
Vol.:(0123456789)

Computational Management Science (2023) 20:40
https://doi.org/10.1007/s10287-023-00474-y

1 3

ORIGINAL PAPER

Mathematical modeling for further improving task
scheduling on Big Data systems

Stavros Souravlas1,2 · Sofia Anastasiadou2 · Angelo Sifaleras1

Received: 30 June 2023 / Accepted: 21 August 2023
© The Author(s) 2023

Abstract
In the big data era which we have entered, the development of smart scheduler has
become a necessity. A Distributed Stream Processing System (DSPS) has the role
of assigning processing tasks to the available resources (dynamically or not) and
route streaming data between them. Smart and efficient task scheduling can reduce
latencies and eliminate network congestions. The most commonly used scheduler
is the default Storm scheduler, which has proven to have certain disadvantages, like
the inability to handle system changes in a dynamic environment. In such cases,
rescheduling is necessary. This paper is an extension of a previous work on dynamic
task scheduling. In such a scenario, some type of rescheduling is necessary to have
the system working in the most efficient way. In this paper, we extend our previous
works Souravlas and Anastasiadou (Appl Sci 10(14):4796, 2020); Souravlas et al.
(Appl Sci 11(1):61, 2021) and present a mathematical model that offers better bal-
ance and produces fewer communication steps. The scheduler is based on the idea
of generating larger sets of communication steps among the system nodes, which we
call superclasses. Our experiments have shown that this scheme achieves better bal-
ancing and reduces the overall latency.

Keywords Task scheduling · Big data streams · Task redistribution · Scheduling

 * Angelo Sifaleras
 sifalera@uom.gr

 Stavros Souravlas
 sourstav@uom.edu.gr

 Sofia Anastasiadou
 sanastasiadou@uowm.gr

1 Department of Applied Informatics, University of Macedonia, 156 Egnatias Str.,
Thessaloniki 54636, Thessaloniki, Greece

2 Faculty of Health Sciences, Department of Midwifery, University of Western Macedonia,
KEPTSE Area, Prolemaida 50200, Western Macedonia, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-023-00474-y&domain=pdf

 S. Souravlas et al.

1 3

 40 Page 2 of 18

1 Introduction

During the last 15 years, data have increased on a large scale in almost all fields.
Therefore, efficient ways of collecting and processing data from distributed
resources must be implemented in order to gain insight from it. The term “big
data” simply refers to the explosion of data volumes that are difficult to store,
process, and analyze using traditional database technologies.

Managing large data volumes that arrive continuously many times can exceed
the capabilities of individual machines. Stream data processing requires con-
tinuous calculation without interruption and high reliability requirements on
resources. In this regard, it is important to develop efficient task scheduling algo-
rithms. By task scheduling, we refer to the process we organize the resources in
a way that the task completion time is reduced and the system resources are uti-
lized in an improved way. Task scheduling focuses on which tasks to be placed
on which previously obtained resources, controls the order of job execution, and
is an NP-hard problem, in the sense that no solution has been found to be opti-
mal for all the possible topologies. Therefore, we cannot suggest that a proposed
scheme is optimal for a certain topology or for certain loads. The works proposed
in the literature are well-defined theoretically; however, none of them claims opti-
mality. Simulation experiments are widely used to compare similar schedules (in
terms of their goals), in approximately the same-sized clusters and over approxi-
mately similar datasets.

Naturally, responsive schedules are required to keep up with the transmission
of massive data among large-scale tasks, and this aggravates the difficulty of the
workflow scheduling problem (Tantalaki et al. 2020; Cardellini et al. 2016; Floratou
et al. 2017). An important challenge presents itself when the system parameters (the
number of available nodes and the execution tasks) need to change during runtime.
The dynamic strategies found in the literature generally deal with the following two
important issues: (1) Task migrations: They must be implemented during run-time.
However, the tasks have to migrate along with their state and latencies can increase,
depending on the processing load, and (2) Load balancing: which is important for
the system’s performance. Generally, imbalances reduce the performance of the sys-
tem. In the remainder of this section, we briefly describe some of the most repre-
sentative dynamic scheduling strategies with regard to the issues just mentioned.

Several distributed stream processing systems (DSPSs) that take advantage of
the inherent characteristics of parallel and distributed computing such as Apache
Storm, Spark Streaming, Samza and Flink have specifically emerged to address the
challenges of processing high-volume, real-time data. Such systems are designed to
execute complex streaming applications such as directed cyclic graphs (DAGs) over
tuples of a stream. They leverage data parallelism using multiple threads of execu-
tion per task (replicas). The default Storm scheduler has become the point of refer-
ence for most of the researchers, who compare their proposed schemes against this
simplistic scheduling algorithm. The main drawbacks of the Storm scheduler are:

1. It does not offer optimality in terms of throughput

1 3

Task scheduling on Big Data systems Page 3 of 18 40

2. It does not take into account the resource (memory, CPU, bandwidth) require-
ments/availability when scheduling

3. It is unable to handle cases where system changes incur.

In this work, we propose a reduced overhead modular arithmetic-based approach,
RO-MOD scheduler, which is based on the idea of having each node receiving
tuples for processing only from one other node at a time, whereas the number of
such communications is reduced (tuples are grouped into reduced number of trans-
missions through superclasses), thus overheads are reduced. Our scheme has the fol-
lowing contributions:

1. Reduced communication latencies: The RO-MOD scheduler includes a mecha-
nism which aims at optimizing the total inter-node communication costs.

2. Good load balancing within the network: As the RO-MOD scheduler is organized
in communication steps, where one node communicates with only one node at a
time, it can offer quite good balancing especially for linear topologies.

3. Reduced communication overheads: As fewer transmissions are scheduled by the
RO-MOD scheduler, the overheads, and thus overall performance improve.

4. Improves overall performance: Our proposed scheme, while not optimal, out-
performs existing strategies and is tailored to handle real-time stream processing
efficiently in terms of system throughput, load balancing and average total latency.

