in the swarm. A Variable Neighborhood Search (VNS) algorithm is applied in order to op- 

timize the particles’ position. In the proposed algorithm, the Particle Swarm Optimization with combined 

Local and Global Expanding Neighborhood Topology (PSOLGENT), a different equation for the velocities 

of particles is given and a novel expanding neighborhood topology is used. Another issue in the appli- 

cation of the VNS algorithm in the Constrained Shortest Path problem is which local search algorithms 

are suitable from this problem. In this paper, a number of continuous local search algorithms are used. 

The algorithm is tested in a number of modified instances from the TSPLIB and comparisons with classic 

versions of PSO and with other versions of the proposed method are performed. Also, the results of the 

algorithm are compared with the results of a number of metaheuristic and evolutionary algorithms. The 

results obtained are very satisfactory and strengthen the efficiency of the algorithm. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Particle Swarm Optimization (PSO) is a population-based

warm intelligence algorithm that was originally proposed by

ennedy and Eberhart (1995) . PSO belongs to the class of swarm

ntelligence algorithms, which are inspired by the social dynamics

nd the emergent behavior in socially organized colonies. PSO

imulates the social behavior of social organisms by using the

hysical movements of the particles in the swarm. Its mechanism

nhances and adapts to the global and local exploration. The basic

SO and its variants have been successfully applied for continu-

us optimization problems ( Clerc & Kennedy, 2002; Eberhart &

hi, 2001; Janson & Middendorf, 2005; Parsopoulos & Vrahatis,

002; Shi & Eberhart, 1998b ). However, in the last years the PSO
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lgorithm has, also, been used in discrete optimization problems

 Consoli, Moreno-Perez, Darby-Dowman, & Mladenovic, 2008,

010 ). Recent comprehensive surveys for PSO can be found

n Banks, Vincent, and Anyakoha (2007) , Banks, Vincent, and

nyakoha (2008) , Poli, Kennedy, and Blackwell (2007) . The Particle

warm Optimization (PSO) is a very popular optimization method

nd its wide use, mainly during the last years, is due to a number

f advantages that this method has compared to other optimiza-

ion methods. Clerc and Kennedy (2002) proposed a constriction

actor in order to prevent explosion, to ensure convergence and

o eliminate the parameter that restricts the velocities of the par-

icles. Usually, in PSO-based algorithms only one swarm is used.

ecently, a number of works has been conducted that use more

han one swarm either using the classic PSO ( Brits, Engelbrecht,

 Van Den Bergh, 2007; Niu, Zhu, He, & Wu, 2007; Tillett, Rao,

ahin, & Rao, 2005 ) or using some variations of the classic PSO

ike the method called TRIBES ( Clerc, 2006 ). These methods have

ore exploration and exploitation abilities due to the fact that the

ifferent swarms have the possibility to explore different parts of

he solution space. 
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In this paper, a significant Combinatorial Optimization prob-

lem, the Constrained Shortest Path problem, is solved. One of the

main issues in the application of a Particle Swarm Optimization

algorithm in combinatorial optimization problems is the fact that

the basic equation of the Particle Swarm Optimization algorithm is

suitable for continuous optimization problems and the transforma-

tion of this equation in the discrete space may cause lose of infor-

mation and may, simultaneously, need a large number of iterations

and the addition of a powerful local search algorithm in order to

find an optimal solution. Usually, a path representation of the tour

is applied but in the Constrained Shortest Path problem the use

of this representation is proved not to be suitable for the efficient

application of the Particle Swarm Optimization algorithm. Thus, in

this paper a new representation based on the classic representa-

tion proposed by Shi and Eberhart (1998a) is presented which will

help to speed up the process without losing information. 

The algorithm is tested in a number of modified instances from

the TSPLIB. We compare the algorithm with the results of two clas-

sic variants of the Particle Swarm Optimization algorithm, the in-

ertia PSO ( Shi & Eberhart, 1998a ) and the constriction PSO ( Clerc

& Kennedy, 2002 ). Also, we compare the two versions of the pro-

posed algorithm (the one with the expanding procedure based

on the best particle and the other with the expanding procedure

based on each particle separately) with a variant of the algorithm

with the new equation but without the expanding procedure. Fi-

nally, the results of the proposed algorithm are compared with

the results of nine metaheuristic and evolutionary algorithms. The

rest of the paper is organized as follows: in Section 3 a review

about neighborhood search topologies in PSO is added and, also,

the new features of the proposed algorithm are given. In Section 2 ,

a detailed description of the Constrained Shortest Path problem is

presented. Section 4 presents an analytical description of the pro-

posed algorithm. A detailed computational study based on the well

known benchmark instances is presented in Section 5 . Finally, the

conclusions and future work follow in Section 6 . 

2. Constrained Shortest Path (CSP) problem 

The Shortest Path (SP) problem is one of the oldest and its

formulation often arises in combinatorial optimization ( Dijkstra,

1959 ). The objective of the SP problem is to find the least cost

path through a graph from a starting node to an ending node. A

number of variants has been proposed which, mainly, add one or

more constraints to the arcs. In this paper, the following variant

of the Shortest Path problem is solved. Given a graph G for which

each of its arcs is associated with two positive weights, cost and

delay, we consider the problem of selecting a set of k arc-disjoint

paths from a node s to another node t such that the total cost of

these paths is minimum and that the total delay of these paths

is not greater than a specified bound. This problem is called the

constrained shortest arc-disjoint path problem (CSDP). If we would

like to determine only one minimum cost path from node s to

node t , then, the problem is called Constrained Shortest Path prob-

lem (CSP). 

Computing CSP’s is fundamental to several important network

optimization problems in telecommunications and military air-

craft management systems, just to name a few. In addition, in

Formaneck and Cozzarin (2012) a Constrained Shortest Path prob-

lem is applied to training and technology adoption decisions by

firms. An algorithm for the efficient solution of the Constrained

Shortest Link-Disjoint Path Problem is presented in Xiao, Thulasir-

aman, and Xue (2006) . A variant of the Constrained Shortest Path

problem is the resource Constrained Shortest Path problem, which

is the problem of finding the shortest path between two nodes on

a network whenever the traversal of any arc or node consumes cer-

tain resources and the resources consumed along the path chosen
ust lie within given limits (both lower and upper limits) ( Beasley

 Christofides, 1989 ). In the literature, there is a number of papers

hat solve the resource constraint shortest path problem ( Avella,

occia, & Sforza, 2002 ). For a review about problems, software and

pplications please see Sifaleras (2013) . 

The CSP and its variants are used for air cargo planning and

outing, flight planning, etc. ( Cai, Zhang, Zhou, Cao, & Tang, 2012;

efebvre, Puget, & Vilim, 2011; Liu, Zheng, & Cai, 2013; Mo-

emmed, Sahoo, & Geok, 2008; 2010; Royset, Carlyle, & Wood,

009; Sura & Mahadevan, 2011; Wang, Lu, Zhang, Wang, &

ong Deng, 2014; Zhang, Zhang, Hu, Deng, & Mahadevan, 2013 ).

he CSP consists of finding a path P from a start node s ∈ N to an

nd node e ∈ N that minimizes the total cost, subject to not ex-

eeding a maximum resource consumption T . The CSP is known to

e NP-hard even for the case of one resource. Thus, much research

as been focused on designing efficient heuristic algorithms. 

