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Abstract
This work introduces a multi-period, multi-commodity, inventory-routing problem 
with strategic fleet scheduling decisions, under the consideration of speed limits, 
as well as strict European Union regulations on truck drivers’ working and driving 
time. To address the new problem, a mixed integer linear programming model was 
developed. Several artificial but realistic problem instances were randomly gener-
ated following relative guidelines from the open literature, to validate and assess the 
performance of the novel mathematical model. Furthermore, in an effort to produce 
useful managerial insights, several sensitivity analyses were performed considering 
different fluctuation rates on key model parameters.

Keywords Supply chain management · Inventory-routing · Fleet scheduling · 
Sustainability · Optimization

1 Introduction

Inventory routing problem (IRP) is a classic combinatorial optimization problem 
that integrates critical supply chain activities, through intertemporal coordination of 
tactical and operational decisions (Manousakis et al. 2021). Several research contri-
butions have addressed operational research approaches for the efficient solution of 
the IRP and its variants (Hu et al. 2018). Most of these scientific works have focused 
exclusively on the optimization of economic criteria.

The increased environmental concerns as well as the fact that supply chain activi-
ties emit pollutants lead to simultaneous consideration of economic and environ-
mental decisions (Tirkolaee et al. 2023). To this end, several research contributions 
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have proposed green IRP variants (Cheng et al. 2016, 2017). Typically, environmen-
tal decisions are related to fuel or energy consumption, emissions taxation policies, 
adoption of alternative fuels, and environmentally friendly vehicles (Cheng et  al. 
2017).

However, modern supply chain practices focus on the adoption of holistic sustain-
able approaches (Weber et al. 2023). A sustainable supply chain (SSC) relies on the 
integrated management of economic, environmental, and societal criteria (Martins 
and Pato 2019; Karakostas et al. 2020; Lotfi et al. 2023; Hashim et al. 2023; Shahsa-
vani and Goli 2023). Working hours constitute a critical criterion for social sustaina-
bility (Resat and Unsal 2019). In the case of truck drivers, the European Union (EU) 
has published specific regulations that provide rules on driving and working times, 
breaks, and rest periods (Sartori et al. 2022). Respecting these rules can ensure the 
safety of drivers and their overall satisfaction with their job (Guo et al. 2022).

More specifically, the EU Directive 2002/15/EC (European Commission 2002) 
and the EU Regulation no. 561/2006 (European Commission 2006) stipulates that:

• The accumulated driving time between two break periods must not exceed the 
limit of four and a half hours.

• The duration of a route must not exceed the limit of nine hours.
• The accumulated working time of the truck drivers must not exceed the limit of 

six hours.
• Breaks should last 45 min.

This work introduces a novel sustainable supply chain network optimization prob-
lem that integrates strategic, tactical, and operational decisions. More specifically, 
a fleet size and mix pollution multi-period, multi-commodity IRP is proposed with 
further consideration of EU drivers’ working hours regulations as well as speed 
limits. Strategic decisions are related to the composition of a heterogeneous fleet 
of vehicles. Tactical decisions are related to inventory control and replenishment 
rates, and operational decisions consider the delivery schedules in each time period. 
According to sustainability criteria, the proposed optimization problem considers 
economic criteria, such as the costs of the supply chain system, environmental cri-
teria, such as fuel consumption and CO2 emissions, and social criteria, such as work 
hours and breaks for drivers.

The key novelty of this work is the introduction of a novel integrated mixed inte-
ger linear programming (MILP) model that can assist logistic managers in small and 
medium enterprises in their effort to make optimized planning decisions (Caceres-
Cruz et al. 2014). Such enterprises typically have to serve a limited number of cus-
tomers regularly over a period of time. Therefore, an integrated optimization tool 
is required to address classic hard logistics optimization decisions under the effect 
of strict EU regulations. Computational analyses were performed to justify the sig-
nificant impact of such regulations in the configuration of an optimal distribution 
system.
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2  Literature review

This section is divided into three parts. The first provides a brief overview of 
research contributions on IRPs, while the second focuses on research contributions 
on the truck driver scheduling problem, and the third one focuses on the exploration 
of recent research works conducted on the optimization of sustainable supply chain 
networks.

2.1  Recent contributions on IRP

Cheng et al. (2017) studied a green IRP with multiple time periods, a single type 
of product, and fleet scheduling decisions. The authors developed a MILP model to 
formulate the problem under consideration. To address environmental-oriented deci-
sions, they adopted a comprehensive fuel consumption model that was integrated 
into the MILP formulation developed. According to their computational analysis, 
the benefits of adopting a comprehensive objective function, as well as a mixed fleet 
of vehicles, were illustrated in terms of the total cost of the system and the environ-
mental impacts. Soysal et al. (2018) delved into the potential benefits of employing 
a horizontal collaboration approach within the context of a green IRP featuring mul-
tiple periods and various types of food products subject to demand uncertainty. The 
authors constructed a chance-constrained programming model to mathematically 
formulate the considered problem. From an environmental standpoint, they took into 
account factors such as fuel consumption, pollutant emissions, and food waste. Their 
numerical analyses revealed that horizontal collaboration could result in significant 
savings of 17% in costs and a substantial reduction of 29% in emissions.

Micheli and Mantella (2018) developed a base case model to study economic and 
environmental criteria through an IRP with multiple time periods, multiple prod-
ucts, and a heterogeneous fleet of vehicles under uncertainty of demand. The authors 
investigated the impact of different carbon emissions control policies on several key 
performance indicators. Their numerical analyses showed that the use of hetero-
geneous vehicles can also lead to less driving time than adopting a homogeneous 
fleet. Alinaghian et al. (2021) investigated a green IRP with hard time windows. The 
authors examined a multi-period single-commodity supply chain system featuring 
a heterogeneous fleet of vehicles under the maximum stock inventory policy. They 
formulated the problem as a MILP model and introduced an augmented tabu search 
and differential evolution heuristic algorithm for solving multiple instances of the 
problem. Additionally, to address routing decisions effectively, they implemented 
supplementary heuristic approaches, including an improved Clarke–Wright algo-
rithm, an enhanced push-forward insertion heuristic method, and a speed optimiza-
tion heuristic algorithm.