In its current form, the proposed scheduler can be used with applications that can
use relatively large datasets over small or medium sized clusters in terms of number
of nodes and capacity (i.e., the number of tasks to be executed). A potential example
could be a relatively small/medium sized retail/warehouse inventory for inventory
management across all channels and locations, or the familiar word count applica-
tion, which has been used for the experiments in this research work. However, in
the future, the proposed scheduler could be applied to extremely large datasets and
networks (for example, applications such as environmental monitoring and fraud
detection).

The remainder of this work is organized as follows. All the notation used in this
work is introduced in Table 1. Section 2 briefly summarizes some important sched-
uling approaches and describes the methodology on which their scheduling strategy
is based. Section 3 describes the mathematical model of the RO-MOD scheduler.
For completeness, we give a few details of our previous MOD scheduler. In Sec-
tion 4, we present a few experimental results, and Section 5 concludes the paper and
offers aspects for future work.

2 Related work

In this section, we describe some of the most important dynamic strategies found
in the literature. Static strategies work offline and aim at placing the tasks to the
most suitable nodes, in order to minimize the communication latencies. Dynamic

 S. Souravlas et al.

1 3

 40 Page 4 of 18

strategies monitor performance during run-time and may change the task assign-
ment. Decisions are made online. However, rebalancing can be time consuming,
e.g., ≈ 200secs in Storm (Shukla and Simmhan 2018; Tom et al. 2015). Moreover,
several existing works employ the CPU without considering memory constraints
(Tom et al. 2015; Xu et al. 2014; Shukla and Simmhan 2018) and this can lead to
memory overflow.

Aniello et al. (2013) developed a dynamic online scheduler that reduces inter-
node and inter-slot traffic on the basis of the communication patterns among execu-
tors observed at run-time. The goal of the online scheduler is to re-allocate executors
to nodes so as to limit the number of workers on which a topology has to run, the
number of slots available on each worker node, and the computational power of each
node. The scheduler places pairs of communicating executors of each topology in
descending order according to the rate with which they communicate data streams.
If both executors have not yet been assigned, they are assigned to the least loaded
worker. Otherwise, a set is generated by putting the least loaded worker together

Table 1 Definitions and notations

Term Definition

Component A processing module that is either a Bolt or Spout.
Topology Shows the interconnection between the tasks assigned to the spouts and bolts,

for a given application
Spout A type of component, which is a source of data streams and forwards

an unlimited number of tuples in the topology.
Bolt A component that receives, processes, and potentially forwards the processed

data streams.
Task A job that is assigned to a spout or bolt and it is designed to process

selected data streams coming from other tasks.
Executor A thread that is spawned in a worker process that executes one

or more tasks (Peng et al. 2015)
Slot An indication of the number of workers (see this definition later in this table)

that can be run on a node.
Time Slot A time slot is a division of time required to process a data stream.
Operator A processing vertex
Processor A physical unit that performs processing
Master Node The node, which is acts as the scheduler for the tasks assigned to the

worker nodes (see the next definition)
Worker Node A node which is responsible for certain task execution.
Process A contained for tasks to be executed.
Communication Class A set of communicating processor pairs that derives from the solution of a

linear Diophantine equation.
Homogeneous Classes Classes, which include processor pairs that produce the same number of solu-

tions for a certain linear Diophantine equation.

1 3

Task scheduling on Big Data systems Page 5 of 18 40

with the workers where either executor of the pair is assigned. The assignment deci-
sion is based on the criterion of the lowest inter-worker traffic.

Shukla and Simmhan (2018, 2018) developed two techniques: their first approach
(Shukla and Simmhan 2018) utilized benchmarks to develop performance model
functions. Tasks are scheduled in such a way that the resources used are minimized
and the performance offered is predictable. Also, they examined the matter of alloca-
tion of threads and resources for an application. Their second approach (Shukla and
Simmhan 2018) tries to achieve load balancing by employing task migration. Tom
et al. (2015) designed DRS, a dynamic resource scheduler that considers the number
of operators in an application and the maximum number of processors available that
can be allocated to them. Then, it finds an optimal assignment of processors that
results in the minimum expected total sojourn time. They estimated the total sojourn
time of an input by modeling the system as an Open Queueing Network (OQN). The
system monitors the actual total sojourn time and checks if the performance falls, or
if the system can satisfy the constraint with fewer resources, and reschedules if nec-
essary. It repeatedly adds one processor to the operator with the maximum marginal
benefit, until the estimated total sojourn time is no larger than a real-time constraint
parameter. Generally, DRS’ overhead is less than milliseconds in most of the tested
cases, resulting in a small impact on system’s latency.

Meng-Meng et al. (2014) proposed a dynamic task scheduling approach that
considers links between tasks and reduces the cost of internode traffic by assign-
ing tasks that communicate with each other to the same node or adjacent nodes.
Node workload and internode communication traffic are examined a priori through
switches. The T-Storm scheduler developed by Xu et al. (2014) also attempts to min-
imize internode traffic. The load information is collected during run-time by load
monitors. The future load is estimated using a machine learning prediction method.
The schedule generator periodically reads the above information from the database,
sorts the executors in descending order of their traffic load, and assigns executors
to slots. Executors are assigned to the same or nearby slots to reduce inter-process
traffic. Elasticity an important issue in online environments, as input rate can vary
in streaming applications, and it is necessary to configure the degree of operator
replication, to maintain system performance. Most of the available solutions require
users to manually tune the number of replicas per operator, but users usually have
limited knowledge about the runtime behavior of the system. Several approaches
(e.g., (Cardellini et al. 2016; Floratou et al. 2017) try to deal with replication run-
time decisions in stream processing.

