
Πρακτικά 17ου Συνεδρίου Ε.Ε.Ε.Ε. «∆ιαχείριση Κινδύνων»

Πανεπιστήµιο Πατρών, 16-18 Ιουνίου 2005, Σελ. 677-687

On the basis inverse of the exterior point

simplex algorithm

El-Said Badr
1
, K. Paparrizos, N. Samaras and A. Sifaleras

2

University of Macedonia, Department of Applied Informatics, 156 Egnatia Str., 54006

Thessaloniki, E-mail: {paparriz, samaras, sifalera}@uom.gr

Abstract

The main feature of simplex type algorithms is that they can be interpreted as a

method following simplex paths that lead to the optimal vertex. Exterior Point

Simplex Algorithms (EPSA) differs from classical simplex algorithm in the

sense that its basic solution is not feasible. EPSA is sufficiently fast for large-

scale sparse linear problems. Recall that the total computational effort of an

iteration of simplex type algorithms is dominated by the determination of the

basis inverse B
-1
. This inverse does not have to be computed from scratch at any

iteration. In this paper we present an analysis of two well-known updating

schemes for basis inverse: (i) The Product Form of the Inverse (PFI) and (ii) A

Modification of the Product Form of the Inverse (MPFI) and incorporate it with

EPSA. Computational results with a subset of benchmark problems from

NETLIB are also presented.

Keywords: Linear Programming, Simplex Type Algorithms, Revised Form,

Basis Inverse

1
 Research supported by the Greek Scholarship Foundation, (I.K.Y).

2 Research supported by Operational Program for Educational and Vocational Training II

(EPEAEK II), and particularly the program HRAKLEITOS.

El-Said Badr, K. Paparrizos, N. Samaras, A. Sifaleras

678

Περί της Αντιστροφής της Βάσης του

Αλγορίθµου Εξωτερικών Σηµείων

El-Said Badr, K. Paparrizos, N. Samaras and A. Sifaleras

University of Macedonia, Department of Applied Informatics, 156 Egnatia Str.,

54006 Thessaloniki, E-mail: {paparriz, samaras, sifalera}@uom.gr

Περίληψη

Το κύριο χαρακτηριστικό των αλγορίθµων τύπου simplex είναι ότι µπορεί να

ερµηνευτούν ως µια µέθοδος η οποία ακολουθεί simplex µονοπάτια, τα οποία

οδηγούν στη βέλτιστη κορυφή. Οι Αλγόριθµοι Εξωτερικών Σηµείων (ΑΕΣ)

διαφέρουν από τον κλασικό αλγόριθµο simplex στο ότι η βασική τους λύση

µπορεί να µην είναι εφικτή. Οι ΑΕΣ είναι ικανοποιητικά γρήγοροι όταν

εφαρµόζονται σε µεγάλης κλίµακας αραιά γραµµικά προβλήµατα. Η πιο

χρονοβόρα διαδικασία σε µια επανάληψη τύπου simplex είναι ο υπολογισµός της

αντίστροφης της βάσης, B
-1
. Η αντίστροφη της βάσης δεν χρειάζεται να

υπολογίζεται από την αρχή σε κάθε επανάληψη. Σε αυτήν την εργασία

παρουσιάζεται µια ανάλυση δυο γνωστών τρόπων ανανέωσης της αντίστροφης:

(i) Η Product Form of the Inverse (PFI) και (ii) Μια τροποποίηση της Product

Form of the Inverse (MPFI) και εφαρµόζονται στον αλγόριθµο EPSA. Επίσης,

παρουσιάζονται υπολογιστικά αποτελέσµατα σε ένα υποσύνολο

µετροπρογραµµάτων από τη συλλογή NETLIB.

Λέξεις Κλειδιά: Γραµµικός Προγραµµατισµός, Αλγόριθµοι Τύπου Simplex,

Αναθεωρηµένη Μορφή, Αντιστροφή Βάσης

17ο Συνέδριο της Ε.Ε.Ε.Ε. – «∆ιαχείριση Κινδύνων»

679

1. Introduction

Let us consider the following Linear Programming (LP) problem:

Tmin c x

s.t. Ax b

x 0

=

≥

 (LP.1)

where A∈ℜm×n
, c, x∈ℜn

, b∈ℜm
 and T denotes transposition. Let us assume first

that A is linearly independent and has full rank, rank(A) = m, 1 ≤ m < n. Given
a linear problem (LP.1) a basis AB is a square non-singular submatrix of A.

