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Abstract

The main feature of simplex type algorithms is that they can be interpreted as a
method following simplex paths that lead to the optimal vertex. Exterior Point
Simplex Algorithms (EPSA) differs from classical simplex algorithm in the
sense that its basic solution is not feasible. EPSA is sufficiently fast for large-
scale sparse linear problems. Recall that the total computational effort of an
iteration of simplex type algorithms is dominated by the determination of the
basis inverse B”. This inverse does not have to be computed from scratch at any
iteration. In this paper we present an analysis of two well-known updating
schemes for basis inverse: (i) The Product Form of the Inverse (PFI) and (ii) A
Modification of the Product Form of the Inverse (MPFI) and incorporate it with
EPSA. Computational results with a subset of benchmark problems from
NETLIB are also presented.
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Hepidnyn

To xdpro yopoxtnpiotiko twv alyopiBuwv tomov simplex eivor oti umopel vo.
epunvevTody w¢ wio uéBodog n omoia axolovbei simplex povomdria, To. omoia
oonyodv oty péltiotn kopopn. O AlyopiBuor Elwtepikaov Znuciov (AEX)
olapépovy amd tov Klooko alyopiBuo simplex oro ot 1 Paociky tovg Adon
umopei vo. unv eivor epixty. Or AEX eivar 1kavomomntika ypHyopor Otav
spapuoloviar oe usyOANG KAuoKkoS apaid ypouuikd mpofiiuota. H wio
xpovofopa dradikocio o€ uio EXaVEInYn TOmov simplex givar 0 vTOAoYIoUOS THS
avtiotpopnc e Pdonc, B'. H aviiotpopn tmc Pdonc dev ypeidletar va
vmoloyiletoan amo TV apyn o€ kabs emoviinyn. Xe avtiv v epyooio.
TOPOVOLALETOL UIG AVEADGH DO YVWOTMV TPOTWV OVOVEWGHS THS OVTITTPOPHS:
(i) H Product Form of the Inverse (PFIl) kxou (ii) Mia tpomoroinon s Product
Form of the Inverse (MPFI) ko1 epopuolovror arov alyopiBuo EPSA. Eriong,
Topovalalovial vmoloyiotika  amoteAéouare, o€ Evo.  LTOODVOAO
HETPOTPOYpOoLUdTV oo T ovAloyn NETLIB.

AéEag Khawowa: Tpoapuikdc Tpoypappotiopog, AiyopiBuotr THOmov Simplex,
Avobewpnuévn Mopoen, Avtictpoen Baong
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1. Introduction

Let us consider the following Linear Programming (LP) problem:

min c¢'x
st. Ax = b (LP.1)
x =20

where Ae R™", ¢, xeR", be R™ and T denotes transposition. Let us assume first
that A is linearly independent and has full rank, rank(A) =m, 1 <m < n. Given
a linear problem (LP.1) a basis Ag is a square non-singular submatrix of A.

EPSA is a simplex type algorithm which was originally developed by
Paparrizos (1991) for the assignment problem. Later, Paparrizos (1993)
generalized his exterior point method to the general linear problem by
developing a dual in nature, algorithm. Moreover, (Karagiannis et al., 2005)
developed an exterior type algorithm for the minimum cost network flow
problem. A common feature of almost all simplex type algorithms is that they
can be interpreted as a procedure following simplex type paths that lead to the
optimal solution. It has been pointed out that the geometry of EPSA reveals that
this algorithm is faster than the classical simplex algorithm. An extended
computational study (Paparrizos et al., 2003) between EPSA and simplex
algorithm shows that the former is up to 10 times faster than the latter on
medium size linear problems.

Any iteration of simplex type algorithms is relatively expensive. The total work
of an iteration of simplex type algorithms is dominated by the determination of
the basis inverse, (Ag)". This inverse however, does not have to be computed
from scratch at each iteration. Simplex type algorithms maintain a factorization
of basis Ap, and update this factorization on every iteration. There are several
schemes for updating basis inverse. The most well-known schemes are (i) the
Product Form of the Inverse (PFI), (ii) the Elimination Form of the Inverse
(EFI), and (iii) a recently developed by (Benhamadou, 2002).