Dynamic techniques, while advantageous, can lead to local optima for individual
tasks without regard to the global efficiency of the dataflow. This introduces latency
and cost overhead. Rebalancing the application’s reconfiguration and regular task
migrations may also be time consuming. In this work we extend our load balanced
dynamic scheme, which reduces buffering memory requirements, and we introduce
a mathematical model that reduces the number of communications and thus the
overheads. In addition, the reallocation or task is completely avoided. To explain
the importance of this feature, let us consider dynamic task migration as a procedure
that has to be performed during run-time. This means that, some tasks have to be
assigned to a node other than the one they are being executed. However, this task

 S. Souravlas et al.

1 3

 40 Page 6 of 18

has to migrate along with its context (for example, all the data having been pro-
cessed, assigned variable values, etc.). This cost can increase, depending on the pro-
cessing load. On the other hand, task migration has the advantage that it can move
communicating tasks to nearby nodes. This offers some efficiency. By narrowing
the problem and avoiding this migration, the proposed RO-MOD scheduler avoids
context overhead. Additionally, our strategy implements a stepwise all-to-all com-
munication strategy, where every source node submits data streams to every target.
As this strategy leads to an optimal in terms of cost communication schedule, the
data streams are in any case transferred in minimized time, with no need for migra-
tion and unnecessary context switches. Since this is the case, our scheme eliminates
the advantage offered by placing tasks at nearby nodes.

3 Mathematical model of communication

In this section, we present the mathematical notation required to implement our
scheduler. These notation was introduced in our previous work (Souravlas and Ana-
stasiadou 2020), but we will briefly describe them to make this work self-contained.
Then, we present our extensions. The main idea behind what follows is to organize
all the communications in groups of homogeneous in terms of communicating pairs,
which will be used to achieve a schedule with minimized inter-node communication,
while the load is equally balanced among the system’s nodes. Initially, we assume
that there is an initial distribution, where the tasks are equally distributed among
the system’s nodes. This is not a narrowing approach, since most scheduling strate-
gies try to keep equal numbers of tasks among the nodes. Initially, let us define an
equation that describes the round-robin placement of t consecutive tasks into a set
of nodes. This equation will describe the initial task distribution, which are evenly
distributed among the system’s nodes.

where N is the number of nodes in the initial distribution, n is the node where a task
indexed i is placed and t is the number of tasks assigned per node. The range of i
ranges from 0 to N × t . For example, if there are t = 4 tasks per node and N = 6 our
model assumes 24 tasks.Then, tasks i = 0, 1, 2 and 3 will be located at node n = 0 ,
tasks i = 4, 5, 6 and 7 will be located at node n = 1 , tasks i = 8, 9, 10 and 11 will
be located at node n = 2 , … , and tasks i = 20, 21, 22 and 23 will be located at node
n = 5 . From Eq. 1, for some integer L we get the following:

Now, if we set an integer x, such that x = i mod t , 0 ≤ x < t , Eq. 2 becomes:

Eq. 3 describes the initial task distribution. We use R(i, n, L, x) to symbolize this
distribution. Now, if we wish to describe a different scenario, where the number of
tasks or nodes changes, we need a second equation. This equation is derived in a

(1)n = ⌊i∕t⌋ mod N,

(2)⌊i∕t⌋ = LN + n.

(3)i = (LN + n)t + x

1 3

Task scheduling on Big Data systems Page 7 of 18 40

similar way. Now, if we assume that the number of nodes changes from N to Q, then
Q is now the number of nodes, q is the node where a task indexed with j will be
placed, and s is the new number of tasks. Thus, we get:

where the integers M, y are defined similarly to L and x in Eq. 3. For y, we have
0 ≤ y < s . We use R�(j, q,M, y) to symbolize a distribution that would arise in the
event of the system changes described above.

We need to define sets of homogeneous communications between nodes. As will
be described in the next subsection, these communications will be used to quickly
produce an efficient communication schedule with reduced communication laten-
cies. The idea is to equate the two distributions defined in Eq.3 and Eq.4 and gener-
ate a linear Diophantine equation. From modular arithmetic we know that the linear
Diophantine equations can have solutions divided into classes (the term is defined
later; see Eq. 8). These classes will be the basis for our homogeneous communi-
cations. The linear Diophantine equation required by our schedule is provided as
follows:

or

Such linear Diophantine equations are solved using the extended Eucidean algo-
rithm in logarithmic time, which is perfectly suitable for our scheduler.

Now, we set g = gcd(Nt,Qs) , so Nt = Lg and Qs = Mg for arbitrary integers
L, M. Thus, LNt = L2g and MQs = M2g . It follows that LNt −MQs = g(L2 −M2) ,
therefore LNt −MQs a multiple of g. This means that there is an integer � , such that:
LNt −MQs = �g . If we also set z = x − y , then (6) is rewritten as:

From modular arithmetic, we are aware that for linear Diophantine equations, a pair
(n, q) belongs to a communication class k if:

and it can be proven that all node pairs (p, q) that belong to a class produce the same
number of solutions for Eq. 7. The number of such solutions is c. These node pairs
will be named “homogeneous”. For a proof, see (Souravlas and Anastasiadou 2020;
Souravlas et al. 2021).

Apparently, the pairs (p, q) in each class define communications between pairs of
nodes. Classes that produce the same number of solutions for a certain linear Dio-
phantine equation are called homogeneous. There may be two or more homogeneous
classes.

Our previous scheme was based on the idea of mixing pairs of communicating
nodes from different classes to achieve communication steps, so that, during each

(4)j = (MQ + q)s + y

(5)R = R�
⇒ (LN + n)t + x = (MQ + q)s + y

(6)nt − qs + (x − y) = MQs − LNt

(7)�g − z = nt − qs

(8)(nt − qs)mod g = k

 S. Souravlas et al.

1 3

 40 Page 8 of 18

step, the data volumes transmitted between nodes were equal. However, the com-
munication steps themselves were unequal; in other words, not equal data vol-
umes were transmitted between different steps. Now, we extend these ideas to
present a novel communication scheme, in which all communication steps carry
equal data volumes.

