
On multi-item economic lot-sizing with remanufacturing and

uncapacitated production

Jesus O. Cunha∗

Departamento de Ciência da Computação, Universidade Federal da Bahia. Avenida Adhemar de Barros,

s/n, Salvador, BA 40170-110, Brazil.

Ioannis Konstantaras

Department of Business Administration, School of Business Administration, University of Macedonia,

156 Egnatia Str., Thessaloniki 54636, Greece.

Rafael A. Melo

Departamento de Ciência da Computação, Universidade Federal da Bahia. Avenida Adhemar de Barros,

s/n, Salvador, BA 40170-110, Brazil.

Angelo Sifaleras

Department of Applied Informatics, School of Information Sciences, University of Macedonia, 156
Egnatia Str., Thessaloniki 54636, Greece.

Abstract

In this paper we consider the multi-item economic lot-sizing problem with remanufacturing
and uncapacitated production. Observing that the problem is composed of several inde-
pendent single-item problems, we show how very high quality feasible solutions and bounds
can be obtained by solving each item separately using an effective approach recently pro-
posed in the literature. Computational experiments show that our approach improves the
best known feasible solutions and lower bounds for all the available instances. In addition,
86 instances could be solved to optimality and the remaining open gap was below 0.5% for
almost all the unsolved instances.

Keywords: Inventory, Lot-sizing with remanufacturing, Multi-item, Mixed integer
programming, Reverse logistics.
2010 MSC: 90B05, 90C11, 65K05

∗Corresponding author. Work of this author was supported by the Coordination for the Improvement
of Higher Education Personnel (CAPES), Brazil.

Email addresses: jesus.ossian@ufba.br (Jesus O. Cunha), ikonst@uom.gr (Ioannis Konstantaras), 
melo@dcc.ufba.br (Rafael A. Melo), sifalera@uom.gr (Angelo Sifaleras)

Please cite this paper as:

Cunha J. Ο., Konstantaras I., Melo R. Α., and Sifaleras A., "Οn multi-item economic lot-sizing with remanufacturing and 
uncapacitated production", Applied Mathematical Modelling, Elsevier Ltd., Vol. 50, pp. 772-780, 2017.

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.apm.2016.10.037



1. Introduction

In recent years, several factors (environmental concerns, legislation, voluntary collection
for materials recovery, etc) have made it more significant for many businesses to think of
reverse material flows when managing their supply chains. For instance, the increase in
online sales has generated an important increase in product returns, because customers
are unable to physically observe products before purchasing them. Furthermore many
companies have started taking back products after customers use them. These have led
reverse logistics and closed-loop supply chains to gain substantial interest in business and
academia (DeCroix et al., [4]).

In the literature, there has been an increasing interest in the study of lot-sizing prob-
lems with remanufacturing due to their large applicability in reverse logistics. Two recent
reviews on the modelling of lot-sizing and reverse logistics inventory systems are given
by Aloulou et al. [1] and Bazan et al. [2], accordingly. Mainly, the single-item dynamic
lot-sizing with remanufacturing, which consists in determining production and remanu-
facturing plans over a finite time horizon considering that the demands and returns for
each period are dynamic and known beforehand, has attracted the attention of several
authors during the last years. Recent works include the cutting-edge heuristic approaches
presented in Piñeyro and Viera [9], Schulz [12], and Sifaleras et al. [15], as well as the
state-of-the-art mixed integer programming (MIP) techniques studied in Cunha and Melo
[3] and Retel Helmrich et al. [5].

One of the most important issues that should be dealt with by firms is the determina-
tion of the inventory replenishment policy of the different goods (spare parts, raw material,
components or finished goods). Product returns increase the complexity of managing an
inventory system by introducing an uncertain reverse flow of materials. This is mainly true
when only a subset of the components of a product can be recovered for reuse (Decroix et
al., [4]). In this paper we consider the multi-item economic lot-sizing with remanufacturing
and uncapacitated production. To the best of our knowledge, there are only a few papers
in the literature studying the multi-item economic lot-sizing with remanufacturing. Li et
al. [6] studied the uncapacitated multi-item economic lot-sizing problem with remanufac-
turing options and demand substitution and presented an approximate procedure to solve
the problem while the same authors [7] studied a variant of their previous model assuming
capacity constraints. Sahling [11] considered a multi-item economic lot-sizing with remanu-
facturing and capacitated production problem in which setup times were also present. The
authors proposed a column-generation approach combined with a truncated branch-and-
bound method to solve the problem. Sifaleras and Konstantaras [13, 14] introduced the
multi-item variation of the economic lot-sizing with uncapacitated production, the one we
consider in our work. In [13], the authors proposed a general variable neighborhood search
metaheuristic for the problem and a benchmark set with very large instances. In [14], the
same authors presented a variable neighborhood descent metaheuristic and another larger
benchmark set.

