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Abstract
In the big data era which we have entered, the development of smart scheduler has 
become a necessity. A Distributed Stream Processing System (DSPS) has the role 
of assigning processing tasks to the available resources (dynamically or not) and 
route streaming data between them. Smart and efficient task scheduling can reduce 
latencies and eliminate network congestions. The most commonly used scheduler 
is the default Storm scheduler, which has proven to have certain disadvantages, like 
the inability to handle system changes in a dynamic environment. In such cases, 
rescheduling is necessary. This paper is an extension of a previous work on dynamic 
task scheduling. In such a scenario, some type of rescheduling is necessary to have 
the system working in the most efficient way. In this paper, we extend our previous 
works Souravlas and Anastasiadou (Appl Sci 10(14):4796, 2020); Souravlas et  al. 
(Appl Sci 11(1):61, 2021) and present a mathematical model that offers better bal-
ance and produces fewer communication steps. The scheduler is based on the idea 
of generating larger sets of communication steps among the system nodes, which we 
call superclasses. Our experiments have shown that this scheme achieves better bal-
ancing and reduces the overall latency.
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1 Introduction

During the last 15 years, data have increased on a large scale in almost all fields. 
Therefore, efficient ways of collecting and processing data from distributed 
resources must be implemented in order to gain insight from it. The term “big 
data” simply refers to the explosion of data volumes that are difficult to store, 
process, and analyze using traditional database technologies.

Managing large data volumes that arrive continuously many times can exceed 
the capabilities of individual machines. Stream data processing requires con-
tinuous calculation without interruption and high reliability requirements on 
resources. In this regard, it is important to develop efficient task scheduling algo-
rithms. By task scheduling, we refer to the process we organize the resources in 
a way that the task completion time is reduced and the system resources are uti-
lized in an improved way. Task scheduling focuses on which tasks to be placed 
on which previously obtained resources, controls the order of job execution, and 
is an NP-hard problem, in the sense that no solution has been found to be opti-
mal for all the possible topologies. Therefore, we cannot suggest that a proposed 
scheme is optimal for a certain topology or for certain loads. The works proposed 
in the literature are well-defined theoretically; however, none of them claims opti-
mality. Simulation experiments are widely used to compare similar schedules (in 
terms of their goals), in approximately the same-sized clusters and over approxi-
mately similar datasets.

Naturally, responsive schedules are required to keep up with the transmission 
of massive data among large-scale tasks, and this aggravates the difficulty of the 
workflow scheduling problem (Tantalaki et al. 2020; Cardellini et al. 2016; Floratou 
et al. 2017). An important challenge presents itself when the system parameters (the 
number of available nodes and the execution tasks) need to change during runtime. 
The dynamic strategies found in the literature generally deal with the following two 
important issues: (1) Task migrations: They must be implemented during run-time. 
However, the tasks have to migrate along with their state and latencies can increase, 
depending on the processing load, and (2) Load balancing: which is important for 
the system’s performance. Generally, imbalances reduce the performance of the sys-
tem. In the remainder of this section, we briefly describe some of the most repre-
sentative dynamic scheduling strategies with regard to the issues just mentioned.

Several distributed stream processing systems (DSPSs) that take advantage of 
the inherent characteristics of parallel and distributed computing such as Apache 
Storm, Spark Streaming, Samza and Flink have specifically emerged to address the 
challenges of processing high-volume, real-time data. Such systems are designed to 
execute complex streaming applications such as directed cyclic graphs (DAGs) over 
tuples of a stream. They leverage data parallelism using multiple threads of execu-
tion per task (replicas). The default Storm scheduler has become the point of refer-
ence for most of the researchers, who compare their proposed schemes against this 
simplistic scheduling algorithm. The main drawbacks of the Storm scheduler are: 

1. It does not offer optimality in terms of throughput
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2. It does not take into account the resource (memory, CPU, bandwidth) require-
ments/availability when scheduling

3. It is unable to handle cases where system changes incur.

In this work, we propose a reduced overhead modular arithmetic-based approach, 
RO-MOD scheduler, which is based on the idea of having each node receiving 
tuples for processing only from one other node at a time, whereas the number of 
such communications is reduced (tuples are grouped into reduced number of trans-
missions through superclasses), thus overheads are reduced. Our scheme has the fol-
lowing contributions: 

1. Reduced communication latencies: The RO-MOD scheduler includes a mecha-
nism which aims at optimizing the total inter-node communication costs.