3.1 Extensions to our previous scheme

Initially, let us define the function D(k1, k2) that computes the distance between
two classes k1 and k2 such that:

A group of classes V = k1, k2...kn−1, kn that differ by r mod g , that is:
D(k1, k2) = D(k2, k3) = …D(kn−1, kn) = r mod g is called superclass. Proposition 1
provides a starting point for our streaming communication:

Proposition 1 There exists a set of node pairs (n, q) within t in total classes
Θ = {k0, k1, k2...kr−1 } that satisfy:

Proof We rewrite Equation (5) as:

We know that g = gcd(Nt,Qs) , making MQs − LNt a multiple of g. This means that
there is an integer � , such that: MQs − LNt = �g . If we also set � = x − y , Equation
(6) is rewritten as:

If we divide both parts of Equation (12) with g, we get:

Since � = x − y , it is obvious that −� = y − x . Therefore, we obtain the following
equation:

By setting y = 0 (the indices of the first tasks in distribution R′ (which are incurred
when the system parameters change), we get the result. Thus, we have obtained a set
of starting communication node pairs. ◻

(9)D(k1, k2) =

{
k2 − k1, if k2 ≥ k1
g − k1 + k2, otherwise

(10)−x mod g = k, x ∈ [0… t − 1].

(11)MQs − LNt = nt − qs + (x − y)

(12)�g − � = nt − qs

(�g − �) mod g = (nt − qs) mod g ⇒

(�g mod g) − (� mod g) = (nt − qs) mod g ⇒

−� mod g = (nt − qs) mod g.

(13)(y − x) mod g = (nt − qs) mod g ⇒ (y − x) mod g = k

1 3

Task scheduling on Big Data systems Page 9 of 18 40

Proposition 2 provides a simple way of finding all the pairs of communicating nodes
when the system parameters change, based on the idea of node classes.

Proposition 2 During a task redistribution problem, two neighboring nodes n� , n�
send data streams to perform the tasks found on the same target node q if the pro-
cessor pairs (n� , q) and (n� , q) belong to the same superclass.

Proof We need to show that if n� , q ∈ k1 and n� , q ∈ k2 , then the distance between
the classes k1 and k2 is equal to r mod g . Assume that processors n� and n� send data
streams to q and (p� , q) ∈ k1 , (n� , q) ∈ k2 . For processor pair (n� , q) Equation (13)
is rewritten as: (y − x) mod g = (n�r − qs) mod g . Similarly, for (n� , q) we have
(y − x) mod g = (n�r − qs) mod g . Without loss of generality, we assume that
the indices of two neighboring source nodes n� , n� differ by 1 (the proof is similar
for any other integer value). Thus, (y − x) mod g = (n�r − qs) mod g becomes:
(y − x) mod g = (n�r + r − qs) mod g . We summarize the set of equations for the
two processor pairs:

There are three cases that need to be examined. Here, we prove the first one, and the
remaining cases can be proven in a similar way.

1. n𝛾r + r − qs < g and r < g

2. n𝛾r + r − qs < g and r ≥ g

3. n𝛾r + r − qs > g

Case 1: n𝛾r + r − qs < g and r < g :
1.1: n𝛾r + r − qs > 0, n𝛾r − qs > 0 : In this case k2 > k1 therefore (see Equation 9):

D(k1, k2)=k2 − k1 = n�r + r − qs − n�r + qs = r . Because r < g ⇒ r = r mod g.
1.2: n𝛾r + r − qs < 0, n𝛾r − qs < 0 : Same as in case 1.1.
1.3: n𝛾r + r − qs > 0, n𝛾r − qs < 0 : In this case

(n�r − qs) mod g = �g + n�r − qs = k1 , where � is an arbitrary inte-
ger. Also, k2 = n�r + r − qs (recall that 0 < n𝛾r + r − qs < g). If k1 > k2 ,
(k1, k2) = g − k1 − k2 = g − (�g + n�r − qs) + n�r + r − qs = r − (� − 1)g = r mod g
(since (� − 1)g divides g). If k1 ≤ k2 , then
D(k1, k2) = k2 − k1 = n�r + r − qs − �g + n�r − qs = r − �g = r mod g . ◻

The following Tables 2, 3, and 4 provide an example of communication classes and
superclasses.

(14)(y − x)mod g =

{
(n�r − qs) mod g = k1, for (n� , q)

(n�r + r − qs) mod g = k2, for (n� , q)

 S. Souravlas et al.

1 3

 40 Page 10 of 18

3.2 Communication scheduling

To schedule the communications among the various nodes (and thus among tasks),
we need a stepping function that arranges the sequence of transmissions. We name
this stepping function S and define it as follows:

The following steps are necessary to form the target blocks in the generator nodes’
memory.

Step 1 Start with a class k0 that belongs to Θ , as defined in Proposition 1.
Step 2 All nodes n, (n ∈ [0..N − 1]) assign data streams of cost s� = vol(p, q) to

the destination nodes q (q ∈ [0..Q − 1]). We use the vol function to compute the
communication cost for our model. This computation has been defined in Souravlas
and Anastasiadou (2020); Souravlas et al. (2021), but we provide it here for com-
pleteness. Specifically, the function vol returns the number of quadruples (L, M, x, y)
that satisfy the redistribution Equation (5):

Step 3 If s� = s , we pick another class and move to STEP 1. If s′ < s , the transmis-
sion is incomplete, and we move to STEP 4. Step 4 Use the stepping function S to
get the next class member of the superclass k1:k1 = k0 + S(k0) and move to STEP 2.

Repetition of these steps allows us to organize data streams with cost s among all
nodes and their tasks. This approach has two advantages:

• The communication steps have the same cost, s.
• This scheme requires fewer steps compared to our previous class-based approach

despite the fact that larger data stream volumes are carried. This is due to the fact
that our previous scheme was based on selecting communication pairs from just
one class. With the use of superclasses, we have managed to merge more com-
munication pairs in each step, thus fewer steps are required.

