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Abstract 

The main feature of simplex type algorithms is that they can be interpreted as a 

method following simplex paths that lead to the optimal vertex. Exterior Point 

Simplex Algorithms (EPSA) differs from classical simplex algorithm in the 

sense that its basic solution is not feasible. EPSA is sufficiently fast for large-

scale sparse linear problems. Recall that the total computational effort of an 

iteration of simplex type algorithms is dominated by the determination of the 

basis inverse B
-1
. This inverse does not have to be computed from scratch at any 

iteration. In this paper we present an analysis of two well-known updating 

schemes for basis inverse: (i) The Product Form of the Inverse (PFI) and (ii) A 

Modification of the Product Form of the Inverse (MPFI) and incorporate it with 

EPSA. Computational results with a subset of benchmark problems from 

NETLIB are also presented.  
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Περί της Αντιστροφής της Βάσης του 

Αλγορίθµου Εξωτερικών Σηµείων 

El-Said Badr, K. Paparrizos, N. Samaras and A. Sifaleras 

University of Macedonia, Department of Applied Informatics, 156 Egnatia Str., 

54006 Thessaloniki, E-mail: {paparriz, samaras, sifalera}@uom.gr 

Περίληψη 

Το κύριο χαρακτηριστικό των αλγορίθµων τύπου simplex είναι ότι µπορεί να 

ερµηνευτούν ως µια µέθοδος η οποία ακολουθεί simplex µονοπάτια, τα οποία 

οδηγούν στη βέλτιστη κορυφή. Οι Αλγόριθµοι Εξωτερικών Σηµείων (ΑΕΣ) 

διαφέρουν από τον κλασικό αλγόριθµο simplex στο ότι η βασική τους λύση 

µπορεί να µην είναι εφικτή. Οι ΑΕΣ είναι ικανοποιητικά γρήγοροι όταν 

εφαρµόζονται σε µεγάλης κλίµακας αραιά γραµµικά προβλήµατα. Η πιο 

χρονοβόρα διαδικασία σε µια επανάληψη τύπου simplex είναι ο υπολογισµός της 

αντίστροφης της βάσης, B
-1
. Η αντίστροφη της βάσης δεν χρειάζεται να 

υπολογίζεται από την αρχή σε κάθε επανάληψη. Σε αυτήν την εργασία 

παρουσιάζεται µια ανάλυση δυο γνωστών τρόπων ανανέωσης της αντίστροφης: 

(i) Η Product Form of the Inverse (PFI) και (ii) Μια τροποποίηση της Product 

Form of the Inverse (MPFI) και εφαρµόζονται στον αλγόριθµο EPSA. Επίσης, 

παρουσιάζονται υπολογιστικά αποτελέσµατα σε ένα υποσύνολο 

µετροπρογραµµάτων από τη συλλογή NETLIB.  

Λέξεις Κλειδιά: Γραµµικός Προγραµµατισµός, Αλγόριθµοι Τύπου Simplex, 

Αναθεωρηµένη Μορφή, Αντιστροφή Βάσης 
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1. Introduction 

Let us consider the following Linear Programming (LP) problem: 

Tmin c x

s.t. Ax b

x 0

=

≥

        (LP.1) 

where A∈ℜm×n
, c, x∈ℜn

, b∈ℜm
 and T denotes transposition. Let us assume first 

that A is linearly independent and has full rank, rank(A) = m, 1 ≤ m < n. Given 
a linear problem (LP.1) a basis AB is a square non-singular submatrix of A. 

EPSA is a simplex type algorithm which was originally developed by 

Paparrizos (1991) for the assignment problem. Later, Paparrizos (1993) 

generalized his exterior point method to the general linear problem by 

developing a dual in nature, algorithm. Moreover, (Karagiannis et al., 2005) 

developed an exterior type algorithm for the minimum cost network flow 

problem. A common feature of almost all simplex type algorithms is that they 

can be interpreted as a procedure following simplex type paths that lead to the 

optimal solution. It has been pointed out that the geometry of EPSA reveals that 

this algorithm is faster than the classical simplex algorithm. An extended 

computational study (Paparrizos et al., 2003) between EPSA and simplex 

algorithm shows that the former is up to 10 times faster than the latter on 

medium size linear problems.  