Let G = (N, A ) be a directed network with n nodes and m arcs,

here N and A are the sets of nodes and arcs respectively. The CSP

an be formulated as the following integer program (IP): 

in 

∑ 

(i 1 , j 1 ) ∈ A 
l i 1 j 1 r i 1 j 1 (1)

.t 
∑ 

k 1 :(i 1 ,k 1 ) ∈ A 
r i 1 k 1 −

∑ 

j 1 :( j 1 ,i 1 ) ∈ A 
r j 1 i 1 = 

⎧ ⎨ 

⎩ 

1 , 

0 

−1 , 

i f i 1 = 1 

i f i 1 � = 1 , n 

i f i 1 = n 

(2)

∑ 

(i 1 , j 1 ) ∈ A 
d i 1 j 1 r i 1 j 1 ≤ T (3)

r i 1 j 1 ∈ 0 , 1 , ∀ (i 1 , j 1 ) ∈ A (4)

By r i 1 j 1 , l i 1 j 1 , and d i 1 j 1 we denote the binary variables, the cost,

nd the delay associated with each arc ( i 1 , j 1 ), respectively. Fur-

hermore, by T we denote the maximum value allowed for the de-

ay. 

Exact solution strategies for the CSP can be classified into

ne of two main categories, i.e., Dynamic Programing (DP) and

agrangian relaxation. Methods based on DP are also known as

abel-setting or label-correcting algorithms ( Joksch, 1966 ). Meth-

ds based on Lagrangian relaxation solve the integer programing

ormulation of the problem ( Carlyle, Royset, & Wood, 2008 ). In

andler and Zang (1980) and Santos, Coutinho-Rodrigues, and Cur-

ent (2007) two different Shortest Path methods have been pro-

osed for the solution of the problem. Another exact algorithm

as been presented in Lozano and Medaglia (2013) . Since the CSP

s NP-hard, several researchers have, also, tried other algorithmic

pproaches including approximate algorithms and metaheuristics.

uring the last years, it has become evident that a skilled combi-

ation of a metaheuristic with other optimization techniques, a so

alled hybrid metaheuristic ( Blum, Puchinger, Raidl, & Roli, 2011 ),

an provide a far more efficient behavior. 

. Local neighborhood topologies in PSO and new features of 

he proposed algorithm 

In the PSO algorithm there are two kinds of population topolo-

ies: the global best ( gbest ) population topology and the local best

 lbest ) population topology ( Engelbrecht, 2007 ). In the gbest PSO,

he neighborhood for each particle is the entire swarm. The social

etwork employed by the gbest PSO reflects the star topology in

hich all particles are interconnected. Thus, the velocities of each

article are updated based on the information obtained from the

est particle of the whole swarm. In the lbest PSO, each particle

as a smaller neighborhood. In this case, the network topology
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orresponds to the ring topology where each particle communi-

ates with only a limited number of other members of the swarm.

he communication is usually achieved using the particles’ indices.

hus, if the size of the neighborhood is equal to three, the selected

eighbors for the particle i are the particles i − 1 and i + 1 . Thus,

he velocities of each particle are updated based on the informa-

ion obtained from the best particle of the neighborhood. The use

f particle’s indices for the creation of the neighborhood is pre-

erred because it is very difficult and computationally expensive

o calculate distances between all the particles to find the neigh-

ors of each particle. Furthermore, if the indices are used, then,

 particle may belong to more than one neighborhood having the

ossibility of spreading a good solution among different neighbor-

oods. Usually, the gbest PSO converges faster than the lbest PSO.

n the other hand, the lbest PSO has larger diversity in its solu-

ions and, thus, it is more difficult to be trapped in local minima

 Engelbrecht, 2007 ). 

In the past, a number of algorithms have been published us-

ng local neighborhood topologies but most of them are applied in

lobal optimization problems or combinatorial optimization prob-

ems and not in routing problems as the ones studied in this paper.

he first paper that designs and investigates neighborhood topolo-

ies (circle, wheel, star and random) was published by Kennedy

1999) . In a following work Kennedy and Mendes (2002) proposed

 number of population topologies. Mendes, Kennedy, and Neves

2004) proposed another local neighborhood topology, denoted

s Full Informed Particle Swarm Optimization algorithm (FIPS).

he first one that published an expanding neighborhood topology

or the solution of global optimization problems was Suganthan

1999) . Another two earlier adaptations of local neighborhood

opologies are presented in Hu and Eberhart (2002) and Peram,

eeramachaneni, and Mohan (2003) . In recent years, the adapta-

ions of local neighborhood topologies in PSO have been increased.

ore precisely, in Wang, Sun, Li, Rahnamayan, and Pan (2013) a

ybrid PSO algorithm is presented, which is denoted as DNSPSO

here a diversity enhancing mechanism and neighborhood search

trategies are used in order to achieve a trade-off between ex-

loration and exploitation abilities. An improved version of this

trategy is presented in Tran, Wu, and Wang (2013) , where an

nhanced Particle Swarm Optimization with diversity and neigh-

orhood search (EPSODNS) approach was presented. In Liang, Qin,

uganthan, and Baskarr (2006) a Comprehensive Learning Parti-

le Swarm Optimizer (CLPSO) was presented. An improvement of

his method was proposed in Nasir et al. (2012) , denoted as Dy-

amic Neighborhood Learning Particle Swarm Optimizer (DNLPSO),

hich uses a learning strategy whereby all other particles’ histori-

al best information is used to update a particle’s velocity. In Wang

t al. (2014) a multi-layer PSO method (MLPSO) consisting of global

LPSO and local MLPSO by increasing the swarm layers from two

o multiple layers was proposed. Another PSO algorithm using a lo-

al search topology was presented in Li (2010) where a ring topol-

gy is used. In Lim and Isa (2014b) , a Particle Swarm Optimiza-

ion with increasing topology connectivity (PSO–ITC) was proposed

o solve unconstrained single-objective optimization problems with

ontinuous search space while in Lim and Isa (2014a) a PSO de-

oted as PSO with Adaptive Time-Varying Topology Connectivity

PSO–ATVTC) was proposed where the ATVTC module is used in

rder to balance the algorithm’s exploration/exploitation searches

y varying the particle’s topology connectivity with time accord-

ng to its searching performance. A time adaptive topology is pro-

osed for constrained optimization problems in Bonyadi, Li, and

ichalewicz (2014) . In Jiang, Wang, and Wang (2013) an age-group

opology Particle Swarm Optimization algorithm (PSOAG) is pre-

ented where the concept of age is used to measure the search

bility of each particle in local area. The particles are divided in

ifferent age-groups by their age and particles in each age-group
an only select the ones in younger groups or their own groups

s their neighborhoods ( Jiang et al., 2013 ). A cyclic neighborhood

opology is presented in Maruta, Kim, Song, and Sugie (2013) . An

nalysis of local best topologies is presented in Ghosh, Das, Kundu,

uresh, and Abraham (2012) . 

In Marinakis and Marinaki (2013b) , a Particle Swarm Optimiza-

ion with Expanding Neighborhood Topology (PSOENT) algorithm

as presented and used for the solution of the Permutation Flow-

hop Scheduling Problem (PFSP). In this algorithm, the advantages

f a local search neighborhood topology and of a global search

eighborhood topology are used. The algorithm starts with a local

earch neighborhood topology where the neighborhoods for each

article are equal to 2 and in each iteration the neighborhood is

ncreased (expanded) until it becomes equal to the number of par-

icles. Then, if the maximum number of iterations has not yet been

eached, the neighborhood is initialized, again, from a neighbor-

ood equal to 2 and it follows the same procedure until the max-

mum number of iterations has been reached. Thus, there are no

onsecutive iterations in which the size of the neighborhood is the

ame. With this procedure each particle has more exploitation abil-

ties by moving for a number of iterations in small swarms inside

he whole swarm. Also, this procedure increased the exploration

bilities as for a number of iterations all the particles are mov-

ng as a single swarm. By using an expanding neighborhood topol-

gy, each particle participated in each iteration in more than one

warm and, thus, the interchange of the information between the

warms is becoming easier. 

