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Abstract

This study presents the Pollution Traveling Salesman Problem with Refueling, a novel opti-

mization problem which integrates two recently proposed variants of the Traveling Salesman

Problem: the Pollution Traveling Salesman Problem and the Traveling Salesman Problem

with Refueling. The proposed problem captures the operational dynamics of a real-world

routing scenario involving a single vehicle originating from a central depot and deliver-

ing products to end customers. When considering the vehicle’s fuel tank capacity and

fuel consumption during the routing process, the need to visit fuel stations for refueling

arises. To address this complex problem, a new mixed integer linear programming model

was developed, and the Gurobi solver was employed to solve smaller instances. For the

effective resolution of larger practical problem cases, a two-stage double adaptive general

variable neighborhood search method was proposed. The proposed methodology exhibits

comparable efficiency to a commercial solver, demonstrating notably low execution time

requirements. To further assess its performance, a comparative study was conducted on

TSPLib instances. In comparison to various solution approaches documented in the open

literature, encompassing both VNS-based and alternative methods, our proposed approach

consistently yields highly competitive results within low execution times.
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1. Introduction

Distribution of end products constitutes a critical component of outbound shipping logistics

operations (Archetti et al., 2022). These operations require the optimal configuration of dif-

ferent decisions, such as fleet-scheduling and routing decisions (Speranza, 2018). In the case

of small-sized, and more rarely medium-sized, enterprises, such processes are performed by a

single vehicle, which should serve a predefined number of customers in a single time period.

However, the Traveling Salesman Problem (TSP), while offering an abstract representation

of such operations, fails to account for crucial real-world aspects (Kowalik et al., 2023),

such as fuel consumption, CO2 emissions, and refueling requirements (Neves-Moreira et al.,

2020; Cacchiani et al., 2023). To this end, this work introduces a novel TSP variant, the

Pollution TSP with Refueling (PTSPR), which extends the classic TSP by considering fuel

consumption, taxation over the emitted pollutants, driver wages, and refueling decisions.

The introduced optimization problem offers avenues for addressing various practical scenar-

ios that entail the utilization of a single conventional vehicle. These applications encompass

domains such as home heating oil delivery, the distribution of bakery products, the provision

of home healthcare services, regional surveillance operations, and agricultural pesticide ap-

plications. The PTSPR is a combinatorial optimization problem that integrates two newly

proposed TSP variants, the Pollution TSP (PTSP) and the TSP with Refueling (TSPWR).

To this end, the present work addresses the following research contributions:

• We introduce the PTSPR as a realistic extension of the classic TSP, which considers

the well-known Comprehensive Modal Emission Model (CMEM), as well as routing

and refueling decisions.

• A mixed-integer linear programming (MILP) model is proposed to mathematically

formulate the new combinatorial optimization problem.

• A two-stage Double Adaptive General Variable Neighborhood Search (DA-GVNS)-

based solution method is proposed for the effective solution of large problem instances.
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• An extended computational analysis is presented to justify the proper tuning of the

proposed algorithm.

• Sensitivity analyses are conducted to investigate the potential impact of fuel tank size

and refueling policy fluctuations on the network structure and its total cost.

This work is structured as follows. Section 2 provides a literature review of the related

research works. The problem statement and its mathematical formulation are provided in

Section 3. Section 4 presents the proposed solution method, while the computational results

are given in Section 5. Finally, Section 7 summarizes the concluding remarks and potential

future extensions.

2. Literature review

The PTSP (Cacchiani et al., 2018, 2023) extends the asymmetric TSP by considering fuel

consumption and CO2 emissions using the well-established CMEM of Barth et al. (2005;

2009), as well as the cost of driver wages. Specifically, the PTSP involves a solitary capaci-

tated vehicle embarking from a designated depot to serve a set of geographically dispersed

customers, each characterized by fixed nonnegative demands and service times. The primary

objective of the PTSP is to determine an optimal route that minimizes both the total fuel

consumption, measured in liters, and the driver wages cost, expressed in British pounds. A

distinctive feature of this problem variant lies in the incorporation of the CMEM, which sys-

tematically calculates the consumed fuel of the vehicle. This calculation takes into account

various factors, including the traveled distance, vehicle speed, and the total weight of the

vehicle, encompassing both curb weight and load.

The second problem, the TSPWR (Ottoni et al., 2022) is based on the Gas Station

Problem (Khuller et al., 2007) and extends the classic TSP by considering refueling decisions.