2. Good load balancing within the network: As the RO-MOD scheduler is organized 
in communication steps, where one node communicates with only one node at a 
time, it can offer quite good balancing especially for linear topologies.

3. Reduced communication overheads: As fewer transmissions are scheduled by the 
RO-MOD scheduler, the overheads, and thus overall performance improve.

4. Improves overall performance: Our proposed scheme, while not optimal, out-
performs existing strategies and is tailored to handle real-time stream processing 
efficiently in terms of system throughput, load balancing and average total latency.

In its current form, the proposed scheduler can be used with applications that can 
use relatively large datasets over small or medium sized clusters in terms of number 
of nodes and capacity (i.e., the number of tasks to be executed). A potential example 
could be a relatively small/medium sized retail/warehouse inventory for inventory 
management across all channels and locations, or the familiar word count applica-
tion, which has been used for the experiments in this research work. However, in 
the future, the proposed scheduler could be applied to extremely large datasets and 
networks (for example, applications such as environmental monitoring and fraud 
detection).

The remainder of this work is organized as follows. All the notation used in this 
work is introduced in Table 1. Section 2 briefly summarizes some important sched-
uling approaches and describes the methodology on which their scheduling strategy 
is based. Section 3 describes the mathematical model of the RO-MOD scheduler. 
For completeness, we give a few details of our previous MOD scheduler. In Sec-
tion 4, we present a few experimental results, and Section 5 concludes the paper and 
offers aspects for future work.

2  Related work

In this section, we describe some of the most important dynamic strategies found 
in the literature. Static strategies work offline and aim at placing the tasks to the 
most suitable nodes, in order to minimize the communication latencies. Dynamic 
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strategies monitor performance during run-time and may change the task assign-
ment. Decisions are made online. However, rebalancing can be time consuming, 
e.g., ≈ 200secs in Storm (Shukla and Simmhan 2018; Tom et al. 2015). Moreover, 
several existing works employ the CPU without considering memory constraints 
(Tom et al. 2015; Xu et al. 2014; Shukla and Simmhan 2018) and this can lead to 
memory overflow.

Aniello et  al. (2013) developed a dynamic online scheduler that reduces inter-
node and inter-slot traffic on the basis of the communication patterns among execu-
tors observed at run-time. The goal of the online scheduler is to re-allocate executors 
to nodes so as to limit the number of workers on which a topology has to run, the 
number of slots available on each worker node, and the computational power of each 
node. The scheduler places pairs of communicating executors of each topology in 
descending order according to the rate with which they communicate data streams. 
If both executors have not yet been assigned, they are assigned to the least loaded 
worker. Otherwise, a set is generated by putting the least loaded worker together 

Table 1  Definitions and notations

Term Definition

Component A processing module that is either a Bolt or Spout.
Topology Shows the interconnection between the tasks assigned to the spouts and bolts,

for a given application
Spout A type of component, which is a source of data streams and forwards

an unlimited number of tuples in the topology.
Bolt A component that receives, processes, and potentially forwards the processed

data streams.
Task A job that is assigned to a spout or bolt and it is designed to process

selected data streams coming from other tasks.
Executor A thread that is spawned in a worker process that executes one

or more tasks (Peng et al. 2015)
Slot An indication of the number of workers (see this definition later in this table)

that can be run on a node.
Time Slot A time slot is a division of time required to process a data stream.
Operator A processing vertex
Processor A physical unit that performs processing
Master Node The node, which is acts as the scheduler for the tasks assigned to the

worker nodes (see the next definition)
Worker Node A node which is responsible for certain task execution.
Process A contained for tasks to be executed.
Communication Class A set of communicating processor pairs that derives from the solution of a

linear Diophantine equation.
Homogeneous Classes Classes, which include processor pairs that produce the same number of solu-

tions for a certain linear Diophantine equation.
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with the workers where either executor of the pair is assigned. The assignment deci-
sion is based on the criterion of the lowest inter-worker traffic.