In this paper, we modify the neighborhood topology presented

n Marinakis and Marinaki (2013b) . In Marinakis and Marinaki

2013b) , a particle is affected by the best local neighborhood when

he number of neighbors is not equal to the whole swarm, and by

he best particle, otherwise. In the proposed algorithm, the Parti-

le Swarm Optimization with combined Local and Global Expand-

ng Neighborhood Topology (PSOLGENT), we give a different equa-

ion for the velocities where a fourth term has been added in the

lassic equation which represents the local neighbors. Thus, in the

ew equation the particle, except from a movement towards a new

irection, a movement towards his previous best and a movement

owards the global best of the swarm, could move towards the lo-

al best of its neighborhood. Another difference of the proposed

lgorithm from the algorithm proposed in Marinakis and Marinaki

2013b) is that in the PSOENT algorithm the neighborhood is ex-

anding with the number of iterations, while in the proposed al-

orithm the neighborhood is expanding based on the quality of the

olutions. We test two different alternatives. In the first one, the

eighborhood is expanding when the optimal particle is not im-

roved for a specific number of iterations ( it num 

). In the second

lternative, each particle has its own neighborhood. Thus, while all

articles begin with the same neighborhood topology when a so-

ution (particle’s position) of a particle is not improved for a con-

ecutive number of iterations, then, only its neighborhood is ex-

anding. With this strategy there is a possibility of having different

eighborhood topologies for each particle which is another nov-

lty of the proposed algorithm. This idea of changing the neigh-

orhood topology of the swarm not with the number of iterations

ut when the swarm cannot improve the global (first alternative)

r personal best solution (second alternative) is inspired by the ba-

ic idea of changing a neighborhood when the algorithm is trapped

n a local optimum in the Variable Neighborhood Search (VNS) al-

orithm ( Hansen & Mladenovi ́c, 2001 ). Thus, as in VNS algorithm

he neighborhood is expanding in order to find a better local op-

imum, in the proposed algorithm the search for a better direction

hat the particle will move in its neighborhood is expanding in or-

er to search in a larger neighborhood when the particle (position

f the particle) is trapped in a local optimum. This incorporation

f one of the basic characteristics of Variable Neighborhood Search
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algorithm in the Particle Swarm Optimization gave a powerful ver-

sion of PSO algorithm. Another characteristic of VNS algorithm that

is incorporated in the PSO is the reinitialization of the search for

the local best neighborhood. In the proposed algorithm, when the

number of neighbors becomes equal to the number of particles,

then, the search of the local best neighborhood is reinitialized from

a very small neighborhood. In each iteration of the algorithm the

search is realized from a different point (shaking procedure of the

VNS) as the current position of each particle is different in each

iteration. 

In addition, the VNS algorithm is also applied in order to opti-

mize the position of the particles. The basic idea of the VNS algo-

rithm is the successive search in a number of neighborhoods of a

solution. It should be noted that in a Particle Swarm Optimization

algorithm with the term “neighborhood” it is meant the topology

of the swarm (the particles’ position that affect another particle’s

position in the process of finding the optimum), while in a Variable

Neighborhood Search algorithm with the term “neighborhood” it is

meant different numbers of local search algorithms. In the rest of

the paper when the term “neighborhood” is used together with the

term “topology” we will refer to the Particle Swarm Optimization

part of the algorithm and when it is used together with the term

“structure” we will refer to the local search algorithms that are

used inside the Variable Neighborhood Search algorithm. Another

issue in the application of the VNS algorithm in the Constrained

Shortest Path problem is which local search algorithms are suitable

for this problem. More precisely, could it be used an algorithm like

2-opt, which is the most usually used algorithm for combinatorial,

and especially routing, problems? As it is proved from the results

which will be analyzed in more details in Section 5.2 , the answer

is that 2-opt or 1–0 relocate or 1–1 exchange are not suitable for

the problem. This is due to the fact that the VNS algorithm is ap-

plied in a solution which comes from a continuous optimization

algorithm, the PSO, after its transformation to discrete space as it

will be explained in Sections 4.1 and 4.2 . But, then, which local

search will be used for the problem? In this paper, we use a num-

ber of continuous optimization local search procedures which are

directly connected with the two novel parts of the PSO algorithm,

the equation of velocities and the expanding neighborhood topol-

ogy of the particles. Thus, the interaction of the VNS algorithm and

the Particle Swarm Optimization algorithm led us in a hybridized

algorithm. 

4. Particle Swarm Optimization with combined Local and 

Global Expanding Neighborhood Topology (PSOLGENT) 

In this section, the proposed hybrid Particle Swarm Optimiza-

tion algorithm, the PSO with combined Local and Global Expanding

Neighborhood Topology (PSOLGENT), for the solution of the CSP is

given. In a PSO algorithm, initially, a set of particles is created ran-

domly where each particle corresponds to a possible solution. Each

particle has a position in the space of solutions and moves with

a given velocity. One of the key issues in designing a successful

PSO for the Constrained Shortest Path problem is to find a suitable

mapping between Constrained Shortest Path solutions and parti-

cles in PSO (see Section 4.1 ). The position of each particle is repre-

sented by a x ij , i = 1 , 2 , . . . , NP and j = 1 , 2 , . . . , N ( NP is the popu-

lation size and N is the number of nodes), and its performance is

evaluated on the predefined fitness function ( f ( x ij )) (see Section 2 ,

the Eq. (1) and Section 4.1 for a complete enumeration of the fit-

ness function for the specific problem). The velocity v i j represents

the changes that will be made to move the particle from one po-

sition to another. Where the particle will move depends on the

dynamic interaction of its own experience and the experience of

the whole swarm. There are three possible directions that a par-

ticle can follow: to follow its own path, to move towards the best
osition it had during the iterations ( pbest ij ) or to move to the best

article’s position ( gbest j ). In this paper, a new velocity equation is

roposed where a fourth direction that a particle can follow (the

est local neighbor of each particle ( lbest ij )) is added. Initially, the

outes of each particle are created with random node sequences

nd the particles’ velocities are initialized with zeros. 

In the classic Particle Swarm Optimization ( Kennedy & Eberhart,

995 ), the equation of velocities is given from the following equa-

ion: 

 i j (t + 1) = v i j (t) + c 1 rand 1 (pbest i j − x i j (t)) 

+ c 2 rand 2 (gbest j − x i j (t)) (5)

here c 1 and c 2 are the acceleration coefficients, rand 1 and rand 2 
re two random variables in the interval [0, 1]. The acceleration

oefficients c 1 and c 2 control how far a particle will move in a sin-

le iteration. Low values allow particles to roam far from target re-

ions before being tugged back, while high values result in abrupt

ovement towards target regions ( Kennedy & Eberhart, 1995 ). 

In this paper, except of the proposed equation of velocities that

t will be described in the following, two other variants of the

article Swarm Optimization are used for comparisons purposes.

hese variant use the following equations of velocities. 