More specifically, the authors examine a scenario involving a mobile agent departing from

a depot, tasked with visiting a set of cities and determining optimal refueling locations

before returning to the depot. The primary objective is to minimize the total route cost,

with a focus on refueling expenses. Building upon the Gas Station Problem presented by
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Khuller et al. (2007), the study encompasses two distinct problem cases. In the first case,

fixed fuel prices are taken into account, while the second case introduces variations in fuel

prices. Furthermore, the TSPWR accommodates the possibility of necessitating refueling

along a road link. In such instances, the consideration of a tow truck is incorporated,

introducing an additional, arc-based cost.

Several research contributions in the open literature have considered the integration of an-

alytical fuel consumption models with routing decisions (Bektaş & Laporte, 2011; Koç et al.,

2014; Cheng et al., 2017; Karakostas et al., 2020, 2022). However, these research approaches

have not focused on the consideration of refueling decisions. Although several research

works have addressed refueling decisions in routing-based optimization problems (Suzuki,

2012, 2014; Goeke & Schneider, 2015; Schiffer et al., 2018; Neves-Moreira et al., 2020), they

have mainly addressed problem variants with fixed routes or edge-based fuel consumption

weights/rates. To the best of our knowledge, there is a research gap in the integration of

routing-based optimization problems with analytical fuel consumption models and refuel-

ing decisions. Incorporating analytical fuel consumption models and refueling decisions in

routing-based optimization problems offers several benefits (Dukkanci et al., 2019). By accu-

rately estimating fuel usage, routes can be optimized to enhance efficiency and reduce costs.

Analyzing carbon emissions allows for environmentally conscious routing decisions. Optimal

refueling strategies lead to significant cost savings (Neves-Moreira et al., 2020). In addition,

incorporating these models adds realism to transportation system simulations, aiding in

reliable performance assessments. Therefore, analytical fuel consumption models and refu-

eling decisions play a crucial role in advancing transportation research and decision-making

processes.

3. Problem statement and mathematical formulation

The PTSPR constitutes a novel combinatorial optimization problem designed to incorpo-

rate additional realistic features into the optimal routing of a single vehicle. This problem

emerges from the conceptual integration of the PTSP and the TSPR. Specifically, PTSPR

adopts the valid CMEM from PTSP to comprehensively calculate both the consumed fuel
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and emitted CO2 of the vehicle. Drawing inspiration from TSPR, it incorporates the notion

of refueling. However, PTSPR significantly distinguishes itself from both PTSP and TSPR.

Notably, PTSPR extends PTSP by introducing refueling decisions within the CMEM, ac-

counting for varying fuel prices. Additionally, PTSP integrates units representing distinct

quantities, such as liters of fuel and monetary cost, into a unified objective function, a

practice not commonly observed in optimization. In our methodology, fuel consumption is

translated into monetary units, considering fuel prices and taxation costs per unit of emit-

ted pollutants. Another departure from PTSP involves the exclusion of fixed service times.

This exclusion is motivated by the realization that fixed service times, remaining constant

regardless of node visitation sequence, contribute a constant value to the objective function,

prompting their exclusion for simplicity. In contrast to TSPR, PTSPR introduces several

distinctions. It incorporates an analytical model to calculate vehicle fuel consumption and

introduces a unique set of nodes representing gas stations with varying fuel prices. This

is a departure from TSPR’s assumption that refueling can occur at any main node of the

problem. Furthermore, it is essential to clarify that, in this initial approach of the PTSPR,

considerations related to speed limits are omitted. Hence, the addressed problem is more

suitably configured to accommodate inter-city delivery operations.

The PTSPR is defined on a complete graph G = {N,E}, which consists of the set of

nodes N , which is partitioned into the set of operational vertices (depot, its duplicate and

n geographically dispersed customers) I = {0, ..., (n+1)} and the set of fuel station vertices

J = {n + 2, ..., n + |J |} and the set of edges E = {(i, j) : i, j ∈ N, i 6= j}. Each edge

(i, j) ∈ E is associated with a distance ci,j . Node 0 and its duplicate, (n + 1), denote the

depot of the logistics system under consideration. Each customer has a positive demand,

di, i ∈ I − {0, (n + 1)}, which should be fully satisfied in a single time period by a single

vehicle with capacity Q =
∑

i∈I−{0,(n+1)}

di. The vehicle can traverse an active link of the

network with a specific speed level, l ∈ L = {1, ..., |L|}.

The vehicle departs from the depot 0 fully loaded and fueled, considering an upper

fuel limit (UFL). The fuel level gradually decreases as the vehicle passes a selected edge
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(i, j) ∈ E according to the fuel consumption that occurred. Fuel consumption is calculated

in proportion to the load and speed of the vehicle, as well as the distance that should be

covered. Whenever the fuel level of the vehicle is less than or equal to a specific limit (Lowest

Fuel Limit - LFL), it should visit a fuel station j ∈ J to refuel. Each fuel station j ∈ J has

a unitary fuel price, FPj.