A multi-period IRP system within the cold supply chain for food distribution 
was investigated by Wei et al. (2019). The authors categorized customers into two 
groups based on their proximity to the depot. Customers close to the depot were 
served by self-owned vehicles, while the other group was served by outsourced 
vehicles. Additionally, the authors assumed shorter route time limits for self-owned 
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vehicles compared to outsourced vehicles. The problem was formulated as an MILP 
model. Small-sized problem instances were addressed using the CPLEX commer-
cial solver, and larger cases were tackled using a genetic algorithm (GA) developed 
by the authors. Schenekemberg et al. (2020) examined a multi-period IRP involving 
homogeneous fleet management decisions, such as fleet rentals and vehicle cleaning. 
A branch-and-cut algorithm was employed for small-sized problems, while larger 
instances were addressed by a matheuristic based on adaptive large neighborhood 
search. Coelho et al. (2020) explored an extension of the multi-depot IRP, consider-
ing a multi-commodity supply chain system with heterogeneous vehicles and a limit 
on route duration.

Manousakis et al. (2021) proposed an improved branch and cut algorithm for the 
solution of a multi-period two-commodity flow IRP, under the consideration of a 
limited homogeneous fleet of vehicles. Mahjoob et al. (2021) developed a modified 
adaptive GA for the solution of a multi-period, multi-product IRP, with a heteroge-
neous fleet of vehicles. Soysal et al. (2021) studied a closed-loop, multi-period IRP, 
under the consideration of a mixed fleet of electric and conventional vehicles. The 
authors developed an MILP and solved small-sized problem instances using a com-
mercial solver, while a fix and optimize algorithm was developed for the solution of 
larger problem cases. The authors conducted several numerical analyses to extract 
useful managerial insights. Neves-Moreira et al. (2022) studied a multi-commodity 
IRP with pickups and deliveries under the effect of both deterministic and uncertain 
demand.

2.2  Contributions on the truck drivers scheduling problem

Kok et al. (2011) studied the vehicle departure time optimization problem (VDO), 
as a post-processing approach to the well-known vehicle routing problem with time 
windows, considering real-life conditions, such as driving hours regulations. The 
authors formulated the problem as an MILP model and developed an insertion con-
struction heuristic for its efficient solution. Goel (2012) developed an MILP for a 
variant of the TDSP, considering rest periods at customer locations or at suitable 
rest areas. The objective of the problem was the minimization of the duration of the 
route with respect to the relative regulations. The solution of the problem was car-
ried out using a dynamic programming approach.

Goel and Vidal (2014) studied a problem with scheduling for truck drivers 
with time windows taking into account the hours of service regulations of drivers. 
More specifically, the authors investigated the impact of such regulations from the 
United States, EU, Canada, and Australia on transportation costs. They developed 
a hybrid metaheuristic optimization method to solve the problem under considera-
tion. According to their findings, EU regulations were found to be associated with 
the highest safety rates, while Canadian truck driver rules led to more economically 
efficient solutions. Rincon-Garcia et al. (2020) developed a metaheuristic algorithm 
based on a large neighborhood search for the solution of time-dependent VRP with 
time windows taking into account both the regulations of EU truck drivers’ work-
ing hours and the regulations of the UK road transport working time. The proposed 
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solution method produced solutions with 19% fewer vehicles, 17.7% less traveled dis-
tance, and 4.4% less duration of the route. Sartori et al. (2022) introduced the truck 
driver scheduling problem with interdependent routes, considering EU regulations. 
The authors introduced a set of constraints into an MILP to produce feasible sched-
ules, as well as a label propagation algorithm. According to their findings, the pro-
posed solution method can produce valid schedules for problem cases with several 
drivers, and a large number of interdependent routes.

2.3  Recent contributions on the optimization of sustainable supply chains

A multi-objective optimization problem for designing a sustainable closed-loop 
supply chain network in the aluminum industry was investigated by Pahlevan et al. 
(2021). The authors took into account the life cycle of products to calculate the envi-
ronmental impacts of the proposed network. The problem was formulated mathe-
matically as a multi-objective MILP, and three novel multi-objective metaheuristic 
methods were developed for its efficient solution. Pervin et al. (2023) devised a sus-
tainable inventory model considering the composite demand of products with a fixed 
lifespan, time-dependent holding costs, and warehouse carbon emissions. Mean-
while, Ghosh et al. (2023) investigated a multi-objective sustainable waste manage-
ment problem framed as a solid transportation problem with three objectives. The 
first objective pertains to the total system profit, representing the economic aspect of 
sustainability. The second objective, total elapsed time, encompasses transportation, 
loading, and unloading times, reflecting the social aspect of sustainability. The third 
objective addresses the environmental aspect by focusing on total carbon emissions. 
To address the presented problem, the authors proposed two solution methods-one 
relying on neutrosophic linear programming and the other employing the �-con-
straint method.

In a recent study, Tirkolaee et  al. (2023) delved into the domain of municipal 
solid waste management by investigating a sustainable periodic capacitated arc rout-
ing problem. This problem encompasses the simultaneous optimization of multiple 
conflicting objectives, namely total cost minimization, total pollution reduction, and 
maximum job opportunity utilization. To address this complex optimization chal-
lenge, the authors devised a novel multi-objective MILP model that effectively cap-
tures the intricate interrelationships between these objectives. Additionally, they 
proposed two robust multi-objective Pareto-based metaheuristic algorithms tailored 
to efficiently navigate the intricate solution space and generate a diverse range of 
non-dominated solutions, catering to various stakeholder preferences and decision-
making scenarios. A recent study proposed a comprehensive framework for design-
ing a sustainable supply chain that incorporates the Internet of Things (IoT) to 
achieve cost reduction, carbon emission minimization, and social impact maximi-
zation through job creation (Goli et  al. 2023). The proposed supply chain model 
encompasses both strategic and operational aspects, including supplier selection, 
facility location, transportation mode optimization, and product distribution level 
determination. To attain these objectives, the authors developed a multi-objective 
MILP model, which was subsequently transformed into a single-objective model 
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using goal programming (GP). In their study, Goli et  al. (2023) delved into the 
design of a sustainable five echelons canola oil-based biodiesel supply chain net-
work, while considering the inherent uncertainties in supply and demand. They 
employed a mixed integer non-linear programming (MINLP) model to address the 
strategic and tactical-level decisions, aiming to minimize total system costs and car-
bon emissions while simultaneously maximizing the social impact through job crea-
tion. Barman et al. (2023) explored a supply chain inventory management problem 
that encompasses both synchronous and asynchronous rework of defective products, 
alongside the consideration of three established carbon emission policies.