Any iteration of simplex type algorithms is relatively expensive. The total work 

of an iteration of simplex type algorithms is dominated by the determination of 

the basis inverse, (AB)
-1
. This inverse however, does not have to be computed 

from scratch at each iteration. Simplex type algorithms maintain a factorization 

of basis AB, and update this factorization on every iteration. There are several 

schemes for updating basis inverse. The most well-known schemes are (i) the 

Product Form of the Inverse (PFI), (ii) the Elimination Form of the Inverse 

(EFI), and (iii) a recently developed by (Benhamadou, 2002). 

In this paper we apply the schemes (i) and (iii) to EPSA and perform a 

computational study using a subset of NETLIB test problems. EPSA using the 

updating scheme (iii) is about 1.6 times faster than EPSA using the (PFI) in 

terms of CPU time. In order to prove his method, Benhamadou, used the 

canonical linear programming form. This means that all the technological 

constraints are inequalities. We investigate how Benhamadou’s (2002) method 

behaves in real world problems that have a considerable number of equality 

constraints.   

The paper is organized as follows. In section 2 we give a brief description of 

EPSA. In section 3 we present an analysis of the updating schemes. An 

illustrative example is given in section 4. Our computational results are 

presented in section 5 and, finally in section 6 we conclude.  

2. EPSA Description 
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It is more convenient that the algorithm is being described using the revised 

form of the simplex algorithm. Consider the problem (LP.1). With the matrix A 

partitioned as A = (AB, AN), and with a corresponding partitioning and ordering 

of x and c, (LP.1) is written as  

T T

B B N N

B B N N

B N

min c x c x

s.t. A x A x b

x ,x 0

+

+ =

≥

 

where B and N are subsets of indices. The columns of A which belong to B are 

called basic and the remaining ones are called nonbasic. The basic solution 

corresponding to AB is {xB = (AB)
-1
b, xN = 0}. A solution x = (xB, xN) is feasible 

if x ≥ 0. Otherwise it is called infeasible. A given basis is dual feasible if 

wAcs T−= ≥0, where w
T
 = (cB)

T
(AB)

-1
 are the simplex multipliers and s are 

the dual slack variables. 

EPSA generates two paths toward the optimal solution. One path is infeasible 

(exterior) and the other is feasible. So EPSA doesn’t need to proceed by 

examining one such edge after another along the polyhedron of the feasible 

region. Therefore, avoiding the feasible region EPSA can follow shorter paths 

to the optimal solution. A formal description of EPSA in the revised form is 

given below. Proof of correctness of the above algorithm can be found in 

(Paparrizos et al., 2001). 

EPSA Algorithm. 

Step 0. (Initialization). Start with a feasible basic partition (B, N). Compute the 

vectors and matrices (AB)
-1
, xB, w, sN. Find the sets P = {j∈N: sj < 0} and Q = 

{j∈N: sj ≥ 0}. Choose an arbitrary vector λ = (λ1, λ2, …, λ|P|) > 0, compute s0 

using the relation 

∑
∈

λ=
Pj

jj0 ss  

and the vector 

∑
∈

λ−=
Pj

jjB hd  

with 
1

j B . jh (A ) A−=  

Step 1. (Test of termination). 

i.  (Test of optimality). If P = ∅, STOP. Problem (LP.1) is optimal. 

ii. (Choice of leaving variable). If dB ≥ 0, STOP. If s0 = 0, problem (LP.1) is 

optimal. Otherwise, choose the leaving variable xB[r] = xk using the relation 

[ ]

[ ]

[ ]

[ ]
[ ]













<
−

=
−

=α 0d:
d

x
min

d

x
iB

iB

iB

rB

rB
 

If α = +∞ problem (LP.1) is unbounded. 

