On the initialization methods of an exterior point algorithm for the assignment problem

C. Papamanthou[†], K. Paparrizos[‡], N. Samaras[§] [‡] and A. Sifaleras[‡]

†Department of Computer Science, Brown University, Providence RI, U.S.A. ‡ Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

(v3.2 released December 2006)

In this paper we present a theoretical investigation and an extensive computational study of Exterior Point Simplex Algorithm (EPSA) initialization methods for the Assignment Problem (AP). We describe the exterior point algorithm using three different initialization methods. Effective implementations are explored for each initialization method. Then we perform an experimental evaluation on a large set of benchmark problems from the TSPLib95 and OR Library collections. The results obtained demonstrate the advantages of the three initialization methods. Finally, we give a theoretical justification of the initialization methods efficiency. We explain theoretically the computational ranking for these methods.

Keywords: Combinatorial Optimization; Assignment Problem; Exterior Point Algorithm; Initialization Methods; Computational Evaluation.

AMS Subject Classifications: 90C27; 05C85; 90B10; 65K05; 91A90

1. Introduction

The Assignment Problem (AP) is one of the most well studied problems in mathematical programming. The AP has various applications in the real world. It could be used to model the assignment of employees to tasks, or machines to productions jobs, but its uses are more widespread. For example, it could be used in computer networking or in assigning aircrafts to trips. The AP is a Hitchcock transportation problem. The only difference is that the supply (demand) at every supply (demand) node is equal to one.

A large number of algorithms has been developed for the AP. The worst-case complexity of the best algorithms for the AP is $O(n^3)$, where n is the size of the problem. The main algorithm categories for the AP are the primal-dual, the simplex type, the cost operator, the recursive, the forest and the interior point algorithms. Primal-dual algorithms work with a pair of an infeasible primal solution and a feasible dual solution which satisfy the complementarity slackness conditions. The most well-known algorithms of this category are the Hungarian method [1] and the auction algorithm [2]. The Hungarian method is the first non-simplex algorithm for the AP.

The simplex type algorithms are modifications of the classical network simplex algorithm. According to the nature of the initial basic solution, simplex type algorithms can be further divided into two subcategories; primal and dual simplex

§Corresponding author Email: samaras@uom.gr

International Journal of Computer Mathematics
ISSN: 0020-7160 print/ISSN 1029-0265 online © 2008 Taylor & Francis http://www.tandf.co.uk/journals

DOI: 10.1080/0020716YYxxxxxxx

Please cite this paper as:

type algorithms. Dual simplex type algorithms for the AP work with a spanning tree which defines a dual feasible basic solution. At every iteration a pivoting operation is performed on an arc for which the corresponding primal constraint is violated. The use of different pivoting rules for the selection of the leaving and entering arcs resulted in different versions of dual simplex algorithms. Balinski [3] introduced a competitive dual simplex algorithm for the AP with $O(n^2)$ pivot and $O(n^3)$ time complexity. Goldfarb [4] developed a different signature method which solves a sequence of smaller problems of the given AP. An algorithm which works with strongly dual feasible trees has been developed by Akgul [5]. Its worst case complexity is $O(n^3)$ or $O(nm+n^2logn)$ depending of data structure used. A similar algorithm to Akgul's was proposed by Paparrizos [6].

A non-dual signature method for the AP has been developed by Paparrizos [7]. This algorithm visits only strong trees which are obtained from strongly feasible trees by dropping the feasibility requirement. Its worst case complexity is $O(n^4)$. An efficient implementation of Paparrizos's algorithm was given by Akgul and Ekin [8]. The improvement is that this algorithm updates a forest rather than a tree. The worst case complexity decreased to $O(n^3)$ using elementary data structures. Using Fibonacci Heaps for sparse APs it has $O(n^2 logn + nm)$ complexity. Later, Paparrizos [9] developed a new class of simplex type algorithms for the AP with $O(n^3)$ complexity. This class is called Exterior Point Simplex Algorithms (EPSA). An experimental study to compare the classical simplex algorithm and the exterior point algorithm for the transportation problem can be found in [10]. Totally, four algorithms are compared on uniformly randomly generated test problems. The results are very encouraging for the dual forest exterior point algorithm.

A complete survey of computationally attractive algorithms for the classical AP can be found in [11]. Surveys on methods and algorithms which solve the AP have been presented by Martello and Toth [12] and Derigs [13]. Several papers and research work exist which compare algorithms for the AP [14–16]. It is well known, that using an efficient starting solution is essential. Very often differences in running time are not due to different algorithmic approaches (such as primal, dual, primal-dual, etc.), but are due to the various starting procedures which are used.

The aim of this research work is twofold. First, to perform an extended computational study between three different initialization methods for the EPSA. Second, and more importantly, to analyze the three different approaches theoretically and to give some additional algorithmic insight into why the winners won. Toward these aims, we make the following contributions:

- We describe the exterior point simplex algorithm using three different initialization methods. These methods are the exterior point simplex algorithm starting with
 - (i) Balinski's feasible tree [9]
 - (ii) A simple forest [17] that is neither primal nor dual feasible and
 - (iii) A feasible forest [18]

The exterior point simplex algorithm using the last initialization method solves an AP in at most $\frac{n(n-1)}{2}$ iterations and in at most $O(n^3)$ time. A detailed visual representation of the above three initializations is described in [19]

• We perform an extensive computational study on various dense benchmark APs from the TSPLib95 and OR Library collections. This study consists of two parts. In the first part, we report results showing the advantages of the initialization methods for the APs testbed. In the second part we report the computation of the column level of a solution for each one of the benchmark APs. The column level declares the distance of an initial solution from the optimal solution. Roughly

- speaking, column level is one of the main factors that determines the quality of the initial solution.
- Finally, we give a theoretical justification of the three different initialization methods efficiency. The computational efficiency of all Simplex type algorithms depends on
 - (i) The distance between the initial solution and the optimal solution and
 - (ii) The structure of the initial solution.

We explain theoretically the computational ranking for the three competitors.

The paper is organized as follows. Following this introduction, in Section 2 we give the necessary mathematical background and we briefly present the exterior point simplex algorithm. In Section 3 we present the three different initialization methods. We also demonstrate these methods using an illustrative example. In Section 4 we present experimental results on benchmark APs that demonstrate the effectiveness of the three initialization methods. A theoretical explanation of the three initialization methods efficiency is presented in Section 5. Finally, in Section 6 we conclude and discuss future work.

2. Exterior Point Algorithm description

It is well known that an AP can be represented by bipartite graph G(S, D, E) = G(N, E), which consists of two discrete sets of nodes $S, D, (N = S \cup D, S \cap D = \emptyset)$ such as |S| = |D| = n. Here, E is the set of arcs directed from nodes of S to nodes of S. Nodes $S \in S$ are called column (supply) nodes, whereas nodes $S \in S$ are called row (demand) nodes. In our Figures we draw column nodes as circles and row nodes as squares. The mathematical formulation of the linear AP with a square $S \in S$ squares of the following:

$$(LAP) \qquad \min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 (1)

s.t.
$$\sum_{i=1}^{n} x_{ij} = 1, \ j = 1, 2, \dots, n$$
 (2)

$$\sum_{j=1}^{n} x_{ij} = 1, \ i = 1, 2, \dots, n$$
 (3)

$$x_{ij} \ge 0, \ 1 \le i, j \le n \tag{4}$$

Problem (LAP) can be formulated by means of the integer linear programming problem defined by Equations (1), (2), (3), and replacing (4), with the constraints

$$x_{ij} \in \mathbb{Z}$$
, $0 \le x_{ij} \le 1, 1 \le i, j \le n$

Obviously, $x_{ij} = 1$ or 0. In particular, $x_{ij} = 1$ if column j is assigned to row i. The associated dual problem to (LAP) is:

$$(DLAP) \qquad \max \sum_{i=1}^{n} u_i + \sum_{j=1}^{n} v_j$$

$$s.t.$$
 $u_i + v_j \le c_{ij}$

$$1 \le i, j \le n$$

Given a pair of feasible solutions x and (u, v) for the problems (LAP) and (DLAP) respectively, the complementary slackness condition is stated as

$$x_{ij}s_{ij} = 0, (i, j = 1, 2, ..., n), where s_{ij} = c_{ij} - u_i - v_j$$
 (5)

By s_{ij} , we denote the reduced cost variable corresponding to the variable - arc (i, j). In our implementation, all the reduced cost variables are stored in a square (nxn) matrix. From now on we will assume that this square (nxn) matrix has full dense, since all the benchmark instances in our computational study of Section 4, have full dense cost matrics. Furthermore, by s_i we denote a row vector corresponding to the i row of that square (nxn) matrix. For example, by s_4 we denote a row vector containing all the reduced cost variables which corresponds to arcs leaving from the 4^{th} supply node. Therefore, $s_4 = (s_{41}, s_{42}, s_{43}, ..., s_{4n})$. Similarly, by $s_{.i}$ we denote a column vector corresponding to the i column of that square (nxn) matrix. For example, by $s_{.4}$ we denote a column vector containing all the reduced cost variables which corresponds to arcs coming to the 4^{th} demand node. Therefore, $s_{.4}^T = (s_{14}, s_{24}, s_{34}, ..., s_{n4})$. Moreover, by e we denote a unit column vector of n elements, while the transpose of e will be denoted by e^T . For example, the unit row vector is $e^T = (1, 1, ..., 1)$.