The first one is the Inertia Particle Swarm Optimization (iPSO)

 Shi & Eberhart, 1998a ): 

 i j (t + 1) = w v i j (t) + c 1 rand 1 (pbest i j − x i j (t)) 

+ c 2 rand 2 (gbest j − x i j (t)) (6)

he difference of this equation from Eq. (5) is the use of the inertia

eight w . Initially, the inertia weight has a large value in order to

ffect as much as possible the velocity and, subsequently, the po-

ition of each particle. The inertia weight is decreased during the

terations as it is possible the particles to converge very fast in a

warm and a large value of the velocity may dissolve this swarm.

inally, in the last iterations the inertia weight is almost equal to

ero as it is preferred not to affect at all in the velocity and in

he position of each particle. The inertia weight w is, also, used to

ontrol the convergence behavior of the PSO. A number of differ-

nt alternatives for the definition of w has been proposed. These

lternatives vary from constant values to different ways of increas-

ng or decreasing of w during the iterations. In this paper, in order

o exploit more areas in the solution space, the inertia weight w is

pdated according to the following equation: 

 = w max − w max − w min 

iter max 
× t (7)

here w max , w min are the maximum and minimum values of iner-

ia weight. 

The second variant is the Constriction Particle Swarm Optimiza-

ion (cPSO) ( Clerc & Kennedy, 2002 ): 

 i j (t + 1) = χ(v i j (t) + c 1 rand 1 (pbest i j − x i j (t)) 

+ c 2 rand 2 (gbest j − x i j (t))) (8)

here 

= 

2 

| 2 − c − √ 

c 2 − 4 c | and c = c 1 + c 2 , c > 4 (9)

The difference of this variant from the two previous variants

s the use of a limiting factor ( χ ), called constriction factor. The

onstriction factor is used in order to prevent explosion, to en-

ure convergence of the algorithm and to eliminate the factors that

imit the velocities of the particles. 

In this paper, a fourth term in the equation of velocities is

dded that represents the interaction of each particle with its local

est neighbor as it is described in Section 3 . Thus, the proposed

quation of PSO becomes (PSOLGENT): 

v i j (t + 1) = χ1 (v i j (t) + c 1 rand 1 (pbest i j − x i j (t)) (10)
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Table 1 

Particle Swarm Optimization (PSOLGENT) for the Constrained Shortest 

Path problem. 

Initialization 

Select the number of particles in each swarm 

Initialize the position and velocity of each particle 

Calculate the initial fitness function of each particle 

Find the best position of each particle 

Find the best particle of the entire swarm 

Find the local best neighborhood for each particle 

Main phase 

Do while the maximum number of iterations has not be reached 

Calculate the velocity of each particle 

Calculate the new position of each particle 

Convert particles’ positions in discrete space 

Calculate the new fitness function of each particle 

Improve the solutions using VNS 

Update the best position of each particle 

Find the best particle of the whole swarm 

Find the local best neighborhood for each particle 

Enddo 

Return the best particle 
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 c 2 rand 2 (gbest j − x i j (t)) + c 3 rand 3 (lbest i j − x i j (t))) 

here c 3 is the acceleration coefficient, rand 3 is a random param-

ter in the interval [0, 1], t is the iterations? counter and χ1 is the

onstriction factor, i.e.: 

1 = 

2 

| 2 − c − √ 

c 2 − 4 c | and c = c 1 + c 2 + c 3 , c > 4 (11) 

A particle’s best position ( pbest ij ) in a swarm is calculated from

he equation: 

best i = 

{
x i (t + 1 ) , if f (x i (t + 1)) < f (x i (t)) 

pbest i , otherwise 
(12) 

The optimal position of the whole swarm in the CSP at time t

s calculated from the equation: 

best ∈ { pbest 1 , pbest 2 , . . . , pbest NP }| f ( gb est ) 

= min { f ( pb est 1 ) , f ( pb est 2 ) , . . . , f ( pb est NP ) } (13) 

nd the lbest ij in Eq. (10) is calculated as follows: 

best i ∈ { Neigh i | f ( lb est i ) = min { f (x i ) } , ∀ x ∈ Neigh i } (14) 

nd the neighbor Neigh i is defined by Engelbrecht (2007) : 

eigh i = { pbest i −n Neigh i 
, pbest i −n Neigh i 

+1 , . . . , pbest i −1 , 

pbest i , pbest i +1 , . . . , pbest i + n Neigh i 
} (15) 

In the proposed Particle Swarm Optimization with combined

ocal and Global Expanding Neighborhood Topology (PSOLGENT)

lgorithm, an issue that is very important to evaluate is the way

he neighbors of each particle are calculated as it is described in

ection 3 . For comparison purposes we use, also, a variant of the

roposed algorithm with static neighborhood topology (PSOLGNT). 

The position of a particle changes using the following equa-

ion: 

 i j (t + 1) = x i j (t) + v i j (t + 1) (16) 

As the problem is a combinatorial optimization problem and

he positions of the particles are in continuous form, we use the

ollowing sigmoid function for the transformation of the solutions

 Shi & Eberhart, 1998a ): 

ig(x i j ) = 

1 

1 + exp(−x i j ) 
(17) 

nd, then, the position is calculated by: 

 i j (t + 1) = 

{
1 , if rand 4 < sig(x i j ) 

0 , if rand 4 ≥ sig(x i j ) 
(18) 

here rand 4 is a random number in the interval [0, 1] and s ij is

he position of each particle in discrete form. A Variable Neigh-

orhood Search strategy is used in order to improve the solutions

particles’ positions) produced from the Particle Swarm Optimiza-

ion algorithm (see Section 4.2 ). In each iteration of the algorithm

he optimal solution of the whole swarm and the optimal solution

f each particle are kept. The algorithm stops when a maximum

umber of iterations has been reached. A pseudocode of the pro-

osed algorithm is presented in Table 1 . 

.1. Example of a solution and path representation 

The PSO algorithm works using continuous values. Thus, ini-

ially, the solutions are randomly placed in the solution space and,

hen, in order to calculate the fitness function and the feasibility of

 solution, the values are transformed into discrete space by using

he Eqs. (17) and (18) . In all iterations of the algorithms we have

wo different vectors that represent the solution. The one vector

as continuous values and it is used in all steps of the algorithms
nd the other vector has discrete values and it is used only for the

alculation of the fitness function. 

For example, if we have the following solution in the continu-

us space: 

0.87 −3 2.1 2.75 −0.048 0.35 −1.29 1.11 

ith the use of Eq. (17) the values are transformed in the interval

0,1] as follows: 

0.704 0.047 0.890 0.939 0.488 0.586 0.215 0.752 

nd, then, for each node a different random number ( rand 4 ) in the

0,1) is created, for example: 

0.576 0.187 0.918 0.876 0.325 0.634 0.129 0.359. 

Finally, as all the solutions are represented with 0 and 1 values

here a zero value means that the node does not belong to the

hortest path while a value equal to 1 means that this node be-

ongs to the path, from Eq. (18) the vector is transformed in the

iscrete space as follows: 

1 0 0 1 1 0 1 1 

hich means that the shortest path is the solution 

1 4 5 7 8 

The starting and ending nodes have always values equal to 1

nd as the distances are Euclidean we delete any direct arc from

he starting node to the ending node as we will explain in more

etail in Section 5.1 . 