The remainder of this note is organized as follows. In Section 2, we formally define
the problem and present a standard MIP formulation. The partial Wagner-Whitin based
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formulation is described in Section 3. Computational experiments are described in Section
4. Final comments are discussed in Section 5.

2. The multi-item economic lot-sizing with remanufacturing and uncapacitated
production

In the multi-item economic lot-sizing with remanufacturing and uncapacitated produc-
tion [13, 14], there is a set of NI items, each of them with deterministic dynamic demand
over a finite discrete time horizon of NT periods. Each item i has a demand dit for each
period t ∈ {1 . . . NT}. The deterministic amount of returned material of item i arriving
at each period is rit. There is no restriction on the amount of new units of an item to
be manufactured while the remanufacturing is restricted to the availability of returned
material for that item.

Fixed and variable production costs (respectively f p,i
t and pp,it ) as well as fixed and

variable remanufacturing costs (respectively f r,i
t and pr,it ) are incurred in case production

and/or remanufacturing take place in a given period. There is a per unit cost hp,i
t implied

by the storage of finished material as well as a per unit cost hr,i
t implied by the storage of

returned material. It is assumed that there are no initial stocks of either finished or returned
material and no final stocks of finished material. Besides, all the data are nonnegative and,
for each item i ∈ {1, . . . , NI}, the cumulated demand in the interval [k, t] is defined as
dikt =

∑t
l=k d

i
l for 1 ≤ k ≤ t ≤ NT , and the cumulated amount of returned material in the

interval [k, t] as rikt =
∑t

l=k r
i
l for 1 ≤ k ≤ t ≤ NT .

Consider variables xp,i
t (xr,i

t ) to be the amount of item i produced (remanufactured) in
period t. Also, let sp,it (sr,it ) denote the amount of finished (returned) item i in stock at
the end of period t. Furthermore, yp,it (yr,it ) is equal to 1 if production (remanufacturing)
happens in period t and 0 otherwise. The problem can thus be formulated as

z = min

NI∑

i=1

NT∑

t=1

(hp,i
t sp,it + pp,it xp,i

t + f p,i
t yp,it ) +

NI∑

i=1

NT∑

t=1

(hr,i
t sr,it + pr,it xr,i

t + f r,i
t yr,it ) (1)

sp,it−1 + xp,i
t + xr,i

t = dit + sp,it , for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT, (2)

sr,it−1 + rit = xr,i
t + sr,it , for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT, (3)

xp,i
t ≤ dit,NTy

p,i
t , for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT, (4)

xr,i
t ≤ min{ri1t, dit,NT}yrt , for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT, (5)

xp, xr, sp, sr ∈ R
NI×NT
+ , (6)

yp, yr ∈ {0, 1}NI×NT . (7)

The objective function (1) minimizes the total cost. Constraints (2) are balance constraints
for the final material. Constraints (3) are balance constraints related to the returned mate-
rial. Constraints (4) and (5) force the setup variables to one if production/remanufacturing
are incurred. Constraints (6) and (7) are, respectively, nonnegativity and integrality con-
straints on the variables.
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Observation 1. The problem is composed of NI independent economic lot-sizing with
remanufacturing problems. In addition, let zi be the optimal solution for the problem related
to item i and zi a lower bound on zi, then z =

∑NI
i=1 zi and

∑NI
i=1 zi ≤ z.

The observation follows from the fact that there are no constraints linking the economic
lot-sizing with remanufacturing problems for different items.

3. The partial Wagner-Whitin based formulation

In this section we present how to use strong formulations for the single-item economic lot-
sizing with remanufacturing related to each item in order to obtain an improved formulation
for the multi-item problem. We use the best performing approach presented in Cunha and
Melo [3] for each of the single-item economic lot-sizing with remanufacturing problems,
namely a partial Wagner-Whitin based formulation with size determined automatically
in a heuristic way. Let Kp

t and Kr
t , for 1 ≤ t ≤ NT , be integer values in the interval

[0, NT − 1]. The partial Wagner-Whitin based formulation is

z = min
NI∑

i=1

NT∑

t=1

(hp,i
t sp,it + pp,it xp,i

t + f p,i
t yp,it ) +

NI∑

i=1

NT∑

t=1

(hr,i
t sr,it + pr,it xr,i

t + f r,i
t yr,it )

(2)− (7),

sr,il +

l∑

k=t

ritky
r,i
k ≥ ritl, for 1 ≤ i ≤ NI, 1 ≤ t ≤ l ≤ NT, l ≤ t+Kr,i

t , (8)

sp,it−1 +
l∑

k=t

dikly
p,i
k +

l∑

k=t

min{ri1k, dikl}yr,ik ≥ ditl, for 1 ≤ i ≤ NI,

1 ≤ t ≤ l ≤ NT, l ≤ t+Kr,i
t ,

(9)

t−1∑

k=1

xp,i
k +

l∑

k=t

dikly
p,i
k ≥ di1l, for 1 ≤ i ≤ NI, 1 ≤ t ≤ l ≤ NT, l ≤ t+Kp,i

t . (10)

Inequalities (8) are variations of the Wagner-Whitin (l, S)−inequalities related to the re-
turned material and were used in Retel Helmrich et al. [5]. Inequalities (9) and (10) were
presented in Melo and Cunha [3]. Inequalities (9) are extensions of the (l, S)−inequalities
associated to the demands. Defining dp ∈ R

NT
+ to be the vector of minimum demands that

must be satisfied by production of new items as in [3], inequalities (10) are (l, S)−inequalities
for dp, with dpkl =

∑l
j=k d

p
j .