Roughly speaking Exterior Point Simplex Algorithms, for the AP, are initialized with a feasible tree or forest. The main difference between them and the dual simplex type algorithms is that exterior point algorithms don't maintain dual feasibility on every one iteration. Dual feasibility is destroyed and restored again at the optimal solution. The main idea of EPSA is as follows. At each iteration a solution T is computed. T is a directed rooted tree. It represents the current assignments for each individual solution. Every arc (i,j) of the tree is directed from a column node to a row node and represents the temporary assignment of facility j to a user i. The set of nodes are partitioned into two subsets F and $T \setminus F$. The algorithm stops when $F = \emptyset$. Both sets T and F depend on the initialization method, which means that different initialization methods produce different starting trees and forests. Following in Section 3, there is analytical description of the initialization of those two sets. Furthermore, there is an explanatory example in Section 3.4 with an accompanying Figure 4.

As mentioned in the introduction, EPSA is a simplex type algorithm. This means that at every iteration an arc enters the basis (entering variable) and an arc leaves the basis (leaving variable). In our case the basis is a tree which contains all the variables that are arcs of the current solution T. Specifically, an entering arc (g, h) and a leaving arc (k, l) are chosen at each iteration. First, the entering arc (g, h) is chosen by the relation $s_{gh} = \min\{s_{ij} : i \in F, j \in T \setminus F\}$. Then the leaving arc (k, l) is chosen. The EPSA's versions using three different initialization methods

considered in this paper, differ among each other in the way their starting tree structures are initialized, the way subset F is constructed and the way the leaving arc (k,l) is chosen. EPSA also uses a special data structure - tree, which from now on will be denoted by T^* . More specifically, if the leaving arc was discarded before the selection of the entering arc, then the current solution (T tree), would have been divided into two sub-trees. We denote by T^* , the sub-tree which wouldn't contain the root node. The T^* tree is very important in the implementation, because only the reduced costs of arcs with one of its nodes belonging to the tree T^* and the other to the subtree $T \setminus T^*$ are updated. Finally, the T^* tree determines the sets $F, T \setminus F$. In the pseudocode below we describe the main steps of EPSA.

Algorithm 1

```
Require: G = (N, E), c, T
 1: procedure EPSA(G,T)
        Start with a special solution T. Determine the subsets F, T \setminus F and compute
    s_{ij} according to the initialization method.
        while F \neq \emptyset do
 3:
             \delta = s_{qh} = \min \{ s_{ij} : i \in F \land j \in T \setminus F \}
 4:
             choose the leaving arc (k, l) according the special rules of each initial-
 5:
             Update tree using T' = T \cup (g, h) \setminus (k, l)
 6:
             if h \in T^* then
 7:
                 q = -\delta
 8:
             else
 9:
                 q = \delta
10:
             end if
11:
             for i \leftarrow 1, n do
12:
                 if row node i \in T^* then
13:
                     set s_{i} = s_{i}(T) - qe^{T}
14:
                 end if
15:
                 if column node j \in T^* then
16:
                     set s_{.j} = s_{.j}(T) + qe
17:
                 end if
18:
             end for
19:
             set T = T'
20:
        end while
21:
22: end procedure
```

3. Initialization methods for EPSA

3.1. The Balinski tree

Balinski tree is dual feasible. Its root is row node 1 and all column nodes lie below the root at depth 1. The remaining (n-1) row nodes are connected to the column nodes of the tree and thus lie at depth 2. Let T denote the Balinski tree. The standard arcs of the tree are the arcs of type (1, j), where j is a column node. Initially, we set $u_1(T) = 0$ and $v_j(T) = c_{ij}$, j = 1, 2, ..., n. Hence, for each arc (1, j) we compute the reduced costs using the relation $s_{1j}(T) = c_{1j} - u_1(T) - v_j(T) = 0$. Given a row index i, the column index associated with the minimum $c_{ij} - v_j$ value of row i is

$$j(i) = arg \min \{c_{ij} - v_j, j = 1, 2, \dots, n\}$$

The remaining dual variables $u_i(T)$ can be computed by setting $u_i(T) = \min\{c_{ij} - v_j(T), j = 1, 2, ..., n\}$, i = 1, 2, ..., n. Let now $u_i(T) = c_{ij(i)} - v_{j(i)}$, i = 2, 3, ..., n. Then $(i, j(i)) \in T$. At this point all arcs belonging to the Balinski tree have been determined. Now we can easily compute the reduced costs of the non-basic variables using relation (5). The decision variables x_{ij} corresponding to basic arcs (i, j) of the Balinski tree are computed easily by setting $x_{ij} = 1$, i = 2, 3, ..., n and $x_{ij} = 1$, if j is a leaf of the tree. For the remaining arcs of type (1, j), where column node j has at least one child, we set $x_{1j} = 1 - m_j \le 0$. We use variable m_j to store the number of children of column node j. Finally, the forest F is the set of trees $\{T_j : x_{1j} < 0\}$, where T_j is the subtree rooted on column node j. Obviously, $T \setminus F$ is a subtree of T. A general Balinski tree for an AP of size n can be seen at Figure 1.

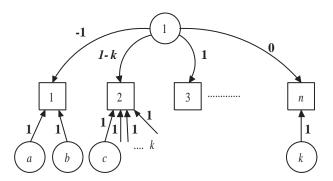


Figure 1. The general Balinski tree for an $(n \times n)$ Assignment Problem.

3.2. The Simple Start forest

Let the simple start forest be denoted by Q. Forest Q consists of the 2n isolated nodes. The set F consists of all the row-nodes, while the set $T \setminus F$ of all the column nodes. Thus, $F = \{i : i \in S\}$ and $T \setminus F = \{j : j \in D\}$. Additionally, we set

$$u_i(Q) = v_j(Q) = 0, \ i \in S, \ j \in D \tag{6}$$

Thus, by replacing conditions 6 in relation (5) we take

$$s_{ij}(Q) = c_{ij}$$

A general simple start forest for an AP of size n can be found at Figure 2.

Figure 2. The general simple start forest for an $(n \times n)$ Assignment Problem.

To adjust the simple start forest to the needs of EPSA we need to transform the forest Q to a tree T. This transformation can easily be done by inserting an

artificial node 0, which is the root of tree T and adding 2n artificial arcs. For each row node i an artificial arc (i,0) with unit cost $c_{i0}=0$ is introduced. Similarly, for each column node j an artificial arc (0,j) with unit cost $c_{0j}=0$ is introduced. All the basic decision variables of type $x_{i0}, i=1,2,\ldots,n$ and $x_{0j}, j=1,2,\ldots,n$ are initially set equal to 1. EPSA updates the sets F and $T \setminus F$ using the relations $F = \{T_i : i \in S, (i,0) \in T\}$ and $T \setminus F = \{T_j : j \in D\}$.

3.3. The dual feasible forest

Let Q denote this forest, which consists of n subtrees T_j . Let $u_i(Q)$, $v_j(Q)$, i, j = 1, 2, ..., n, denote the dual variables that correspond to the column and the row nodes of the forest respectively. Initially we set

$$v_j(Q) = 0, \ \forall j \in D$$

Next, we compute the dual variables of the column nodes $u_i(Q)$ by setting

$$u_i(Q) = \min \{c_{ij} : j = 1, 2, \dots, n\}, \forall i \in S$$

For the same reason referred to at the simple start method, we need to transform the forest Q to a tree T. This can be done by inserting an artificial node 0 (root of the tree T) and n artificial arcs. For each column node j such that $T_j \in F$, (j is the root of subtree T_j), an artificial arc (j,0) with unit cost $c_{j0} = 0$ is introduced. Similarly, for each column node $j \notin F$ an artificial arc (0,j) with unit cost $c_{0j} = 0$ is introduced. Finally, it is set $x_{0j}(T) = |d(j) - 2|$ and $x_{j0}(T) = |d(j) - 2|$, where d(j) is the degree of node j after the insertion of the artificial arcs.

Let p be the column node such that $u_i(Q) = c_{ip}$. Then, the arc (i, p) is a basic arc of the forest Q. For each arc (i, p) we set $x_{ip} = 1$. The reduced costs s_{ij} can be computed using Relation 5. At this point note that $s_{ij}(Q) \ge 0$, which means that forest Q is dual feasible. The initial set F is $F = \{T_j : d(j) < 2\}$. A general dual feasible forest for an AP of size p is illustrated in Figure 3.