We do not know yet the fitness function (cost of the solution)

nd the feasibility of the solution for this example. Initially, in or-

er to test the feasibility of the solution, we have two constraints

 Eqs. (2 ) and (3) ). The first constraint is never violated through the

tructure of the solution vector in discrete space. For the second

onstraint we have to calculate the quantity d i 1 j 1 r i 1 j 1 for all acti-

ated (value equal to 1) nodes in the solution. Thus, in our ex-

mple we have to calculate d 14 r 14 + d 45 r 45 + d 57 r 57 + d 78 r 78 . This

uantity has to be less than a value T . If this condition holds, then,

he solution is feasible and the fitness function is calculated, other-

ise, the solution is not feasible and a penalty function is added in

he fitness function in such a way that this solution will never be
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selected as a best solution. The reason that we did not reject a non

feasible solution is that we would not like to repeat the procedure

of the construction of a solution a number of times in an iteration

which will slow down the algorithm. The fitness function is calcu-

lated by the Eq. (1) . In our example a complete enumeration of the

fitness function is l 14 r 14 + l 45 r 45 + l 57 r 57 + l 78 r 78 . 

In the local search phase of the algorithm other sequences of

the selected nodes could be examined. The reason that we begin

from a sequence of nodes in which the nodes are used in ascend-

ing order is that this representation is the most efficient for the

PSO algorithm. However, the sequence in an ascending order could

produce a not good solution, thus, in the local search phase a rear-

rangement of the selected nodes could be performed (keeping the

starting and ending nodes the same) and other sequences of the

nodes (for example 1–7–5–4–8 and 1–5–7–4–8) could be exam-

ined. 

4.2. Variable Neighborhood Search (VNS) 

A Variable Neighborhood Search (VNS) ( Hansen & Mladenovi ́c,

2001; Hansen, Mladenovi ́c, & Moreno-Pérez, 2010 ) algorithm is ap-

plied in order to optimize the particles’ position. The search is ap-

plied either with random or with a more systematical manner in

order the solution to escape from a local minimum. This method

takes advantage of the fact that different local search algorithms

will lead to different local minima. The first issue that we have to

answer in our problem is which are the local search strategies that

will combine the neighbourhood structure. Initially, a number of

classic local search algorithms for combinatorial optimization prob-

lems (2-opt; 1–0 relocate; and 1–1 exchange) are tested indepen-

dently and, afterwards, they are tested within three different VNS

frameworks by using the inertia PSO. As it will be presented an-

alytically in Section 5.2 , the local search algorithms and the VNS

algorithm did not improve the results significantly and in some

cases they did not improve the results at all. This is due to the

fact that the Particle Swarm Optimization algorithm is a continu-

ous optimization algorithm and the transformation in the discrete

space mainly lead to lose information and to, probably, destroy a

good solution and, thus, a discrete local search does not lead to im-

provement of the solutions. This is the main reason why there are

not so many applications of PSO algorithm in routing problems. An

efficient way that gave very good results to a number of problems

(Probabilistic Traveling Salesman Problem, Marinakis and Marinaki,

2010b ; Vehicle Routing Problem, Marinakis and Marinaki, 2010b;

2013a; Marinakis, Marinaki, and Dounias, 2010 ; and Location Rout-

ing Problem, Marinakis & Marinaki, 2008 ) is to replace the equa-

tion of positions with a Path Relinking ( Glover, Laguna, & Marti,

2003 ) and to change the role of equation of velocities. In the last

case, the 2-opt, the 1–0 relocate, the 1–1 exchange and every other

local search algorithm of this kind could be used in a VNS frame-

work effectively. However, in the problem studied in this paper, as

the path representation of the route is not used in the representa-

tion of the solutions, the path relinking algorithm cannot be used. 

In order to avoid the losing of information, it is decided to re-

tain the continuous values in local search phase and to use local

search algorithms suitable for continuous optimization problems.

Six different local search equations are used (LS1, . . . , LS6). All the

algorithms are applied for a number of iterations ( ls num 

). The first

one uses a transformation of the solution inside the solution space.

The second one combines the current solution with the global best

particle and the third one combines the current solution with the

local best particle. The fourth is a combination of the current so-

lution, the global best and the local best particle. The fifth and the

sixth are kinds of crossover with the local best and the global best

particle, respectively. The methods used are described with the fol-
owing equations, respectively: 

S1: x i j (t 1 + 1) = rand 5 ∗ x i j (t 1 ) (19)

S2: x i j (t 1 + 1) = rand 6 ∗ gbest j + (1 − rand 6 ) ∗ x i j (t 1 ) (20)

S3: x i j (t 1 + 1) = rand 7 ∗ lbest i j + (1 − rand 7 ) ∗ x i j (t 1 ) (21)

S4: x i j (t 1 + 1) 

= rand 8 ∗ rand 9 ∗ gbest j 

+ rand 8 ∗ (1 − rand 9 ) ∗ lbest i j + (1 − rand 8 ) ∗ x i j (t 1 ) (22)

S5: x i j (t 1 + 1) = 

{
lbest i j , if rand 10 ≤ 0 . 5 

x i j (t 1 ) , otherwise. 
(23)

S6: x i j (t 1 + 1) = 

{
gbest j , if rand 11 ≤ 0 . 5 

x i j (t 1 ) , otherwise. 
(24)

here t 1 is the local search iteration number, rand 6 , . . . , rand 11 are

andom numbers in the interval [0,1] and rand 5 is a random num-

er in the interval [ −1,1]. Two different approaches of the VNS al-

orithm were selected. The first one is the classic version where

he VNS algorithm begins from a local search algorithm and when

 local optimum is found the algorithm proceeds to the next local

earch algorithm, while the second is a Sequential version of VNS

SVNS), where in each iteration all the local searches are called se-

uentially. In each approach, two versions are selected, in the one

VNS1 and SVNS1) only the continuous local search algorithms are

sed while in the other (VNS2 and SVNS2) both continuous and

iscrete local search algorithms are used. Also, three versions with

nly discrete local search algorithms are used (DVNS1–DVNS3). 

. Computational study 

.1. Experimental design 

The algorithm (implemented in Fortran 90) was tested on the

1 (modified) benchmark instances from the TSPLIB. We trans-

ormed the instances in order to be suitable for the CSP problem.

he number of nodes is between 51 and 439. We have two end-

odes for each instance, the first and the last of each file. There

s no connection between the first and the last node. There is only

ne direction between two nodes. The cost is the distance between

wo nodes. We added a random value for each arc which is the

elay of each arc. Finally, we added a value T different for each

nstance which is dependent from the number of nodes and the

elay values. 

The parameters of the proposed algorithm are selected after

horough testing. A number of different alternative values were

ested and the ones selected are those that gave the best compu-

ational results concerning both the quality of the solution and the

omputational time needed to achieve this solution. The selected

arameters for all algorithms are presented in Table 2 . In this ta-

le, in the places where there are not any values, these parameters

re not used in the corresponding algorithm. In the first column

he name of the parameter is given. 

