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Abstract This work addresses a new Inventory Routing Problem with realistic char-
acteristics, such as strict driving hours’ regulations and driving speed limits. Accord-
ing to these realistic assumptions, the time needed to perform a route will be strictly
bounded by an upper time limit based on the driving hours’ regulations provided by
the European Commission. Moreover, the decisions about the speed level selection,
for travelling between two network points, will be subject to specific driving speed
limits. Moreover, the impact of two inventory policies, the classic (R,Q) replenish-
ment policy and the flexible replenishment policy, on the total supply chain network
cost is studied. The consideration of two inventory policies leads to the development
of two mixed integer linear programming models. The computational experiments
were conducted on random, small-sized, problem cases, using the state-of-the-art
solver, Gurobi. The impact of the two inventory policies on the supply chain network
is investigated through a numerical analysis.

1 Introduction

The integration of supply chain activities has been highlighted as an expedient ap-
proach to achieve high business performance (4; 15). Two key supply chain activities
are the distribution and the inventory control (32). The integration of these two ac-
tivities has been thoroughly studied in the literature (11; 20; 28). The investigation
of this integration has been proceeded through the study of a complex combinatorial
optimization problem, known as the Inventory-Routing Problem (IRP) (4; 32). The
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IRP focuses on the determination of optimal replenishment plan and vehicles’ rout-
ing schedule (11). Thus, it is applicable when the Vendor Managed Inventory (VMI)
business model is followed (8). According to the VMI strategy, a supplier is re-
sponsible to manage and optimize the replenishment decisions of several customers
(32).

This work addresses the IRP with strict driving hours’ regulations and driving
speed limits. More specifically, two variants of the problem under investigation
are proposed, based on the adoption of different replenishment policies. The first
problem case considers a strict replenishment policy, known as Just in Time (JiT),
while the other adopts a Flexible Replenishment (FR) policy (15; 16). The main
objective of this work is the examination of potential benefits of using a flexible
replenishment policy under the consideration of practical operational restrictions.

2 Literature Review

Zachariadis et al. (2009) studied a single-depot IRP over a finite planning hori-
zon for the service of multiple customers with constant deterministic demand for a
single-type of product, using a fixed-fleet of vehicles (32). They proposed a flexible
replenishment policy. Thus, the aim of the problem was the optimization of the
overall supply chain network cost, through the simultaneous configuration of routes’
schedule and the size and timing of replenishment. The proposed problem was
formulated as a Mixed-Integer Linear Programming (MILP) model. Additionally,
a hybrid Tabu Search-based heuristic solution method was developed for tackling
efficiently large problem cases. Liu and Lee (2011) focused on the examination
of a single-depot IRP with soft time windows (19). The goal of the problem was
the determination of routing and inventory decisions to minimize the overall sys-
tem cost, for the service of multiple customers with stochastic demands, under the
consideration of a continuous review Economic Order Quantity (EOQ) policy. A
Mixed-Integer Non-Linear Programming (MINLP) model and a two-phase hybrid
Tabu Search - Variable Neighborhood Search heuristic solution method were devel-
oped by the authors to achieve high-quality solutions of small and large problem
cases, respectively.

Coelho and Laporte (2014) focused on the improvement of IRP exact solutions
by considering classic and new valid inequalities combined with input data ordering
(11). They assumed a single-depot, multi-period, multi-vehicle IRP in which in-
ventories held both in depot and customers’ locations. Customers had deterministic
demands and they were serviced by a capacitated fleet of homogeneous vehicles. The
authors based on the relation between customers’ demand and available capacities
proposed three new valid inequalities. Moreover, they proposed input data ordering
tactics. The first one ranks customers according to their total demand, in order to
service first those with higher demand. The second one focuses on providing service
priority to customers close to the location of supplier, while the third ordering tactic
focuses on serving the most distant customers first.
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Coelho et al. (2014) presented a review on the research contributions of IRP, by
classifying them according to the problem variants, models and solutions approaches
(9). Despite the lack of a standard problem version, the authors used the terms “basic
versions” and “extensions of the basic versions”. The first category included IRP
cases which commonly studied by research community up to 2012. The further clas-
sification of research contributions of basic problem versions conducted according
to the following seven criteria:

• Time horizon.
• Structure.
• Routing.
• Inventory policy.
• Inventory decisions.
• Fleet composition.
• Fleet size.

Additionally, for the classification of research works on IRP extensions, the authors
highlighted one more criterion, the “Products”, with three potential choices (single,
two and multiple).