Giri et  al. (2023) examined the optimization of an electric sustainable supply 
chain network, incorporating economic, environmental, and social considerations. 
They devised a multi-objective MILP model to address these multifaceted objec-
tives. Additionally, they introduced a multi-choice conic goal programming solution 
method integrated with a utility function to effectively tackle the complex problem 
at hand. Ala et al. (2024) devised a novel fuzzy multi-objective optimization model 
to investigate a sustainable healthcare supply chain network problem, encompassing 
multiple echelons, multiple products, and a fuzzy approach to address the uncer-
tainty associated with a subset of critical model parameters. They introduced three 
multi-objective metaheuristic algorithms, along with the well-established �-Con-
straint exact method, to effectively tackle the complex problem at hand. Das et al. 
(2024) meticulously delved into the optimization of a sustainable two-stage solid 
logistics network by formulating a multi-objective multi-facility location-allocation 
problem. The authors effectively addressed uncertainties by employing triangular 
type-2 neutrosophic numbers and employing a novel ranking approach. To optimize 
three conflicting objectives, they employed the �-Constraint approach and demon-
strated its effectiveness through numerical examples. They also conducted a com-
parative study against other Pareto-based multi-objective approaches.

3  Problem statement and mathematical formulation

This work introduces the fleet size and mix pollution inventory routing problem 
(FSMP-IRP), a multi-period, multi-commodity optimization challenge that incorpo-
rates EU truck drivers’ working hours regulations and speed limits. The problem is 
formulated on a complete graph G = {V ,E} , where V  denotes the set of nodes com-
prising geographically dispersed customers I = {1,… , |I|} , and an additional node 
|I| + 1 represents the depot. The set of edges is defined as E = {(i, j) ∶ i, j ∈ V , i ≠ j} . 
The supply chain system encompasses the distribution of multiple product types 
P = {1,… , |P|} across a finite time horizon T = {1,… , |T|} . The distribution task 
involves a fleet of heterogeneous vehicles K = {1,… , |K|} , which includes light-
duty trucks KL = {1,… , |KL|} , medium-duty trucks KM = {|KL| + 1,… , |KM|} , 
and heavy-duty trucks KH = {|KM| + 1,… , |K|} . Each selected vehicle can traverse 
between two nodes at a specified speed level chosen from a set of available speed 
levels L = {1,… , |L|}.
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Each customer exhibits a period-dependent demand for each type of product in 
every time period, denoted as dipt . Additionally, it is assumed that distinct product 
types share identical storage conditions. Consequently, a generalized holding cost, 
hi , is assigned to each customer. Every vehicle is characterized by a space capacity, 
SCk , and a payload capacity, PCk . Specific units of space within each type of vehicle 
are required for each unit of product type, indicated by srpk . Moreover, each unit of 
product type p is associated with a specific weight, PWp . Similarly, STpk represents 
the time necessary to unload each unit of product type p from vehicle k.

Tables 1 and 2 provide the common and specific parameters of the vehicle types 
and their corresponding values, respectively.

The parameters, which represent the working and driving hours limits of truck 
drivers, according to EU regulations, are summarized in Table 3.

Table 1  Common vehicle parameters

Parameter Explanation Value 
(Cheng et al. 
2017)

� Fuel-to-air mass ratio 1
g Gravitational constant (m/s2) 9.81
� Air density (kg/m3) 1.2041
CR Coefficient of rolling resistance 0.01
� Efficiency parameter for diesel engines 0.45
fc Unit fuel cost (Euros/L) 0.87
fe Unit CO

2
 emission cost (Euros/kg) 0.29

fd Driver wage (Euros/s) 0.0025
� CO

2
 emitted by unit fuel consumption (kg/L) 2.669

HVDF Heating value of a typical diesel fuel (kJ/g) 44
� Conversion factor (g/s to L/s) 737
� Road angle 0
� Acceleration (m/s2) 0

Table 2  Vehicle-specific parameters (Cheng et al. 2017)

Parameter Explanation Light-duty Medium-duty Heavy-duty

CWk Curb weight (kg) 4672 6328 13,154
EFFk Engine friction factor (kJ/rev/L) 0.25 0.2 0.15
ESk Engine speed (rev/s) 39 33 30.2
EDk Engine displacement (L) 2.77 5 6.66
CADk Coefficient of aerodynamics drag 0.6 0.6 0.7
FSAk Frontal surface area (m2) 9 9 9.8
VDTEk Vehicle drive train efficiency 0.4 0.45 0.5
VUKk Usage cost of vehicle k 1463.1 2127 3297.3
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The decision variables required to mathematically formulate the problem under 
investigation are provided in Table 4.

The objective of the problem under consideration is to minimize the total cost of 
the supply chain system, consisting of general routing costs, inventory costs, fuel 
consumption costs, CO2 emissions taxation costs, vehicles’ usage costs, and driv-
ers’ wages costs. Based on fuel consumption, the Comprehensive Modal Emission 
Model (CMEM) of Barth et al. (2005) and Barth and Boriboonsomsin (2009) has 
been adopted. CMEM has been successfully applied in several supply chain network 
optimization studies (Koç et al. 2016; Dukkanci et al. 2019; Karakostas et al. 2020). 
The following formulas are provided to simplify the mathematical expression of fuel 
consumption:

• � =
�

HVDF⋅�
,

• �k =
1

1000⋅VDTE⋅�
,

• � = � + g ⋅ CR ⋅ sin � + g ⋅ CR ⋅ cos �,
• �k = 0.5 ⋅ CAD ⋅ � ⋅ FSAk.