The key idea of this partial formulation is to heuristically determine values for the pa-
rameters Kp

t and Kr
t based on the problem’s cost structure. Assuming time invariant costs,

estimations of the intervals in which production and remanufacturing setups are likely to
occur are determined as in [3], i.e., Kp′ = argmink∈{1,...,NT}

(
diavg × k × (pp,i + hp,i) ≥ f p,i

)

and Kr′ = argmink∈{1,...,NT}
(
riavg × k × (pr,i + hp,i) ≥ f r,i

)
, considering diavg =

di1,NT

NT
and
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riavg =
ri1,NT

NT
. The values Kp and Kr are thus calculated as Kp = max{5, �0.5×Kp′�} and

Kr = max{5, �0.5×Kr′�}.

4. Computational experiments

In this section we report on the performed computational experiments. We compare the
results obtained using three approaches: (a) solving a problem for each item separately
(mi lsri), (b) solving all the items in a single formulation (mi lsr), and (c) best results
reported in Sifaleras and Konstantaras [14] (vnd) in whose work the running time of each
execution was limited to 90 s. All executions were performed on a machine running under
Xubuntu, with an Intel(R) Core(TM) i7-4770S CPU @ 3.10GHz processor and 8Gb of
RAM memory, using FICO Xpress 7.9. The codes were written in C++ and compiled
with g++ 4.8.4. The solver’s default settings were used, with exception of the optimality
tolerance which was set to 10−6, and the running time of each execution was limited to
3600 s.

The benchmark instances used in our experiments, which have NI = 300 items and
NT = 52 periods each, were presented in [13, 14], where a detailed description of how they
were generated can be encountered. The instances are divided into three groups: group 1,
group 2 and group 3. Instances in group 1 are the ones from [14] with demand and return
values generated using a normal distribution. Instances in group 2 are those from [14] with
demand and return values generated using an uniform distribution. Instances in group 3
are those presented in [13].

The approach for solving each item separately was implemented using two cycles. In
cycle 1, the total available running time is initially distributed uniformly amongst all
items. After every ten treated items, the available running time for each untreated item
is calculated by dividing the remaining available running time uniformly among the items
which were not treated yet. After all items are treated, and in case there is still available
time, in cycle 2 the unsolved items are revisited until there is available time (i.e., larger
than 3600/NI s) or until they are solved to optimality.

The computational results are summarized in Tables 1, 2, 3, and 4. The columns in
mi lsri are related to the approach considering a formulation for each item separately,
columns in mi lsr refer to the formulation consisting of all items, and columns in vnd
are associated to the variable neighborhood descent heuristic proposed in [14]. The first
column in each table identifies the instances. Next, there are four columns associated
with each of the cycles (cycle k, k ∈ {1, 2}) in mi lsri. Column bi gives the best integer
solution found; gap = 100 × bi−bb

bi
shows the remaning open gap, with bb being the best

achieved bound using any of the tested approaches, which was obtained using mi lsri for all
instances; time indicates the time in seconds; and # displays the number of items solved
to optimality in each instance. The next four columns give, for mi lsr and vnd, the best
integer solution found (bi) and the remaining open gap (gap) at the end of the execution.
The open gap for each instance related to vnd is calculated using the best bound achieved
using our approaches, as they were always better than the ones obtained in [14]. The last
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column presents the improvement over the previously best known feasible solution (%imp),

calculated as 100× bivnd−bimi lsri

bivnd
, in which bimi lsri is the value bi in mi lsri and bivnd is the

value bi in vnd.

Table 1: Computational results for instance group 1
mi lsri

cycle 1 cycle 2 mi lsr vnd
inst bi gap time # bi gap time # bi gap bi gap %imp

1 2837199.8 0.327 2724 128 2837181.2 0.285 - 167 3266811.6 14.9 3270282.6 13.5 13.2
2 3121601.0 0.393 1673 200 3121482.5 0.337 - 220 3606109.5 15.5 3495448.5 11.0 10.7
3 3382696.2 0.625 1514 200 3382653.2 0.610 - 202 4165302.4 21.1 3748498.8 10.3 9.8
4 3635224.2 0.003 2229 296 3635224.2 0.000 2380 300 4112513.2 12.7 4027173.0 9.7 9.7
5 4189026.5 0.172 3586 173 4189026.5 0.172 - 174 4427388.5 6.8 4479928.0 6.7 6.5