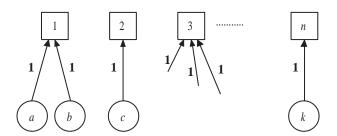


Figure 3. The general AKP forest for an $(n \times n)$ Assignment Problem.

3.4. An illustrative example

The cost matrix $C = \{c_{ij}\}$, $\forall (i,j) \in A$ of order n is the input data in an AP. Suppose, that we want to solve the AP having the following cost matrix

$$C = \begin{bmatrix} -7 & 7 & 8 & 1 \\ 0 & -1 & 2 & 9 \\ 3 & 0 & 9 & 1 \\ 1 & 12 & 4 & 5 \end{bmatrix}$$

If we apply the three initialization methods mentioned above in the example we take, in Figure 4, the following feasible solutions

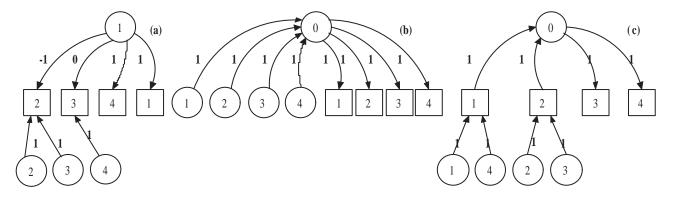


Figure 4. Starting solutions: (a) Balinski, (b) Simple Start, (c) Dual Feasible Forest.

4. Computational Experiments

In this section we present our numerical results and we briefly discuss some important implementation characteristics of the three initialization methods. In order to test the computational behavior of the three different initialization methods we have used benchmark instances from TSPLib95 [20] and OR-Library [21]. The TSPLib95 and OR-Library are well known suites containing many hard to solve optimization problems. All instances have full dense cost matrices. The cost matrix $C = \{c_{ij}\} \forall (i,j) \in A$ of order n is the input data in an AP. The order of the cost matrix varies up to 1400 rows and columns. Our numerical experiments were performed on a PC with 2.4 GHz P4 processor, RAM 512 Mb and with Windows XP Pro operating system. The three initialization methods have been programmed in MATLAB 7.0.1 in exactly the same way. This means that the codes used have been written following the same programming techniques adjusted every time to the special characteristics of each initialization method. For each collection, the results are summarized with a table and a figure. The reported CPU times were computed with the built-in function cputime. The given times are net times and do not include times for the input.

Moreover, in order to compute the nodes of the T^* tree, we have used a function that returns the vector of the preorder traversal of a tree of root x. This preorder traversal can be implemented non-recursively or recursively. During the first phase of the EPSA implementation we used the non-recursive version of the preorder traversal. We observe that nearly 50% of the CPU time was absorbed by this function, increasing in this way the overall execution time of EPSA. For this reason, we implemented preorder traversal recursively. In the rest of the paper the first

initialization method is denoted by (Bal), the second by (SS) and the third by (AKP).

4.1. Benchmark APs (TSPLib 95)

In order to gain a deeper insight into the practical behaviour of the three initialization methods, we tested them on some benchmark instances taken from TSPLib 95 [20]. TSPLib 95 is a library of sample instances of the Travelling Salesman Problem (TSP) from various sources and of various types. In our study we have solved instances that belong to two classes. These classes are symmetric $(c_{ij} = c_{ji}, i, j = 1, 2, ..., n, i \neq j)$ and assymetric $(c_{ij} \neq c_{ji}, i, j = 1, 2, ..., n, i \neq j)$ TSPs. Given a set of nodes and distances for each pair of nodes, find a roundtrip of minimal total length visiting each node exactly once. Roughly speaking, the AP defines a lower bound for TSP. For this reason it is important to test the efficiency of the initialization methods on these benchmark instances. All the diagonal elements of the TSPs are equal to zero. In order to solve these instances as APs using EPSA, we assigned to these entries, c_{ii} , i = 1, 2, ..., n a large positive value M. This positive value is equal to 10^8 .

In Table 1 we present our computational results on symmetric TSPs by alphabetical order. The total number of symmetric TSPs solved is 71. These instances are all very different from each other, especially in the structure of the cost matrix. The entries of the cost matrix are computed using various distance functions. These functions are Euclidean distance, pseudo-Euclidean distance and geographical distance. For more details see [20]. Also, the size n of the instances ranges from 14 to 1400. The first two columns of Table 1 contain the name and the size of the TSP. In column 3 the optimal value of the objective function for each one instance is displayed. The remaining columns (columns 4 to 9) show the number of iterations and CPU time in seconds for each one of the three initialization methods. The last row of Table 1 defines the average number of iterations and the average CPU time over all test instances.

Before analyzing the results collected in Table 1 we would like to warn the reader that the computational results depend on many factors. For example, the choice of instances, the structure of the cost matrix, the choice of programming language, the choice of computing environment, all these factors influence the relative performance of the three initialization methods. All TSPs were solved within the time limit. The average number of iterations for the initialization methods Bal, SS and AKP is 1309.155, 741.197 and 416.380 iterations respectively. The corresponding average CPU times (in seconds) are 54.695, 34.306 and 18.778. Table 2 contains the normalized ratios taken from Table 1. As we can see from Table 2, AKP is about 3.176 times faster than Bal in terms of number of iterations and about 3.238 times faster in terms of CPU time over all symmetric TSPs. From the same Table we observe that AKP is also faster than SS over all instances. Particularly, AKP is about 1.940 times faster than SS in terms of number of iterations and about 2.105 times faster in terms of CPU time.

In order to show more clearly the superiority of the initialization method AKP over the other methods we plot the number of iterations and the CPU time of the seven largest symmetric TSPs (Figures 5 and 6).