To this end, a mixed integer linear programming model is proposed as follows:

Table 3  Limits of working and 
driving hours

Parameter Explanation Value (in s)

DMD Driving maximum duration 16,200
WMD Working maximum duration 21,600
MBD Minimum break duration 2,700
MRD Maximum route duration 32,400

Table 4  Decision variables of the model

Parameter Explanation

xijkt 1 if and only if vehicle k moves from node i to j in time period t
zijklt 1 if and only if vehicle k moves from node i to j in time period t with speed level l
vskt 1 if and only if vehicle k is selected in time period t
aijkt Load weight of vehicle k while traveling from node i to j in time period t
qipkt Quantity of product p delivered to customer i with vehicle k in time period t
wipth Quantity of product p delivered to customer i in period h for satisfying its demand in period t
ATktv Arrival time of vehicle k in node v in period t
AWTktv Accumulated working time of the driver of vehicle k after the service of customer i in period 

t
ADTktv Accumulated driving time of the driver of vehicle k while arriving at node v in period t
BWktv 1 if and only if the driver of vehicle k is performed a break in period t after the service of 

node v
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subject to

(1)

min
∑
i∈I

hi ⋅
∑
p∈P

∑
t∈H

�
1

2
⋅ dipt +

∑
h∈T ,h<t

wipth ⋅ (t − h) +
∑

h∈T ,h>t

wipth ⋅ (t − h + �T�)
�

+
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cij ⋅ xijkt

+
∑
i∈V

∑
j∈V

∑
k∈K

∑
l∈L

∑
t∈T

fd ⋅

�
zijklt ⋅ cij

�

sl

+
∑
k∈K

∑
t∈T

vskt ⋅ VUCk

+
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

�
𝜆
�
fc +

�
fe𝜎

��� ∑
l∈L

�
zijktl ⋅ EFFk ⋅ ESk ⋅ EDk ⋅ cij

�

sl
+

�
𝛼 ⋅ 𝛾k ⋅

�
CWk ⋅ xijkt + aijkt

�
⋅ cij

�

+

�
𝛽k ⋅ 𝛾k ⋅

∑
l∈L

�
s2
l
⋅ zijktl

����

(2)
∑

l∈L

zijktl = xijkt, ∀i, j ∈ V , ∀k ∈ K, ∀t ∈ T

(3)
∑

l∈L

xiikt = 0, ∀i ∈ V , ∀k ∈ K, ∀t ∈ T

(4)
∑

j∈V

∑

k∈K

xijkt ≤ 1, ∀t ∈ T , ∀i ∈ I

(5)
∑

j∈V

∑

k∈K

xjikt ≤ 1, ∀t ∈ T , ∀i ∈ I

(6)
∑

j∈V

xijkt −
∑

j∈V

xjikt = 0, ∀i ∈ V , ∀k ∈ K, ∀t ∈ T

(7)
∑

i∈I

xi(n+1)kt ≤ 1, ∀ k ∈ K, ∀ t ∈ T

(8)Uikt − Ujkt +

(
|I| ⋅

∑

l∈L

xijkt

)
≤ |I| − 1, ∀ i, j ∈ I,∀ k ∈ K,∀ t ∈ T

(9)
∑

i∈V

aijkt −
∑

i∈V

ajikt =
∑

p∈P

qjpkt ⋅ PWp, ∀j ∈ I, ∀k ∈ K, ∀t ∈ T

(10)aijkt ≤ xijkt ⋅ PCk, ∀i, j ∈ V , ∀k ∈ K, ∀t ∈ T

(11)
∑

i∈I

∑

p∈P

qipkt ⋅ srpk ≤ SCk, ∀ k ∈ K, ∀ p ∈ P
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(12)
∑

i∈I

∑

p∈P

qipkt ⋅ PWp ≤ PCk, ∀ k ∈ K, ∀ p ∈ P

(13)
∑

h∈T

wipth = dipt, ∀i ∈ I, ∀p ∈ P, ∀t ∈ T

(14)
∑

t∈T

wipth =
∑

k∈K

qipkh, ∀i ∈ I, ∀p ∈ P, ∀h ∈ T

(15)wipth ≤ dipt, ∀i ∈ I, ∀p ∈ P, ∀t, h ∈ T

(16)qipkt ≤ M1 ⋅

∑

j∈V

xijkt, ∀i ∈ I, ∀p ∈ P, ∀k ∈ K, ∀t ∈ T

(17)
∑

j∈V

xijkt ≤ M1 ⋅ qipkt, ∀i ∈ I, ∀p ∈ P, ∀k ∈ K, ∀t ∈ T

(18)vskt ≤
∑

i∈V

∑

j∈V

xijkt, ∀k ∈ K, ∀t ∈ T

(19)xijkt ≤ vskt, ∀i, j ∈ V , i ≠ j, ∀k ∈ K, ∀t ∈ T

(20)
∑

l∈L,l>3

zijklt = 0, ∀ i, j ∈ I,∀ k ∈ K,∀ t ∈ T , cij ∈

[
0,

c

3

)

(21)
∑

l∈L,l>8

zijklt = 0, ∀ i, j ∈ I,∀ k ∈ K,∀ t ∈ T , cij ∈

[
c

3
,
c

2

]

(22)

ADTktj ≥ ADTkti +

(
∑

l∈L

zijklt ⋅
cij

sl

)
− (BWkti ⋅ DMD) −

[(
1 −

∑

l∈L

zijklt

)
⋅MRD

]
,

∀i, j ∈ V , i ≠ j, i ≠ |I| + 1, ∀k ∈ K, ∀t ∈ T

(23)
ADTktj ≥

(
∑

l∈L

zijklt ⋅
cij

sl

)
− (BWkti ⋅ DMD) −

[(
1 −

∑

l∈L

zijklt

)
⋅MRD

]
,

∀i = |I| + 1, j ∈ I, ∀k ∈ K, ∀t ∈ T

(24)ADTktj ≥
∑

l∈L

zijklt ⋅
cij

sl
, ∀i, j ∈ V , i ≠ j, ∀k ∈ K, ∀t ∈ T
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(25)

AWTktj ≥ AWTkti +

(
∑

l∈L

zijklt ⋅
cij

sl

)
+

(
∑

p∈P

qjpkt ⋅ STpk

)
− (BWkti ⋅WMD)

−

[(
1 −

∑

l∈L

zijklt

)
⋅MRD

]
,

∀i, j ∈ V , i ≠ j, i ≠ |I| + 1, ∀k ∈ K, ∀t ∈ T

(26)

AWTktj ≥

(
∑

l∈L

zijklt ⋅
cij

sl

)
+

(
∑

p∈P

qjpkt ⋅ STpk

)
− (BWkti ⋅WMD)