Shukla and Simmhan (2018, 2018) developed two techniques: their first approach 
(Shukla and Simmhan 2018) utilized benchmarks to develop performance model 
functions. Tasks are scheduled in such a way that the resources used are minimized 
and the performance offered is predictable. Also, they examined the matter of alloca-
tion of threads and resources for an application. Their second approach (Shukla and 
Simmhan 2018) tries to achieve load balancing by employing task migration. Tom 
et al. (2015) designed DRS, a dynamic resource scheduler that considers the number 
of operators in an application and the maximum number of processors available that 
can be allocated to them. Then, it finds an optimal assignment of processors that 
results in the minimum expected total sojourn time. They estimated the total sojourn 
time of an input by modeling the system as an Open Queueing Network (OQN). The 
system monitors the actual total sojourn time and checks if the performance falls, or 
if the system can satisfy the constraint with fewer resources, and reschedules if nec-
essary. It repeatedly adds one processor to the operator with the maximum marginal 
benefit, until the estimated total sojourn time is no larger than a real-time constraint 
parameter. Generally, DRS’ overhead is less than milliseconds in most of the tested 
cases, resulting in a small impact on system’s latency.

Meng-Meng et  al. (2014) proposed a dynamic task scheduling approach that 
considers links between tasks and reduces the cost of internode traffic by assign-
ing tasks that communicate with each other to the same node or adjacent nodes. 
Node workload and internode communication traffic are examined a priori through 
switches. The T-Storm scheduler developed by Xu et al. (2014) also attempts to min-
imize internode traffic. The load information is collected during run-time by load 
monitors. The future load is estimated using a machine learning prediction method. 
The schedule generator periodically reads the above information from the database, 
sorts the executors in descending order of their traffic load, and assigns executors 
to slots. Executors are assigned to the same or nearby slots to reduce inter-process 
traffic. Elasticity an important issue in online environments, as input rate can vary 
in streaming applications, and it is necessary to configure the degree of operator 
replication, to maintain system performance. Most of the available solutions require 
users to manually tune the number of replicas per operator, but users usually have 
limited knowledge about the runtime behavior of the system. Several approaches 
(e.g., (Cardellini et al. 2016; Floratou et al. 2017) try to deal with replication run-
time decisions in stream processing.

Dynamic techniques, while advantageous, can lead to local optima for individual 
tasks without regard to the global efficiency of the dataflow. This introduces latency 
and cost overhead. Rebalancing the application’s reconfiguration and regular task 
migrations may also be time consuming. In this work we extend our load balanced 
dynamic scheme, which reduces buffering memory requirements, and we introduce 
a mathematical model that reduces the number of communications and thus the 
overheads. In addition, the reallocation or task is completely avoided. To explain 
the importance of this feature, let us consider dynamic task migration as a procedure 
that has to be performed during run-time. This means that, some tasks have to be 
assigned to a node other than the one they are being executed. However, this task 
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has to migrate along with its context (for example, all the data having been pro-
cessed, assigned variable values, etc.). This cost can increase, depending on the pro-
cessing load. On the other hand, task migration has the advantage that it can move 
communicating tasks to nearby nodes. This offers some efficiency. By narrowing 
the problem and avoiding this migration, the proposed RO-MOD scheduler avoids 
context overhead. Additionally, our strategy implements a stepwise all-to-all com-
munication strategy, where every source node submits data streams to every target. 
As this strategy leads to an optimal in terms of cost communication schedule, the 
data streams are in any case transferred in minimized time, with no need for migra-
tion and unnecessary context switches. Since this is the case, our scheme eliminates 
the advantage offered by placing tasks at nearby nodes.

3  Mathematical model of communication

In this section, we present the mathematical notation required to implement our 
scheduler. These notation was introduced in our previous work (Souravlas and Ana-
stasiadou 2020), but we will briefly describe them to make this work self-contained. 
Then, we present our extensions. The main idea behind what follows is to organize 
all the communications in groups of homogeneous in terms of communicating pairs, 
which will be used to achieve a schedule with minimized inter-node communication, 
while the load is equally balanced among the system’s nodes. Initially, we assume 
that there is an initial distribution, where the tasks are equally distributed among 
the system’s nodes. This is not a narrowing approach, since most scheduling strate-
gies try to keep equal numbers of tasks among the nodes. Initially, let us define an 
equation that describes the round-robin placement of t consecutive tasks into a set 
of nodes. This equation will describe the initial task distribution, which are evenly 
distributed among the system’s nodes.