mame		SPLib95	_	ric instances,					
2820 280 2423 1252 8.200 603 4.245 358 2.344 ali353 535 155,915 1870 36.773 1548 31.975 983 18.580 att458 48 8428 127 0.084 94 0.059 47 0.028 att552 522 22.783 2343 46.648 1198 25.523 623 12.578 berlin22 52 6287 134 0.059 124 0.084 62 0.039 bir122 127 95,802 334 0.633 398 0.766 255 0.456 bir124 127 95,802 334 0.633 398 0.766 255 0.456 bir124 127 95,802 334 0.033 398 0.766 255 0.456 bir124 130 4381 384 0.745 222 0.011 15 0.003 chi50 130 4381 384 0.745 222 0.016 15 0.003 d198 198 10,607 654 2.553 485 1.900 288 1.050 d493 493 30,286 2512 43,023 1468 26.555 999 15.227 d4657 657 40,661 2532 43.023 1468 26.555 999 15.227 d1201 1201 40,698 4742 500.669 3114 357.234 1859 171.281 cibi	name	n	zvalue						
att	.000	000	0.402						
att 48									
berlin52 52 6267 134 0.092 124 0.084 62 0.038 berlin52 52 627 134 0.092 124 0.084 62 0.038 berlin52 52 627 134 0.092 124 0.084 62 0.038 berlin52 52 6287 134 0.092 124 0.084 62 0.038 berlin52 127 95.802 334 0.033 395 0.786 255 0.456 brazil58 58 16.565 154 0.122 127 0.100 62 0.046 brazil58 58 16.565 154 0.122 127 0.100 62 0.046 brazil58 58 16.565 154 0.122 127 0.100 62 0.046 brazil58 58 16.565 154 0.122 127 0.100 62 0.046 brazil58 58 16.565 150 0.383 0.136 4381 384 0.745 222 0.486 90 0.192 0.111 16 0.003 0.136 0.136 0.136 130 4381 384 0.745 222 0.486 90 0.192 0.150 0.383 0.186 180 10.007 664 2.565 455 150 0.288 1.050 0.383 0.186 180 10.007 664 2.565 455 150 0.088 0.150 0.383 0.186 0.150 0.150 0.186 0.150 0.150 0.186 0.150 0.150 0.186 0.150 0.150 0.186 0.150 0.150 0.186 0.150 0.150 0.186 0.150 0.150 0.186 0.150 0.150 0.186 0.150 0.			,						
berlin Der D									
brazil September Septemb									
Durmal4		127	95,802	334	0.633	395	0.786	255	0.456
chi30 130 438 384 0.745 222 0.486 90 0.192 chi50 150 1558 5558 551 1.341 299 0.786 150 0.383 dil98 198 10.607 654 2.553 485 1.900 2288 1.050 did93 493 30.286 2242 43.023 1468 26.555 909 15.227 di657 657 40.561 2332 73.767 1660 15.972 983 27.995 di129 1291 40.698 4742 500.969 3114 357.234 1859 171.281 cilifo 76 484 265 0.269 177 0.186 101 0.097 cilil0 101 571 345 0.477 238 0.363 134 0.186 di417 417 7422 1224 16.019 842 11.811 511 6.503 fl1400 1400 11.988 5884 751.659 3902 522.700 3349 422.694 gil262 202 1922 866 5.155 571.205 317 0.716 gr137 137 57.224 557 1.205 317 0.716 178 0.367 gr202 202 34.262 834 3.070 604 2.686 393 1.394 kroA150 150 20.948 346 98.817 1929 55.417 1210 34.514 kroA150 150 20.482 419 1.044 266 0.772 48 1.089 kroA150 150 20.482 419 1.000 317 0.295 93 0.131 kroA150 150 20.482 419 1.000 317 0.899 1.66 0.395 kroB150 000 17.087 244 0.331 197 0.295 93 0.131 kroA150 150 20.482 419 1.000 317 0.809 166 0.395 kroB150 100 16.738 309 0.433 125 0.320 105 0.442 kroA150 150 20.482 419 1.000 317 0.809 166 0.395 kroB150 100 16.788 309 0.433 125 0.320 105 0.442 kroB100 100 16.788 309 0.433 125 0.320 105 0.442 kroB100 100 16.788 309 0.433 125 0.320 105 0.442 kroB100 100 16.788 309 0.433 125 0.320 105 0.442 kroB100 100 16.885 283 0.403 182 0.275 80 0.113 pr143 431 432,472 436 436 436 437 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439 438 439	brazil58	58	16,565	154	0.122	127	0.100	62	0.044
Chi 150 150 5558 551 1.341 299 0.780 150 0.383 4193 493 30,286 2542 43,023 1468 26,555 909 15,227 41697 657 40,661 2332 73,767 1666 31,972 983 27,995 41291 1291 40,698 4742 500,969 3114 357,234 1859 171,281 eli51 51 376 151 0.098 117 20,311 eli76 76 484 265 0.269 177 0.186 101 0.097 eli101 101 571 345 0.477 238 0.363 134 0.186 fl4107 1417 7422 1224 16,199 842 11,811 511 6,503 fl1400 1400 11,988 584 751,059 3962 522,700 3349 422,694 gl262 262 49,329 866 5.153 571 3.545 303 1.776 gr137 137 57,224 557 1.206 317 0.716 178 0.367 gr202 202 34,622 834 3.070 694 2.666 393 1.089 gr431 31 437,17 214 3669 98,817 106 16,503 367 121 3.545 gr666 666 252,944 3469 98,817 1929 594,47 1210 34,513 kroA150 150 21,515 448 1.044 296 1.672 943 1.089 kroB150 150 20,482 449 1.000 317 0.275 943 0.134 kroA150 150 21,515 448 1.044 296 1.672 943 1.089 kroB150 150 20,482 449 1.000 317 0.297 89 0.143 kroA150 150 21,515 448 1.044 296 0.1672 196 0.148 kroB100 100 16,738 309 0.433 122 0.320 105 0.148 kroB100 100 16,885 283 0.403 182 0.320 105 0.148 kroB100 100 16,885 283 0.403 182 0.325 89 0.113 hin18 318 27,289 978 7.944 651 5.747 288 2.445 pr144 442 48,830 2304 32,813 1175 17,948 998 9.688 pr76 76 77,119 195 0.148 32,133 1175 17,948 998 9.688 pr150 150 20,482 449 1.000 317 0.330 0.55 99 0.153 pr144 442 48,830 2304 32,813 1175 17,948 998 9.688 pr167 67 67 67 67 67 67 67									
d198 198 19,007 654 2,553 485 1,990 288 1,050 1,520 1,667 657 49,561 2332 73,767 1660 1,51972 983 27,995 1,6191 1,61972 1,61972 1,61972 1,61973 1,									
d493									
def-67 657 49,561 2532 73,767 1669 3144 357,234 1859 171,281 def-61 6151 51 376 151 0.098 101 0.067 51 0.031 def-61 76 484 265 0.269 177 0.186 101 0.097 def-61 101 571 345 0.477 238 0.363 134 0.186 def-61 110 101 571 345 0.477 238 0.363 134 0.186 def-61 1417 7422 1224 16.019 842 11.811 511 6.503 def-61 1400 11.988 5884 751.659 3962 522.700 3349 422.694 gil262 262 1922 866 5.153 571 3.545 303 422.694 gil262 262 1922 866 5.153 571 3.545 303 422.694 gr137 137 57,224 557 1.055 317 0.716 178 3.594 gr290 202 34,262 834 3.070 694 2.686 393 1.394 gr290 229 108,073 911 4.038 467 2.308 231 1.089 gr431 431 142,117 2164 29,759 1156 16.595 671 8.996 gr666 666 252,044 3469 98 17 1929 59.417 1210 34.514 kroA150 150 21,151 448 1.044 296 0.772 148 0.378 kroB100 100 17,087 244 0.331 197 0.295 93 0.131 kroB100 100 16,791 2775 0.391 1.93 0.288 87 0.128 kroB150 150 20,482 419 1.000 317 0.809 166 0.395 kroB150 100 16,788 399 0.433 1.315 0.288 87 0.128 kroB100 100 16,788 390 0.433 1.57 0.320 105 0.142 kroB100 100 16,885 283 0.403 182 0.277 88 0.113 lin103 105 8056 284 0.445 212 0.330 0.90 0.142 kroB100 100 16,885 283 0.403 182 0.277 88 0.413 lin103 105 8056 284 0.445 212 0.336 92 pr144 144 20,008 354 0.404 355 0.536 68 0.161 pr152 476 476 477 477 478 47									
di									
eii51 51 376 151 0.098 101 0.067 51 0.031 eii70 76 484 265 0.269 177 0.186 101 0.097 eii101 101 571 345 0.477 238 0.363 134 0.186 flat7 417 7422 1224 16.019 842 11.811 511 6.503 flat00 1400 11.988 5884 751.659 3962 522.700 3349 422.694 gil262 202 1922 866 5.153 571 3.545 303 1.777 gr96 96 46.319 342 0.472 211 0.298 119 0.156 gr137 137 57.244 557 1.205 317 0.716 178 0.367 gr202 202 34.262 834 3.070 694 2.686 303 1.394 gr229 229 108.973 911 4.038 467 2.308 231 1.089 gr431 431 142.117 2164 29.759 1156 16.595 671 8.367 gr66 666 525.944 3469 98.17 1929 59.417 1210 34.514 kroA150 150 21.515 448 1.044 296 0.772 148 kroA150 150 21.515 448 1.044 296 0.772 148 kroB100 100 17.087 244 0.331 197 0.295 93 0.131 kroB100 100 16.791 275 0.391 193 0.288 87 193 kroB100 100 16.791 275 0.391 193 0.288 87 0.763 kroB100 100 16.788 309 0.433 215 0.320 166 0.395 kroB100 100 16.540 264 0.375 210 0.313 105 0.762 kroB100 100 16.540 264 0.375 210 0.313 105 0.142 kroB100 100 16.540 264 0.375 210 0.313 106 0.142 kroB100 100 16.540 264 0.375 210 0.313 106 0.142 kroB100 100 16.540 264 0.375 210 0.313 106 0.142 kroB100 100 16.540 264 0.375 5.747 288 2.445 pr144 444 20.008 354 0.045 1.59 0.366 188 0.395 0.058 pr145 155 20.432 471 1.019 2.563 368 1.495 1.79 pr144 144 20.008 354 0.636 288 0.536 68 0.161 pr124 124 38.925 330 0.636 188 0.395 92 0.150 pr145 105 8565 284 0.445 0.395 1.598 0.448 pr167 107 24.207 275 0.436 181 0.305 92 0.550 pr144 144 20.008 354 0.666 3.667 3.82 1.480 1.938 pr167 107 24.20									
ce 176									
fil10 417 7422 1224 16.019 842 11.811 511 6.503 fil100 1400 11.988 5884 751.659 3962 522.700 3349 242.694 gr162 202 1922 866 5.153 571 3.545 303 1.777 gr90 64.319 342 0.472 211 0.298 119 0.156 gr137 137 57.224 557 1.205 317 0.716 178 0.367 gr202 229 108.973 911 4.038 467 2.308 231 1.089 gr431 431 42.177 2164 29.759 1156 16.595 671 8.366 gr431 431 42.177 1216 438 1.044 2.295 9.417 1210 34.51 kroA150 150 21.515 448 1.044 2.296 0.772 148 0.378 kroB150 100 </td <td></td> <td>76</td> <td></td> <td></td> <td></td> <td>177</td> <td>0.186</td> <td>101</td> <td>0.097</td>		76				177	0.186	101	0.097
Fil	eil101	101	571	345	0.477	238	0.363	134	0.186
g1262 262 1922 886 5.153 571 3.545 303 1.777 g96 96 46.519 342 0.472 211 0.298 119 0.156 gr137 137 57.224 557 1.205 317 0.716 178 0.367 gr220 202 34.262 834 3.070 694 2.686 393 1.394 gr229 229 108.973 911 4.038 467 2.308 231 1.089 gr331 431 142.117 2164 29.759 1156 16.595 671 8.936 gr666 666 25.944 3469 98.17 1929 59.417 1210 34.514 kr0A150 150 21.515 448 1.044 296 0.772 148 0.378 kr0A150 150 21.515 448 1.044 296 0.772 148 0.378 kr0B100 100 16.791 275 0.391 193 0.288 87 0.128 kr0B100 100 16.791 275 0.391 193 0.288 87 0.128 kr0B100 100 16.738 309 0.433 215 0.320 105 0.395 kr0B100 100 16.540 2264 0.375 210 0.313 166 0.148 kr0E100 100 16.685 283 0.403 182 0.275 80 0.113 kr0B100 100 16.685 283 0.403 182 0.275 80 0.113 kr0B101 100 16.685 284 0.445 212 0.336 92 0.142 kr0B100 100 16.805 284 0.445 212 0.336 92 0.142 kr0B101 100 16.805 284 0.445 212 0.336 92 0.142 kr0B102 100 24.207 275 0.336 182 0.275 80 0.113 kr0E100 100 16.805 284 0.445 212 0.336 92 0.142 kr0B104 442 46.830 2304 32.813 1175 17.948 698 588 pr64 654 23.509 2692 78.889 1576 50.752 825 22.217 pcb44 244 46.830 2304 32.813 1175 17.948 698 50.88 pr107 107 24.207 275 0.436 188 0.395 69 0.139 pr136 136 85.552 449 1.019 280 0.648 188 0.365 pr144 144 20.008 354 0.805 208 0.536 68 0.161 pr152 252 49.937 607 2.853 440 2.153 206 0.972 pr264 264 49.330 606 2.952 66.128 1.205 29.525 648 1.586 pr157 107 24.207 275 0.436 181 0.305 92 0.150 pr124 244 38.925 330 0.636 188 0.395 69			7422	1224					
gr196 96 46,319 342 0.472 211 0.298 119 0.156									
gr137 137 57,224 557 1,205 317 0.716 178 0.367 gr229 229 138,432 834 3,070 694 2,686 393 1,394 gr431 431 142,117 2164 29,759 1156 16,595 671 8,936 gr666 666 652,944 3499 98,817 1929 59,417 1210 34,514 kroA100 100 12,151 244 0.331 197 0.295 93 0.31 kroA100 100 16,791 275 0.391 193 0.288 87 0.128 kroB100 100 16,791 275 0.391 193 0.288 87 0.128 kroB150 120 20,382 419 1.060 317 0.409 160 0.375 kroB100 100 16,738 309 0.433 215 0.320 105 404 kroB100 100									