−

[(
1 −

∑

l∈L

zijklt

)
⋅MRD

]
,

∀i = |I| + 1, ∀j ∈ I, ∀k ∈ K, ∀t ∈ T

(27)

AWTktj ≥

(
∑

i∈V

∑

l∈L

zijklt ⋅
cij

sl

)
+

(
∑

p∈P

qjpkt ⋅ STpk

)

−

[(
1 −

∑

l∈L

zijklt

)
⋅MRD

]
,

∀j ∈ V , ∀k ∈ K, ∀t ∈ T

(28)

ATktj ≥ ATkti +

(
∑

l∈L

zijklt ⋅
cij

sl

)
+

(
∑

p∈P

qipkt ⋅ STpk

)
+ (BWkti ⋅MBD)

−

[(
1 −

∑

l∈L

zijklt

)
⋅ (2 ⋅MRD)

]
,

∀i, j ∈ V , i ≠ j, i ≠ |I| + 1, ∀k ∈ K, ∀t ∈ T

(29)

ATktj ≥

(
∑

l∈L

zijklt ⋅
cij

sl

)
+ (BWkti ⋅MBD) −

[(
1 −

∑

l∈L

zijklt

)
⋅ (2 ⋅MRD)

]
,

i = |I| + 1, ∀j ∈ I, ∀k ∈ K, ∀t ∈ T

(30)ATkti ≤
∑

j∈V

∑

l∈L

zjiklt ⋅MRD, ∀i ∈ V , ∀k ∈ K, ∀t ∈ T

(31)
∑

i∈V

BWkti ≤ M2 ⋅ vskt, ∀k ∈ K, ∀t ∈ T
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To clarify, the parameter M1 is set equal to the total demand of the customers for 
each type of product in all time periods, while the parameter M2 is set equal to the 
number of customers.

The objective function (1) refers to the minimization of the total cost of the 
supply chain system, which consists of inventory costs (average holding costs and 
penalty costs of deferred deliveries), general routing costs, driver wages costs, 
vehicles’ usage costs, fuel consumption costs, and carbon emission taxation costs. 
Constraints (2) indicate that the movement from a node to another with a selected 
vehicle in a specific time period will be performed with at most one specific speed 
level. Constraints (3) eliminate the one-node cycles in the supply chain network. 
Constraints (4) and (5) guarantee that a customer is serviced by at most one vehi-
cle in each time period. Constraints (6) establish the balance between the interior 
and exterior flows of vehicles in each node in each time period. Each vehicle can 
perform at most one route in each time period, as imposed by constraints (7). 
The Miller-Tucker-Zemlin subtour elimination constraints are formulated as pre-
sented in Equations (8). Constraints (9) impose the balance between the interior 
and exterior flows of product load in each customer over each period of time. 
Constraints (10) guarantee that the product load in the vehicle moving between 
two nodes of the network cannot exceed the payload capacity of this vehicle. 
Constraints (11) impose that the space requirements of the products delivered to 
a customer in a specific time period by a selected vehicle cannot exceed its space 
capacity. Similarly, Constraints (12) guarantee that the weight of products trans-
ported by a selected vehicle in a specific time period cannot exceed its payload 
capacity. Constraints (13) denote that the deferred scheduled deliveries to a spe-
cific customer for a specific period of time must be equal to the demand of this 
customer. Moreover, constraints (14) impose that the deferred scheduled deliver-
ies to a specific customer for a specific time period must be equal to the actual 
deliveries in this time period. Constraints (15) impose that a deferred scheduled 
delivery to a customer cannot exceed the corresponding demand of this customer. 
Constraints (16) and (17) guarantee that a vehicle will deliver to a customer if 
and only if this vehicle is scheduled to visit this customer. Constraints (18) and 
(19) ensure that a vehicle can perform a route in a specific time period if and only 
if it is selected in this time period. Constraints (20) and (21) guarantee the abid-
ance to the speed limit regulations.

The following constraints refer to EU regulations on the working and driving 
times of truck drivers. Constraints (22), (23), and (24) focus on the accumulative 
driving time. In general, the accumulative driving time for a specific vehicle in 
a specific time period for each customer must be greater than the accumulative 
driving time of the previous customer plus the driving time to reach the current 
customer minus the duration of a possible break. Constraints (25), (26), and (27) 
refer to accumulative working time. The accumulative working time consists of 
both driving and servicing (products unloading) times. In general, the accumula-
tive working time after the service of a specific customer in a specific time period 

(32)BWkti ≤
∑

j∈V ,j≠i

∑

l∈L

zjiklt, ∀i ∈ V , ∀k ∈ K, ∀t ∈ T
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must be greater than the accumulative working time after the service of the previ-
ous customer plus the driving time to reach the current one, plus the necessary 
time to service the current customer minus the duration of any possible break. 
Constraints (28), (29), and (30) address the feasibility of the arrival time to each 
node in each time period. It should be clarified that the constraints (30) guaran-
tee that the overall duration of a route will not exceed the corresponding limit. 
Finally, constraints (31) and (32) impose that only a driver of a selected vehicle 
can perform a break in a specific time period.

4  Computational analyses

4.1  Computing environment and problem instances

The proposed MILP model was developed using the Gurobi Python interface. 
The commercial solver ran on a laptop PC (Windows 10 Home 64-bit), with an 
Intel Core i7-9750 H CPU at 2.6 GHz and 16 GB RAM. The execution time limit 
was set to two hours. To avoid potential “Out-Of-Memory" errors, the parameter 
“NodeFileStart" was set equal to 0.5 to utilize disk space for the storage of nodes. 
To validate the proposed model and perform the necessary computational analy-
ses, 15 problem instances were randomly generated. The new benchmark set is 
publicly available at https:// sites. uom. gr/ sifal era/ bench marks. html.

The name of each problem case has the form “X-Y-Z”, where “X” denotes the 
number of customers, “Y” is the number of product types, and “Z” denotes the 
number of time periods. The first line in each file provides these three numbers 
(Customers, Types of Products, and Time Periods). The second line provides the 
coordinates of the location of the depot. The next “X” lines contain the coor-
dinates of the location of the customers and their corresponding holding costs. 
Customer and depot locations’ coordinates were randomly generated following a 
uniform distribution in the range [0,80].