6 4604167.0 0.821 2679 114 4604085.4 0.793 - 149 4878990.8 7.6 4875797.6 6.3 5.6
7 5248904.8 0.000 860 300 5248904.8 0.000 860 300 5300283.8 1.6 5796958.8 9.5 9.5
8 6634672.5 0.000 1146 300 6634672.5 0.000 1146 300 7010674.0 6.2 6984412.0 5.0 5.0
9 7574772.2 0.000 1080 300 7574772.2 0.000 1080 300 7982017.8 5.7 8081856.8 6.3 6.3

10 4297670.4 0.743 2493 200 4297568.4 0.731 - 202 5617896.6 27.4 4858495.8 12.2 11.5
11 4575374.0 0.075 1840 262 4575035.0 0.000 3009 300 7124586.0 38.4 5089078.5 10.1 10.1
12 4841805.8 0.001 1226 298 4841805.8 0.000 1254 300 7083701.8 33.4 5278825.4 8.3 8.3
13 5145537.2 0.202 3013 204 5145533.0 0.181 - 227 6349446.8 21.4 5892350.8 12.8 12.7
14 5693519.0 0.649 3466 96 5693519.0 0.647 - 103 7218031.0 24.6 6321038.5 10.5 9.9

15 6087632.0 0.919 2416 191 6087549.2 0.904 - 201 8484889.6 31.4 6704859.6 10.0 9.2
16 6946349.4 0.000 950 300 6946349.4 0.000 950 300 7449673.6 7.3 7414346.8 6.3 6.3
17 8220551.5 0.000 1197 300 8220551.5 0.000 1197 300 8775444.0 7.4 8742185.0 6.0 6.0
18 9142101.8 0.000 1117 300 9142101.8 0.000 1117 300 9659954.4 6.1 9880458.4 7.5 7.5

19 8319817.8 0.078 2060 247 8318825.8 0.000 2732 300 11993376.4 32.8 8930651.8 6.9 6.9
20 8849610.0 0.197 3069 216 8849409.0 0.166 - 243 13086520.5 34.4 9380007.0 5.8 5.7
21 9339915.4 0.546 - 133 9339915.4 0.546 - 133 15418572.2 41.5 9814944.8 5.4 4.8
22 9154784.8 0.282 2949 178 9154554.0 0.234 - 219 12736666.0 30.9 10142751.4 10.0 9.7

23 9824402.5 1.252 - 8 9824402.5 1.252 - 8 14323726.0 35.4 10621326.0 8.7 7.5
24 10438585.2 2.346 - 0 10438585.2 2.346 - 0 15614710.2 37.2 11077982.2 8.0 5.8
25 11416615.2 0.000 1900 300 11416615.2 0.000 1900 300 12966823.4 13.6 12404914.8 8.0 8.0
26 12514570.0 0.013 2703 293 12514403.0 0.000 2921 300 14843864.0 18.0 13681913.0 8.5 8.5
27 13367702.6 0.000 1967 300 13367702.6 0.000 1967 300 16938032.8 23.5 14802946.0 9.7 9.7

28 2844512.2 0.516 3162 114 2844488.8 0.506 - 131 3238023.8 14.2 3194939.6 11.4 11.0
29 3127829.5 0.348 2218 170 3127730.5 0.257 - 222 3604858.5 15.6 3470471.5 10.1 9.9
30 3368773.0 0.453 1692 198 3368615.4 0.394 - 218 4076169.0 19.7 3675663.0 8.7 8.4
31 3634686.0 0.005 2390 295 3634686.0 0.000 2589 300 4176219.4 14.2 3989579.0 8.9 8.9

32 4177896.5 0.154 3245 212 4177889.0 0.142 - 232 4430459.5 7.3 4492250.0 7.1 7.0
33 4577700.4 0.461 2601 168 4577493.2 0.409 - 212 4880633.8 8.1 4880649.8 6.6 6.2
34 5246282.8 0.000 845 300 5246282.8 0.000 845 300 5300435.4 1.6 5828545.2 10.0 10.0
35 6611761.0 0.000 1133 300 6611761.0 0.000 1133 300 6964529.5 5.9 7115807.5 7.1 7.1

36 7543658.8 0.000 1067 300 7543658.8 0.000 1067 300 7887536.6 5.1 8110102.4 7.0 7.0
37 4303264.2 0.676 3032 188 4303271.0 0.653 - 201 5623638.8 27.4 4837334.8 11.6 11.0
38 4604686.0 0.265 2406 222 4604385.5 0.193 - 260 6976425.0 37.0 5086428.0 9.7 9.5
39 4870024.0 0.041 1736 280 4869822.8 0.000 2387 300 7052187.2 33.2 5295171.4 8.0 8.0
40 5144432.8 0.209 3470 181 5144432.8 0.208 - 186 6389111.8 21.9 5824516.8 11.9 11.7