gr2202 202 34,262 834 3.070 694 2.686 393 1.398 gr431 431 142,117 2164 29,759 1156 16,595 671 8.936 gr666 666 252,944 3469 98,817 1929 59,417 1210 34,514 kr0A100 100 17,087 244 0.331 197 0.295 93 0.131 kr0A200 200 23,096 684 2.495 404 1.639 197 0.763 kr0B100 100 16,791 275 0.391 193 0.288 87 0.128 kr0B100 100 16,791 275 0.391 193 0.288 87 0.128 kr0B100 100 16,791 275 0.391 193 0.288 87 0.128 kr0B100 100 16,540 204 0.375 210 0.313 106 0.142 kr0D100 106 <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			,						
gr/229 29 108,973 911 4.038 467 2.308 231 1.089 gr/331 431 142,117 2164 29,759 1156 16.595 671 8.036 gr/666 666 252,944 3469 98.817 1929 59.417 1210 34.514 kroA150 100 17,087 244 0.331 197 0.295 93 0.131 kroA100 100 16,791 2275 0.391 193 0.288 87 0.128 kroB100 100 16,791 275 0.391 193 0.288 87 0.128 kroB100 100 16,781 39 0.433 215 0.320 106 0.395 kroB100 100 16,540 264 0.375 210 0.313 106 0.148 kroE100 100 16,540 264 0.345 212 0.336 92 0.142 kroE100 100<			,						
gr431									
gr666 666 252,944 3469 98.817 1929 59.417 1210 34.514									
kroA300		666	252,944	3469	98.817	1929	59.417	1210	34.514
RroB100 100 16,791 275 0.391 193 0.288 87 0.128 RroB150 150 20,482 419 1.000 317 0.809 166 0.395 RroB200 200 23,409 709 2.563 368 1.495 179 0.703 RroB100 100 16,738 309 0.433 215 0.320 105 0.142 RroB100 100 16,685 283 0.403 122 0.313 106 0.148 RroB100 100 16,685 283 0.403 182 0.275 80 0.113 Ini105 105 8956 284 0.445 212 0.336 92 0.142 Ini318 318 27,289 978 7.944 651 5.747 288 2.445 2445 442 46,830 2304 32,813 1175 17,948 698 9.688 pr6 676 77,119 195 0.194 153 0.158 80 0.078 pr107 107 24,207 275 0.436 181 0.305 92 0.150 pr124 124 38,925 330 0.636 188 0.305 92 0.150 pr134 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.441 pr226 226 49,937 607 2.853 440 2.153 206 0.972 pr226 226 49,937 607 2.853 440 2.153 206 0.972 pr226 226 49,937 607 2.853 440 2.153 206 0.972 pr226 226 49,937 607 2.853 440 2.153 206 0.972 pr226 226 49,937 607 2.853 440 2.153 206 0.972 pr226 226 49,937 607 2.853 440 2.153 206 0.972 pr264 244 24,044 402 1.039 308 0.839 152 0.414 pr439 439 76,887 1.471 20.841 842 2.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat755 575 6006 2,932 66.128 1,205 29.555 648 1.5386 4.944 1.944 4.940 1.944 1.944 3.948 1.914 4.940 1.944 3.948 3.134 3.144 3.948 3.134 3.866 4.914 3.948 3.135 3.314 3.985 3.315 3.314 3.985 3.315 3.314 3.945 3.315 3.314 3.948 3.315 3.314 3.948 3.315 3.314 3.948 3.315 3.314 3.948 3.315 3.314 3.948 3.315 3.314 3.948 3.315 3.314 3.948 3.315 3.314 3.94	kroA100	100	17,087	244	0.331	197	0.295	93	0.131
RroB100									
RroB150			-,						
RroB200 200 23,409 709 2.563 368 1.495 179 0.705 RroC100 100 16,738 309 0.433 215 0.320 105 0.142 RroD100 100 16,540 264 0.375 210 0.313 106 0.148 RroE100 100 16,685 283 0.403 182 0.275 80 0.113 Ilin105 105 8956 284 0.445 212 0.336 92 0.142 18318 318 27,289 978 7.944 651 5.747 288 2.445 2.455 2.2.217 2.455 2.2.217 2.455 2.455 2.2.217 2.455 2.455 2.2.217 2.455			,						
RroC100									
RroD100			-,						
RroE100			- ,						
Ini	kroE100	100		283		182		80	0.113
p654 654 23,509 2692 78.889 1576 50.752 825 22.217 pcb442 442 46,830 2304 32.813 1175 17.948 698 9.688 pr76 76 77,119 195 0.194 153 0.158 80 0.078 pr107 107 24,207 275 0.436 181 0.305 92 0.150 pr136 136 85,552 330 0.636 188 0.395 69 0.139 pr136 136 85,552 459 1.019 280 0.648 168 0.363 pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.414 pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,88	lin105	105	8956	284	0.445	212	0.336	92	0.142
pcb442 442 46,830 2304 32.813 1175 17.948 698 9.688 pr107 76 77,119 195 0.194 153 0.158 80 0.078 pr107 107 24,207 275 0.436 181 0.305 92 0.150 pr124 124 38,925 330 0.636 188 0.395 69 0.139 pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.414 pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,881 1,292 9.406 540 4.413 248 1.914 pr439 439 76,887<									
pr76 76 77,119 195 0.194 153 0.158 80 0.078 pr107 107 24,207 275 0.436 181 0.305 92 0.150 pr124 124 38,925 330 0.636 188 0.395 69 0.139 pr136 136 85,552 459 1.019 280 0.648 168 0.363 pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.414 pr264 226 49,937 607 2.853 440 2.153 206 0.972 pr294 299 39,881 1,292 9.406 540 4.413 248 1.914 pr439 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,01									
pr107 107 24,207 275 0.436 181 0.305 92 0.150 pr124 124 38,925 330 0.636 188 0.395 69 0.139 pr136 136 85,552 459 1.019 280 0.648 168 0.363 pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.414 pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,881 1,292 9.406 540 4.413 248 1.914 pr409 1002 214,013 4846 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2									
pr124 124 38,925 330 0.636 188 0.395 69 0.139 pr136 136 85,552 459 1.019 280 0.648 168 0.363 pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.414 pr266 226 49,937 607 2.853 440 2.153 206 0.972 pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,881 1,292 9.406 540 4.413 248 1.914 pr439 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99									
pr136 136 85,552 459 1.019 280 0.648 168 0.363 pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.414 pr264 226 49,937 607 2.853 440 2.153 206 0.972 pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,881 1,292 9.406 540 4.413 248 1.917 pr439 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 9 1089 403 0.584 217 0.320 117 0.166 rat195 195									
pr144 144 20,008 354 0.805 208 0.536 68 0.161 pr152 152 43,044 402 1.039 308 0.839 152 0.414 pr264 226 49,937 607 2.853 440 2.153 206 0.972 pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,881 1,292 9.406 540 4.413 248 1.914 pr439 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575									
pr226 226 49,937 607 2.853 440 2.153 206 0.972 pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,881 1,292 9.406 540 4.413 248 1.914 pr439 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100						208		68	
pr264 264 33,026 888 5.045 493 3.138 224 1.317 pr299 299 39,881 1,292 9.406 540 4.413 248 1.914 pr1939 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100 6559 305 0.453 211 0.317 116 0.164 rd400 400<	pr152		43,044	402	1.039		0.839		0.414
pr299 299 39,881 1,292 9.406 540 4.413 248 1.914 pr439 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100 6559 305 0.453 211 0.317 116 0.164 rd400 400 12,360 1545 17.736 783 10.314 386 4.914 r11304 1									
pr439 439 76,887 1,471 20.841 842 12.933 415 6.036 pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100 6559 305 0.453 211 0.317 116 0.164 rd400 400 12,360 1545 17.736 783 10.314 386 4.914 rl1304 1304 189,885 4406 477.436 2518 313.114 1194 130.938 si175									
pr1002 1002 214,013 4546 294.227 2221 157.386 1207 80.491 rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100 6559 305 0.453 211 0.317 116 0.164 rd400 400 12,360 1545 17.736 783 10.314 386 4.914 rl1304 1304 189,885 4406 477.436 2518 313.114 1194 130.938 si175 175 20,243 477 1.505 377 1.239 233 0.703 si535 535 45,204 1164 22.261 947 20.731 490 10.005 si1032 1032 90,698 2319 152.338 1626 121.120 680 43.791 st70 70 519 200 0.194 149 0.147 75 0.077 swiss42 42 1009 101 0.064 72 0.045 31 0.016 ts225 225 115,605 1271 6.266 457 2.241 336 1.430 tsp225 225 3418 883 4.039 431 2.083 219 1.023 u159 159 34,649 567 1.484 296 0.856 146 0.405 u174 774 775 0.077 4.074 774 775 77									
rat99 99 1089 403 0.584 217 0.320 117 0.166 rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100 6559 305 0.453 211 0.317 116 0.164 rd400 400 12,360 1545 17.736 783 10.314 386 4.914 r11304 1304 189,885 4406 477.436 2518 313.114 1194 130.938 si175 175 20,243 477 1.505 377 1.239 233 0.703 si1032 1032 90,698 2319 152.338 1626 121.120 680 43.791 st70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
rat195 195 2095 723 2.716 382 1.480 193 0.717 rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100 6559 305 0.453 211 0.317 116 0.164 rd400 400 12,360 1545 17.736 783 10.314 386 4.914 rl1304 1304 189,885 4406 477.436 2518 313.114 1194 130.938 si175 175 20,243 477 1.505 377 1.239 233 0.703 si5535 535 45,204 1164 22.261 947 20.731 490 10.005 si1032 1032 90,698 2319 152.338 1626 121.120 680 43.791 st70									
rat575 575 6006 2,932 66.128 1,205 29.525 648 15.386 rat783 783 7443 3,808 152.239 1,543 71.867 758 32.819 rd100 100 6559 305 0.453 211 0.317 116 0.164 rd400 400 12,360 1545 17.736 783 10.314 386 4.914 rl1304 1304 189,885 4406 477.436 2518 313.114 1194 130.938 si175 175 20,243 477 1.505 377 1.239 233 0.703 si1032 1032 90,698 2319 152.338 1626 121.120 680 43.791 st70 70 519 200 0.194 149 0.147 75 0.077 swiss42 42 1009 101 0.064 72 0.045 31 0.016 tsp225 22									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	swiss42						0.045		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
u724 724 35,792 4201 142.858 1478 55.714 733 26.756 u1060 1060 183,314 4994 354.372 2550 201.409 1500 106.028 ulysses16 16 5458 28 0.014 32 0.011 18 0.005 ulysses22 22 5767 43 0.025 48 0.014 26 0.008 vm1084 1084 191,354 4456 327.564 2227 187.350 1126 86.145									
u1060 1060 183,314 4994 354.372 2550 201.409 1500 106.028 ulysses16 16 5458 28 0.014 32 0.011 18 0.005 ulysses22 22 5767 43 0.025 48 0.014 26 0.008 vm1084 1084 191,354 4456 327.564 2227 187.350 1126 86.145									
ulysses16 16 5458 28 0.014 32 0.011 18 0.005 ulysses22 22 5767 43 0.025 48 0.014 26 0.008 vm1084 1084 191,354 4456 327.564 2227 187.350 1126 86.145									
ulysses22 22 5767 43 0.025 48 0.014 26 0.008 vm1084 1084 191,354 4456 327.564 2227 187.350 1126 86.145									
vm1084 1084 191,354 4456 327.564 2227 187.350 1126 86.145									
Average 1309.155 54.695 741.197 34.306 416.380 18.778									86.145
	Average			1309.155	54.695	741.197	34.306	416.380	18.778