Step 2. (Choice of entering variable). Compute the vectors HrP = ((AB)
-1
)r.AP 

and  

HrQ = ((AB)
-1
)r.AQ. Also find the ratios θ1 and θ2 using the relations 
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


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

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−

=
−

=θ Pjand0h:
h

s
min

h

s
rj

rj

j

rp

p

1  

and 













∈<
−

=
−

=θ Qjand0h:
h

s
min

h

s
rj

rj

j

rq

q

2  

 

and determine indexes t1 and t2 such that P(t1) = p and Q(t2) = q. If θ1 ≤ θ2, set l 
= p. Otherwise, set l = q. The nonbasic variable xl enters in the basis. 

 

Step 3. (Pivoting). Set B[r] = l. If θ1 ≤ θ2 set P = P\{l} and Q = Q ∪ {k}. 

Otherwise, set Q[t2] = k. Using the new partition (B, N), where N = (P, Q), 

update the vectors and matrices (AB)
-1
, xB, w, sN. Also, update the vector Bd . If 

l ∈ P set l]r[B]r[B dd λ+← . Go to Step 1. 

 

3. Analysis of the updating schemes 

Matrix multiplication is a basic operation in linear algebra which has numerous 

applications to the theory and practice of computation. Several applications are 

due to the fact that matrix multiplication is a substantial part of several 

successful algorithms for other computational problems of operations research, 

such as the solution of linear equations, matrix inversion, etc. The 

computational time required for matrix multiplication is the dominant part of 

the total computational time required for the solution of such problems.  

Proposition 1. The multiplication of two dense square m x m matrices involves 

m
3
 multiplications and m

3
 – m

2
 additions. Hence, the overall complexity is 

Θ(m
3
).  

Proposition 2. Two bases (AB)[1], (AB)[2]∈ℜm
 are called neighbouring if they 

differ from each other only in one column.  

In each iteration, simplex type algorithms move from a basis to a neighbouring 

one until termination. The operations of simplex type iteration are defined in 

terms of the inverse of the current basis. Determining (AB)
-1
 is a substantial 

computational effort. Should it be computed at each iteration, then it would be 

computationally prohibitive. 

To justify the next analysis we need the following notations: 

x⊗y : outer product of the vectors x, y∈ℜn
 

l : index of the entering variable 

k : index of the leaving variable 

A.l : the lth column of A 

(AB)
-1
r. : the rth row of basis inverse 

(AB)
-1
r. : the matrix (AB)

-1
 with the rth row put to zero 

3.1 Product Form of the Inverse 



El-Said Badr, K. Paparrizos, N. Samaras, A. Sifaleras 
 

682

The key idea is the following. The current basis inverse 1

B(A )−%  can be 

computed from the previous inverse (AB)
-1
 with a simple pivoting operation. 

Namely, we have 
1 1 1

B B(A ) E (A )− − −=%        (1) 

where E
-1
 is the inverse of the eta-matrix. We use the following steps to 

compute 1

B(A )−% . 

Compute the pivot column hl=(AB)
-1
A.l 

Compute the column vector 

  

 

 

Replace the rth column of an identity matrix with the column vector v. This 

matrix is the inverse of the Eta-matrix.  

Compute the new basis inverse using relation (1). 

The inverse of the Eta-matrix has the following form 

1l rl

1 T

l l l rl

rl

ml rl

1 h / h

1
E I (h e )e 1/ h

h

h / h 1

−

− 
 
 
 = − − =
 
 
 − 

O M

M O

 

If the current basis inverse is computed using regular multiplication in relation 

(1), then the complexity of the (PFI) is Θ(m
3
). It can be seen that the matrix E

-1
 

has a special structure. Specifically, E
-1
 is sparse and on every iteration it has 

2m – 1 nonzero elements. In order to count the total number of multiplications 

and additions needed for this updating scheme, we make the following 

assumptions:  

(i) We count only the multiplication between two nonzero numbers, αβ, where 

(α∈ℜ*-{1} and β∈ℜ*) or (α∈ℜ* and β∈ℜ*-{1}) and  

(ii) We count the addition between two nonzero numbers.  