Mjirda et al. (2014) studied a multi-product IRP in which the objective goal
was the simultaneous minimization of transportation and inventory costs (22). The
problem was based on the service of an assembly plant, which faced deterministic
demand for several products, by multiple suppliers and an unlimited fleet of capaci-
tated vehicles over a finite planning horizon. The authors developed an MILP model
as well as a Variable Neighborhood Search heuristic method with two phases for
the solution of the addressed problem. A stochastic MILP was developed by Abdul
Rahim et al. (2014) for the study of a multi-period stochastic IRP, in which a single
depot services several retailers with homogeneous fleet of vehicles to satisfy their
stochastic demand for a single type of product (1). The authors proposed a determin-
istic equivalent of their stochastic formulation and presented a Lagrangian relaxation
method for the solution of medium-sized problem instances.

Coelho et al. (2014) focused on the development of Adaptive Large Neighborhood
Search heuristics for the solution of dynamic and stochastic versions of IRP (8). They
proposed two main frameworks, the proactive policy which utilizes demand forecast
and the reactive policy, in which as (s,S) replenishment policy is adopted. Moreover,
for each one of these policies, the authors investigated the impact of emergency
lateral transshipment on the final solution quality. All policies were implemented
in a rolling horizon fashion. Qin et al. (2014) investigated a periodic IRP with a
FR policy for a single type of product (23). They assumed a two echelon supply
chain system, in which a supplier has to satisfy periodic-variable demands of several
retailers, using homogeneous capacitated vehicles. To solve realistic problem cases,
the authors developed a Tabu Search-based algorithm.

A selective variant of the periodic IRP, applied on biodiesel production domain,
was studied by Aksen et al. (2014) (2). More specifically, homogeneous capacitated
vehicles depart from a biodiesel production facility and visits selected source nodes
to collect waste vegetable oil according to the predetermined daily production plan
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of the production facility. The uncollected amount of waste oil is stored by source
nodes until the next visit of a vehicle. To determine an optimized periodic collection
schedule, the authors developed an MILP model. As the addressed problem is NP-
hard, exact approaches are at least inefficient in solving problem cases of practical
interest. Consequently, the authors adopted the Adaptive Large Neighborhood Search
metaheuristic framework to develop an efficient heuristic solution method, which
produced high quality solutions in short CPU times. A multi period IRP arisen
from industrial gas distribution domain was studied by Singh et al. (2015) (26). The
problem was formulated as an MILP model. To tackle large-scale problem cases,
the authors proposed an incremental solution approach based on the decomposition
of customers’ set and the application of a randomized local search method for the
solution of each subproblem.

Roldán et al. (2016) presented a survey of scientific literature on IRP with stochas-
tic demands and lead times, focusing on multi-depot problem cases (24). They un-
derlined the critical role of demands’ variations and lead times’ behavior on making
high-quality decisions. Turan et al. (2016) studied a stochastic IRP which considers
transshipments in specific time points in given time intervals for inventory rebal-
ancing purposes (30). To tackle the high computational complexity, they designed
and implemented a heuristic solution method, based on the VNS metaheuristic
framework, combined with a dynamic programming operator. Archetti and Grazia
Speranza (2016) investigated the potential benefit of integrating routing and inven-
tory decisions (5). More specifically, they studied a separate version of the problem
by following the Retailer Managed Inventory (RMI) policy and an integrated ap-
proach, which characterized by VMI policy. The problem variant under the RMI
policy was solved in two stages, the delivery schedule and the route optimization
stage, while the other one was tackled as a pure IRP. According to their findings,
the authors highlighted that the potential benefits from integrated approach can be
on average 9.5% and 9% in terms of total cost and number of selected vehicles
respectively.

Li et al. (2016) focused on the study of characteristics such as the replenishment
lead-times and inventory inaccuracy, which frequently met in fresh products’ supply
chains (18). The authors proposed a robust policy for the determination of routes and
replenishment quantities. The proposed policy was divided into three steps. In the
first one, the update of the current net inventory probability and the corresponding
future forecast was performed. In the second step, a Robust Replenishment Time,
Replenishment Quantity and Replenishment Stage Length algorithm was developed
to optimally determine replenishment time, quantity and stage length, while in the
third step the optimization of delivery routes was executed, by using a Genetic
Algorithm. Soysal (2016) developed a probabilistic MILP model to formulate a
closed-loop IRP, which considers forward and reverse logistics operations, fuel
consumption and demand uncertainty for multiple products under the VMI policy
(27). Moreover, a simulation model was developed to evaluate the solutions both of
probabilistic model and its deterministic variant.