41 5690303.5 0.772 - 69 5690303.5 0.772 - 69 7237013.0 25.0 6339034.0 10.9 10.2
42 6084812.2 0.665 2911 177 6084605.4 0.624 - 204 8435319.2 31.2 6710371.4 9.9 9.3
43 6945897.8 0.000 932 300 6945897.8 0.000 932 300 7387604.8 6.6 7442889.6 6.7 6.7
44 8199921.5 0.000 1112 300 8199921.5 0.000 1112 300 8635130.0 6.1 8718339.0 5.9 5.9

45 9114334.2 0.000 1093 300 9114334.2 0.000 1093 300 9606982.6 6.0 9785732.0 6.9 6.9
46 8326307.8 0.116 2310 235 8324648.2 0.000 3186 300 12358125.0 34.8 8952738.6 7.0 7.0
47 8846827.5 0.281 3303 185 8846827.5 0.272 - 201 13200236.0 35.1 9389338.5 6.0 5.8
48 9302945.8 0.306 3515 175 9302960.6 0.305 - 179 15626739.4 42.4 9841728.0 5.8 5.5

49 9163390.2 0.351 3271 142 9163390.2 0.337 - 165 12710152.4 30.8 10120022.2 9.8 9.5
50 9817251.0 1.264 - 17 9817251.0 1.264 - 17 14234903.5 35.1 10617420.5 8.7 7.5
51 10379591.9 1.866 - 5 10379591.9 1.866 - 5 15469234.6 36.7 11055554.0 7.9 6.1
52 11404705.8 0.000 1597 300 11404705.8 0.000 1597 300 12983464.0 13.7 12410460.8 8.1 8.1
53 12497549.0 0.010 2597 295 12497512.5 0.000 2813 300 14930557.0 18.6 13644827.5 8.4 8.4

54 13368330.8 0.003 2289 297 13368330.8 0.000 2328 300 16642804.4 22.3 14678743.2 8.9 8.9
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Table 2: Computational results for instance group 1 (continued)
mi lsri

cycle 1 cycle 2 mi lsr vnd
inst bi gap time # bi gap time # bi gap bi gap %imp

55 2826263.0 0.347 2967 183 2826263.0 0.325 - 208 3181368.6 13.3 3276712.2 14.0 13.7

56 3117468.5 0.158 2075 211 3117380.0 0.064 - 276 3578028.5 15.2 3521771.5 11.5 11.5
57 3365281.4 0.176 1616 221 3365034.6 0.074 - 279 4038201.2 19.0 3734584.0 10.0 9.9
58 3613126.0 0.002 2022 298 3613084.0 0.000 2098 300 3928229.6 9.3 4030910.6 10.4 10.4
59 4175611.5 0.251 3568 182 4175611.5 0.250 - 183 4383123.5 6.3 4505687.5 7.6 7.3

60 4578955.2 0.374 2453 199 4578625.4 0.309 - 228 4909098.4 8.4 4890417.0 6.7 6.4
61 5214572.8 0.000 773 300 5214572.8 0.000 773 300 5255045.2 1.4 5719050.4 8.8 8.8
62 6600259.0 0.000 1032 300 6600259.0 0.000 1032 300 6929837.0 5.5 7002678.5 5.7 5.7
63 7555365.4 0.000 1032 300 7555365.4 0.000 1032 300 7908192.8 5.2 8089596.8 6.6 6.6
64 4263633.6 0.463 2968 184 4263647.8 0.438 - 204 5515908.8 26.6 4858676.4 12.6 12.2

65 4581185.0 0.343 2314 203 4581103.0 0.256 - 250 6615350.0 34.0 5085849.5 10.2 9.9
66 4850430.2 0.108 1999 245 4850014.0 0.000 3526 300 7193514.6 34.8 5275865.6 8.1 8.1
67 5108814.4 0.081 3046 245 5108814.4 0.064 - 268 5976552.2 17.1 5854389.6 12.8 12.7
68 5665087.0 0.552 3576 130 5665087.0 0.551 - 131 6954775.0 22.2 6327424.5 11.0 10.5

69 6062483.6 0.606 2537 183 6062308.2 0.556 - 212 7838717.6 26.0 6704104.2 10.1 9.6
70 6907298.4 0.000 844 300 6907298.4 0.000 844 300 7417128.6 7.5 7414142.4 6.8 6.8
71 8183353.5 0.000 1067 300 8183353.5 0.000 1067 300 8570157.0 5.6 8724241.5 6.2 6.2
72 9116241.6 0.000 1022 300 9116241.6 0.000 1022 300 9548423.2 5.3 9846869.8 7.4 7.4

73 8269287.2 0.013 1887 292 8269163.8 0.000 1990 300 11046402.8 27.5 8917010.2 7.3 7.3
74 8796339.0 0.064 2641 267 8795614.5 0.000 3284 300 12361527.0 31.2 9398291.5 6.4 6.4
75 9259589.9 0.061 3212 260 9259583.6 0.054 - 274 12579604.0 28.8 9838522.0 5.9 5.9
76 9108642.8 0.165 2955 221 9108288.0 0.120 - 258 12346541.4 29.2 10116626.2 10.1 10.0
77 9761036.0 0.821 - 69 9761036.0 0.821 - 69 13914509.0 33.9 10619852.0 8.8 8.1