where N is the number of nodes in the initial distribution, n is the node where a task 
indexed i is placed and t is the number of tasks assigned per node. The range of i 
ranges from 0 to N × t . For example, if there are t = 4 tasks per node and N = 6 our 
model assumes 24 tasks.Then, tasks i = 0, 1, 2 and 3 will be located at node n = 0 , 
tasks i = 4, 5, 6 and 7 will be located at node n = 1 , tasks i = 8, 9, 10 and 11 will 
be located at node n = 2 , … , and tasks i = 20, 21, 22 and 23 will be located at node 
n = 5 . From Eq. 1, for some integer L we get the following:

Now, if we set an integer x, such that x = i mod t , 0 ≤ x < t , Eq. 2 becomes:

Eq. 3 describes the initial task distribution. We use R(i, n, L, x) to symbolize this 
distribution. Now, if we wish to describe a different scenario, where the number of 
tasks or nodes changes, we need a second equation. This equation is derived in a 

(1)n = ⌊i∕t⌋ mod N,

(2)⌊i∕t⌋ = LN + n.

(3)i = (LN + n)t + x
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similar way. Now, if we assume that the number of nodes changes from N to Q, then 
Q is now the number of nodes, q is the node where a task indexed with j will be 
placed, and s is the new number of tasks. Thus, we get:

where the integers M, y are defined similarly to L and x in Eq. 3. For y, we have 
0 ≤ y < s . We use R�(j, q,M, y) to symbolize a distribution that would arise in the 
event of the system changes described above.

We need to define sets of homogeneous communications between nodes. As will 
be described in the next subsection, these communications will be used to quickly 
produce an efficient communication schedule with reduced communication laten-
cies. The idea is to equate the two distributions defined in Eq.3 and Eq.4 and gener-
ate a linear Diophantine equation. From modular arithmetic we know that the linear 
Diophantine equations can have solutions divided into classes (the term is defined 
later; see Eq.  8). These classes will be the basis for our homogeneous communi-
cations. The linear Diophantine equation required by our schedule is provided as 
follows:

or

Such linear Diophantine equations are solved using the extended Eucidean algo-
rithm in logarithmic time, which is perfectly suitable for our scheduler.

Now, we set g = gcd(Nt,Qs) , so Nt = Lg and Qs = Mg for arbitrary integers 
L, M. Thus, LNt = L2g and MQs = M2g . It follows that LNt −MQs = g(L2 −M2) , 
therefore LNt −MQs a multiple of g. This means that there is an integer � , such that: 
LNt −MQs = �g . If we also set z = x − y , then (6) is rewritten as:

From modular arithmetic, we are aware that for linear Diophantine equations, a pair 
(n, q) belongs to a communication class k if:

and it can be proven that all node pairs (p, q) that belong to a class produce the same 
number of solutions for Eq. 7. The number of such solutions is c. These node pairs 
will be named “homogeneous”. For a proof, see (Souravlas and Anastasiadou 2020; 
Souravlas et al. 2021).

Apparently, the pairs (p, q) in each class define communications between pairs of 
nodes. Classes that produce the same number of solutions for a certain linear Dio-
phantine equation are called homogeneous. There may be two or more homogeneous 
classes.

Our previous scheme was based on the idea of mixing pairs of communicating 
nodes from different classes to achieve communication steps, so that, during each 

(4)j = (MQ + q)s + y

(5)R = R�
⇒ (LN + n)t + x = (MQ + q)s + y

(6)nt − qs + (x − y) = MQs − LNt

(7)�g − z = nt − qs

(8)(nt − qs)mod g = k
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step, the data volumes transmitted between nodes were equal. However, the com-
munication steps themselves were unequal; in other words, not equal data vol-
umes were transmitted between different steps. Now, we extend these ideas to 
present a novel communication scheme, in which all communication steps carry 
equal data volumes.