Schuijbroek et al. (2017) developed a cluster-first, route-second heuristic algo-
rithm to solve an IRP based on bike sharing networks (25). Both MILP and constraint
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programming (CP) formulations are provided for the problem under investigation.
The numerical experiments indicated that the proposed solution method outper-
formed the solutions of MILP and CP. A green variant of the IRP was studied by
Cheng et al. (2017) under the consideration of environmental and economic issues
and utilization of heterogeneous vehicles (7). The computation of fuel consumption
was achieved by using the Comprehensive Modal Emission Model. According to
this model, several characteristics can significantly affect the consumption of fuel in
case of utilized vehicles. Such characteristics are the engine friction factor, the curb
weight and the speed of the selected vehicle. Based on their findings, the authors
underlined significant benefits achieved by using a mixed-fleet of vehicles.

Dong et al. (2017) developed novel solution methods for the solution of IRPs
which consider several vehicle-based realistic constraints, such as variable con-
sumption rates, time windows and driver constraints, following a VMI policy (12).
The proposed solution method consists of three components. Initially, a reduction
of search space is achieved by applying an elimination of redundant arcs. Next, a
decomposition approach divides the problem into a VRP and a scheduling problem.
After the solution of these two subproblems, an iterative approach of applying differ-
ent integer cuts and parameter updates is performed to avoid potential infeasibilities
or to address further cost improvements. Çankaya et al. (2018) studied an IRP for
the distribution of humanitarian relief supplies to affected areas, known as the In-
ventory Slack Routing Problem (6). The objective goal in this problem case is the
maximization of the minimum safety stock level at each affected location. To tackle
the problem, the authors proposed a three-phase heuristic algorithm.

Malladi and Sowlati (2018) presented a comprehensive literature review of studies
on Sustainable IRP (20). They focused on initially categorizing the selected research
contributions into studies with single objective or multiple objectives. Further clas-
sification was performed based on the nature of objectives. More specifically, the
studies with single objective categorized to those who focused on reverse logistics for
waste collection, on closed-loop networks for the management of returnable items
and on distribution networks of perishable products for the prevention of potential
waste. The multi-objective works mainly focused on the combination of social and/or
environmental objectives within the classic economic-related objectives. Wei et al.
(2019) studied an extension of IRP, the cold-chain IRP which focuses on the distri-
bution of food packages from a supplier to several customers (31). The customers
close to depot are serviced by self-owned vehicles in short time limits, while the
customers, who located far from the depot, are serviced by outsourced vehicles under
long time limits. The problem was formulated as an MILP model and solved by a
hybrid Genetic Algorithm with a descriptive model.

Soysal et al. (2019) presented a review on sustainable IRPs. They mainly fo-
cused on characteristics such as the model structure of objective and the solution
approach (28). Based on sustainability concerns, they categorized the studies into
those which tackled waste management products’ perishability and emissions. Fi-
nally, the authors provided a detailed presentation over sustainable characteristics
mentioned in the literature. Su et al. (2020) developed an MILP for a challenging IRP,
faced by air-product companies and considers several realistic characteristics, such
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as heterogeneous fleet, time windows, multiple periods and heterogeneous drivers
(29). To efficiently solve the problem, the authors proposed a matheuristic, which
integrates exact methods applied to optimize timing and delivery quantities and a
multi-neighborhood metaheuristic framework to schedule the routes.

Eide et al. (2020) studied a maritime IRP and focused on the optimization of ves-
sels’ speed considering their load to minimize fuel consumption and consequently
sailing costs (13). As the dependency between fuel consumption and the factors of
load and speed is not linear, the authors presented a linearization approach. Coelho et
al. (2020) studied a multi-attribute IRP which extended the multi-depot IRP by fur-
ther considering multiple products, heterogeneous fleet of vehicles and constraints
relative to route duration (10). To efficiently solve this complex problem, the au-
thors proposed a matheuristic method by combining exact methods with Variable
Neighborhood Search.

Manousakis et al. (2021) investigated the IRP with Maximum Level inventory
policy in a VMI system. They developed a novel two-commodity flow formulation
and proposed six new valid inequalities (21). To solve classic hard problem instances,
the authors proposed a Branch & Cut algorithm. Moreover, a combination of families
of cuts and two separation strategies were also proposed to improve the performance
of the developed algorithm. Alinaghian et al. (2021) focused on the investigation of
an environmental-friendly IRP with time windows (3). They formulated the problem
as an MILP model and focused on the simultaneous optimization of economic
and environmental criteria. Moreover, the authors developed three heuristic solution
methods based on Tabu Search and Differential Evolution metaheuristic frameworks.
According to their numerical analysis, the augmented Tabu Search algorithm proved
the most efficient solution method for the problem under invstigation.