(15)S(k) =

{
r mod g, if (r mod g) + k < g

(r mod g) − g, if (r mod g) + k ≥ g.

(16)vol(p, q) = {(L,M, x, y) ∶ mQs − LNr = nr − qs + (x − y)}

Table 2 Classes and their costs
for N = Q = 16 , t = 7 , s = 11

Class Communication
cost Ck

Class Communi-
cation cost
Ck

k = 0 7 k = 8 3
k = 1 7 k = 9 2
k = 2 7 k = 10 2
k = 3 7 k = 11 2
k = 4 7 k = 12 2
k = 5 6 k = 13 4
k = 6 5 k = 14 5
k = 7 4 k = 15 6

1 3

Task scheduling on Big Data systems Page 11 of 18 40

Ta
bl

e
3

 S
up

er
cl

as
se

s 0
,1

5,
14

,1
3

fo
r N

=
Q
=
1
6
,
t
=
7
,
s
=
1
1

Su
pe

rc
la

ss
 0

Su
pe

rc
la

ss
 1

5
Su

pe
rc

la
ss

 1
4

Su
pe

rc
la

ss
 1

3

C
la

ss
es

k
=
7

k
=
0

C
la

ss
es

k
=
6

k
=
1
5

C
la

ss
es

k
=
5

k
=
1
4

C
la

ss
es

k
=
4

k
=
1
3

(p
,q

)
(p

,q
)

(p
,q

)
(p

,q
)

(p
,q

)
(p

,q
)

(p
,q

)
(p

,q
)

7,
0

(1
,0

)
(0

,0
)

6,
15

(4
,2

)
(3

,2
)

5,
14

(7
,4

)
(6

,4
)

4,
13

(1
0,

6)
(9

,6
)

(1
2,

7)
(1

1,
7)

(1
5,

9)
(1

4,
9)

(2
,1

1)
(1

,1
1)

(5
,1

3)
(4

,1
3)

(7
,1

4)
(6

,1
4)

(1
0,

0)
(9

,0
)

(1
3,

2)
(1

2,
2)

(0
,4

)
(1

5,
4)

(2
,5

)
(1

,5
)

(5
,7

)
(4

,7
)

(8
,9

)
(7

,9
)

(1
1,

11
)

(1
0,

11
)

(1
3,

12
)

(1
2,

12
)

(0
,1

4)
(1

5,
14

)
(3

,0
)

(2
,0

)
(6

,2
)

(5
,2

)
(8

,3
)

(7
,3

)
(1

1,
5)

(1
0,

5)
(1

4,
7)

(1
3,

7)
(1

,9
)

(0
,9

)
(3

,1
0)

(2
,1

0)
(6

,1
2)

(5
,1

2)
(9

,1
3)

(8
,1

3)
(1

2,
15

)
(1

1,
15

)
(1

4,
1)

(1
3,

1)
(1

,0
)

(0
,0

)
(4

,5
)

(3
,5

)
(7

,7
)

(6
,7

)
(9

,8
)

(8
,8

)
(1

2,
10

)
(1

1,
10

)
(1

5,
12

)
(1

4,
12

)
(2

,1
4)

(1
,1

4)
(4

,1
5)

(3
,1

5)
(7

,1
)

(6
,1

)
(1

0,
3)

(9
,3

)
(1

3,
5)

(1
2,

5)
(1

5,
6)

(1
4,

6)
(2

,8
)

(1
,8

)
(5

,1
0)

(4
,1

0)
(8

,1
2)

(7
,1

2)
(1

0,
13

)
(9

,1
3)

(1
3,

15
)

(1
2,

15
)

(0
,1

)
(1

5,
1)

(3
,3

)
(2

,3
)

(5
,4

)
(4

,4
)

(8
,6

)
(7

,6
)

(1
1,

8)
(1

0,
8)

(1
4,

10
)

(1
3,

10
)

(0
,1

1)
(1

5,
11

)
(3

,1
3)

(2
,1

3)
(6

,1
5)

(5
,1

5)
(9

,1
)

(8
,1

)
(6

,9
)

(5
,9

)
(1

4,
4)

(1
3,

4)
(1

,6
)

(0
,6

)
(4

,8
)

(3
,8

)
(1

1,
2)

(1
0,

2)
(9

,1
1)

(8
,1

1)
(1

2,
13

)
(1

1,
13

)
(1

5,
15

)
(1

4,
15

)

 S. Souravlas et al.

1 3

 40 Page 12 of 18

Ta
bl

e
4

 S
up

er
cl

as
se

s 1
2,

11
,1

0
fo

r P
=
Q

=
1
6
,
r
=
7
,
s
=
1
1

Su
pe

rc
la

ss
 1

2
Su

pe
rc

la
ss

 1
1

Su
pe

rc
la

ss
 1

0

C
la

ss
es

k
=
1
0

k
=
3

k
=
1
2

C
la

ss
es

k
=
9

k
=
2

k
=
1
1

C
la

ss
es

k
=
8

k
=
1

k
=
1
0

(p
,q

)
(p

,q
)

(p
,q

)
(p

,q
)

(p
,q

)
(p

,q
)

(p
,q

)
(p

,q
)

(p
,q

)
10

,3
,1

2
(3

,1
)

(2
,1

)
(1

,1
)

9,
2,

11
(6

,3
)

(5
,3

)
(4

,3
)

8,
1,

10
(9

,5
)

(8
,5

)
(7

,5
)

(1
4,

8)
(1

3,
8)

(1
2,

8)
(1

,1
0)

(0
,1

0)
(1

5,
10

)
(4

,1
2)

(3
,1

2)
(2

,1
2)

(9
,1

5)
(8

,1
5)

(7
,1

5)
(1

2,
1)

(1
1,

1)
(1

0,
1)

(1
5,

3)
(1

4,
3)

(1
3,

3)
(4

,6
)

(3
,6

)
(2

,6
)

(7
,8

)
(6

,8
)