3.1  Extensions to our previous scheme

Initially, let us define the function D(k1, k2) that computes the distance between 
two classes k1 and k2 such that:

A group of classes V = k1, k2...kn−1, kn that differ by r mod g , that is: 
D(k1, k2) = D(k2, k3) = …D(kn−1, kn) = r mod g is called superclass. Proposition 1 
provides a starting point for our streaming communication:

Proposition 1 There exists a set of node pairs (n,  q) within t in total classes 
Θ = {k0, k1, k2...kr−1 } that satisfy:

Proof We rewrite Equation (5) as:

We know that g = gcd(Nt,Qs) , making MQs − LNt a multiple of g. This means that 
there is an integer � , such that: MQs − LNt = �g . If we also set � = x − y , Equation 
(6) is rewritten as:

If we divide both parts of Equation (12) with g, we get:

Since � = x − y , it is obvious that −� = y − x . Therefore, we obtain the following 
equation:

By setting y = 0 (the indices of the first tasks in distribution R′ (which are incurred 
when the system parameters change), we get the result. Thus, we have obtained a set 
of starting communication node pairs.   ◻

(9)D(k1, k2) =

{
k2 − k1, if k2 ≥ k1
g − k1 + k2, otherwise

(10)−x mod g = k, x ∈ [0… t − 1].

(11)MQs − LNt = nt − qs + (x − y)

(12)�g − � = nt − qs

(�g − �) mod g = (nt − qs) mod g ⇒

(�g mod g) − (� mod g) = (nt − qs) mod g ⇒

−� mod g = (nt − qs) mod g.

(13)(y − x) mod g = (nt − qs) mod g ⇒ (y − x) mod g = k
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Proposition 2 provides a simple way of finding all the pairs of communicating nodes 
when the system parameters change, based on the idea of node classes.

Proposition 2 During a task redistribution problem, two neighboring nodes n� , n� 
send data streams to perform the tasks found on the same target node q if the pro-
cessor pairs (n� , q) and (n� , q) belong to the same superclass.

Proof We need to show that if n� , q ∈ k1 and n� , q ∈ k2 , then the distance between 
the classes k1 and k2 is equal to r mod g . Assume that processors n� and n� send data 
streams to q and (p� , q) ∈ k1 , (n� , q) ∈ k2 . For processor pair (n� , q) Equation (13) 
is rewritten as: (y − x) mod g = (n�r − qs) mod g . Similarly, for (n� , q) we have 
(y − x) mod g = (n�r − qs) mod g . Without loss of generality, we assume that 
the indices of two neighboring source nodes n� , n� differ by 1 (the proof is similar 
for any other integer value). Thus, (y − x) mod g = (n�r − qs) mod g becomes: 
(y − x) mod g = (n�r + r − qs) mod g . We summarize the set of equations for the 
two processor pairs:

There are three cases that need to be examined. Here, we prove the first one, and the 
remaining cases can be proven in a similar way. 

1. n𝛾r + r − qs < g and r < g

2. n𝛾r + r − qs < g and r ≥ g

3. n𝛾r + r − qs > g

Case 1: n𝛾r + r − qs < g and r < g : 
1.1: n𝛾r + r − qs > 0, n𝛾r − qs > 0 : In this case k2 > k1 therefore (see Equation 9): 

D(k1, k2)=k2 − k1 = n�r + r − qs − n�r + qs = r . Because r < g ⇒ r = r mod g.
1.2: n𝛾r + r − qs < 0, n𝛾r − qs < 0 : Same as in case 1.1.
1.3: n𝛾r + r − qs > 0, n𝛾r − qs < 0 : In this case 

(n�r − qs) mod g = �g + n�r − qs = k1 , where � is an arbitrary inte-
ger. Also, k2 = n�r + r − qs (recall that 0 < n𝛾r + r − qs < g ). If k1 > k2 , 
(k1, k2) = g − k1 − k2 = g − (�g + n�r − qs) + n�r + r − qs = r − (� − 1)g = r mod g 
(since (� − 1)g divides g). If k1 ≤ k2 , then 
D(k1, k2) = k2 − k1 = n�r + r − qs − �g + n�r − qs = r − �g = r mod g .   ◻

The following Tables 2, 3, and 4 provide an example of communication classes and 
superclasses.