The following “Customers ⋅ Periods” lines present the period-dependent 
demand for each customer for each type of product. The period-dependent 
demand of each customer for each type of product was generated following the 
normal distribution. For each demand value, the mean and standard deviation 
of the normal distribution were also randomly produced following the uniform 
distribution in the ranges of [5,15] and [0,5], respectively. The next line in each 
instance file provides the space required per type of product to load it into a truck. 
These values were randomly generated following the uniform distribution in the 
range of [1,3].

The space capacity of each type of truck is presented in the next line. Space 
capacity data of light-duty trucks were generated following the uniform distribu-
tion in the range of [MaxDemand ⋅MaxSpace,

TotalDemand⋅MaxSpace

2⋅Periods
] , where “MaxDe-

mand” denotes the maximum value of demand produced, “MaxSpace” represents 
the maximum value of space required for the loading of one unit of product under 
the consideration of all product types, and “TotalDemand” =

∑
i∈I

∑
p∈P

∑
t∈T dipt . 

https://sites.uom.gr/sifalera/benchmarks.html
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The space capacity of medium-duty trucks is equal to 1.2 times the space capac-
ity of light-duty trucks, while the space capacity of heavy-duty trucks is 1.44 
times greater than the space capacity of light-duty trucks.

The following |P| lines provide the time required to unload each unit of each type 
of product from each type of vehicle. Initially, for each type of product, a random 
number was produced from the uniform distribution on the interval [1,3]. The gener-
ated number was transformed into seconds by multiplying by 60. This product was 
set as the unloading time of the selected type of product in the case of light-duty 
trucks. In the case of medium-duty trucks, the previously produced time is increased 
by 1.05 times, while in case of heavy-duty trucks, it is increased by 1.08 times.

Based on the weight of each type of product, the corresponding data are provided 
in the next line of each instance file. The product weight for a specific product type 
was generated from the uniform distribution in the interval [1.5,5]. The last line in an 
instance file presents the payload capacity of each vehicle type. The payload capac-
ity of light-duty trucks was randomly generated from the uniform distribution on 
the interval [MaxDemand ⋅ AvgProductWeight, (

TotalDemand

2⋅Periods
) ⋅ AvgProductWeight] , 

where “AvgProductWeight” is equal to the average unit weight of all product types. 
Similarly to the space capacity, the payload capacities of medium and heavy trucks 
are increased by 1.2 and 1.44 times the payload capacity of light-duty trucks, 
respectively.

4.2  Computational results

Table 5 provides the total and individual costs according to the best-found solution 
for each instance.

Table 6 provides the fleet composition as it has been scheduled in the best-found 
solutions for each problem case.

An important decision in designing the considered supply chain system involves 
scheduling drivers’ breaks. In this context, we present an illustrative example of such 
schedules for the specific problem instance “8-3-3". Three breaks are scheduled, one 
for each time period. To elaborate, the driver of the heavy-duty truck is planned to take 
a break after visiting “Customer_4" in the first time period, another break is scheduled 
in the second time period after visiting “Customer_2", and in the third time period, the 
driver of a heavy-duty truck will take a break after visiting “Customer_8". The break 
schedule is summarized as follows:

• 8-3-3:

– First break:   (Heavy-duty, Period_1, Customer_4)
– Second break: (Heavy-duty, Period_2, Customer_2)
– Third break:   (Heavy-duty, Period_3, Customer_8)
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4.3  Managerial insights

This section is dedicated to the computational sensitivity analysis of the potential 
impact on the total cost and structure of the supply chain system, due to possible fluc-
tuations in key model parameters. The flow of these sensitivity analyses is summarized 
in Figure 1.

4.3.1  Impact of CO
2
 taxation cost fluctuations

Carbon emissions taxation constitutes a key policy for the reduction of carbon emis-
sions (Zhou et al. 2021; Xu et al. 2022). Thus, it is crucial to investigate the potential 

Table 5  Summary of total and individual costs

Instance Total cost Routing cost Inventory 
cost

Vehicles 
cost

Drivers 
cost

Fuel cost CO
2
 

Taxation 
cost

5-2-3 476,131.65 460,388.25 92.12 15,316.20 82.86 133.49 118.76
5-3-3 905,266.64 884,750.08 57.69 19,783.80 159.24 272.98 242.86
5-3-5 784,603.48 760,754.95 186.07 23,081.10 136.92 235.20 209.25
5-4-5 583,791.29 556,474.15 232.86 26,671.20 100.16 165.59 147.32
5-5-5 685,474.25 657,348.66 297.31 27,335.10 104.40 215.27 191.52
6-3-3 873,971.55 846,819.79 127.63 26,378.40 152.42 261.06 232.26
6-4-5 610,646.21 584,452.11 534.31 25,208.10 95.93 188.26 167.49
7-2-3 787,022.68 759,962.64 102.79 26,378.40 136.78 233.94 208.13
7-4-5 1,132,508.39 1,071,114.80 277.88 60,308.10 192.79 325.36 289.47
7-4-6 1,230,446.98 1,183,904.46 644.97 44,991.90 213.09 366.50 326.06
8-3-3 1,306,918.16 1,265,029.48 130.88 40,817.10 227.69 377.32 335.69
8-4-5 1,644,797.14 1,573,678.59 414.91 69,536.10 283.24 467.96 416.33
10-3-3 1,025,817.05 992,661.61 321.15 32,095.50 178.66 296.42 263.71
10-4-5 2,069,124.31 1,988,216.71 474.30 78,921.60 357.85 610.61 543.24
15-4-5 1,516,162.85 1,456,154.37 1192.11 57,731.70 260.47 436.16 388.04
Average 1,042,178.84 1,002,780.71 333.16 38,303.62 178.83 305.74 272.01

Table 6  Fleet schedule based on the solutions of basic model

Instance Light-duty Medium-duty Heavy-duty Instance Light-duty Medium-duty Heavy-duty

5-2-3 0 1 2 7-4-5 0 1 5
5-3-3 0 0 3 7-4-6 0 1 3
5-3-5 0 0 2 8-3-3 1 1 5
5-4-5 1 1 2 8-4-5 1 1 5
5-5-5 0 1 3 10-3-3 1 1 4
6-3-3 0 0 4 10-4-5 0 1 5
6-4-5 0 1 2 15-4-5 2 1 5
7-2-3 0 0 4
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impact of CO2 taxation cost fluctuations on the emissions produced by the supply chain 
system, as well as on its overall structure. To this end, four CO2 taxation policies were 
examined. The first policy considers the absence of any taxation on CO2 emissions. The 
second policy considers an increase of 10% on the initial tax, while the third and fourth 
refer to the application of increased taxation rates by 15% and 20%, respectively. Fig-
ure 2 illustrates the trade-offs between different CO2 taxation policies and the produced 
emissions.