.2. Computational results 

Initially, in the inertia PSO, a number of classic local search al-

orithms for combinatorial optimization problems are tested (the

-opt, the 1–0 relocate and the 1–1 exchange) independently and,



Y. Marinakis et al. / European Journal of Operational Research 261 (2017) 819–834 825 

Table 2 

Parameters for all algorithms. 

iPSO cPSO PSOLGNT PSOLGENT1 PSOLGENT2 

Particles 100 100 100 100 100 

Iterations 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

ls num 10 10 10 10 10 

it num – – – 10 10 

Neighbors – – 3 3–99 3–99 

c 1 2.0 2.05 1.35 1.35 1.35 

c 2 2.0 2.05 1.35 1.35 1.35 

c 3 – – 1.40 1.40 1.40 

w max 0.9 – – – –

w min 0.01 – – – –
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Table 4 

Computational results without local search. 

a280 pr439 lin105 kroA200 ts225 

iPSO 814.16 49574.99 1750.7 10306.54 69380.99 

cPSO 919.35 55432.42 1742.875 4356.84 53307.67 

PSOLGNT 733.5 36445.25 1742.875 4311.05 51661.29 

PSOLGENT1 627.74 4 4 405.02 1742.875 3563.01 31657.91 

PSOLGENT2 596.73 43195.92 1742.875 4176.7 50679.23 
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fterwards, these three algorithms were used in three different

NS frameworks. In Table 3 , the twenty-one instances described

reviously are presented. We tested these local search algorithms

ith the use of the inertia PSO as we would like to test their per-

ormance using the most classic variant of Particle Swarm Opti-

ization. From this table, it is observed that these local search

lgorithms are not suitable for the problem. The results without

ocal search are, in some instances, similar to the results with a

ocal search but in some instances are even better than the re-

ults with a local search. This is due to the fact that the Particle

warm Optimization algorithm is a continuous optimization algo-

ithm and the transformation in the discrete space, mainly, leads

o losing information and to, probably, destroying a good solution

nd, thus, a discrete local search does not lead to improvement of

he solutions. It is very difficult to hybridize one continuous opti-

ization algorithm and a local search which is suitable for combi-

atorial optimization problems. There is a number of combinato-

ial optimization problems in the literature ( Marinakis & Marinaki,

008; 2010a; 2010b ) but all of them are using a path representa-

ion of the solution and other features which give a more effective

ybridization. However, as the path representation is not suitable

or the studied problem, it is concluded from Table 3 that the use

f only discrete local search algorithms, either alone or in com-

ination in a VNS framework, will not help us for the research.

hus, a number of continuous local search algorithms are devel-

ped (see Section 4.2 ) and from these algorithms different frame-

orks of VNS are constructed. 

In Table 4 and in Figs. 1 –3 the results of the five variants of

article Swarm Optimization algorithm without any local search or
Table 3 

Computational results using inertia PSO. 

Without 2-opt 1–0 relocate 1

local search 

eil51 16.06 16.06 16.06 1

eil76 25.49 25.49 25.49 2

kroA100 2643.82 2643.82 2644.56 2

kroB100 1248.78 1248.78 1248.78 1

kroC100 1650.46 1653.27 1650.46 1

kroD100 2718.8 2720.38 2720.38 2

kroE100 3499.36 3498.77 3497.39 3

eil101 15.81 16.63 26.54 2

lin105 1744.12 1914 1743.3 1

pr144 11590.19 11161.6 17185.33 2

kroA150 1474.44 1854.23 1835.66 2

pr152 13719.44 19992.6 21176.07 2

kroA200 6990.5 6052.03 11283.61 1

kroB200 4666.62 8965.21 15120.65 5

ts225 51504.01 38735.87 33053.6 5

pr226 29769.61 32862.08 31366.39 4

Gil262 328.85 393.13 1060.05 8

pr264 20592.55 14825.74 17532.44 1

A280 829.57 841.48 818.64 8

pr299 23467.86 24556.92 21627.41 2

pr439 44653.69 40316.01 4 96 82.03 5
ariable Neighborhood Search algorithm are presented. In all ta-

les and figures of this section with iPSO is denoted the inertia

SO, with cPSO is denoted the constriction PSO, with PSOLGNT is

enoted the proposed algorithm with one of the two basic fea-

ures, i.e. only the new equation of velocities and with static num-

er of local neighborhoods, with PSOLGENT1 is denoted the pro-

osed algorithm with both new features activated and the expand-

ng procedure depending from the optimal particle, while with

SOLGENT2 is denoted the proposed algorithm with both new fea-

ures activated and the expanding procedure depending from the

ersonal best position of each particle independently. All figures

f this section present how the solution of the optimal particle is

mproved during the iterations. The worst of all algorithms, con-

erning both the quality of the solution and the iterations needed

o find its best solution, is the inertia PSO. Another interesting

utcome of these figures is that in the constriction PSO, although

he best solution is improved fast in the first 200 iterations, in

he remaining it is trapped in a local optimum which in two fig-

res ( Figs. 1 and 2 ) is worst even from the solution found using

he inertia PSO. The constriction PSO found a competitive solution

ompared to the solutions of PSOLGNT and PSOLGENT2 in instance

s225. 

The three proposed variants (PSOLGNT, PSOLGENT1, PSOL-

ENT2) perform better than the other two (iPSO, cPSO) in all in-

tances. We could not say that one of the proposed methods out-

erforms clearly the other two methods, as in each figure one

f them finds the optimal solution (in Fig. 1 the PSOLGENT2, in

ig. 2 the PSOLGNT and in Fig. 3 the PSOLGENT1). In conclusion,

e could say that the PSOLGENT1 performs slightly better than

he other two algorithms both in the best solution found and in

he convergence speed to its best solution. 
–1 exchange Classic SVNS RVNS 

VNS 

6.06 16.06 16.06 16.06 

5.49 25.86 26.43 25.49 

644.56 2643.82 2649.67 2643.82 

248.78 1270.49 1269.49 1248.78 

650.46 1650.46 1653.27 1653.27 

718.8 2720.38 2720.38 2718.8 

502.61 3497.39 3499.36 3497.39 

6.54 15.81 15.81 15.81 

856.91 1742.89 1742.87 1742.89 

0535.44 11061.19 11456.08 11132.76 

162.44 1382.98 1382.63 1382.63 

0234.59 13719.13 13719.19 16767.91 

0222.58 7348.06 6978.04 8152.19 

479.43 6089.13 7680.26 8542.98 

8715.03 45063.23 46072.51 48883.41 

2188.44 28908.95 26923.78 30875.91 

73.1 845.36 692.8 798.51 

8712.27 18122.91 18549.12 18007.49 

93.51 929.38 828.81 550.19 

6305.97 22889.89 23437.74 20576.8 

6850.9 48176.53 39724.18 43018.71 
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Fig. 1. Results of the five variants of PSO without local search for the instance a280. 
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Fig. 2. Results of the five variants of PSO without local search for the instance pr439. 
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In Table 5 the analytical results for a specific instance, the

a280, for all variants of PSO and all combinations with simple lo-

cal search algorithms and Variable Neighborhood Search methods

are presented. In this table, in the places where no values exist it

was impossible to run this variant of PSO with this combination

of local search algorithms. This is due to the fact that the local

search algorithms from LS2 to SVNS2 need always to find the lo-

cal best particle of each particle which is impossible in the classic

versions of iPSO and cPSO. In VNS1 and SVNS1 only the continu-

ous local search is used while in VNS2 and SVNS2 both continuous
and discrete local searches are used. From Table 5 it is clear that r  
hen a continuous local search algorithm is used the results are

mproved significantly, especially, compared to the results found

ithout local search (WLS first row of the table). Also, the results

f VNS using discrete local search algorithms are worse than the

esults obtained when only a single continuous local search algo-

ithm is used. A very interesting outcome is concluded from this

able when each row of the table is observed. In each row the re-

ults of all PSO variants with the use of the same local search algo-

ithm are given. For example, when all algorithms use each one of

he DVNS local search procedures the algorithm that found better

esults is the iPSO variant. However, the results of the iPSO with
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Fig. 3. Results of the five variants of PSO without local search for the instance ts225. 

Table 5 

Computational results for the instance a280. 