78 10351400.6 1.636 - 35 10351400.6 1.636 - 35 15011114.6 35.1 11089695.8 8.2 6.7
79 11348873.8 0.000 1270 300 11348873.8 0.000 1270 300 12818360.0 13.1 12375946.8 8.3 8.3
80 12465397.5 0.003 2393 297 12465397.5 0.000 2453 300 14612898.5 17.1 13634882.5 8.6 8.6
81 13343954.6 0.000 2084 300 13343954.6 0.000 2084 300 16630194.6 22.4 14777131.2 9.7 9.7

82 2824505.6 0.330 2993 196 2824476.4 0.303 - 220 3215036.6 14.3 3214135.8 12.4 12.1
83 3114287.5 0.185 2203 200 3114187.0 0.095 - 267 3572959.5 15.3 3477940.0 10.5 10.5
84 3351589.4 0.141 1697 226 3351318.8 0.031 - 290 4054006.4 19.6 3675077.6 8.8 8.8
85 3610405.6 0.006 2143 294 3610398.2 0.000 2429 300 3905477.6 8.9 3982416.4 9.3 9.3

86 4160359.0 0.123 3168 227 4160358.0 0.111 - 245 4378143.5 6.6 4505007.5 7.8 7.7
87 4555634.6 0.243 2360 211 4555521.4 0.176 - 252 4841262.8 7.6 4893901.6 7.1 6.9
88 5213627.0 0.000 784 300 5213627.0 0.000 784 300 5269270.6 1.7 5721915.8 8.9 8.9
89 6581138.5 0.000 1035 300 6581138.5 0.000 1035 300 6922297.5 5.8 7067795.0 6.9 6.9
90 7523706.8 0.000 1055 300 7523706.8 0.000 1055 300 7849215.2 4.9 8095371.8 7.1 7.1

91 4263606.4 0.404 3252 176 4263606.4 0.394 - 191 5465322.6 25.9 4832667.0 12.1 11.8
92 4593008.5 0.341 2681 191 4592910.5 0.282 - 236 6597773.0 33.8 5084756.5 9.9 9.7
93 4861960.2 0.156 2166 230 4861585.6 0.053 - 288 7017309.2 33.2 5300186.0 8.3 8.3
94 5105480.0 0.074 3135 254 5105465.6 0.059 - 273 5985456.2 17.3 5815482.8 12.3 12.2

95 5656235.5 0.551 - 137 5656235.5 0.551 - 137 6844448.5 21.1 6319621.5 11.0 10.5
96 6058478.6 0.499 3050 181 6058411.6 0.460 - 204 7666380.2 24.5 6690277.4 9.9 9.4
97 6906395.0 0.000 845 300 6906395.0 0.000 845 300 7436369.2 7.8 7413442.2 6.8 6.8
98 8163563.5 0.000 1052 300 8163563.5 0.000 1052 300 8530315.0 5.4 8697765.0 6.1 6.1

99 9086654.8 0.000 1051 300 9086654.8 0.000 1051 300 9429917.0 4.6 9768606.2 7.0 7.0
100 8268147.8 0.018 1978 289 8267947.4 0.000 2116 300 11088531.8 27.8 8930673.6 7.4 7.4
101 8784617.0 0.052 2575 268 8784033.0 0.000 3029 300 12298362.0 30.9 9383498.0 6.4 6.4
102 9234426.6 0.051 2888 269 9234233.2 0.017 - 292 12569350.8 28.9 9828182.6 6.1 6.0
103 9106166.8 0.171 3126 219 9106147.0 0.143 - 247 12374200.4 29.4 10121253.4 10.2 10.0

104 9749583.0 0.769 - 89 9749583.0 0.769 - 89 13847893.0 33.7 10602131.0 8.7 8.0
105 10301753.1 1.248 - 51 10301753.1 1.248 - 51 14843606.0 34.4 11067832.0 8.1 6.9
106 11342483.8 0.000 1256 300 11342483.8 0.000 1256 300 12851712.2 13.4 12396198.4 8.5 8.5
107 12449613.0 0.006 2303 297 12449613.0 0.000 2419 300 14646731.0 17.4 13606139.0 8.5 8.5

108 13330411.8 0.003 2260 298 13330411.8 0.000 2301 300 16410810.8 21.5 14660716.8 9.1 9.1
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Table 3: Computational results for instance group 2
mi lsri

cycle 1 cycle 2 mi lsr vnd

inst bi gap time # bi gap time # bi gap bi gap %imp

109 2768179.4 0.228 2860 212 2768164.2 0.194 - 240 3084193.4 12.4 3288156.2 16.0 15.8
110 3085888.5 0.163 2123 235 3085813.5 0.066 - 285 3708014.0 19.2 3579426.0 13.8 13.8