(14)(y − x)mod g =

{
(n�r − qs) mod g = k1, for (n� , q)

(n�r + r − qs) mod g = k2, for (n� , q)
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3.2  Communication scheduling

To schedule the communications among the various nodes (and thus among tasks), 
we need a stepping function that arranges the sequence of transmissions. We name 
this stepping function S and define it as follows:

The following steps are necessary to form the target blocks in the generator nodes’ 
memory.

Step 1 Start with a class k0 that belongs to Θ , as defined in Proposition 1.
Step 2 All nodes n, ( n ∈ [0..N − 1] ) assign data streams of cost s� = vol(p, q) to 

the destination nodes q ( q ∈ [0..Q − 1] ). We use the vol function to compute the 
communication cost for our model. This computation has been defined in Souravlas 
and Anastasiadou (2020); Souravlas et al. (2021), but we provide it here for com-
pleteness. Specifically, the function vol returns the number of quadruples (L, M, x, y) 
that satisfy the redistribution Equation (5):

Step 3 If s� = s , we pick another class and move to STEP 1. If s′ < s , the transmis-
sion is incomplete, and we move to STEP 4. Step 4 Use the stepping function S to 
get the next class member of the superclass k1:k1 = k0 + S(k0) and move to STEP 2.

Repetition of these steps allows us to organize data streams with cost s among all 
nodes and their tasks. This approach has two advantages:

• The communication steps have the same cost, s.
• This scheme requires fewer steps compared to our previous class-based approach 

despite the fact that larger data stream volumes are carried. This is due to the fact 
that our previous scheme was based on selecting communication pairs from just 
one class. With the use of superclasses, we have managed to merge more com-
munication pairs in each step, thus fewer steps are required.

(15)S(k) =

{
r mod g, if (r mod g) + k < g

(r mod g) − g, if (r mod g) + k ≥ g.

(16)vol(p, q) = {(L,M, x, y) ∶ mQs − LNr = nr − qs + (x − y)}

Table 2  Classes and their costs 
for N = Q = 16 , t = 7 , s = 11

Class Communication 
cost Ck

Class Communi-
cation cost 
Ck

k = 0 7 k = 8 3
k = 1 7 k = 9 2
k = 2 7 k = 10 2
k = 3 7 k = 11 2
k = 4 7 k = 12 2
k = 5 6 k = 13 4
k = 6 5 k = 14 5
k = 7 4 k = 15 6
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Due to the better balancing achieved (the cost of all the communications is s) and 
since the number of steps is reduced (thus overheads are reduced), the proposed 
scheme manages to reduce the overall latency, as will be seen in the the following 
Sect. 4.

For example, all communications defined in Superclass 0 (see Table  3), are 
formed by Classes 7 and 0 and the total cost is 7 + 4 = 11 = s . The communications 
defined in Superclass 12 (see Table 4) are formed by the classes 10, 3 and 12 and the 
total cost is 2 + 7 = 2 = 11 = s . Our previous approach, which was based on single 
classes, would require three communication steps instead of the one we use here. 
Our overhead in this simple case is reduced by 66%.

4  Simulation results and discussion

Our scheduling strategy was evaluated using a simulation environment, which pro-
vides researchers with a wide range of choices to develop, debug, and evaluate their 
experimental system. In our experimental setup, the Storm cluster consists of nodes 
that run Ubuntu 16.04.3 LTS with an Intel Core i7-8559U Processor system and 
clock speed at 2.7GHz, 1 Gb RAM per node. Furthermore, there is all-to-all com-
munication between the nodes, which are interconnected at a speed of 100 Mbps. 
Also, we assume that the data transfer rates between the cluster nodes are equal, 
but their proximity differs (nodes with smaller index differences are considered to 
be located at lower distances between them). The tuples generated are assumed to 
have equal size, 16Kb, The tuples are associated to simple text datasets. The appli-
cation we used for our simulations is the typical word count example. For example, 
one task processes a tuple and seeks all words starting from a selected letter. Then, 
it passes the processed tuples to a next task, which in turn, seeks a word that starts 
with a combination of the selected letter and a few more letters. Proceeding in this 
way, the application can perform word counting on large datasets.