3 Problem Statement & Mathematical Formulation

The IRP with strict driving hours’ regulations and driving speed limits is examined
over a finite planning horizon𝑇 = {1, ..., 𝑡}. A complete undirected graph𝐺 = (𝑉, 𝐸)
is utilized to define the studied problem, where 𝑉 = {1, ..., 𝑛, 𝑛 + 1} is the vertex
set and 𝐸 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the edge set. The main supplier of the
supply chain system is denoted by the vertex 𝑛 + 1, while the remaining vertices
𝐼 = 𝑉 − {𝑛 + 1} represent 𝑛 retailers. In the supplier location no inventory is held.
However, it station a fleet of homogeneous capacitated vehicles, with a capacity level
equals Q. Each retailer faces a period-variable deterministic demand for a single-
type product, 𝑑𝑖𝑡 . Moreover, a unit holding cost ℎ𝑖 is associated to each retailer.
Focused on operational-related costs and restrictions, a routing cost 𝑐𝑖 𝑗 for each pair
of locations (𝑖, 𝑗), specific driving speed limits, driving hours’ regulations,𝑈𝑇𝐿 and
drivers’ wages, 𝑓 𝑑 are considered.

To develop mathematical formulations of the proposed problems, the following
variables are introduced:
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• 𝑥𝑖 𝑗𝑘𝑙𝑡 , a binary decision variable which equals 1, if vehicle 𝑘 moves directly from
node 𝑖 to node 𝑗 , with a speed level 𝑙, in time period 𝑡.

• 𝑞𝑖𝑘𝑡 , a positive decision variable, which declares the quantity of product delivered
to retailer 𝑖, using the vehicle 𝑘 , in time period 𝑡.

• 𝑤𝑖𝑡 𝑝 , a positive decision variable utilized in case of problem with flexible replen-
ishment, which declares the delivered quantity of product to retailer 𝑖 in the time
period 𝑝 to, wholly or partially, satisfy its demand in time period 𝑡.

Moreover, a positive variable, 𝑈𝑖𝑘𝑡 (0 ≤ 𝑈𝑖𝑘𝑡 ≤ |𝐼 | − 1), is utilized to address the
Miller–Tucker–Zemlin subtour elimination constraints.

The proposed mathematical models, of the under investigation problems, are
modified extensions of the IRP model provided by Qi et al. (2014). Herein, a Mixed
Integer Linear Programming (MILP) model of the IRP with strict driving hours’ reg-
ulations and driving speed limits following the JiT replenishment policy is provided:

min
∑
𝑖∈𝐼
ℎ𝑖 ·

∑
𝑡 ∈𝐻

1
2 · 𝑑𝑖𝑡 + ∑

𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑘∈𝐾

∑
𝑙∈𝐿

∑
𝑡 ∈𝑇

𝑐𝑖 𝑗 · 𝑥𝑖 𝑗𝑘𝑙𝑡

+ ∑
𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑘∈𝐾

∑
𝑙∈𝐿

∑
𝑡 ∈𝑇

𝑓 𝑑 · (𝑥𝑖 𝑗𝑘𝑙𝑡 · 𝑐𝑖 𝑗)
𝑠𝑙

(1)

Subject to

∑︁
𝑗∈𝑉

∑︁
𝑙∈𝐿

𝑥𝑖 𝑗𝑘𝑙𝑡 −
∑︁
𝑗∈𝑉

∑︁
𝑙∈𝐿

𝑥 𝑗𝑖𝑘𝑙𝑡 = 0, ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇 (2)

∑︁
𝑗∈𝑉

∑︁
𝑘∈𝐾

∑︁
𝑙∈𝐿

𝑥𝑖 𝑗𝑘𝑙𝑡 ≤ 1, ∀ 𝑖 ∈ 𝐼, ∀ t ∈ T (3)

∑︁
𝑗∈𝑉

∑︁
𝑘∈𝐾

∑︁
𝑙∈𝐿

𝑥 𝑗𝑖𝑘𝑙𝑡 ≤ 1, ∀ 𝑖 ∈ 𝐼, ∀ t ∈ T (4)

∑︁
𝑖∈𝐼

∑︁
𝑙∈𝐿

𝑥𝑖 (𝑛+1)𝑘𝑙𝑡 ≤ 1, ∀ 𝑘 ∈ 𝐾, ∀ t ∈ T (5)

𝑈𝑖𝑘𝑡 −𝑈 𝑗𝑘𝑡 +
(
|𝐼 | ·

∑︁
𝑙∈𝐿

𝑥𝑖 𝑗𝑘𝑡

)
≤ |𝐼 | − 1, ∀ 𝑖, 𝑗 ∈ 𝐼,∀ 𝑘 ∈ 𝐾,∀ 𝑡 ∈ 𝑇 (6)