EPSA is a simplex type algorithm which was originally developed by

Paparrizos (1991) for the assignment problem. Later, Paparrizos (1993)

generalized his exterior point method to the general linear problem by

developing a dual in nature, algorithm. Moreover, (Karagiannis et al., 2005)

developed an exterior type algorithm for the minimum cost network flow

problem. A common feature of almost all simplex type algorithms is that they

can be interpreted as a procedure following simplex type paths that lead to the

optimal solution. It has been pointed out that the geometry of EPSA reveals that

this algorithm is faster than the classical simplex algorithm. An extended

computational study (Paparrizos et al., 2003) between EPSA and simplex

algorithm shows that the former is up to 10 times faster than the latter on

medium size linear problems.

Any iteration of simplex type algorithms is relatively expensive. The total work

of an iteration of simplex type algorithms is dominated by the determination of

the basis inverse, (AB)
-1
. This inverse however, does not have to be computed

from scratch at each iteration. Simplex type algorithms maintain a factorization

of basis AB, and update this factorization on every iteration. There are several

schemes for updating basis inverse. The most well-known schemes are (i) the

Product Form of the Inverse (PFI), (ii) the Elimination Form of the Inverse

(EFI), and (iii) a recently developed by (Benhamadou, 2002).

In this paper we apply the schemes (i) and (iii) to EPSA and perform a

computational study using a subset of NETLIB test problems. EPSA using the

updating scheme (iii) is about 1.6 times faster than EPSA using the (PFI) in

terms of CPU time. In order to prove his method, Benhamadou, used the

canonical linear programming form. This means that all the technological

constraints are inequalities. We investigate how Benhamadou’s (2002) method

behaves in real world problems that have a considerable number of equality

constraints.

The paper is organized as follows. In section 2 we give a brief description of

EPSA. In section 3 we present an analysis of the updating schemes. An

illustrative example is given in section 4. Our computational results are

presented in section 5 and, finally in section 6 we conclude.

2. EPSA Description

El-Said Badr, K. Paparrizos, N. Samaras, A. Sifaleras

680

It is more convenient that the algorithm is being described using the revised

form of the simplex algorithm. Consider the problem (LP.1). With the matrix A

partitioned as A = (AB, AN), and with a corresponding partitioning and ordering

of x and c, (LP.1) is written as

T T

B B N N

B B N N

B N

min c x c x

s.t. A x A x b

x ,x 0

+

+ =

≥

where B and N are subsets of indices. The columns of A which belong to B are

called basic and the remaining ones are called nonbasic. The basic solution

corresponding to AB is {xB = (AB)
-1
b, xN = 0}. A solution x = (xB, xN) is feasible

if x ≥ 0. Otherwise it is called infeasible. A given basis is dual feasible if

wAcs T−= ≥0, where w
T
 = (cB)

T
(AB)

-1
 are the simplex multipliers and s are

the dual slack variables.

EPSA generates two paths toward the optimal solution. One path is infeasible

(exterior) and the other is feasible. So EPSA doesn’t need to proceed by

examining one such edge after another along the polyhedron of the feasible

region. Therefore, avoiding the feasible region EPSA can follow shorter paths

to the optimal solution. A formal description of EPSA in the revised form is

given below. Proof of correctness of the above algorithm can be found in

(Paparrizos et al., 2001).

EPSA Algorithm.

Step 0. (Initialization). Start with a feasible basic partition (B, N). Compute the

vectors and matrices (AB)
-1
, xB, w, sN. Find the sets P = {j∈N: sj < 0} and Q =

{j∈N: sj ≥ 0}. Choose an arbitrary vector λ = (λ1, λ2, …, λ|P|) > 0, compute s0

using the relation

∑
∈

λ=
Pj

jj0 ss

and the vector

∑
∈

λ−=
Pj

jjB hd

with
1

j B . jh (A) A−=

Step 1. (Test of termination).

i. (Test of optimality). If P = ∅, STOP. Problem (LP.1) is optimal.

ii. (Choice of leaving variable). If dB ≥ 0, STOP. If s0 = 0, problem (LP.1) is

optimal. Otherwise, choose the leaving variable xB[r] = xk using the relation

[]

[]

[]

[]
[]













<
−

=
−

=α 0d:
d

x
min

d

x
iB

iB

iB

rB

rB

If α = +∞ problem (LP.1) is unbounded.