(5
,8

)
(1

0,
10

)
(9

,1
0)

(8
,1

0)
(1

5,
13

)
(1

4,
13

)
(1

3,
13

)
(2

,1
5)

(1
,1

5)
(0

,1
5)

(5
,1

)
(4

,1
)

(3
,1

)
(1

0,
4)

(9
,4

)
(8

,4
)

(1
3,

6)
(1

2,
6)

(1
1,

6)
(0

,8
)

(1
5,

8)
(1

4,
8)

(5
,1

1)
(4

,1
1)

(3
,1

1)
(8

,1
2)

(7
,1

2)
(6

,1
2)

(1
1,

14
)

(1
0,

14
)

(9
,1

4)
(0

,2
)

(1
5,

2)
(1

4,
2)

(3
,4

)
(2

,4
)

(1
,4

)
(6

,6
)

(5
,6

)
(4

,6
)

(1
1,

9)
(1

0,
9)

(9
,9

)
(1

4,
11

)
(1

3,
11

)
(1

2,
11

)
(1

,1
3)

(0
,1

3)
(1

5,
13

)
(6

,0
)

(5
,0

)
(4

,0
)

(9
,2

)
(8

,2
)

(7
,2

)
(1

2,
4)

(1
1,

4)
(1

0,
4)

(1
,7

)
(0

,7
)

(1
5,

7)
(4

,9
)

(3
,9

)
(2

,9
)

(7
,1

1)
(6

,1
1)

(5
,1

1)
(1

2,
14

)
(1

1,
14

)
(1

0,
14

)
(1

5,
0)

(1
4,

0)
(1

3,
0)

(2
,2

)
(1

,2
)

(0
,2

)
(7

,5
)

(6
,5

)
(5

,5
)

(1
0,

7)
(9

,7
)

(8
,7

)
(1

3,
9)

(1
2,

9)
(1

1,
9)

(2
,1

2)
(1

,1
2)

(0
,1

2)
(5

,1
4)

(4
,1

4)
(3

,1
4)

(8
,0

)
(7

,0
)

(6
,0

)
(1

3,
3)

(1
2,

3)
(1

1,
3)

(0
,5

)
(1

5,
5)

(1
4,

5)
(3

,7
)

(2
,7

)
(1

,7
)

(8
,1

0)
(7

,1
0)

(6
,1

0)
(1

1,
12

)
(1

0,
12

)
(9

,1
2)

(1
4,

14
)

(1
3,

14
)

(1
2,

14
)

1 3

Task scheduling on Big Data systems Page 13 of 18 40

Due to the better balancing achieved (the cost of all the communications is s) and
since the number of steps is reduced (thus overheads are reduced), the proposed
scheme manages to reduce the overall latency, as will be seen in the the following
Sect. 4.

For example, all communications defined in Superclass 0 (see Table 3), are
formed by Classes 7 and 0 and the total cost is 7 + 4 = 11 = s . The communications
defined in Superclass 12 (see Table 4) are formed by the classes 10, 3 and 12 and the
total cost is 2 + 7 = 2 = 11 = s . Our previous approach, which was based on single
classes, would require three communication steps instead of the one we use here.
Our overhead in this simple case is reduced by 66%.

4 Simulation results and discussion

Our scheduling strategy was evaluated using a simulation environment, which pro-
vides researchers with a wide range of choices to develop, debug, and evaluate their
experimental system. In our experimental setup, the Storm cluster consists of nodes
that run Ubuntu 16.04.3 LTS with an Intel Core i7-8559U Processor system and
clock speed at 2.7GHz, 1 Gb RAM per node. Furthermore, there is all-to-all com-
munication between the nodes, which are interconnected at a speed of 100 Mbps.
Also, we assume that the data transfer rates between the cluster nodes are equal,
but their proximity differs (nodes with smaller index differences are considered to
be located at lower distances between them). The tuples generated are assumed to
have equal size, 16Kb, The tuples are associated to simple text datasets. The appli-
cation we used for our simulations is the typical word count example. For example,
one task processes a tuple and seeks all words starting from a selected letter. Then,
it passes the processed tuples to a next task, which in turn, seeks a word that starts
with a combination of the selected letter and a few more letters. Proceeding in this
way, the application can perform word counting on large datasets.

For our experiments, we ran two topologies: (1) A random topology with four
bolts and one spout, where the number of tasks per component is initially 4 and
then changes to 5. (2) A linear topology with three bolts and one spout. In a lin-
ear topology, the bolts and spouts are linearly connected. In both topologies, there
is an all-to-all connection between the tasks. We have chosen these topologies to
fairly compare our work with similar schemes that we chose for comparisons. These
schemes work on similar topologies. For both topologies, we used a cluster with
N = 5 worker nodes, each with 4 slots. In both cases, an additional node, designated
as the master node to host Nimbus and Zookeeper services (services used to control
processes), was also used. Each part of the stream is considered as a small group of
100 tuples.

For our comparisons, we chose the default Storm scheduler, Meng’s et al. strat-
egy Meng-Meng et al. (2014), and two more recent approaches, the approaches of
Shukla and Simmhan (2018) and the MT-scheduler (Maximum Throughput sched-
uler) presented by Al-Sinayyid and Zhu (2020). The Storm scheduler is the point of
reference for a large percentage of strategies developed in the literature. Just like our
scheduler, Meng’s et al. strategy is also based on the idea of using a matrix model

 S. Souravlas et al.

1 3

 40 Page 14 of 18

for task scheduling. Moreover, it is based on task migrations, a strategy that can
be opposed to our stepwise scheme. The approach found in Shukla and Simmhan
(2018) also focuses on using task migration to balance network load. Finally, the
MT-scheduler is the more recent approach, which tries to maximize throughput by
trying to minimize the transfer times, so it is somehow comparable to our scheduler.
The selected schemes will be useful in comparing our work with strategies that use
some similar ideas (like matrices) and strategies that have “opposing” ideas (task
migrations vs. stepwise communications).