For our experiments, we ran two topologies: (1) A random topology with four 
bolts and one spout, where the number of tasks per component is initially 4 and 
then changes to 5. (2) A linear topology with three bolts and one spout. In a lin-
ear topology, the bolts and spouts are linearly connected. In both topologies, there 
is an all-to-all connection between the tasks. We have chosen these topologies to 
fairly compare our work with similar schemes that we chose for comparisons. These 
schemes work on similar topologies. For both topologies, we used a cluster with 
N = 5 worker nodes, each with 4 slots. In both cases, an additional node, designated 
as the master node to host Nimbus and Zookeeper services (services used to control 
processes), was also used. Each part of the stream is considered as a small group of 
100 tuples.

For our comparisons, we chose the default Storm scheduler, Meng’s et al. strat-
egy Meng-Meng et al. (2014), and two more recent approaches, the approaches of 
Shukla and Simmhan (2018) and the MT-scheduler (Maximum Throughput sched-
uler) presented by Al-Sinayyid and Zhu (2020). The Storm scheduler is the point of 
reference for a large percentage of strategies developed in the literature. Just like our 
scheduler, Meng’s et al. strategy is also based on the idea of using a matrix model 
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for task scheduling. Moreover, it is based on task migrations, a strategy that can 
be opposed to our stepwise scheme. The approach found in Shukla and Simmhan 
(2018) also focuses on using task migration to balance network load. Finally, the 
MT-scheduler is the more recent approach, which tries to maximize throughput by 
trying to minimize the transfer times, so it is somehow comparable to our scheduler. 
The selected schemes will be useful in comparing our work with strategies that use 
some similar ideas (like matrices) and strategies that have “opposing” ideas (task 
migrations vs. stepwise communications).

4.1  Load balancing comparisons

In the first set of experiments, we compare the load balancing achieved by the com-
pared strategies. To do so, we regularly (every five seconds) computed the average 
standard deviation of the load being delivered to each node (see Fig.  1) for both 
topologies considered. An increase in the standard deviation value indicated less 
balancing between nodes.

For the default Storm scheduler, it is obvious that the lack of a load balancing 
causes high imbalances as the time proceeds. Specifically, the default Storm sched-
uler does not care about the current load of the communicating tasks; it just han-
dles the tasks as independent entities. Meng’s scheme pays full attention to the links 
that connect the communicating tasks and effectively reduces traffic between these 
nodes through switches. This balances the load of the links, but the processing load 
is not balanced: The approach assigns tasks that communicate to each other to the 
same node or to adjacent nodes, which are selected via the current link information. 
This means that, when the link state is such that one or a few target nodes are cho-
sen to accommodate the new tasks, then imbalances occur. The approach of Shukla 
and Simmhan is also based on using the link information through dataflow check-
points. In this regard, there is no fear that in-flight messages will be lost. A timeout 
period can be used where no data is transmitted. During this period, the tasks to 
be migrated are paused, and the in-flight messages can be transmitted without con-
tentions. This policy can reduce the imbalances that have occurred, but diminishes 
overall performance of the system. Moreover, it is based on link information, not 
on actual processing performed on each node. In our simulations, this regulation 
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helps Shukla’s and Simmhan’s approach to have somehow better balancing results 
compared to Meng’s et al. scheme, as Fig. 1a indicates. The regulations performed 
are indicated with some slight peaks displayed on the line. Finally, Fig. 1b shows the 
load per node when we run the random topology.

The MT-Scheduler proposed by Sinayyid and Zhu, the bottlenecks determine the 
mapping and remapping procedures. The only regulation policy used is that users 
are allowed to configure and regulate the data locality, in order to maintain execution 
of the tasks as close to the data. This minimizes the transfer cost, but by no means 
guarantees the load balance. As Fig.  1 indicates, this strategy suffers from higher 
imbalances compared to the other schemes (excluding the default Storm scheduler. 
Our scheme was found to have smaller standard deviation values compared to the 
other schemes, thus better balancing. The reason is apparent: at each communica-
tion step, there is a fixed in terms of cost communication among the system nodes. 
Thus, the curve that shows the results of the load balance of our strategy seems to be 
gradually increasing. Our strategy is not as heavily affected by the growing number 
of tuples added to the nodes, as this is done in a balanced way (especially for the 
linear topology).