∑︁
𝑖∈𝐼

𝑞𝑖𝑘𝑡 ≤ 𝑄𝑘 , ∀ 𝑘 ∈ 𝐾,∀ 𝑡 ∈ 𝑇 (7)∑︁
𝑘∈𝐾

𝑞𝑖𝑘𝑡 = 𝑑𝑖𝑡 , ∀ 𝑖 ∈ 𝐼,∀ 𝑡 ∈ 𝑇 (8)
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𝑞𝑖𝑘𝑡 ≤ 𝑀 ·
∑︁
𝑗∈𝑉

∑︁
𝑙∈𝐿

𝑥𝑖 𝑗𝑘𝑙𝑡 , ∀ 𝑖 ∈ 𝐼,∀ 𝑡 ∈ 𝑇,∀ 𝑘 ∈ 𝐾 (9)

∑︁
𝑗∈𝑉

∑︁
𝑙∈𝐿

𝑥𝑖 𝑗𝑘𝑙𝑡 ≤ 𝑀 · 𝑞𝑖𝑘𝑡 , ∀ 𝑖 ∈ 𝐼,∀ 𝑘 ∈ 𝐾,∀ 𝑡 ∈ 𝑇 (10)

∑︁
𝑙∈𝐿,𝑙>3

𝑥𝑖 𝑗𝑘𝑙𝑡 = 0, ∀ 𝑖, 𝑗 ∈ 𝐼,∀ 𝑘 ∈ 𝐾,∀ 𝑡 ∈ 𝑇, 𝑐𝑖 𝑗 ∈ [0, 𝑐
3
) (11)

∑︁
𝑙∈𝐿,𝑙>8

𝑥𝑖 𝑗𝑘𝑙𝑡 = 0, ∀ 𝑖, 𝑗 ∈ 𝐼,∀ 𝑘 ∈ 𝐾,∀ 𝑡 ∈ 𝑇, 𝑐𝑖 𝑗 ∈ [ 𝑐
3
,
𝑐

2
] (12)

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐼, 𝑗≠𝑖

∑︁
𝑙∈𝐿

𝑐𝑖 𝑗 · 𝑥𝑖 𝑗𝑘𝑙𝑡
𝑠𝑙

< 𝑈𝑇𝐿, ∀ 𝑘 ∈ 𝐾,∀ 𝑡 ∈ 𝑇 (13)

𝑐𝑖 𝑗 · 𝑥𝑖 𝑗𝑘𝑙𝑡
𝑠𝑙

< 𝑈𝑇𝐿, ∀ 𝑖, 𝑗 ∈ 𝐼,∀ 𝑘 ∈ 𝐾,∀ 𝑙 ∈ 𝐿,∀ 𝑡 ∈ 𝑇 (14)

The objective function of the model focuses on the optimization of the overall system
cost, by minimizing the sum of all separate cost terms, such as the average inventory
holding cost, the routing-related cost and drivers’ wages. Constraints 2 impose the
balance between inbound and outbound flow of vehicles in each node of the supply
chain network. Constraints 3 and 4 guarantee that each retailer will be serviced
by one vehicle at most in each time period. A vehicle can perform at most one
route in each time according to Constraints 5. Constraints 6 secure the elimination
of subtours for each utilized vehicle in each time period. Constraints 7 ensure the
avoidance of any violation on the capacity of vehicles. Constraints 8 guarantee that
the total delivered quantity of product to a retailer will be equal to the corresponding
demand for the same time period. Constraints 9 and 10 impose that a delivery to
a retailer will be addressed if and only if a visit will be scheduled. Constraints 11
and 12 address the compliance with driving speed limits, whilce Constraints 13
and 14 impose the driving hours’ regulations. It is clear from the mathematical
formulation of the problem case which adopts the strict JiT replenishment policy,
that the problem is being degraded to a rich capacitated Vehicle Routing Problem
(VRP) with consideration of average inventory holding costs.