The above updating scheme of the inverse is simplified in Fig. 2. 

1 1

B

1l rl

rl

ml rl

E (A )

1 h / h x x x

1/ h x x x

h / h 1 x x x

− −

−   
   
   
   
   
   
   −   

O M MO MO M

M O MO MO M

 

Figure 1: Updating Scheme of the PFI 

T

1l ml

rl rl rl

h h1
v

h h h

 
= − − 

 
L L
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In the mth iteration the basis inverse has m
2
 nonzero elements. The rth row of  

E
-1
 has only one nonzero element. All the other rows (m-1) have 2 nonzero 

elements. In order to compute the product in Figure 1, according to the above 

assumptions, we need 

(m – 1) rows x m multiplications + 1 x m multiplications = m
2
 multiplications 

and 

(m – 1) rows x m additions = m
2
 – m additions 

The total cost of the above method is 2m
2
-m operations (multiplications and 

additions).  

3.2 A Modification of Product Form of the Inverse 

This updating scheme presented by (Benhamadou, 2002). The key idea is the 

following. The current basis inverse 1

B(A )−%  can be computed from the previous 

inverse (AB)
-1
 with a simple outer product of two vectors and one matrix 

addition. Namely we have  

r .

1 1 1

B B B r.(A ) (A ) v (A )
− − −= + ⊗%        (2) 

A formal description of this method follows. 

Compute the pivot column hl=(AB)
-1
A.l 

Compute the vector 

  

 

 

Compute the outer product v⊗(AB)
-1
r.  

Set the rth row of (AB)
-1
 equal to zero. Save the result in (AB)

-1
r.  

Compute the new basis inverse using relation (2). 

The above updating scheme of the inverse is simplified in Fig. 2. 

 

 

 

 

 

 

 

 

Figure 2: A modification of the (PFI) 
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The outer product requires m
2 
multiplications and the addition of two matrices 

requires m
2
 additions. The total cost of the above method is 2m

2
 operations 

(multiplications and additions). Hence, the complexity is Θ(m
2
). 

4. An illustrative example 

An illustrative example of the previously mentioned updating schemes in 

section 3, will be given. Assume there is the following linear problem, 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

min x x 4x

s.t. x x x 9

x x x 2

x x x 4

x x x 0

+ −

+ + ≤

+ − ≤

− + + ≤

≥

  (LP.2) 

First we introduce the slack variables x4, x5 and x6. In matrix notation the 

problem (LP.2) is written, 

0x           

bAx    s.t

xcmin T

≥

=  

where 

[ ]Tc 1 1 4 0 0 0

1 1 2 1 0 0 9

A 1 1 1 0 1 0 , b 2

1 1 1 0 0 1 4

= −

   
   = − =   
   −   

 

The first feasible basic partition is B=[4  5  6] and N=[1  2  3]. Hence,  

(AB)
-1
=AB=[A.4  A.5  A.6] 

According to Step 1 and Step 2 of the EPSA x6 and x1 is the leaving and 

entering variable respectively. Leaving variable found in the r = 3 row. The 

pivot column is h1=[1  1  -1]
T
.  

4.1 Update Basis Inverse Using Eta-matrix  

Compute the vector  

 

 

Put the vector v in the 3
rd
 column of an identity matrix E

-1
=I3x3. The inverse of 

the Eta-matrix has the form 

1

1 0 1

E 0 1 1

0 0 1

−

 
 =  
 − 

 

[ ]
T

T1l ml

rl rl rl

h h1
v 1 1 1

h h h

 
= − − = − 

 
L L
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Using relation (1) the new basis inverse is 

1 1 1

B B

1 0 1

(A ) E (A ) 0 1 1

0 0 1

− − −

 
 = =  
 − 

%  

4.2 Update Basis Inverse Using Outer Product & Matrix Addition  

Compute the vector v=[1  1  -1]
T
. The outer product v⊗(AB)

-1
r. gives 

0 0 1

0 0 1

0 0 1

 
 
 
 − 

 

Set the 3
rd
 row of (AB)

-1
 equal to zero. Save the result in (AB)

-1
r. Compute the 

new basis inverse using relation (2). The new basis inverse is 

r .