Table 3 demonstrates the performance of the three initialization methods on asymmetric TSPs. The asymmetric TSPs have at most 171 rows and columns and are generally easy for all the initialization methods. We solved 15 asymmetric instances in total. The average running times for the three initialization methods Table 2. Normalized iterations and CPU time averages for symmetric TSPs

ric TSPs					_		
n	niter		niter S		AKP niter cpu		
a280	3.497	3.499	1.684	cpu 1.811	1.00	1.00	
ali535	1.902	1.968	1.575	1.721	1.00	1.00	
att48	2.702	3.000	2.000	2.111	1.00	1.00	
att532	3.761	3.709	1.923	2.029	1.00	1.00	
berlin52	2.161	2.360	2.000	2.160	1.00	1.00	
bier127	1.310	1.387	1.549	1.723	1.00	1.00	
brazil58	2.484 1.938	2.786 3.994	2.048	2.286 3.495	1.00	1.00	
burma14 ch130	4.267	3.878	1.813 2.467	2.528	1.00	1.00	
ch150	3.673	3.502	1.993	2.037	1.00	1.00	
d198	2.271	2.432	1.684	1.810	1.00	1.00	
d493	2.796	2.826	1.615	1.744	1.00	1.00	
d657	2.576	2.635	1.689	1.856	1.00	1.00	
d1291	2.551	2.925	1.675	2.086	1.00	1.00	
eil51 eil76	2.961 2.624	3.150 2.774	1.980	2.150	1.00	1.00	
eil101	2.575	2.774	1.752 1.776	1.919 1.950	1.00	1.00	
fl417	2.395	2.463	1.648	1.816	1.00	1.00	
fl1400	1.757	1.778	1.183	1.237	1.00	1.00	
gil262	2.858	2.901	1.884	1.996	1.00	1.00	
gr96	2.874	3.020	1.773	1.910	1.00	1.00	
gr137	3.129	3.281	1.781	1.949	1.00	1.00	
gr202	2.122	2.203	1.766	1.927	1.00	1.00	
gr229 gr431	3.944 3.225	3.707 3.330	2.022 1.723	2.119 1.857	1.00	1.00	
gr431 gr666	2.867	2.863	1.723	1.722	1.00	1.00	
kroA100	2.624	2.524	2.118	2.250	1.00	1.00	
kroA150	3.027	2.760	2.000	2.041	1.00	1.00	
kroA200	3.472	3.273	2.051	2.150	1.00	1.00	
kroB100	3.161	3.049	2.218	2.244	1.00	1.00	
kroB150	2.524	2.530	1.910	2.047	1.00	1.00	
kroB200	3.961	3.636	2.056	2.122	1.00	1.00	
kroC100 kroD100	2.943 2.491	3.044 2.526	2.048 1.981	2.253 2.105	1.00	1.00	
kroE100	3.538	3.583	2.275	2.103	1.00	1.00	
lin105	3.087	3.132	2.304	2.363	1.00	1.00	
lin318	3.396	3.249	2.260	2.350	1.00	1.00	
p654	3.263	3.551	1.910	2.284	1.00	1.00	
pcb442	3.301	3.387	1.683	1.853	1.00	1.00	
pr76	2.438	2.480	1.913	2.020	1.00	1.00	
pr107 pr124	2.989 4.783	2.906 4.573	1.967 2.725	2.031 2.843	1.00	1.00	
pr136	2.732	2.810	1.667	1.789	1.00	1.00	
pr144	5.206	5.000	3.059	3.330	1.00	1.00	
pr152	2.645	2.509	2.026	2.026	1.00	1.00	
pr226	2.947	2.936	2.136	2.215	1.00	1.00	
pr264	3.964	3.830	2.201	2.382	1.00	1.00	
pr299	5.210	4.914	2.177	2.305	1.00	1.00	
pr439 pr1002	3.545 3.766	3.453 3.655	2.029 1.840	2.143 1.955	1.00	1.00	
rat99	3.444	3.528	1.855	1.934	1.00	1.00	
rat195	3.746	3.786	1.979	2.063	1.00	1.00	
rat575	4.525	4.298	1.860	1.919	1.00	1.00	
rat783	5.024	4.639	2.036	2.190	1.00	1.00	
rd100	2.629	2.762	1.819	1.933	1.00	1.00	
rd400 rl1304	4.003 3.690	3.609 3.646	2.028 2.109	2.099 2.391	1.00	1.00	
si175	2.047	2.140	1.618	1.762	1.00	1.00	
si535	2.376	2.225	1.933	2.072	1.00	1.00	
si1032	3.410	3.479	2.391	2.766	1.00	1.00	
st70	2.667	2.531	1.987	1.918	1.00	1.00	
swiss42	3.258	4.099	2.323	2.899	1.00	1.00	
ts225	3.783	4.383	1.360	1.567	1.00	1.00	
tsp225	4.032 3.884	3.947	1.968 2.027	2.035 2.116	1.00	1.00	
u159 u574	4.516	3.668 4.283	1.962	2.116	1.00	1.00	
u724	5.731	5.339	2.016	2.032	1.00	1.00	
u1060	3.329	3.342	1.700	1.900	1.00	1.00	
ulysses16	1.556	2.998	1.778	2.333	1.00	1.00	
ulysses22	1.654	3.172	1.846	1.784	1.00	1.00	
vm1084	3.957	3.802	1.978	2.175	1.00	1.00	
Average	3.176	3.238	1.940	2.105			