Step 2. (Choice of entering variable). Compute the vectors HrP = ((AB)
-1
)r.AP

and

HrQ = ((AB)
-1
)r.AQ. Also find the ratios θ1 and θ2 using the relations

17ο Συνέδριο της Ε.Ε.Ε.Ε. – «∆ιαχείριση Κινδύνων»

681













∈>
−

=
−

=θ Pjand0h:
h

s
min

h

s
rj

rj

j

rp

p

1

and













∈<
−

=
−

=θ Qjand0h:
h

s
min

h

s
rj

rj

j

rq

q

2

and determine indexes t1 and t2 such that P(t1) = p and Q(t2) = q. If θ1 ≤ θ2, set l
= p. Otherwise, set l = q. The nonbasic variable xl enters in the basis.

Step 3. (Pivoting). Set B[r] = l. If θ1 ≤ θ2 set P = P\{l} and Q = Q ∪ {k}.

Otherwise, set Q[t2] = k. Using the new partition (B, N), where N = (P, Q),

update the vectors and matrices (AB)
-1
, xB, w, sN. Also, update the vector Bd . If

l ∈ P set l]r[B]r[B dd λ+← . Go to Step 1.

3. Analysis of the updating schemes

Matrix multiplication is a basic operation in linear algebra which has numerous

applications to the theory and practice of computation. Several applications are

due to the fact that matrix multiplication is a substantial part of several

successful algorithms for other computational problems of operations research,

such as the solution of linear equations, matrix inversion, etc. The

computational time required for matrix multiplication is the dominant part of

the total computational time required for the solution of such problems.

Proposition 1. The multiplication of two dense square m x m matrices involves

m
3
 multiplications and m

3
 – m

2
 additions. Hence, the overall complexity is

Θ(m
3
).

Proposition 2. Two bases (AB)[1], (AB)[2]∈ℜm
 are called neighbouring if they

differ from each other only in one column.

In each iteration, simplex type algorithms move from a basis to a neighbouring

one until termination. The operations of simplex type iteration are defined in

terms of the inverse of the current basis. Determining (AB)
-1
 is a substantial

computational effort. Should it be computed at each iteration, then it would be

computationally prohibitive.

To justify the next analysis we need the following notations:

x⊗y : outer product of the vectors x, y∈ℜn

l : index of the entering variable

k : index of the leaving variable

A.l : the lth column of A

(AB)
-1
r. : the rth row of basis inverse

(AB)
-1
r. : the matrix (AB)

-1
 with the rth row put to zero

3.1 Product Form of the Inverse

El-Said Badr, K. Paparrizos, N. Samaras, A. Sifaleras

682

The key idea is the following. The current basis inverse 1

B(A)−% can be

computed from the previous inverse (AB)
-1
 with a simple pivoting operation.

Namely, we have
1 1 1

B B(A) E (A)− − −=% (1)

where E
-1
 is the inverse of the eta-matrix. We use the following steps to

compute 1

B(A)−% .

Compute the pivot column hl=(AB)
-1
A.l

Compute the column vector

Replace the rth column of an identity matrix with the column vector v. This

matrix is the inverse of the Eta-matrix.

Compute the new basis inverse using relation (1).

The inverse of the Eta-matrix has the following form

1l rl

1 T

l l l rl

rl

ml rl

1 h / h

1
E I (h e)e 1/ h

h

h / h 1

−

− 
 
 
 = − − =
 
 
 − 

O M

M O

If the current basis inverse is computed using regular multiplication in relation

(1), then the complexity of the (PFI) is Θ(m
3
). It can be seen that the matrix E

-1

has a special structure. Specifically, E
-1
 is sparse and on every iteration it has

2m – 1 nonzero elements. In order to count the total number of multiplications

and additions needed for this updating scheme, we make the following

assumptions:

(i) We count only the multiplication between two nonzero numbers, αβ, where

(α∈ℜ*-{1} and β∈ℜ*) or (α∈ℜ* and β∈ℜ*-{1}) and

(ii) We count the addition between two nonzero numbers.

The above updating scheme of the inverse is simplified in Fig. 2.

1 1

B

1l rl

rl

ml rl

E (A)

1 h / h x x x

1/ h x x x

h / h 1 x x x

− −

−   
   
   
   
   
   
   −   

O M MO MO M

M O MO MO M

Figure 1: Updating Scheme of the PFI

T

1l ml

rl rl rl

h h1
v

h h h

 
= − − 

 
L L

17ο Συνέδριο της Ε.Ε.Ε.Ε. – «∆ιαχείριση Κινδύνων»

683

In the mth iteration the basis inverse has m
2
 nonzero elements. The rth row of

E
-1
 has only one nonzero element. All the other rows (m-1) have 2 nonzero

elements. In order to compute the product in Figure 1, according to the above

assumptions, we need

(m – 1) rows x m multiplications + 1 x m multiplications = m
2
 multiplications

and

(m – 1) rows x m additions = m
2
 – m additions

The total cost of the above method is 2m
2
-m operations (multiplications and

additions).