1 1 1

B B B r.

1 0 1

(A ) (A ) v (A ) 0 1 1

0 0 1

− − −

 
 = + ⊗ =  
 − 

%  

5. Computational Study 

The updating schemes described in section 3 have been experimentally 

implemented. In this section we describe our numerical experiments and present 

computational results, which demonstrate updating schemes efficiency on a set 

of test problems obtained by NETLIB (www.netlib.org/lp). Compiled using the 

MATLAB v7.01 SP2 with default options, all runs were carried out under MS 

Windows XP Pro system, having P4 3.06 GHz and 512 Mb RAM.  

Table 1 presents the statistics for 16 benchmarks by alphabetical order. The first 

column contains the name of the problem (1), while the other two columns (2)-

(3) contain the size of problems. The number of rows doesn’t include the 

objective function. In column (4) the number of nonzero elements of A and c is 

displayed. Finally, the density percentage contained in column (5).  

 

Table 1: Test set statistics 

Name m n nnz(A)+nnz(c) Density 

(1) (2) (3) (4) (5) 

adlittle 56 97 465 8,56% 

bandm 305 472 2659 1,85% 

degen2 444 534 4449 1,88% 

e226 223 282 2767 4,40% 

israel 174 142 2358 9,54% 

lotfi 153 308 1086 2,30% 

sc105 105 103 281 2,60% 



El-Said Badr, K. Paparrizos, N. Samaras, A. Sifaleras 
 

686

sc205 205 203 552 1,33% 

scagr7 129 140 553 3,06% 

sctap1 300 480 2052 1,42% 

sctap3 1480 2480 10734 0,29% 

share1b 118 225 1182 4,45% 

share2b 96 79 730 9,62% 

ship04l 402 2118 8450 0,99% 

ship08s 778 2387 9501 0,51% 

stocfor1 117 111 474 3,65% 

Table 2 collects information on the performance of the mentioned above 

updating schemes. Columns of Table 2 contains name of the problem, problem 

size, the number of iterations, niter and  the CPU time, cpu in seconds for the 

updating schemes Product Form of the Inverse (PFI) and Modified Product 

Form of the Inverse (MPFI).  

Table 2: Computational Results 

   PFI MPFI speed-up 

name m n niter cpu niter cpu  

adlittle 56 97 140 0,33 140 0,33 1,00 

bandm 305 472 485 5,86 485 3,00 1,95 

degen2 444 534 1869 54,42 1436 17,87 3,05 

e226 223 282 693 3,04 693 1,92 1,58 

israel 174 142 306 0,89 306 0,65 1,37 

lotfi 153 308 565 1,73 565 1,01 1,71 

sc105 105 103 111 0,14 111 0,08 1,75 

sc205 205 203 260 0,97 260 0,71 1,37 

scagr7 129 140 141 0,45 141 0,25 1,80 

sctap1 300 450 676 2,56 704 6,31 0,41 

sctap3 1480 2480 2421 42,02 2421 37,56 1,12 

share1b 118 225 458 1,40 458 0,56 2,50 

share2b 96 79 356 1,08 356 0,48 2,25 

ship04l 402 2118 1282 6,05 1282 13,78 0,44 

ship08s 778 2387 764 3,46 764 7,71 0,45 

stocfor1 117 111 138 0,31 138 0,11 2,82 

Mean value      1,60 

From the above results we make the following observations: (i) The modified 

Product Form of the Inverse (MPFI) is in most problems faster than PFI (in 12 

out of 16) and (ii) Using MPFI the total problem set execution time was 1.60 

times faster than PFI. 

6. Conclusions 

In this paper we have presented an analysis of two well-known updating 

schemes for the basis inverse. The computational study of section 5 indicates 
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that the modification of the Product Form of the Inverse is 1.60 times faster than 

the Product Form of the Inverse in most problems. Theoretically, both methods 

require the same number of multiplications and additions.  
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