The examination of various CO2 taxation levels and their impact on average CO2 
emissions provides insightful findings. Firstly, it is evident that the introduction of 
a CO2 taxation policy plays a pivotal role in reducing emissions. The average CO2 
emissions are observed to be at 947.97 kg, when no taxation is applied. Introduc-
ing an initial taxation level results in a slight reduction in average CO2 emissions 
to 937.96 kg, indicating a potential influence of taxation on emission levels. Fur-
ther adjustments, such as a 10% increase in taxation, lead to a decrease in average 
CO2 emissions to 934.72 kg. However, the efficacy of carbon emission management 
measures diminishes when transitioning to more stringent taxation policies. This 
deterioration may be attributed to disparities in fleet composition as well as routing 
patterns, during specific time periods, possibly influenced by strict EU driving and 
working regulations. Figure 3 illustrates the slight differences in the average cost of 
the fleet composition under the effect of each CO2 taxation policy, while Fig. 4 pre-
sents the impact of different CO2 taxation policies on routing costs.

Fig. 2  Impact of CO
2
 taxation policies on carbon emissions

Fig. 1  The sequence of different sensitivity analyses
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From a total cost perspective, no significant effects of different taxation policies 
have also been observed. Table 7 summarizes the average total and individual costs 
of the supply chain system under the effect of different CO2 taxation policies.

Table  8 focuses on two problem instances and provides fleet requirements per 
time period, aiming to better understand the impact of different carbon taxation poli-
cies on fleet composition.

Fig. 3  The relationship between different CO
2
 taxation policies and average vehicles usage costs

Fig. 4  The relationship between different CO
2
 taxation policies and average routing costs
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4.3.2  Impact of fuel price fluctuations

Fuel price fluctuations can significantly affect traffic flows (Zhang and Burke 2020). 
Therefore, investigating the potential impact of fuel price fluctuations on the supply 
chain system under consideration constitutes an interesting research objective. Fig-
ures 5, 6, and 7 illustrate how changes in fuel price affect average fuel consumption, 
fleet composition, and average transportation cost.

According to the numerical analysis, there is a slight relationship between fluc-
tuation in fuel prices and average fuel consumption. It has been observed that as 
the price of the fuel increases, the average fuel consumption gradually decreases. 
To handle such fluctuations, the solver attempted to provide a different fleet com-
position and delivery schedules. More specifically, an increase of 10% in fuel 
prices leads to fewer vehicles being used compared to the basic case, while a 
more severe increase of 20% leads to the utilization of more vehicles, but to more 
efficient routing patterns. However, a slight increase in fuel consumption was 
observed when the fuel price increased by 15%. This unanticipated outcome can 

Table 7  Cost comparisons between different CO
2
 taxation policies

Avg. Costs Initial taxation No taxation Plus 10% Plus 15% Plus 20%

Total Cost 1,042,178.84 1,043,429.31 1,044,295.53 1,045,750.34 1,045,341.91
Routing cost 1,002,780.71 1,004,064.74 1,004,868.84 1,006,172.96 1,005,999.66
Inventory Cost 337.93 341.05 335.71 338.68 346.29
Vehicles’ Usage Cost 38,303.62 38,537.68 38,308.90 38,441.68 38,186.62
Drivers’ Cost 178.83 176.84 179.21 179.62 179.46
Fuel Cost 305.74 309.00 311.35 305.17 304.64
CO

2
 taxation Cost 272.01 0 298.18 312.23 325.24

Table 8  Differences in fleet composition and routing schedules based on CO
2
 taxation policies

Instance Period No taxation Initial taxation Plus 10% Plus 15% Plus 20%

8-4-5 1 4 H 1 M, 4 H 6 H 4 H 1 M, 2 H
2 1 M, 4 H 4 H 1 M, 3 H 1 M, 4 H 2 M, 3 H
3 1 M, 3 H 4 H 1 M, 4 H 4 H 2 M, 2 H
4 4 H 3 H 3 H 1 M, 4 H 2 M, 2 H
5 1 M, 4 H 1 L, 5 H 1 M, 3 H 1 M, 3 H 1 L, 2 M, 3 H

10-4-5 1 1 L, 1 M, 5 H 4 H 1 L, 3 H 1 M, 5 H 2 L, 1 M, 2 H
2 2 L, 3 H 4 H 1 L, 6 H 2 M, 1 H 1 L, 1 M, 4 H
3 5 H 1 M, 5 H 1 L, 2 M, 2 H 2 M, 4 H 1 L, 1 M, 3 H
4 1 M, 3 H 1 M, 3 H 1 M, 5 H 5 H 1 M, 2 H
5 5 H 1 M, 6 H 1 L, 2 M, 2 H 1 L, 1 M, 4 H 1 L, 1 M, 6 H
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possibly be caused by the effect of both strict EU regulations and the considera-
tion of speed limits. To this end, the solver produces an inefficient routing scheme 
to produce a time-feasible solution that fully satisfies customers’ demands.

Table 9 provides the average total and individual costs of the supply chain sys-
tem under the effect of different fuel price fluctuations.

Fig. 5  The impact of fuel price fluctuations on the average fuel consumption

Fig. 6  The impact of fuel price fluctuations on the average vehicles usage cost
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4.3.3  Impact of holding cost fluctuations

Recent studies have underlined the important role of holding cost changes in a 
supply chain system (Hu et al. 2018). To this end, the potential impact of hold-
ing cost fluctuations on the supply chain system under consideration has been set 
under investigation. More specifically, two cases have been considered. Accord-
ing to the first, an increase in holding costs of 10% was applied. Similarly, an 
increase of 15% was considered in the second case. Table 10 provides the average 
total and individual costs under the effect of fluctuation of the holding cost.