Our experiments have shown that the five lines showed quite similar behavior 
when we changed the topology from linear to random, but their slope appears larger, 
indicating that the standard deviation values are more affected (increasing with 
time). Thus, as the standard deviations computed suggest, higher imbalances occur 
when random (and generally more complex) topologies are used.

4.2  Throughput comparisons

In this set of experiments, we compared the overall throughput of the five strategies, 
that is, the number of streams being processed. Because our strategy implements its 
task migrations whenever they are required using minimum in terms of cost com-
munication steps, it outperforms the compared strategies. Apart from the context 
switch overheads, task migrations require some more procedures, which add extra 
cost; killing of the migrated tasks from their original nodes to complete the migra-
tion process or possible recoveries of messages that were lost and after the migration 
process due to killing the dataflows or due to timeout policies being employed, like 
the one described for the second approach of Shukla and Simmhan. Thus, our care-
ful stepwise implementation policy manages to calm down the effects of task migra-
tions to the maximum possible extent (see Fig. 2).

4.3  Average latency

Figure 3 plots the average latency for the four works that were found to be dominant in 
terms of load balancing and throughput, that is, our scheme, Shukla’s and Simmhan’s 
scheme, and the MT-Scheduler. The proposed scheme takes advantage of the way it 
migrates the tasks, it has better load balancing and reduced communication steps (over-
heads) and manages to reduce the overall latency. In our work, the average latency 
seems to be changing quite smoothly and the slight peaks indicate the existence of 
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migrations from time to time. Shukla’s and Simmhan’s scheme appears to have larger 
peaks, and this can be explained by the regular timeouts employed, which increase the 
average latencies. The MT scheduler has the highest latencies, as a result of the lack of 
a serious policy on load balancing.
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5  Conlusions and future work

This work has presented a dynamic task scheduling approach that handles sys-
tem changes (number of tasks or nodes) for applications that require heavy (and 
sometimes all-to-all) communications between the system’s nodes and tasks. Our 
approach extends our previous work and organizes communication in a set of 
well-defined steps based on the idea of larger groups of communication classes 
called superclasses. This approach has the advantage of generating fewer commu-
nication steps and thus smaller latencies.

The simulation results have shown that our scheduler offers better load balanc-
ing and throughput compared to a number of other schemes chosen for compari-
son. It also reduces the overall latency, due to the way that the task migrations 
are implemented using the minimum number of steps, as they are determined by 
our communication scheduling policy. An advantage of the proposed model is 
that its computational complexity is the complexity of the Extended Euclidean 
algorithm, which is logarithmic. Therefore, its application cannot be considered 
as a burden. The cost of communication in every step is the same and is dictated 
by the s parameter, that is, the new number of tasks assigned to each node after 
task redistribution. Compared to other task distribution schemes, one can claim 
that, under certain task redistributions, the selected value of s is too large, so the 
nodes are overloaded. However, the trade-off here is that balancing is guaranteed, 
no matter what the value of s is.

Apparently, our scheme can theoretically be adapted to any workload size 
under the hypothesis that the number of tasks within each machine is adequate 
to handle this load. However, the examination of extremely large datasets (such 
as sensor applications) in very large networks is the subject of our future work. 
Perhaps, the proposed model would have to be subject to various changes in order 
to deal with aspects such as the communication costs and the adaptability under 
extremely large networks. Also, certain limitations on the value of s may need to 
be imposed as the datasets grow larger and larger.

On the other hand, we can consider that for very small-scale workloads (for 
example, applications that may require relatively small datasets), perhaps a 
straightforward round-robin approach like the default Storm scheme may be nec-
essary. In our comparison results, we used the typical word count application 
with large datasets to serve our comparison purposes.

Different scheduling scenarios may appear not only depending on the applica-
tion, but also on the cluster topology. Regularly, linear topology is preferred in 
terms of efficiency. However, there may be cases where an irregular topology can 
reduce the communication cost between certain nodes. In any case, the reduction 
of the inter-node communication cost does not always suffice to guarantee lower 
latencies. Our scheme manages to avoid imbalances in terms of data loads trans-
ferred in the paths among the system nodes. This reduces the overall latency.

In the future, we wish to extend this work for larger networks with larger num-
bers of nodes and suggest mathematical models (or change the existing one) tar-
geted for specific topologies.
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