4.1 Load balancing comparisons

In the first set of experiments, we compare the load balancing achieved by the com-
pared strategies. To do so, we regularly (every five seconds) computed the average
standard deviation of the load being delivered to each node (see Fig. 1) for both
topologies considered. An increase in the standard deviation value indicated less
balancing between nodes.

For the default Storm scheduler, it is obvious that the lack of a load balancing
causes high imbalances as the time proceeds. Specifically, the default Storm sched-
uler does not care about the current load of the communicating tasks; it just han-
dles the tasks as independent entities. Meng’s scheme pays full attention to the links
that connect the communicating tasks and effectively reduces traffic between these
nodes through switches. This balances the load of the links, but the processing load
is not balanced: The approach assigns tasks that communicate to each other to the
same node or to adjacent nodes, which are selected via the current link information.
This means that, when the link state is such that one or a few target nodes are cho-
sen to accommodate the new tasks, then imbalances occur. The approach of Shukla
and Simmhan is also based on using the link information through dataflow check-
points. In this regard, there is no fear that in-flight messages will be lost. A timeout
period can be used where no data is transmitted. During this period, the tasks to
be migrated are paused, and the in-flight messages can be transmitted without con-
tentions. This policy can reduce the imbalances that have occurred, but diminishes
overall performance of the system. Moreover, it is based on link information, not
on actual processing performed on each node. In our simulations, this regulation

0

2

4

6

8

10

12

14

16

25 50 100

Time (in seconds)

St
an

da
rd

 D
ev

ia
tio

n
of

 st
re

am
s d

el
iv

er
ed

 (
Li

ne
ar

 T
op

ol
og

y)

0

5

10

15

20

25

30

35

40

25 50 100

Time (in seconds)

St
an

da
rd

 D
ev

ia
tio

n
of

 st
re

am
s d

el
iv

er
ed

 (
R

an
do

m
 T

op
ol

og
y)

(a) (b)

Our scheme

Meng’s et al. Scheduler

Shukla and Simmhann

Al-Sinayyid and Zhu

 Default Storm

Our scheme

Meng’s et al. Scheduler

Shukla and Simmhann

Al-Sinayyid and Zhu

 Default Storm

Fig. 1 Load balancing comparisons

1 3

Task scheduling on Big Data systems Page 15 of 18 40

helps Shukla’s and Simmhan’s approach to have somehow better balancing results
compared to Meng’s et al. scheme, as Fig. 1a indicates. The regulations performed
are indicated with some slight peaks displayed on the line. Finally, Fig. 1b shows the
load per node when we run the random topology.

The MT-Scheduler proposed by Sinayyid and Zhu, the bottlenecks determine the
mapping and remapping procedures. The only regulation policy used is that users
are allowed to configure and regulate the data locality, in order to maintain execution
of the tasks as close to the data. This minimizes the transfer cost, but by no means
guarantees the load balance. As Fig. 1 indicates, this strategy suffers from higher
imbalances compared to the other schemes (excluding the default Storm scheduler.
Our scheme was found to have smaller standard deviation values compared to the
other schemes, thus better balancing. The reason is apparent: at each communica-
tion step, there is a fixed in terms of cost communication among the system nodes.
Thus, the curve that shows the results of the load balance of our strategy seems to be
gradually increasing. Our strategy is not as heavily affected by the growing number
of tuples added to the nodes, as this is done in a balanced way (especially for the
linear topology).

Our experiments have shown that the five lines showed quite similar behavior
when we changed the topology from linear to random, but their slope appears larger,
indicating that the standard deviation values are more affected (increasing with
time). Thus, as the standard deviations computed suggest, higher imbalances occur
when random (and generally more complex) topologies are used.

4.2 Throughput comparisons

In this set of experiments, we compared the overall throughput of the five strategies,
that is, the number of streams being processed. Because our strategy implements its
task migrations whenever they are required using minimum in terms of cost com-
munication steps, it outperforms the compared strategies. Apart from the context
switch overheads, task migrations require some more procedures, which add extra
cost; killing of the migrated tasks from their original nodes to complete the migra-
tion process or possible recoveries of messages that were lost and after the migration
process due to killing the dataflows or due to timeout policies being employed, like
the one described for the second approach of Shukla and Simmhan. Thus, our care-
ful stepwise implementation policy manages to calm down the effects of task migra-
tions to the maximum possible extent (see Fig. 2).

4.3 Average latency

Figure 3 plots the average latency for the four works that were found to be dominant in
terms of load balancing and throughput, that is, our scheme, Shukla’s and Simmhan’s
scheme, and the MT-Scheduler. The proposed scheme takes advantage of the way it
migrates the tasks, it has better load balancing and reduced communication steps (over-
heads) and manages to reduce the overall latency. In our work, the average latency
seems to be changing quite smoothly and the slight peaks indicate the existence of

 S. Souravlas et al.

1 3

 40 Page 16 of 18

migrations from time to time. Shukla’s and Simmhan’s scheme appears to have larger
peaks, and this can be explained by the regular timeouts employed, which increase the
average latencies. The MT scheduler has the highest latencies, as a result of the lack of
a serious policy on load balancing.