3.2 A Modification of Product Form of the Inverse

This updating scheme presented by (Benhamadou, 2002). The key idea is the

following. The current basis inverse 1

B(A)−% can be computed from the previous

inverse (AB)
-1
 with a simple outer product of two vectors and one matrix

addition. Namely we have

r .

1 1 1

B B B r.(A) (A) v (A)
− − −= + ⊗% (2)

A formal description of this method follows.

Compute the pivot column hl=(AB)
-1
A.l

Compute the vector

Compute the outer product v⊗(AB)
-1
r.

Set the rth row of (AB)
-1
 equal to zero. Save the result in (AB)

-1
r.

Compute the new basis inverse using relation (2).

The above updating scheme of the inverse is simplified in Fig. 2.

Figure 2: A modification of the (PFI)

T

1l ml

rl rl rl

h h1
v

h h h

 
= − − 

 
L L

[]1

B r. r1 rr rm

1l

rl

11 1m

1

B

rl

m1 mm

ml

rl

(A) : b b b

h

h
b b

1
(A) [mxm]0 0 0

h

b b
h

h

v

−

−

 
− 

  
  
  
  = +
  
  
     
− 

  

L L

L
M

L L L

%

L L L
M

L

El-Said Badr, K. Paparrizos, N. Samaras, A. Sifaleras

684

The outer product requires m
2
multiplications and the addition of two matrices

requires m
2
 additions. The total cost of the above method is 2m

2
 operations

(multiplications and additions). Hence, the complexity is Θ(m
2
).

4. An illustrative example

An illustrative example of the previously mentioned updating schemes in

section 3, will be given. Assume there is the following linear problem,

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

min x x 4x

s.t. x x x 9

x x x 2

x x x 4

x x x 0

+ −

+ + ≤

+ − ≤

− + + ≤

≥

 (LP.2)

First we introduce the slack variables x4, x5 and x6. In matrix notation the

problem (LP.2) is written,

0x

bAx s.t

xcmin T

≥

=

where

[]Tc 1 1 4 0 0 0

1 1 2 1 0 0 9

A 1 1 1 0 1 0 , b 2

1 1 1 0 0 1 4

= −

   
   = − =   
   −   

The first feasible basic partition is B=[4 5 6] and N=[1 2 3]. Hence,

(AB)
-1
=AB=[A.4 A.5 A.6]

According to Step 1 and Step 2 of the EPSA x6 and x1 is the leaving and

entering variable respectively. Leaving variable found in the r = 3 row. The

pivot column is h1=[1 1 -1]
T
.

4.1 Update Basis Inverse Using Eta-matrix

Compute the vector

Put the vector v in the 3
rd
 column of an identity matrix E

-1
=I3x3. The inverse of

the Eta-matrix has the form

1

1 0 1

E 0 1 1

0 0 1

−

 
 =  
 − 

[]
T

T1l ml

rl rl rl

h h1
v 1 1 1

h h h

 
= − − = − 

 
L L

17ο Συνέδριο της Ε.Ε.Ε.Ε. – «∆ιαχείριση Κινδύνων»

685

Using relation (1) the new basis inverse is

1 1 1

B B

1 0 1

(A) E (A) 0 1 1

0 0 1

− − −

 
 = =  
 − 

%

4.2 Update Basis Inverse Using Outer Product & Matrix Addition

Compute the vector v=[1 1 -1]
T
. The outer product v⊗(AB)

-1
r. gives

0 0 1

0 0 1

0 0 1

 
 
 
 − 

Set the 3
rd
 row of (AB)

-1
 equal to zero. Save the result in (AB)

-1
r. Compute the

new basis inverse using relation (2). The new basis inverse is

r .

1 1 1

B B B r.

1 0 1

(A) (A) v (A) 0 1 1

0 0 1

− − −

 
 = + ⊗ =  
 − 

%

5. Computational Study

The updating schemes described in section 3 have been experimentally

implemented. In this section we describe our numerical experiments and present

computational results, which demonstrate updating schemes efficiency on a set

of test problems obtained by NETLIB (www.netlib.org/lp). Compiled using the

MATLAB v7.01 SP2 with default options, all runs were carried out under MS

Windows XP Pro system, having P4 3.06 GHz and 512 Mb RAM.