(Bal, SS, AKP) are 0.186, 0.161 and 0.084 seconds respectively. From Table 3 we can observe that AKP performs better than Bal and SS on the asymmetric instances. In Table 4 we give the normalized ratios taken from Table 3.

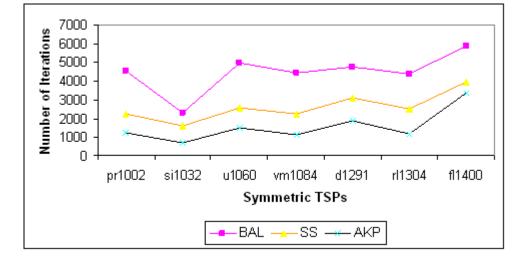


Figure 5. Number of iterations for the largest symmetric TSPs.

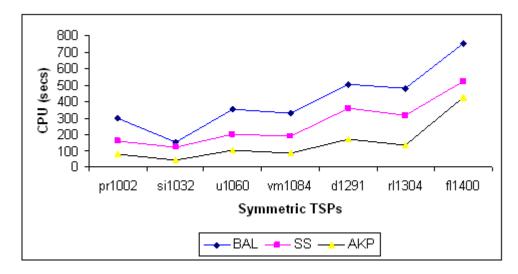


Figure 6. CPU time (in seconds) for the largest symmetric TSPs.

Table 3. TSPLib95: Asymmetric instances, (time in seconds)

name	n	zvalue	Bal		SS		AKP	
			niter	cpu	niter	cpu	niter	cpu
br17	17	0	23	0.009	23	0.011	10	0.006
ft53	53	5931	152	0.103	143	0.098	94	0.057
ft70	70	37,978	198	0.181	206	0.203	145	0.130
ftv33	34	1185	74	0.050	70	0.036	36	0.020
ftv35	36	1381	82	0.045	75	0.042	40	0.025
ftv38	39	1438	90	0.050	84	0.044	45	0.022
ftv44	45	1521	105	0.066	92	0.056	47	0.028
ftv47	48	1652	110	0.077	102	0.069	54	0.041
ftv55	56	1435	130	0.105	106	0.080	52	0.038
ftv64	65	1721	163	0.139	139	0.122	76	0.063
ftv70	71	1766	172	0.164	127	0.128	63	0.058
ftv170	171	2631	460	1.320	352	1.116	193	0.575
kro124p	100	33,978	285	0.392	193	0.298	99	0.144
p43	43	148	106	0.073	85	0.047	50	0.025
ry48p	48	12,517	146	0.010	83	0.059	36	0.028
Average			153.067	0.186	125.333	0.161	69.333	0.084

Table 4. Normalized iterations and CPU time averages for asymmetric TSPs

n Bal SS AKI						
n						
	niter	cpu	niter	cpu	$_{ m niter}$	cpu
br17	2.300	1.440	2.300	1.744	1.00	1.00
ft53	1.617	1.803	1.521	1.721	1.00	1.00
ft70	1.366	1.398	1.421	1.566	1.00	1.00
ftv33	2.056	2.462	1.944	1.770	1.00	1.00
ftv35	2.050	1.812	1.875	1.688	1.00	1.00
ftv38	2.000	2.285	1.867	2.000	1.00	1.00
ftv44	2.234	2.333	1.957	2.000	1.00	1.00
ftv47	2.037	1.884	1.889	1.692	1.00	1.00
ftv55	2.500	2.792	2.038	2.125	1.00	1.00
ftv64	2.145	2.225	1.829	1.950	1.00	1.00
ftv70	2.730	2.838	2.016	2.216	1.00	1.00
ftv170	2.383	2.296	1.824	1.940	1.00	1.00
kro124p	2.879	2.728	1.949	2.076	1.00	1.00
p43	2.120	2.938	1.700	1.875	1.00	1.00
ry48p	4.056	0.355	2.306	2.111	1.00	1.00
Average	2.298	2.106	1.896	1.898		

4.2. Benchmark APs (OR - Library)

In this section we evaluate the performance of the three initialization methods in a collection of test data sets taken from OR - Library [21]. We choose eight (8) dense APs from this collection. These instances were proposed by Beasley [22]. The size of the instances range from 100 to 800 with step 100. Table 5 compares the number of iterations and the CPU time of the three initialization methods in the selected data set. The value of the optimal solution for each one of the instances is given in the third column of the Table 5. From the data in Table 5 we can clearly see that AKP is faster than the other two methods on all test instances. The average speedup of the AKP compared to Bal and SS is 2.821 and 1.338 times. Finally, in Table 6 we give the normalized ratios taken from Table 5.

Table 5. OR - Library instances, (time in seconds)

name	n	zvalue	Ba	1	\mathbf{SS}		\mathbf{AKP}	
			niter	cpu	niter	cpu	niter	cpu
assign100	100	305	383	0.053	263	0.040	179	0.025
assign200	200	475	1210	0.435	612	0.244	436	0.168
assign300	300	626	2162	1.534	1031	0.819	776	0.567
assign400	400	804	3302	3.869	1801	2.291	1355	1.645
assign500	500	991	5147	9.119	2309	4.291	1873	3.245
assign600	600	1176	7430	18.193	2738	7.198	2432	6.078
assign700	700	1362	9755	32.374	3198	11.321	2697	9.070
assign800	800	1552	12,980	54.684	3684	16.670	3692	15.871
Average			5296.125	15.033	1954.500	5.359	1680.000	4.584

Table 6. Normalized iterations and CPU time averages for OR - Library APs

n	Bal		S	\mathbf{S}	AKP	
	niter	cpu	niter	cpu	niter	cpu
assign100	2.140	2.106	1.469	1.608	1.00	1.00
assign200	2.775	2.587	1.404	1.450	1.00	1.00
assign300	2.786	2.705	1.329	1.444	1.00	1.00
assign400	2.437	2.352	1.329	1.393	1.00	1.00
assign500	2.748	2.810	1.233	1.322	1.00	1.00
assign600	3.055	2.993	1.126	1.184	1.00	1.00
assign700	3.617	3.569	1.186	1.248	1.00	1.00
assign800	3.516	3.445	0.998	1.050	1.00	1.00
Average	2.884	2.821	1.259	1.338		

5. Discussion on the Initialization Methods

From the computational results reported in section 4, we make the following observations: (1) The AKP initialization method is faster than the other two methods in terms of CPU time with a speedup varying between 1.3 and 3.4 and (2) The speed of AKP compared to the speed of the other two methods increases with instance sizes. But, which factors are responsible for the computational superiority of AKP initialization method? In this section, we give a theoretical explanation that reveals the superiority of AKP.

The most important factor that determines the computational efficiency of an algorithm for APs is the quality of the initial solution. In our case, EPSA uses as an initial solution the data structure of a tree T. All the consequent trees that are computed during EPSA's execution can be assigned a numerical value $\alpha(T)$. This value, called column level or stage of a solution T, denotes the "distance" of a solution T from the optimal solution. The iterations are grouped in stages. The last computed tree of the last stage is optimal. The optimal solution has always column level 0. Every iteration of the EPSA aims at reducing the stage number of the current solution. Let us now examine the column level of each one of the three initialization methods.