111 3337251.6 0.059 1582 261 3337131.2 0.000 2584 300 4015498.4 19.1 3757871.6 11.2 11.2
112 3594372.0 0.005 1943 297 3594372.0 0.000 2085 300 3855673.6 8.2 4021857.8 10.6 10.6
113 4147315.0 0.046 2499 273 4147214.0 0.000 3530 300 4325688.5 5.7 4612075.5 10.1 10.1
114 4555839.2 0.061 1908 267 4555638.0 0.000 2990 300 4879350.4 8.2 5030035.0 9.4 9.4

115 5260013.2 0.000 710 300 5260013.2 0.000 710 300 5305694.0 1.5 5772314.2 8.9 8.9
116 6680277.0 0.000 942 300 6680277.0 0.000 942 300 7067194.0 6.3 7183598.5 7.0 7.0
117 7660408.8 0.000 958 300 7660408.8 0.000 958 300 8022926.8 5.3 8229016.0 6.9 6.9
118 4212971.4 0.170 3003 225 4212964.4 0.151 - 247 5053720.6 20.4 4762549.0 11.7 11.5
119 4577655.5 0.281 2705 208 4577583.0 0.219 - 246 6427191.0 32.3 5007422.5 8.8 8.6

120 4871114.6 0.225 2315 224 4870821.8 0.122 - 271 6589181.4 29.0 5259170.0 7.5 7.4
121 5106351.6 0.104 3422 251 5106351.6 0.102 - 257 5724268.6 13.4 5743878.0 11.2 11.1
122 5656662.5 0.351 3553 184 5656662.5 0.351 - 185 6732667.5 19.4 6321740.5 10.8 10.5
123 6070019.8 0.251 3040 219 6069978.8 0.226 3587 241 7311129.0 20.4 6749591.0 10.3 10.1

124 6997204.4 0.000 746 300 6997204.4 0.000 746 300 7073002.6 1.9 7511577.2 6.8 6.8
125 8297090.5 0.000 953 300 8297090.5 0.000 953 300 8592491.5 4.6 8880716.5 6.6 6.6
126 9245314.6 0.000 1123 300 9245314.6 0.000 1123 300 9502674.4 3.7 9955046.2 7.1 7.1
127 8201131.6 0.064 1804 274 8200515.2 0.000 2135 300 10099748.0 21.3 8917528.0 8.0 8.0

128 8737821.0 0.048 2023 274 8737261.0 0.000 2391 300 11231832.5 24.9 9382673.5 6.9 6.9
129 9201993.8 0.022 2035 290 9201652.2 0.000 2281 300 11253018.0 20.8 9845523.6 6.5 6.5
130 9094420.8 0.284 2883 224 9093508.8 0.194 - 267 12073343.4 27.8 10168450.4 10.7 10.6
131 9760574.2 0.734 3580 115 9760574.2 0.734 - 115 13556816.5 32.4 10662331.0 9.1 8.5
132 10318131.6 0.992 - 104 10318131.6 0.992 - 104 14522452.2 32.9 11139763.8 8.3 7.4

133 11422544.8 0.000 1010 300 11422544.8 0.000 1010 300 12925612.4 13.4 12569296.4 9.1 9.1
134 12567794.0 0.003 2020 297 12567794.0 0.000 2107 300 14720317.0 17.2 13906463.0 9.6 9.6
135 13486006.4 0.005 2262 297 13486006.4 0.000 2335 300 16524439.6 21.2 14939059.4 9.7 9.7
136 2561054.0 0.130 2917 219 2561050.0 0.103 - 254 2794553.2 11.3 2942610.2 13.1 13.0

Table 4: Computational results for instance group 3
mi lsri

cycle 1 cycle 2 mi lsr vnd
inst bi gap time # bi gap time # bi gap bi gap %imp

137 2845802.5 0.235 3168 193 2845802.5 0.217 - 218 3305414.5 17.4 3187454.0 10.9 10.7
138 3061621.6 0.166 2769 230 3061590.8 0.121 - 264 3613781.6 18.7 3375163.4 9.4 9.3
139 3198456.2 0.000 1078 300 3198456.2 0.000 1078 300 3470794.8 9.1 3543668.4 9.7 9.7
140 3691161.5 0.001 1545 299 3691159.5 0.000 1561 300 3835314.5 5.3 4145741.0 11.0 11.0

141 4064161.6 0.012 1863 291 4064125.2 0.000 2031 300 4461194.6 10.7 4543054.2 10.5 10.5
142 4457465.6 0.000 677 300 4457465.6 0.000 677 300 4471142.8 0.8 4804402.4 7.2 7.2
143 5678441.5 0.000 993 300 5678441.5 0.000 993 300 5870010.0 3.9 5988207.0 5.2 5.2
144 6534347.6 0.000 1013 300 6534347.6 0.000 1013 300 6783870.4 4.4 6857867.2 4.7 4.7
145 3761483.2 0.058 2296 268 3761268.0 0.000 3017 300 4776611.4 25.4 4337867.6 13.3 13.3