Table 1 presents the statistics for 16 benchmarks by alphabetical order. The first

column contains the name of the problem (1), while the other two columns (2)-

(3) contain the size of problems. The number of rows doesn’t include the

objective function. In column (4) the number of nonzero elements of A and c is

displayed. Finally, the density percentage contained in column (5).

Table 1: Test set statistics

Name m n nnz(A)+nnz(c) Density

(1) (2) (3) (4) (5)

adlittle 56 97 465 8,56%

bandm 305 472 2659 1,85%

degen2 444 534 4449 1,88%

e226 223 282 2767 4,40%

israel 174 142 2358 9,54%

lotfi 153 308 1086 2,30%

sc105 105 103 281 2,60%

El-Said Badr, K. Paparrizos, N. Samaras, A. Sifaleras

686

sc205 205 203 552 1,33%

scagr7 129 140 553 3,06%

sctap1 300 480 2052 1,42%

sctap3 1480 2480 10734 0,29%

share1b 118 225 1182 4,45%

share2b 96 79 730 9,62%

ship04l 402 2118 8450 0,99%

ship08s 778 2387 9501 0,51%

stocfor1 117 111 474 3,65%

Table 2 collects information on the performance of the mentioned above

updating schemes. Columns of Table 2 contains name of the problem, problem

size, the number of iterations, niter and the CPU time, cpu in seconds for the

updating schemes Product Form of the Inverse (PFI) and Modified Product

Form of the Inverse (MPFI).

Table 2: Computational Results

 PFI MPFI speed-up

name m n niter cpu niter cpu

adlittle 56 97 140 0,33 140 0,33 1,00

bandm 305 472 485 5,86 485 3,00 1,95

degen2 444 534 1869 54,42 1436 17,87 3,05

e226 223 282 693 3,04 693 1,92 1,58

israel 174 142 306 0,89 306 0,65 1,37

lotfi 153 308 565 1,73 565 1,01 1,71

sc105 105 103 111 0,14 111 0,08 1,75

sc205 205 203 260 0,97 260 0,71 1,37

scagr7 129 140 141 0,45 141 0,25 1,80

sctap1 300 450 676 2,56 704 6,31 0,41

sctap3 1480 2480 2421 42,02 2421 37,56 1,12

share1b 118 225 458 1,40 458 0,56 2,50

share2b 96 79 356 1,08 356 0,48 2,25

ship04l 402 2118 1282 6,05 1282 13,78 0,44

ship08s 778 2387 764 3,46 764 7,71 0,45

stocfor1 117 111 138 0,31 138 0,11 2,82

Mean value 1,60

From the above results we make the following observations: (i) The modified

Product Form of the Inverse (MPFI) is in most problems faster than PFI (in 12

out of 16) and (ii) Using MPFI the total problem set execution time was 1.60

times faster than PFI.

6. Conclusions

In this paper we have presented an analysis of two well-known updating

schemes for the basis inverse. The computational study of section 5 indicates

17ο Συνέδριο της Ε.Ε.Ε.Ε. – «∆ιαχείριση Κινδύνων»

687

that the modification of the Product Form of the Inverse is 1.60 times faster than

the Product Form of the Inverse in most problems. Theoretically, both methods

require the same number of multiplications and additions.

References

Benhamadou, M. (2002). On the simplex algorithm ‘revised form’, Advances in

Engineering Software, 33, 769-777.

Karagiannis P., Paparrizos K., Samaras N. and Sifaleras A. (2005) A new simplex type

algorithm for the minimum cost network flow problem, presented at the 7
th
 Balkan

Conference on Operational Research (BACOR ΄05), 25-28 May, Constanta,

Romania.

Paparrizos, K. (1991). An infeasible exterior point simplex algorithm for assignment

problems, Mathematical Programming, 51, 45-54.

Paparrizos, K. (1993). An exterior point simplex algorithm for general linear

problems, Annals of Operation Research, 47, 497-508.

Paparrizos, K., Samaras, N. and Tsiplidis, K. (2001). Pivoting algorithm for (LP)

generating two paths, in: M. P. Pardalos, A. C. Fluodas (Eds.), Encyclopedia of

Optimization, 4, 302-306, Kluwer Academic Publishers.

Paparrizos, K. Samaras, N. and Stephanides, G. (2003). An efficient simplex type

algorithm for sparse and dense linear programs, European Journal of Operational

Research, 148, 323-334.