In this paper we apply the schemes (i) and (iii) to EPSA and perform a
computational study using a subset of NETLIB test problems. EPSA using the
updating scheme (iii) is about 1.6 times faster than EPSA using the (PFI) in
terms of CPU time. In order to prove his method, Benhamadou, used the
canonical linear programming form. This means that all the technological
constraints are inequalities. We investigate how Benhamadou’s (2002) method
behaves in real world problems that have a considerable number of equality
constraints.

The paper is organized as follows. In section 2 we give a brief description of
EPSA. In section 3 we present an analysis of the updating schemes. An
illustrative example is given in section 4. Our computational results are
presented in section 5 and, finally in section 6 we conclude.

2. EPSA Description
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It is more convenient that the algorithm is being described using the revised
form of the simplex algorithm. Consider the problem (LP.1). With the matrix A
partitioned as A = (A, An), and with a corresponding partitioning and ordering
of x and c, (LP.1) is written as

min  CciX, +C Xy
b

Xp, Xy 2 0

st Apxy +AgXy

where B and N are subsets of indices. The columns of A which belong to B are
called basic and the remaining ones are called nonbasic. The basic solution
corresponding to Ag is {x = (A)"'b, xx = 0}. A solution x = (x, Xy) is feasible
if x > 0. Otherwise it is called infeasible. A given basis is dual feasible if

s=c—A"w =0, where w' = (cg)'(Ap)" are the simplex multipliers and s are
the dual slack variables.

EPSA generates two paths toward the optimal solution. One path is infeasible
(exterior) and the other is feasible. So EPSA doesn’t need to proceed by
examining one such edge after another along the polyhedron of the feasible
region. Therefore, avoiding the feasible region EPSA can follow shorter paths
to the optimal solution. A formal description of EPSA in the revised form is
given below. Proof of correctness of the above algorithm can be found in
(Paparrizos et al., 2001).

EPSA Algorithm.

Step 0. (Initialization). Start with a feasible basic partition (B, N). Compute the
vectors and matrices (Ag)’, Xg, W, sx. Find the sets P = {jeN: si< 0} and Q =
{JeN: s; = 0}. Choose an arbitrary vector A = (A, Ay, ..., Ap) > 0, compute s,
using the relation

So= 2 s,

jeP
and the vector

dg ==Y Ajh,

jeP

with

h = (AB) IA‘j
Step 1. (Test of termination).
i. (Test of optimality). If P = &, STOP. Problem (LP.1) is optimal.
ii. (Choice of leaving variable). If dg > 0, STOP. If s, = 0, problem (LP.1) is
optimal. Otherwise, choose the leaving variable xg[;; = Xi using the relation

X Xgl;

a=—2 _ i ZBEL tdgp <0
—dgy —dpp]

If a = 400 problem (LP.1) is unbounded.

Step 2. (Choice of entering variable). Compute the vectors Hp = ((Ag) "), Ap

and

Hio = ((Ag)"):Aq. Also find the ratios 8, and 6, using the relations
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- -,

0, =—> =min —J:hrj>0 and jeP
hrp hrj

and

_sq . _Sj .
0, = =miny—:h; <0 and jeQ

rq 1j

and determine indexes t; and t, such that P(t;) = p and Q(t;) = q. If 6; < 0,, set |
= p. Otherwise, set | = q. The nonbasic variable x; enters in the basis.

Step 3. (Pivoting). Set B[r] = 1. If 0; < 0, set P = P\{l} and Q = Q U {k}.
Otherwise, set Q[t,] = k. Using the new partition (B, N), where N = (P, Q),
update the vectors and matrices (AB)'I, Xp, W, sn. Also, update the vector dg. If

1 € Pset HB[r] < dpp;+2;. Goto Step 1.

3. Analysis of the updating schemes

Matrix multiplication is a basic operation in linear algebra which has numerous
applications to the theory and practice of computation. Several applications are
due to the fact that matrix multiplication is a substantial part of several
successful algorithms for other computational problems of operations research,
such as the solution of linear equations, matrix inversion, etc. The
computational time required for matrix multiplication is the dominant part of
the total computational time required for the solution of such problems.

Proposition 1. The multiplication of two dense square m x m matrices involves
m’ multiplications and m’ — m® additions. Hence, the overall complexity is
o(m’).

Proposition 2. Two bases (Ag);j, (Ap)peR™ are called neighbouring if they
differ from each other only in one column.

In each iteration, simplex type algorithms move from a basis to a neighbouring
one until termination. The operations of simplex type iteration are defined in
terms of the inverse of the current basis. Determining (Ap)" is a substantial
computational effort. Should it be computed at each iteration, then it would be
computationally prohibitive.