146 4082135.0 0.330 3219 178 4082123.5 0.313 - 201 5248075.0 27.2 4571979.0 11.0 10.7
147 4329257.8 0.385 3310 177 4329253.2 0.374 - 192 5794539.0 29.5 4768544.0 9.6 9.2
148 4474457.0 0.000 1257 300 4474457.0 0.000 1257 300 4971584.0 12.4 5041837.0 11.3 11.3
149 4953918.0 0.054 2427 270 4953680.5 0.000 3022 300 5740727.0 17.2 5623766.0 11.9 11.9

150 5330086.8 0.131 2867 238 5330052.8 0.074 - 279 6437671.0 21.0 6036566.0 11.8 11.7
151 5931974.6 0.000 739 300 5931974.6 0.000 739 300 6162480.4 4.3 6445542.8 8.0 8.0
152 7050148.5 0.000 856 300 7050148.5 0.000 856 300 7250282.0 3.5 7508623.0 6.1 6.1
153 7870790.8 0.000 943 300 7870790.8 0.000 943 300 8019008.0 2.6 8386224.0 6.1 6.1

154 7104151.0 0.000 1303 300 7104151.0 0.000 1303 300 8404164.0 18.5 7780606.6 8.7 8.7
155 7546268.0 0.000 1577 300 7546268.0 0.000 1577 300 9114981.0 21.0 8138222.5 7.3 7.3
156 7919664.6 0.006 1610 295 7919644.2 0.000 1677 300 8837244.2 13.7 8495880.0 6.8 6.8
157 7835826.8 0.000 1754 300 7835826.8 0.000 1754 300 9409652.2 20.6 8747360.2 10.4 10.4
158 8395537.0 0.069 2567 271 8394881.0 0.000 3121 300 9454965.0 16.7 9256106.0 9.3 9.3

159 8863227.6 0.187 2976 241 8862335.4 0.109 - 277 10078872.4 17.0 9682844.0 8.6 8.5
160 9748595.8 0.000 956 300 9748595.8 0.000 956 300 10803327.6 11.2 10635183.6 8.3 8.3
161 10709300.5 0.000 1584 300 10709300.5 0.000 1584 300 12190881.5 14.5 11702127.5 8.5 8.5
162 11485385.2 0.000 1741 300 11485385.2 0.000 1741 300 13496694.2 17.7 12562994.2 8.6 8.6

The computational results show that much better gaps can be obtained using mi lsri
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when compared to the ones achieved by mi lsr and vnd, as we can observe in Figures 1,
2, and 3. Observe that neither mi lsr nor vnd could find optimal solutions, while mi lsri
solved 51 instances to optimality in cycle 1 and this number increased to 86 at the end of
cycle 2.
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Figure 1: Obtained gaps for instance group 1.
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Figure 2: Obtained gaps for instance group 2.

It is well known that an effective way to produce strong formulations for several multi-
item production planning and inventory control problems (such as the present one) is to
strengthen the relaxations for the different single-item relaxations [10]. Therefore, it is
possible to see that our approach, which solves each of the single-item subproblems using
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Figure 3: Obtained gaps for instance group 3.

an effective reformulation based on valid inequalities is a nice contribution in the direction
of finding good solutions. Such reformulations play an important role in solving or finding
high quality solutions for the multi-item economic lot-sizing problem with remanufacturing.
Based on our experimental results, we can conclude that solving the subproblem for each
item separately using a strengthened formulation for each of them allowed us to achieve
optimal or much better almost-optimal solutions.

5. Final comments

We studied the multi-item economic lot-sizing with remanufacturing and uncapacitated
production. We proposed an approach which solves each of the items separately using an
effective reformulation based on valid inequalities [3]. The approach is composed of two
cycles, considering that in the first cycle, the total available running time is initially uni-
formly distributed amongst all items, and the allowed running time is repeatedly updated
after a certain number of items is treated. In case there are still unsolved items and the
time limit is not yet exceeded, the second cycle revisits these unsolved items until there is
available time or until they are solved to optimality.

The computational results showed that our approach can generate very strong bounds
and high quality feasible solutions, allowing to improve over all the best known results
available in the literature. Besides, several instances could be solved to optimality. It is
important to remark that the remaining open gap was below 0.5% for almost all of the
instances which were not optimally solved.

We remark that it would be interesting to treat more challenging problems in which
the items are not independent from each other. A possibility would be to consider the
multi-item economic lot-sizing problem in which different items can share the capacity for
the same type of returned items. Other remanufacturing problems which could be further
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studied are capacitated variants of the multi-item economic lot-sizing with remanufacturing
[11] and multi-item remanufacturing lot-sizing problems with stochastic demands [8].
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