Focusing on the IRP with strict driving hours’ regulations and driving speed limits
with FR, its MILP formulation is structured by considering Constraints 2 - 7 and 9 -
14 from the previous presented model plus the following new expressions:
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min
∑
𝑖∈𝐼
ℎ𝑖

∑
𝑡 ∈𝐻

(
1
2𝑑𝑖𝑡 +

∑
𝑝∈𝑇,𝑝<𝑡

𝑤𝑖𝑡 𝑝 (𝑡 − 𝑝) +
∑

𝑝∈𝑇,𝑝>𝑡
𝑤𝑖𝑡 𝑝 (𝑡 − 𝑝 + |𝑇 |)

)
+ ∑
𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑘∈𝐾

∑
𝑙∈𝐿

∑
𝑡 ∈𝑇

𝑐𝑖 𝑗 · 𝑥𝑖 𝑗𝑘𝑙𝑡

+ ∑
𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑘∈𝐾

∑
𝑙∈𝐿

∑
𝑡 ∈𝑇

𝑓 𝑑 · (𝑥𝑖 𝑗𝑘𝑙𝑡 · 𝑐𝑖 𝑗)
𝑠𝑙

(15)

Subject to

∑︁
𝑝∈𝐻

𝑤𝑖𝑡 𝑝 = 𝑑𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀t ∈ H (16)

∑︁
𝑡 ∈𝐻

𝑤𝑖𝑡 𝑝 =
∑︁
𝑘∈𝐾

𝑞𝑖𝑘 𝑝 ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝐻 (17)

𝑤𝑖𝑡 𝑝 ≤ 𝑑𝑖 𝑝 ∀𝑖 ∈ 𝐼, ∀𝑡, 𝑝 ∈ 𝐻 (18)

The objective function of this model considers the minimization of further in-
ventory holding costs, such as the penalty costs produced due to potential deferred
deliveries. The average inventory holding cost, the routing and the driver wages’
costs remain in this formulation. According to the constraints, the main difference
of this second formulation is the exclusion of Constraints 8 and the addition of
three families of Constraints which address the flexibility of replenishment. More
specifically, Constraints 16 impose that the product quantity delivered to a retailer
in all time periods for satisfying his demand in a specific time period must be equal
with that demand. Constraints 17 guarantee that the scheduled deferred deliveries
to a retailer must be equal to the actual delivered quantities. Finally, the scheduled
deferred deliveries cannot exceed the demand of a retailer for a specific time period,
as it is addressed by Constraints 18.

4 Computational Results & Analysis

4.1 Computing Environment

The implementation of MILP models was made using the Gurobi Python API’s,
under an academic licence. The execution time limit for Gurobi Optimizer was set at
two hours. The optimization solver ran on a laptop PC (windows 10 Home 64-bit),
with an Intel Core i7-9750H CPU at 2.6 GHz and 16 GB RAM.
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4.2 Problem Instances & Model Parameters

Ten small- and medium-sized problem instances were randomly selected by the
works of Karakostas et al. (2019;2020), and they were slightly modified to fit to the
problems under investigation (14; 17). More specifically, the first line of each problem
instance provides the number of retailers, vehicles, and time periods. The second line
provides depot-related data, such as its coordinates and its capacity. The following
lines includes retailers’ data, such as their coordinates, their holding costs and their
period-variable demands. The last line provides the capacity of the homogeneous
fleet of vehicles. The name of instances keep their current form A-B-C. “A” declares
the number of potential depots (only one needed in this study), “B” is the number of
retailers, and “C” represents the number of time periods. The drivers’ wage was ran-
domly generated in the interval [12, 18], the big𝑀 parameter was arbitrarily set equal
to the value 100 ·𝑄, while the𝑈𝑇𝐿 was set at 8 hours following the EU regulations
of working (https://europa.eu/youreurope/business/human-resources/
working-hours-holiday-leave/working-hours/index_en.htm) and driv-
ing (https://www.gov.uk/drivers-hours/eu-rules) hours. The matching
between speed levels and their corresponding values are provided in Table 1.

Table 1: The speed levels with their corresponding values

Speed level (𝑙) Speed value (𝑘𝑚/ℎ)
1 30
2 40
3 50
4 60
5 70
6 80
7 90
8 100
9 110
10 120

4.3 Numerical Results

Herein, the numerical results obtained by the Gurobi solver in case of the 10 random
problem instances, are provided. Table 2 summarizes these results. Initially, the
names of problem instances are given in the first column. Next, the second column
presents the best found objective values for the IRP under the JiT policy and the
third column provides the corresponding CPU times (s). The fourth column presents
the best found objective values for the IRP under the FR policy, while the fifth one
gives the CPU times (s), required by the solver to obtain those solutions. The asterisk
symbol denotes the optimality of a solution.



Impact of inventory policies on IRP 11

Table 2: Total cost of best found solution of each instance.