To justify the next analysis we need the following notations:

x®y . outer product of the vectors x, yeR"

1 : index of the entering variable

k : index of the leaving variable

A, . the /th column of A

(Ap) .. :  the rth row of basis inverse

( Ap)'.. : the matrix (Ag)" with the rth row put to zero

3.1 Product Form of the Inverse
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The key idea is the following. The current basis inverse (f?(%)‘l can be

computed from the previous inverse (Ag)' with a simple pivoting operation.
Namely, we have

(Ao =E"(Ay)" (1
where E' is the inverse of the eta-matrix. We use the following steps to
compute (X0,)™".

Compute the pivot column h=(Ag)"'A.;
Compute the column vector

Replace the rth column of an identity matrix with the column vector v. This
matrix is the inverse of the Eta-matrix.

Compute the new basis inverse using relation (1).

The inverse of the Eta-matrix has the following form

1 _hu /hrl
| O M
E'=I-—(h, —¢)e = 1/h,
hrl M O
L _hml /hrl 1_

If the current basis inverse is computed using regular multiplication in relation
(1), then the complexity of the (PFI) is @(m’). It can be seen that the matrix E™
has a special structure. Specifically, E” is sparse and on every iteration it has
2m — 1 nonzero elements. In order to count the total number of multiplications
and additions needed for this updating scheme, we make the following
assumptions:

(1) We count only the multiplication between two nonzero numbers, afj, where
(aeR*-{1} and BeR*) or (acR* and peR*-{1}) and

(i) We count the addition between two nonzero numbers.

The above updating scheme of the inverse is simplified in Fig. 2.

E" (Ay)
1 —h, /h, 1 [x X X
0) M MO MO
1/h, X X X
M O MO MO
i —-h_,/h, 1| [x X X

Figure 1: Updating Scheme of the PFI
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In the mth iteration the basis inverse has m* nonzero elements. The rth row of
E"' has only one nonzero element. All the other rows (m-1) have 2 nonzero
elements. In order to compute the product in Figure 1, according to the above
assumptions, we need

(m — 1) rows x m multiplications + 1 x m multiplications = m* multiplications
and
(m — 1) rows x m additions = m* — m additions

The total cost of the above method is 2m’-m operations (multiplications and
additions).

3.2 A Modification of Product Form of the Inverse
This updating scheme presented by (Benhamadou, 2002). The key idea is the

following. The current basis inverse (/%])3 )

inverse (Ag)' with a simple outer product of two vectors and one matrix
addition. Namely we have

can be computed from the previous

(Ko =(Ap) + VO (AR); ©)

A formal description of this method follows.

Compute the pivot column h=(Ag)"'A.,

Compute the vector .
V= {—E—‘r: L hL L —%}

Compute the outer product v&®(Ag) ..

Set the th row of (Ag)” equal to zero. Save the result in ( Ag)™..

Compute the new basis inverse using relation (2).

The above updating scheme of the inverse is simplified in Fig. 2.

(AB);I: [brl L brr L btm]

_hy
_ i h
b11 L blm "ll\/[
L L L
1
Ky' = | 0 0 o0 + = [mxm]
L L L b
M
bm] L bmm
B B _hy
L hrl

Figure 2: A modifitation of the (PFI)
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The outer product requires m* multiplications and the addition of two matrices
requires m* additions. The total cost of the above method is 2m’ operations
(multiplications and additions). Hence, the complexity is @(m?).

4. An illustrative example

An illustrative example of the previously mentioned updating schemes in
section 3, will be given. Assume there is the following linear problem,

min X, + X, — 4x,
st. x, + x, + X3 <9
X, + x, — x; < 2 (LP.2)
X, + x, + x; < 4
X X x, 2 0

First we introduce the slack variables x4, X5 and X4 In matrix notation the
problem (LP.2) is written,

min ¢’ x
st Ax=b
x>0
where

cTz[l 1 4 00 O]
11 2 100 9
A=l 11 -1 0 1 0|,b=|2
-1'1 10 0 1 4

The first feasible basic partition is B=[4 5 6] and N=[1 2 3]. Hence,
(Ap)'=Ap=[A4 A5 A

According to Step 1 and Step 2 of the EPSA x4 and x; is the leaving and
entering variable respectively. Leaving variable found in the r = 3 row. The
pivot column is h;=[1 1 -1]".