The numerical analysis revealed the significant impact of holding cost fluctua-
tions on the average overall cost of the supply chain system. There is an obvious 
strong impact on average inventory cost (increased by 15% and 22% respectively) 
as well as on routing cost (increased by 5% and 1.5% respectively).

Fig. 7  The impact of fuel price fluctuations on the average routing cost

Table 9  Cost comparisons under the effect of different fuel price fluctuations

Avg. costs Basic case Plus 10% Plus 15% Plus 20%

Total cost 1,042,178.84 1,045,091.99 104,984.76 1042,609.24
Routing cost 1,002,780.71 1,005,719.81 1,010,541.04 1,003,157.85
Inventory cost 337.93 339.12 338.52 344.99
Vehicles’ usage cost 38,303.62 38,245.12 38,152.86 38,289.38
Drivers’ cost 178.83 179.35 180.39 179.18
Fuel cost 305.74 336.47 350.67 366.27
CO

2
 taxation cost 272.01 272.13 271.28 271.55
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Figures 8, 9, and 10 illustrate the replenishment plan for all types of product in 
all time periods for the third customer of the problem instance “6-4-5”, under the 
effect of holding cost fluctuations.

Table 10  Cost comparisons 
under the effect of holding cost 
fluctuations

Avg. costs Basic case Plus 10% Plus 15%

Total cost 1,042,178.84 1,095,257.13 1,057,992.69
Routing cost 1,002,780.71 1,056,316.91 1,018,633.55
Inventory cost 337.93 389.30 411.20
Vehicles’ usage cost 38,303.62 37,777.12 38,191.90
Drivers’ cost 178.83 188.77 182.98
Fuel cost 305.74 309.60 303.26
CO

2
 taxation cost 272.01 275.44 269.81

Fig. 8  Replenishment plan for the third customer in the basic case of instance “6-4-5”

Fig. 9  Replenishment plan for the third customer under the effect of the first holding cost fluctuation of 
instance “6-4-5"
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5  Conclusions

Sustainability has emerged as a cornerstone of competitive advantage in today’s 
dynamic and multifaceted business landscape. To address this prevailing chal-
lenge, this study has proposed a novel sustainable supply chain network optimiza-
tion problem that simultaneously considers strategic, tactical, and operational deci-
sions, encompassing economic, environmental, and social aspects, while adhering 
to stringent EU regulations on truck drivers’ working hours and driving schedules. 
To effectively address this intricate problem, an MILP model has been developed 
and implemented using the Gurobi-Python interface. Moreover, artificial problem 
instances were generated based on established guidelines from the open literature 
and solved using the Gurobi solver, yielding valuable insights into the problem’s 
behavior.

This study has investigated the impact of various external factors, including car-
bon emission taxation policies, fuel price fluctuations, and holding cost variations, 
on a sustainable supply chain network optimization problem. The findings provide 
valuable insights into the trade-offs between economic, environmental, and social 
objectives. The results indicate that carbon emission taxation policies play a piv-
otal role in reducing CO2 emissions. However, the efficacy of these policies dimin-
ishes when transitioning to more stringent taxation policies due to the associated 
increase in fuel costs. This highlights the need for careful consideration of the bal-
ance between emission reduction and economic viability when implementing car-
bon emission taxation policies. Fuel price fluctuations have a significant impact on 
average fuel consumption and fleet composition. Our study shows that as fuel prices 
increase, the solver attempts to provide a different fleet composition and delivery 
schedules to minimize fuel costs. This adaptation is crucial for maintaining opera-
tional efficiency and reducing fuel-related emissions. However, a slight increase in 

Fig. 10  Replenishment plan for the third customer under the effect of the second holding cost fluctuation 
of instance “6-4-5"
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fuel consumption was observed when the fuel price increased by 15% due to the 
combined effect of strict EU regulations and speed limits. This underscores the 
importance of considering these regulatory and infrastructural factors when ana-
lyzing the impact of fuel price fluctuations. Holding cost variations have a signifi-
cant impact on the overall cost of the supply chain system. The sensitivity analysis 
of holding cost fluctuations reveals a significant impact on both the total cost and 
inventory management of the supply chain system. The increase in holding costs 
leads to higher inventory levels, which translates to increased inventory costs and 
higher total transportation costs. To mitigate these cost increases, the solver adjusts 
the replenishment plan by delivering more frequently to customers, leading to 
shorter replenishment cycles and lower inventory levels. In summary, the sensitiv-
ity analysis highlights the importance of considering holding costs when optimiz-
ing supply chain operations. Holding costs can significantly impact the overall cost 
structure and inventory management practices. The proposed MILP model provides 
valuable insights into the trade-offs between inventory management, transportation 
costs, and total cost of the supply chain system under varying holding cost scenarios.

While the FSMP-IRP model presented in the research paper represents a signifi-
cant advancement in supply chain optimization, it is important to acknowledge cer-
tain limitations that can be addressed in future research:

Model Complexity: The model’s comprehensiveness in addressing multi-
ple objective function components and incorporating various constraints leads to 
its increased computational complexity. Further optimization techniques may be 
needed to enhance the computational efficiency of the model, especially for large-
scale problem instances. Developing an efficient heuristic solution method will be 
an interesting research direction, as it can obtain solutions for larger problem cases 
in a short computational time.

Uncertainty and Adaptive Problem Features: The model assumes deterministic 
demand patterns and does not explicitly consider stochastic factors or disruptions 
that may arise during operations. Incorporating probabilistic modeling and robust 
optimization techniques can improve the model’s resilience to uncertainties and 
disruptions. Moreover, from a problem perspective, the consideration of product-
dependent holding costs and emission-based tax rates will be an interesting research 
direction.

Social Responsibility Considerations: While the model incorporates social 
responsibility aspects, such as driver working hours, further research can delve into 
more nuanced social factors, such as fair labor practices and ethical sourcing. It 
would be of great research interest to explore human resource management deci-
sions related to the staffing of truck drivers and warehouse personnel within the cur-
rent iteration of the problem (Graczyk-Kucharska et al. 2020).

Sustainability Impact Evaluation: The model estimates CO2 emissions and 
assesses the environmental impact of supply chain operations. However, a more 
comprehensive evaluation of the overall sustainability impact of the model would 
enhance its applicability in sustainable supply chain management.
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