Instance 𝑇𝐶𝐽𝑖𝑇 CPU_time𝐽𝑖𝑇 𝑇𝐶𝐹𝑅 CPU_time𝐹𝑅

4-8-3 1451.93∗ 9.99 1199.87 7200
4-8-5 2060,38∗ 11.57 1016.77 7200
4-10-3 1876.98∗ 808 1344.86 7200
4-10-5 2401.05 7200 1718.17 7200
4-12-5 2491.76∗ 2217.37 1572.11 7200
4-15-3 1647.73 7200 1187.24 7200
5-12-3 1863.07 7200 1310.72 7200
5-15-3 2130.13 7200 1685.18 7200
5-18-5 3022.8 7200 1973.39 7200
5-20-3 2477.7 7200 1886.89 7200

Average 2142.35 - 1489.52 -

According to the numerical results, using the FR policy leads to almost 30.5%
better solutions in average. This significant decrease of overall cost is mainly achieved
by the reduction of deliveries to the retailers. Figures 1, 2, 3 and 4 illustrate the
quantities and the timing of replenishment, in case of two retailers from different
problem instances, under the effect of JiT and FR. Moreover, these illustrations
help the reader to understand the impact of FR policy on the reduction of frequent
deliveries.

Fig. 1: An example of the replenishment plan for the retailer 𝑖 = 2 according to JiT
policy in instance 4 − 12 − 5.
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Fig. 2: An example of the replenishment plan for the retailer 𝑖 = 2 according to FR
policy in instance 4 − 12 − 5.

Fig. 3: An example of the replenishment plan for the retailer 𝑖 = 1 according to JiT
policy in instance 5 − 18 − 5.
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Fig. 4: An example of the replenishment plan for the retailer 𝑖 = 1 according to FR
policy in instance 5 − 18 − 5.

Focusing on the structural characteristics of obtained solutions, the maximum
number of required vehicles in the final solution of each model for each problem
case is presented in Table 3.

Table 3: Maximum number of required vehicles.

Instance Jit FR
4-8-3 4 4
4-8-5 2 3
4-10-3 4 5
4-10-5 2 3
4-12-5 3 5
4-15-3 2 2
5-12-3 3 4
5-15-3 3 3
5-18-5 3 3
5-20-3 3 4

The adoption of FR policy leads to the utilization of more vehicles than following
the Jit policy. However, focusing separately on the required vehicles in each time
period, it is observed that following the FR policy leads to the use of less vehicles
than those required under the adoption of JiT policy. An analytical presentation
of vehicles’ requirements per time period for each problem instance and for each
replenishment policy is provided in Table 4, in the form (𝑥1, ..., 𝑥𝑛) in case of 𝑛 time
periods. For example, the sequence (2, 3, 3) denotes a three-time periods instance in
which two vehicles are needed to perform the scheduled routes in the first period,
and three vehicles in the second and the third time period respectively.
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Table 4: Vehicles required per period under the adoption of each replenishment
policy.

Instance Jit FR
4-8-3 (4, 4, 4) (4, 4, 3)
4-8-5 (2, 2, 2, 2, 2) (1, 2, 1, 1, 3)
4-10-3 (3, 4, 4) (1, 4, 5)
4-10-5 (2, 2, 2, 2, 2) (1, 3, 1, 2, 2)
4-12-5 (2, 2, 3, 2, 2) (1, 5, 2, 1, 2)
4-15-3 (2, 2, 2) (2, 2, 2)
5-12-3 (3, 3, 3) (2, 1, 4)
5-15-3 (3, 3, 3) (3, 3, 2)
5-18-5 (3, 3, 3, 3, 3) (3, 3, 1, 2, 2)
5-20-3 (3, 3, 3) (4, 2, 3)

This observation can highlight a further potential benefit by combining the FR
policy with distribution outsourcing, which may significantly decrease the overall
system cost, in case of fleet acquisition and usage costs’ consideration.

4.4 Input Ordering

Herein, the potential impact of input ordering on the quality of final solutions is
examined, by following the observations of Coelho and Laporte (2014) (11). More
specifically, the first ordering strategy based on the distance of retailers from the
supplier. According to this strategy, the data of the most distant retailers were loaded
first. Similarly, the second input ordering strategy focuses on the total demand of
retailers. The data of retailers who demanded more product quantity, were loaded
first. The numerical results are summarized in Tables 5 and 6.

Table 5: Total cost of best found solution of each instance under the first input
ordering strategy.

Instance 𝑇𝐶𝐽𝑖𝑇 CPU_time𝐽𝑖𝑇 𝑇𝐶𝐹𝑅 CPU_time𝐹𝑅

4-8-3 1451.93∗ 10.73 1204.16 7200
4-8-5 2060,38∗ 28.82 1016.77 7200
4-10-3 1876.98∗ 761.9 1324.5 7200
4-10-5 2401.05 7200 1693.58 7200
4-12-5 2491.76∗ 4291.67 1570.44 7200
4-15-3 1649.56 7200 1197 7200
5-12-3 1863.07 7200 1305.1 7200
5-15-3 2130.72 7200 1722.71 7200
5-18-5 3012.75 7200 1985.26 7200
5-20-3 2423.72 7200 1883.49 7200

Average 2136.19 - 1490.3 -
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Table 6: Total cost of best found solution of each instance under the second input
ordering strategy.