0

5

10

15

20

25

30

35

40

45

50

25 50 100

Our scheme

Meng’s et al. Scheduler

Shukla and Simmhann

Al-Sinayyid and Zhu

 Default Storm

St
re

am
s P

ro
ce

ss
ed

 in
 th

ou
sa

nd
s (

Li
ne

ar
 T

op
ol

og
y)

Time (in seconds)
(a)

0

4

 8

12

16

20

24

28

32

36

44

25 50 100

MOD

Meng’s et al. Scheduler

Shukla and Simmhann

Al-Sinayyid and Zhu

 Default Storm

St
re

am
s P

ro
ce

ss
ed

 in
 th

ou
sa

nd
s (

Ra
nd

om
 T

op
ol

og
y)

Time (in seconds)
(b)

Fig. 2 Throughput comparisons

0

1

 2

 3

 4

 5

 6

 7

 8

 9

25 50 100

Time (in seconds)

A
ve

ra
ge

 L
at

en
cy

 (i
n

se
co

nd
s) Our work

Shukla and Simmhan

MT-Scheduler

Fig. 3 Latency comparisons

1 3

Task scheduling on Big Data systems Page 17 of 18 40

5 Conlusions and future work

This work has presented a dynamic task scheduling approach that handles sys-
tem changes (number of tasks or nodes) for applications that require heavy (and
sometimes all-to-all) communications between the system’s nodes and tasks. Our
approach extends our previous work and organizes communication in a set of
well-defined steps based on the idea of larger groups of communication classes
called superclasses. This approach has the advantage of generating fewer commu-
nication steps and thus smaller latencies.

The simulation results have shown that our scheduler offers better load balanc-
ing and throughput compared to a number of other schemes chosen for compari-
son. It also reduces the overall latency, due to the way that the task migrations
are implemented using the minimum number of steps, as they are determined by
our communication scheduling policy. An advantage of the proposed model is
that its computational complexity is the complexity of the Extended Euclidean
algorithm, which is logarithmic. Therefore, its application cannot be considered
as a burden. The cost of communication in every step is the same and is dictated
by the s parameter, that is, the new number of tasks assigned to each node after
task redistribution. Compared to other task distribution schemes, one can claim
that, under certain task redistributions, the selected value of s is too large, so the
nodes are overloaded. However, the trade-off here is that balancing is guaranteed,
no matter what the value of s is.

Apparently, our scheme can theoretically be adapted to any workload size
under the hypothesis that the number of tasks within each machine is adequate
to handle this load. However, the examination of extremely large datasets (such
as sensor applications) in very large networks is the subject of our future work.
Perhaps, the proposed model would have to be subject to various changes in order
to deal with aspects such as the communication costs and the adaptability under
extremely large networks. Also, certain limitations on the value of s may need to
be imposed as the datasets grow larger and larger.

On the other hand, we can consider that for very small-scale workloads (for
example, applications that may require relatively small datasets), perhaps a
straightforward round-robin approach like the default Storm scheme may be nec-
essary. In our comparison results, we used the typical word count application
with large datasets to serve our comparison purposes.

Different scheduling scenarios may appear not only depending on the applica-
tion, but also on the cluster topology. Regularly, linear topology is preferred in
terms of efficiency. However, there may be cases where an irregular topology can
reduce the communication cost between certain nodes. In any case, the reduction
of the inter-node communication cost does not always suffice to guarantee lower
latencies. Our scheme manages to avoid imbalances in terms of data loads trans-
ferred in the paths among the system nodes. This reduces the overall latency.

In the future, we wish to extend this work for larger networks with larger num-
bers of nodes and suggest mathematical models (or change the existing one) tar-
geted for specific topologies.

 S. Souravlas et al.

1 3

 40 Page 18 of 18

Funding Open access funding provided by HEAL-Link Greece.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Al-Sinayyid A, Zhu M (2020) Job scheduler for streaming applications in heterogeneous distributed pro-
cessing systems. J Supercomput 20:9609–9628

Aniello L, Baldoni R, Querzoni L (2013) Adaptive online scheduling in Storm. In: Proceedings of the
7th ACM International Conference on Distributed Event-based Systems (DEBS ’13), pp. 207–218

Cardellini V, Grassi V, Presti L, Nardelli M (2016) Optimal operator placement for distributed stream
processing applications. In: Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems. DEBS ’16, pp. 69–80

Floratou A, Agrawal A, Graham B, Rao S, Ramasamy K (2017) Dhalion: self-regulating stream process-
ing in Heron. Proc VLDB Endow 10(12):1825–1836

Meng-Meng C, Chuang Z, Zhao L, Ke-Fu X (2014) A task scheduling approach for real-time stream
processing. In: Proceedings of the International Conference on Cloud Computing and Big Data, pp.
160–167

Peng B, Hosseini M, Hong Z, Farivar R, Campbell R (2015) R-Storm: Resource-aware scheduling in
storm. In: Proceedings of the 16th Annual Middleware Conference. Middleware ’15, pp. 149–161.
ACM, Vancouver, BC, Canada

Shukla A, Simmhan Y (2018) Model-driven scheduling for distributed stream processing systems. J Par-
all Distrib Comput 117:98–114

Shukla A, Simmhan Y (2018) Toward reliable and rapid elasticity for streaming dataflows on clouds. In:
Proceedings of the 38th International Conference on Distributed Computing Systems (ICDCS), pp.
1096–1106

Souravlas S, Anastasiadou S (2020) Pipelined dynamic scheduling of big data streams. Appl Sci
10(14):4796

Souravlas S, Anastasiadou S, Katsavounis S (2021) More on pipelined dynamic scheduling of big data
streams. Appl Sci 11(1):61

Tantalaki N, Souravlas S, Roumeliotis M (2020) A review on big data real-time stream processing and its
scheduling techniques. Int J Parall Emerg Distrib Syst 35(5):571–601

Tom ZJ, Fu JD, Richard TBM, Winslett M, Yin Y, Zhang Z (2015) DRS: Dynamic resource scheduling
for real-time analytics over fast streams. In: Proceedings of the 35th IEEE International Conference
on Distributed Computing Systems, pp. 411–420

Xu J, Chen Z, Tang J, Su S (2014) T-Storm: Traffic-aware online scheduling in Storm. ICDCS ’14, pp.
535–544

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Mathematical modeling for further improving task scheduling on Big Data systems
	Abstract
	1 Introduction
	2 Related work
	3 Mathematical model of communication
	3.1 Extensions to our previous scheme
	3.2 Communication scheduling

	4 Simulation results and discussion
	4.1 Load balancing comparisons
	4.2 Throughput comparisons
	4.3 Average latency

	5 Conlusions and future work
	References