5.1. Balinski tree

To compute the column level of the Balinski tree we use the following procedure. For each column node j we define the "level degree" $\beta(j)$ which is computed as follows [23]:

$$\beta(j) = \begin{cases} d(j) - 2, if d(j) \ge 3\\ 0, otherwise \end{cases}$$
 (7)

The column level of the initial Balinski tree solution T_1 is then defined [23] as

$$\alpha(\mathbf{T}_1) = \sum_{j=1}^n \beta(j) \le n - 1$$

Hence, EPSA using Balinski tree should pass through n levels in the worst case in order to reach the optimal solution.

5.2. Simple start

In [23] an algorithm for an mxn transportation problem that uses the same initial solution is described. In that paper, it is stated that the column level of the initial solution is $\sum_{i=1}^{n} b_i$, where b_i is the demand of column node i. Hence, in the AP we have that the column level of the simple start solution T_2 used by EPSA is always n, as the demand of all the column nodes in an assignment problem equals 1.

5.3. AKP

Finally, let us examine the column level of the AKP initial solution T_3 . To compute the column level of the AKP tree we use the same procedure used for the Balinski tree. Again it is

$$\alpha(\mathbf{T}_3) = \sum_{j=1}^n \beta(j) \le n - 1$$

where $\beta(j)$ is computed from Relation 7. It is easy to see that the upper bound n-1, in the previous relation, is only achieved when all the column nodes except for one have degree 1. This can be achieved only (1) if all the row nodes are connected with a single column node k and (2) if the input cost matrix C satisfies the relationship

$$c_{ik} = \min_{j=1,\dots,n} \left\{ c_{ij} \right\}$$

for all i = 1, 2, ..., n

Summarizing the above analysis we have that the column levels for the three initialization methods are

$$\alpha(T_1) = n \text{ and } \alpha(T_2) = \alpha(T_3) \le n - 1$$

which shows that the AKP initialization method is more closer to the optimal solution.

Finally, given that the number of the stages of the second initialization method is always n, one would expect that EPSA using this method would take more iterations to terminate. This is something that does not hold in practice, as one can see from the experimental results in Section 4. This is due to the fact that the nature of the initial solution used by EPSA is not the same. The initialization methods SS and AKP use a forest, whereas Bal initialization method uses a tree. It is well known that a tree consists of a data structure difficult to handle. EPSA using Bal initialization method visits only strong trees which are obtained from strongly feasible trees by removing the feasibility requirement. In this case it is time expensive to determine the pair of leaving and entering edge involved in a single iteration. The other two initialization methods (SS and AKP) maintain and update a forest rather than a single tree. Hence, there are also other criteria to consider apart from the number of stages when analyzing the computational performance of the three initialization methods. In Table 7 we present the computed number of stages for the test data sets taken from OR - Library. The data in Table 7 shows that the third initialization method (AKP) has the smallest number of stages over all benchmark instances. One can observe from Table 7, that EPSA using SS initialization method always takes the maximum number of stages, which is equal to n. But, why SS initialization method always performs better than Bal initialization method? After carefully examination of the computational behavior of SS initialization method, we observed that SS initialization method always takes fewer iteration per stage than Bal method. Also, these iterations consist of the T^* tree which has few nodes. Specifically, T^* tree consists of one or two nodes. Also, the same result hold for all the instances used in our experimental study. Hence, by using the theory concerning the column level of the separate tree solutions, we can justify the computational efficiency of EPSA using the AKP initialization method.

Table 7. Number of stages for the OR - Library APs									
name	n	Bal	SS	AKP					
		stages	stages	stages					
assign100	100	69	100	9					
assign200	200	143	200	39					
assign300	300	237	300	57					
assign400	400	320	400	96					
assign500	500	406	500	153					
assign600	600	496	600	202					
assign700	700	582	700	273					
assign800	800	671	800	328					

6. Conclusions

In this paper we presented a comparative computational study of three different initialization methods for the exterior point simplex algorithm. A crucial factor for the computational efficiency of algorithms for APs is the initialization method used. The computational efficiency of an initialization method depends on the distance between the initial solution and the optimal solution and on the structure of the initial solution.

From the experimental evaluation we obtain a precise ranking of the three initialization methods presented. The initialization method using Balinski's feasible tree (Bal) is the worst among the three compared methods on all test instances. On the other hand, we observe clearly the superiority of the initialization method AKP. In particular, AKP has the best performance on all benchmark assignment problems. The other initialization method (SS) is better than Bal but worst than AKP. On all instances it is the second best initialization method.

7. Acknowledgments

The authors wish to thank the anonymous reviewers for some very crucial comments and suggestions that helped them to improve the quality of the paper.

References

- [1] Kuhn, W.H., 1955, The Hungarian method for the assignment and transportation problems. *Naval Research Logistics Quarterly*, **2**, 83-97.
- [2] Bertsekas, R.D., 1981, A new algorithm for the assignment problem. *Mathematical Programming* 21, 152-171.
- [3] Balinski, L.M., 1986, A competitive (dual) simplex method for the assignment problem. *Mathematical Programming*, **34**, 125-141.
- [4] Goldfarb, D., 1985, Efficient dual simplex methods for the assignment problem. Mathematical Programming, 37, 187-203.
- [5] Akgül, M., 1988, A sequential dual simplex algorithm for the linear assignment problem. Operations Research Letters, 7, 155-158.
- [6] Paparrizos, K., 1991, A relaxation column signature method for assignment problems. European Journal of Operational Research, 50, 211-219.
- [7] Paparrizos, K., 1988, A non-dual signature method for the assignment problem and a generalization of the dual simplex method for the transportation problem. RAIRO Operations Research, 22, 269-289.
- [8] Akgül, M. and Ekin, O., 1991, A dual feasible forest algorithm for the assignment problem. RAIRO Operations Research, 25, 403-411.
- [9] Paparrizos, K., 1991, An infeasible (exterior point) simplex algorithm for assignment problems. *Mathematical Programming*, **51**, 45-54.
- [10] Papamanthou, Ch., Paparrizos, K. and Samaras N., 2004, Computational experience with exterior point algorithms for the transportation problem. Applied Mathematics and Computation, 158, pp. 459-475.
- [11] Amico, D.M. and Toth, P., 2000, Algorithms and codes for dense assignment problems: the state of the art. Discrete Applied Mathematics, 100, 17-48.
- [12] Martello S. and Toth, P., 1987, Linear assignment problems, in Surveys in Combinatorial Optimization. In: S. Martello, G. Laporte, M. Minoux and C. Ribeiro, (Eds) (North-Holland, Amsterdam), Annals of Discrete Mathematics 31, pp. 259-282.
- [13] Derigs, U., 1985, The shortest augmenting path method for solving assignment problems Motivation and computational experience, Annals of Operations Research, 4, 57-102.

- [14] Carpaneto G. and Toth, P., 1987, Primal-dual algorithms for the assignment problem. Discrete Applied Mathematics, 18, 137-153.
- [15] Kennington J. and Wang, Z., 1991, An Empirical Analysis of the Dense Assignment Problem: Sequential and Parallel Implementations. *ORSA Journal on Computing*, **3(4)**, 299-306.
- [16] Volgenant, A., 1996, Linear and semi-assignment problems: A core oriented approach. Computers and Operations Research, 23, 917-932.
- [17] Achatz A., Paparrizos K., Samaras N. and K. Tsiplidis, 2002, A forest exterior point algorithm for assignment problems, in Combinatorial and Global Optimization, In: M.P. Pardalos, A. Midgalas and R. Buckard (Eds) (Word Scientific Publishing Co.) pp. 1-10.
- [18] Achatz, H., Kleinschmidt P. and Paparrizos, K., 1991, A dual forest algorithm for the assignment problem. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science (joint publication of the Association for Computing Machinery and the American Mathematical Society), Applied Geometry and Discrete Mathematics, 4, pp. 1-12.
- [19] Papamanthou, Ch., Paparrizos, K. and Samaras N., 2005, A Parametric Visualization Software for the Assignment Problem. *Yugoslav Journal of Operations Research*, **15(1)**, pp. 1-12.
- [20] Reinelt, G., 1991, TSPLib A Traveling Salesman Problem Library. ORSA Journal on Computing, 3, 376-384.
- [21] Beasley, J.E., 1990, OR-Library: distributing test problems by electronic mail. *Journal of the Operational Research Society*, 41, 1069-1072.
- [22] Beasley, J.E., 1990, Linear programming on cray supercomputers. Journal of Operational Research Society, 41, 133-139.
- [23] Paparrizos, K., 1996, A non improving simplex algorithm for transportation problems. RAIRO Operations Research, 30, 1-15.