4.1 Update Basis Inverse Using Eta-matrix

Compute the vector

T
v:{—ﬂ L hi L —ﬁ} =1 1 -]

1l rl rl

Put the vector v in the 3™ column of an identity matrix E'=l,;. The inverse of
the Eta-matrix has the form
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Using relation (1) the new basis inverse is

1 0 1
Ko)'=E"'(A,)"=[0 1 1
00 -1

4.2 Update Basis Inverse Using Outer Product & Matrix Addition

Compute the vector v=[1 1 -1]". The outer product v®(Ag) ;. gives

0 0 1
0 0 1
0 0 -1

Set the 3™ row of (Ap)" equal to zero. Save the result in ( Ag)',. Compute the
new basis inverse using relation (2). The new basis inverse is

1 0 1
(Ko) ' =(A) +v® (A =0 1 1
0 0 -1

5. Computational Study

The updating schemes described in section 3 have been experimentally
implemented. In this section we describe our numerical experiments and present
computational results, which demonstrate updating schemes efficiency on a set
of test problems obtained by NETLIB (www.netlib.org/lp). Compiled using the
MATLAB v7.01 SP2 with default options, all runs were carried out under MS
Windows XP Pro system, having P4 3.06 GHz and 512 Mb RAM.

Table 1 presents the statistics for 16 benchmarks by alphabetical order. The first
column contains the name of the problem (1), while the other two columns (2)-
(3) contain the size of problems. The number of rows doesn’t include the
objective function. In column (4) the number of nonzero elements of A and c is
displayed. Finally, the density percentage contained in column (5).

Table 1: Test set statistics

Name m n nnz(A)+nnz(c) Density
@ 2 3 “ 6))
adlittle 56 97 465 8,56%
bandm 305 472 2659 1,85%
degen2 444 534 4449 1,88%
€226 223 282 2767 4,40%
israel 174 142 2358 9,54%
lotfi 153 308 1086 2,30%

sc105 105 103 281 2,60%
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sc205 205 203 552 1,33%
scagr7 129 140 553 3,06%
sctapl 300 480 2052 1,42%
sctap3 1480 2480 10734 0,29%
sharelb 118 225 1182 4,45%
share2b 96 79 730 9,62%
ship041 402 2118 8450 0,99%
ship08s 778 2387 9501 0,51%
stocforl 117 111 474 3,65%

Table 2 collects information on the performance of the mentioned above
updating schemes. Columns of Table 2 contains name of the problem, problem
size, the number of iterations, niter and the CPU time, cpu in seconds for the
updating schemes Product Form of the Inverse (PFI) and Modified Product
Form of the Inverse (MPFI).

Table 2: Computational Results

PFI MPFI speed-up
name m n niter cpu niter cpu

adlittle 56 97 140 0,33 140 0,33 1,00
bandm 305 472 485 5,86 485 3,00 1,95
degen2 444 534 1869 54,42 1436 17,87 3,05
€226 223 282 693 3,04 693 1,92 1,58
israel 174 142 306 0,89 306 0,65 1,37
lotfi 153 308 565 1,73 565 1,01 1,71
scl105 105 103 111 0,14 111 0,08 1,75
sc205 205 203 260 0,97 260 0,71 1,37
scagr7 129 140 141 0,45 141 0,25 1,80
sctapl 300 450 676 2,56 704 6,31 0,41
sctap3 1480 2480 2421 42,02 2421 37,56 1,12
sharelb 118 225 458 1,40 458 0,56 2,50
share2b 96 79 356 1,08 356 0,48 2,25
ship041 402 2118 1282 6,05 1282 13,78 0,44
ship08s 778 2387 764 3,46 764 7,71 0,45
stocforl 117 111 138 0,31 138 0,11 2,82
Mean value 1,60

From the above results we make the following observations: (i) The modified
Product Form of the Inverse (MPFI) is in most problems faster than PFI (in 12
out of 16) and (ii) Using MPFI the total problem set execution time was 1.60
times faster than PFL.

6. Conclusions

In this paper we have presented an analysis of two well-known updating
schemes for the basis inverse. The computational study of section 5 indicates
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that the modification of the Product Form of the Inverse is 1.60 times faster than
the Product Form of the Inverse in most problems. Theoretically, both methods
require the same number of multiplications and additions.
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