Method iPSO cPSO PSOLGNT PSOLGENT1 PSOLGENT2 

WLS 814.16 919.35 733.5 627.74 596.73 

2-opt 969.53 1298.51 926.97 1025.27 911.73 

1–0 relocate 1334.2 1343.03 985.66 957.33 912.49 

1–1 exchange 93.47 650.66 342.25 214.37 380.44 

DVNS1 841.91 1186.05 924.62 966.02 941.25 

DVNS2 669.83 1339.15 873.18 988.05 931.59 

DVNS3 792.94 1286.14 817.09 863.4 850.07 

LS1 1004.4 1093.47 630.2 731.07 700.98 

LS2 – – 28.94 28.94 34.08 

LS3 – – 28.94 28.94 28.94 

LS4 – – 58.28 28.94 28.94 

LS5 – – 646.53 675.01 466.26 

LS6 – – 466.26 675.01 646.53 

VNS1 – – 54.8 28.94 34.08 

VNS2 – – 77.68 58.28 28.94 

SVNS1 – – 28.94 28.94 28.94 

SVNS2 – – 28.94 28.94 28.94 
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ny of these local search procedures are worst than the best solu-

ion found from other PSO variants using a different local search

rocedure. Thus, the iPSO algorithm using discrete VNS procedures

ives better results than the other PSO variants but is stuck in a

ad local optimum (the best value found by iPSO with DVNS3 is

92.94 while the best solution found is 28.94 that has been found

y many others combinations of PSO with a different local search

lgorithm). In this algorithm (iPSO) as it was explained earlier it

as impossible to apply a continuous local search algorithm. The

se of a local search procedure in the other PSO variants either

s a combination of only continuous local search procedures or as

 combination of continuous and discrete local search procedures

elped the algorithm to escape from this local optimum and to

nd much better local optimums. 

In Figs. 4 –6 the results of all VNS variants for the three pro-

osed PSO implementations and for the specific instance a280 are

resented. As it can be seen when only discrete local search al-

orithms are used (DVNS1, DVNS2 and DVNS3) the results do not
onverge at all for the specified number of iterations. The other

our versions converge to a very good solution, in most of the cases

o the same solution, but when the SVNS1 or SVNS2 version are

sed the convergence is succeeded faster. The reason that the con-

inuous local search algorithms perform better than the discrete

ocal search algorithms is that the first are applied in the contin-

ous vector and, thus, take advantage of the improvement of the

olutions using PSO while the latter are applied in the transformed

iscrete vector which may lead to lose information and to, proba-

ly, destroy a good solution. Thus, a discrete local search does not

ead to an improvement of the solutions or to a fast convergence

o a good solution. The sequential versions of VNS perform better

han the classic versions of VNS, because as it was shown from

he results, the fact that in one iteration all local search algorithms

re applied sequentially helps the algorithm to find faster a better

olution than the other case, where each local search algorithm is

pplied until it is trapped to a local optimum, and, then, the algo-

ithm proceeds to a different one. 

In Table 6 and in Figs. 7 –9 the analytical results for a specific

nstance, the pr439, using all continuous local search algorithms

nd Variable Neighborhood Search implementations which incor-

orate a continuous local search algorithm are presented. Also, the

esults without any local search are presented. As it can be seen

rom these figures, the LS5 and LS6, where the curves are almost

dentical, do not give good results at all and their results are com-

etitive only with the case where local search algorithm is not ap-

lied (WLS). All the other local search algorithms find in almost all

uns the same best solution, or a solution near to the best solu-

ion. The SVNS1 and SVNS2 variants converge faster than the other

ariants. The L S2–L S4 variants give competitive results compared

o the results of the VNS1 and VNS2 algorithms. This proves the

ffectiveness of these local search algorithms. Especially, the LS4

lgorithm performs better than other local search algorithms in all

uns except from the SVNS1 and SVNS2 variants. 

In Table 7 the results of the 21 instances in the three proposed

ersions of PSO using either no local search at all or the two vari-

nts of VNS that gave better results are presented. As we can see

n the instances with small number of nodes (from 51 to 105) all
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Fig. 4. Results of all VNS variants using PSOLGNT for the instance a280. 
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algorithms (except the PSOLGENT2 in one instance (eil101) with-

out using Local Search (WLS)) find the best solution. As the num-

ber of nodes increases, the improvement of the initial solution us-

ing a VNS implementation is significant which justifies the use of

the VNS algorithm for improvement of the results. In Figs. 10 and

11 the results of the three proposed versions in two specific in-

stances using VNS1 are presented. All versions find the best solu-

tion but the algorithm that converges faster to the best solution is

the PSOLGENT2. In general, we can say that if we use a continuous

local search in VNS, then, the results are improved significantly.

The versions of sequential VNS in general perform better than the

versions of classic VNS. 
In Table 7 the results of a number of metaheuristic and evo-

utionary algorithms are also presented. More precisely, the algo-

ithms that are used in the comparisons are one version of a Ge-

etic Algorithm (GA), two versions of the Differential Evolution al-

orithm (DE1 and DE2), a Simulated Annealing algorithm (SA), a

abu Search algorithm (TS), two versions of a population algorithm

alled RSVNS1 and RSVNS2 which are algorithms that are based

n the two most effective versions of VNS described in this paper

ut using a population that was created at random, an Ant Colony

ptimization (ACO) algorithm and, finally, a Greedy Randomized

daptive Search Procedure (GRASP). In all algorithms we use the

ame function evaluations as in the proposed method and the best
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Fig. 6. Results of all VNS variants using PSOLGENT2 for the instance a280. 
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Fig. 7. Results of the PSOLGNT using all continuous local search and VNS algorithms for the instance pr439. 

Table 6 

Computational results for the instance pr439. 

WLS LS1 LS2 LS3 LS4 LS5 

PSOLGNT 36445.25 17954.16 7052.208 7050.47 7135.716 41630.66 

PSOLGENT1 4 4 405.02 18733.63 8690.199 17210.4 7144.314 46120.25 

PSOLGENT2 43195.92 18319.13 7050.47 7052.208 7050.47 40988.59 

LS6 VNS1 VNS2 SVNS1 SVNS2 

PSOLGNT 41630.66 7050.47 7376.091 7050.47 7050.47 

PSOLGENT1 46120.25 7175.041 7709.106 7050.47 7050.47 

PSOLGENT2 40988.59 7052.208 7417.33 7050.47 7050.47 

p  
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a  

m  

g

 

 

 

 

erforming VNS. The reason that we used 9 different algorithms in

he comparisons is that we would like to see how the proposed

lgorithm performs compared to a number of different kinds of

etaheuristic and evolutionary algorithms. Thus, the proposed al-

orithm is compared with: 

• a classic evolutionary algorithm, the Genetic Algorithm (GA1)

( Goldberg, 1989 ), 
• two versions of Differential Evolution ( Engelbrecht, 2007; Price,

Storn, & Lampinen, 2005 ) algorithm (DE1 and DE2). The Differ-

ential Evolution algorithm is a competitive algorithm compared
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Fig. 8. Results of the PSOLGENT1 using all continuous local search and VNS algorithms for the instance pr439. 
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Fig. 9. Results of the PSOLGENT2 using all continuous local search and VNS algorithms for the instance pr439. 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  
to PSO when both are applied in continuous optimization prob-

lems. The differences between the two variants of DE is in the

calculation of the trial vector, in the mutation operator, 
• an Ant Colony Optimization ( Dorigo & Stutzle, 2004 ) algorithm

which is the most effective nature inspired algorithm in combi-

natorial optimization problems, 
• two versions of a population VNS algorithm ( Hansen & Mladen-

ovi ́c, 2001 ), the RSVNS1 and RSVNS2 which are two algorithms

with exactly the same VNS procedures with the proposed algo-

rithm but with different way to create the initial solutions and
the connections of the solutions between the iterations (ran-

dom way instead of PSO), 
• two classic metaheuristic algorithms, the Simulated Annealing

(SA) ( Kirkpatrick, Gelatt, & Vecchi, 1982 ) and the Tabu Search

(TS) ( Glover, 1989; 1990 ), and, finally, 
• a Greedy Randomized Adaptive Search Procedure ( Feo & Re-

sende, 1995 ). 