Instance 𝑇𝐶𝐽𝑖𝑇 CPU_time𝐽𝑖𝑇 𝑇𝐶𝐹𝑅 CPU_time𝐹𝑅

4-8-3 1451.93∗ 9.13 1198.23 7200
4-8-5 2060,38∗ 8.3 1016.77 7200
4-10-3 1876.98∗ 2068.73 1345.6 7200
4-10-5 2401.05 7200 1698.33 7200
4-12-5 2491.76∗ 7200 1561.32 7200
4-15-3 1648.01 7200 1183.74 7200
5-12-3 1863.07 7200 1305.73 7200
5-15-3 2130.13 7200 1761.45 7200
5-18-5 3023.49 7200 2072.64 7200
5-20-3 2477.41 7200 1896.25 7200

Average 2142.42 - 1504.01 -

The solutions produced by the Gurobi solver for the model using JiT replenishment
policy, under the effect of the first input ordering strategy are slightly improved
(0.3%), while those which obtained under the effect of the second input ordering
strategy are almost equal to the initial ones. Similarly, no improvements have been
achieved by following the first input ordering strategy for the case of FR policy.
Moreover, the combination of FR within the second input ordering data leads to 1%
worse solutions than the initial ones. Therefore, it can be highlighted that the input
ordering is not an effective strategy to address further improvements for the studied
IRPs.

4.5 Sensitivity Analysis

According to EU regulations of working (https://europa.eu/youreurope/
business/human-resources/working-hours-holiday-leave/working-hours/
index_en.htm) and driving (https://www.gov.uk/drivers-hours/eu-rules)
hours, the main version of the models consider an 8-hour upper time limit of driving.
However, focused only on the driving hours’ regulations of EU, two other schedules
are also permitted. The first one considers a driving regulation of nine hours, while
the last one relax this limit up to 10 hours of driving. Therefore, a sensitivity analysis
on the variations of driving upper time limit and its impact on final solution of MILP
model adopting the FR policy was conducted and it is presented in this section.
The results obtained by the Gurobi solver for each case of driving regulations are
provided in Table 7.
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Table 7: Sensitivity analysis on the variations of driving hours’ upper limit.

𝑈𝑇𝐿 = 9 hours 𝑈𝑇𝐿 = 10 hours
Instance 𝑇𝐶𝐹𝑅 CPU_time𝐹𝑅 𝑇𝐶𝐹𝑅 CPU_time𝐹𝑅

4-8-3 1205.2 7200 1193.76 7200
4-8-5 1020.89 7200 1016.77 7200
4-10-3 1324.5 7200 1344.86 7200
4-10-5 1706.16 7200 1699.13 7200
4-12-5 1565.08 7200 1595.01 7200
4-15-3 1177.36 7200 1179.83 7200
5-12-3 1322.36 7200 1319.3 7200
5-15-3 1722.88 7200 1701.18 7200
5-18-5 2026.78 7200 2015.38 7200
5-20-3 1912.33 7200 1818.39 7200

Average 1498.35 - 1488.36 -

Despite𝑈𝑇𝐿 is a critical parameter of the proposed model, no significant changes
were observed by the application of EU driving regulations’ schedules (−0.59% and
0.08% respectively). This observation can be potentially pointed as a characteristic
of robustness for the proposed MILP model.

5 Conclusion

This work presents two new Inventory Routing Problem variants by considering two
replenishment policies and realistic operational constraints, such as driving speed
limits and driving hours’ regulations. The addressed problems were formulated
as Mixed-Integer Linear Programming models and they were implemented using
the interface of Python-Gurobi. To investigate the new problems, 10 Location IRP
instances were randomly selected from literature and they were properly modified.
Next, they were solved by the Gurobi solver. The produced solutions highlight the
significant benefits by adopting a flexible replenishment policy under the Vendor
Managed Inventory strategy. Moreover, an analysis on the effect of different input
data ordering was conducted based on the findings noted in the literature (11).
However, no significant changes were observed. Finally, a sensitivity analysis on the
variations of driving upper time limit according to EU driving hours’ regulations
was performed.

The design and development of an efficient algorithm for the solution of more
realistic problem cases is underlined as an interesting future research direction. More-
over, the consideration of further realistic characteristics, such as fuel consumption
and service time in retailers will be an equivalently interesting future research.
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