As we can see the proposed algorithm performs better than all

he other algorithms used in the comparisons. More precisely, in
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Table 7 

Results of all of the SVNS versions and the algorithms without local search in all instances. Also results of the other metaheuristic 

and evolutionary algorithms. 

PSOLGNT PSOLGENT1 PSOLGENT2 

WLS SVNS1 SVNS2 WLS SVNS1 SVNS2 WLS SVNS1 SVNS2 

eil51 16.06 16.06 16.06 16.06 16.06 16.06 16.06 16.06 16.06 

eil76 25.49 25.49 25.49 25.49 25.49 25.49 25.49 25.49 25.49 

kroA100 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 

kroB100 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 

kroC100 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 

kroD100 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 

kroE100 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 

eil101 15.816 15.816 15.816 15.816 15.816 15.816 16.637 15.816 15.816 

lin105 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 

pr144 15864.3 10950.35 1094 9.6 8 11313.3 1094 9.6 8 1094 9.6 8 11614.65 10950.35 1094 9.6 8 

kroA150 1474.442 1384.003 1382.63 4129.457 1382.63 1382.63 1382.63 1382.63 1382.63 

pr152 13719.13 13719.13 13719.13 13819.51 13719.13 13719.13 15016.4 13719.17 13719.13 

kroA200 4311.05 2616.135 2616.135 3563.01 2616.135 2616.135 4356.84 2616.135 2616.135 

kroB200 3218.153 3117.613 3117.613 3649.021 3117.628 3117.613 6532.166 3117.613 3117.613 

ts225 53307.67 16621.79 16621.79 31657.91 16633.05 16621.79 50679.23 16624.08 16621.79 

pr226 25434.05 10847.84 10847.84 26014.95 10950.35 10847.84 34896.34 10847.84 10847.84 

Gil262 612.02 206.41 86.32 625.54 115.68 86.32 656.16 86.61 86.32 

pr264 12610.49 7608.057 7608.057 18847.42 7608.06 7608.057 18330.25 8776.025 7608.057 

A280 596.73 54.8 28.94 733.5 28.94 28.94 627.74 34.08 28.94 

pr299 17122.38 3062.578 3062.578 17486.79 3062.578 3062.578 24861.02 3062.578 3062.578 

pr439 36445.25 7050.47 7050.47 4 4 405.02 7175.041 7050.47 43195.92 7052.208 7050.47 

GA1 DE1 DE2 SA TS RSVNS1 RSVNS2 ACO GRASP 

eil51 16.06 16.06 16.06 16.06 16.06 16.06 16.06 16.06 16.06 

eil76 25.49 25.49 25.49 25.49 25.49 25.49 25.49 25.49 25.49 

kroA100 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 2643.829 

kroB100 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 1248.788 

kroC100 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 1650.469 

kroD100 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 2718.806 

kroE100 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 3497.396 

eil101 15.816 15.816 15.816 15.816 15.816 15.816 15.816 15.816 15.816 

lin105 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 1742.875 

pr144 11051.46 10950.35 10965.18 11058.75 10950.48 10987.21 11221.24 11217.15 12221.18 

kroA150 1386.18 1385.22 1383.18 1383.47 1382.81 1391.14 1388.07 1387.15 1388.11 

pr152 13725.54 13724.18 13722.24 13724.22 13720.18 13724.12 13722.17 13721.79 13722.15 

kroA200 2722.35 2658.21 2659.34 2652.14 2649.24 2657.84 2671.71 2635.22 2641.78 

kroB200 3358.54 3251.51 3270.18 3258.25 3179.24 3321.28 3319.31 3164.15 3189.28 

ts225 17524.41 16832.17 16 84 9.52 16749.54 16635.28 16817.21 16828.17 16671.54 16699.74 

pr226 11542.35 11021.41 11147.86 10981.74 10917.43 11021.35 11081.74 10942.46 11008.41 

Gil262 95.85 93.54 94.12 88.97 87.15 91.21 95.16 90.28 92.13 

pr264 9214.21 7946.51 7854.15 7812.16 7691.71 7841.23 7805.14 7715.24 7798.21 

A280 35.47 32.41 33.15 30.58 29.18 35.19 34.21 30.71 35.12 

pr299 3174.54 3112.47 3154.21 3062.578 3062.578 3097.45 3112.28 3062.578 3115.31 

pr439 7254.21 7071.31 7087.47 7061.34 7059.18 7128.18 7179.78 7054.14 7059.19 
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t  
he small examples all the algorithms find the same local opti-

um solutions. However, as the size of the instances increases, all

lgorithms give inferior results than the results of the proposed

lgorithm. The two most effective algorithms, where their results

re very close to the results of the proposed algorithm, are the

abu Search algorithm and the Ant Colony Optimization algorithm.

hen, if we made a ranking based on the effectiveness of each al-

orithm, the Simulated Annealing and the GRASP algorithms are in

he fourth and the fifth places, respectively. After all the other are

anked with the following order, sixth is the DE1 algorithm, sev-

nth the DE2, eighth the RSVNS1, ninth the RSVNS2 and tenth is

anked the GA1 algorithm. 

. Conclusions and future work 

In this paper, a new hybridized version of Particle Swarm Op-

imization algorithm with Variable Neighborhood Search was pre-

ented for solving a significant Combinatorial Optimization prob-

em, the Constrained Shortest Path problem. In the proposed algo-

ithm, the Particle Swarm Optimization with combined Local and

lobal Expanding Neighborhood Topology (PSOLGENT), we give a

ifferent equation for the velocities where a fourth term has been
dded in the classic equation which represents the local neigh-

ors. Thus, in the new equation the particle, except from a move-

ent towards a new direction, a movement towards his previous

est and a movement towards the global best of the swarm, could

ove towards the local best of its neighborhood. Also, a novel

xpanding neighborhood topology is used. In the proposed algo-

ithm the neighborhood is expanding based on the quality of the

olutions. We test two different alternatives. In the first one, the

eighborhood is expanding when the optimal particle is not im-

roved for a specific number of iterations. In the second alterna-

ive, each particle has its own neighborhood. Thus, while all par-

icles begin with the same neighborhood topology when a solu-

ion of a particle is not improved for a consecutive number of it-

rations, then, only its neighborhood is expanding. The VNS algo-

ithm is applied in order to optimize the particles’ position. An-

ther issue in the application of the VNS algorithm in the Con-

trained Shortest Path problem is which local search algorithms are

uitable from this problem. Thus, in this paper a number of con-

inuous local search algorithms are used. The algorithm is tested

n a number of modified instances from the TSPLIB. We compare

he algorithm with the results of two classic variants of the Par-

icle Swarm Optimization algorithm, the inertia PSO and the con-
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Fig. 10. Results of the three proposed algorithm for the instance a280. 
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Fig. 11. Results of the three proposed algorithm for the instance pr439. 
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striction PSO. Also, we compare the two versions of the proposed

algorithm (the one with the expanding procedure based on the

best particle and the other with the expanding procedure based

on each particle separately) with a variant of the algorithm with

the new equation but without the expanding procedure. As a gen-

eral conclusion of the computational results is that the VNS algo-

rithm can be hybridized with a PSO algorithm in order to solve a

Constrained Shortest Path problem effectively. Future research will

be focused in the application of this methodology in more difficult

problems. 
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