In the context of the PTSPR, this problem entails several critical components and ob-

jectives. These encompass the knowledge of the geographical location of the depot, a set of

geographically dispersed customers, each characterized by a fixed demand, a collection of

available fuel stations offering varying fuel prices, specific vehicle attributes, and a selection

of available speed levels. The principal objective of PTSPR is to determine the optimal

sequence for servicing customers, select the most suitable speed levels for traveling between

network nodes, identify efficient refueling locations, and calculate the requisite fuel quan-

tities. This optimization seeks to minimize the comprehensive cost structure, consisting of

driver wage expenses, refueling outlays, and emissions taxation charges. In formulating the

PTSPR, several assumptions are employed to streamline and clarify the problem. These

assumptions include the fulfillment of all customer demands within a single time period,

the initiation of the vehicle journey from the depot and its return to the same location,

permitting multiple visits to fuel stations, and the absence of capacity constraints for the

fuel stations.

The PTSPR has been mathematically formulated as an MILP model. Tables 1, 2, 3, and

4 summarize the sets, the parameters (vehicle-based and general), and the decision variables

of the model.
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Table 1: Model sets

Set Explanation

N Set of nodes

I Set of operational nodes (depot and customers)

IO Set of customers

J Set of fuel stations

NNO Set of all nodes excluded the depot (NNO = N − {0})

NNL Set of all nodes excluded the duplicate of the depot (NNL = N − {(n+ 1)})

L Set of the available speed levels

Table 2: Vehicle-based parameters

Parameter Explanation Value (Cheng et al.,2017)

ǫ fuel-to-air mass ratio 1

g gravitational constant (m/s2) 9.81

ρ air density (kg/m3) 1.2041

CR coefficient of rolling resistance 0.01

η efficiency parameter for diesel engines 0.45

HVDF heating value of a typical diesel fuel (kj/g) 44

ψ conversion factor (g/s to L/s) 737

θ road angle 0

τ acceleration (m/s2) 0

CW curb weight (kg) 4672

EFF engine friction factor (kj/rev/L) 0.25

ES engine speed (rev/s) 39

ED engine displacement (L) 2.77

CAD coefficient of aerodynamics drag 0.6

FSA frontal surface area (m2) 9

V DTE vehicle drive train efficiency 0.4

Q capacity of the vehicle Instance-dependent
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Table 3: Remaining model parameters

Parameter Explanation Value

ET unit CO2 emission cost (Euros/kg) 0.29

DW driver wage (Euros/s) 0.0025

em CO2 emitted by unit fuel consumption 2.699

ci,j distance between nodes i and j in meters Instance-dependent

di demand of customer i Instance-dependent

FPj unitary fuel price at fuel station j Instance-dependent

UFL upper fuel limit (fuel tank size) in litre 85

LFL lowest fuel limit 0.25 · UFL

sl Speed level l ∈ L (m/s)
(8.33, 11.11, 13.89, 16.67, 19.44,

22.22, 25, 27.78, 29.17, 30.56)

Table 4: Model variables

Decision Variable Explanation

xij binary variable which denotes if the vehicle moves from node

i ∈ N to node j ∈ N or not

zijl binary variable which denotes if the vehicle moves from node

i ∈ N to node j ∈ N with a speed level l ∈ L or not

wi binary variable which denotes if the node i ∈ N is part of the

route or not

fij positive continuous variable which denotes the load of vehicle

when moving from node i ∈ N to node j ∈ N

rij positive continuous variable which denotes the refueled quantity

at node j ∈ N after the service of node i ∈ N

FLij positive continuous variable which denotes the fuel level of ve-

hicle when arrives at node j ∈ N after the service of node i ∈ N

FConsij positive continuous variable which denotes the fuel quantity

consumed moving from node i ∈ N to node j ∈ N

Here, we provide the necessary mathematical expressions to simplify the function which
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calculates the fuel consumption following the CMEM. More specifically, λ = ǫ
HV DF ·ψ

,

γ = 1
1000·V DTE·η

, α = τ + g · CR · sin θ + g · CR · cos θ, and β = 0.5 · CAD · ρ · FSAk.

The proposed MILP model of the PTSPR is formulated as follows:

min
∑

i∈N

∑

j∈N

ET · em · FConsij

+
∑

i∈I

rij ·
∑

j∈J

FPj

+
∑

i∈N

∑

j∈N

∑

l∈L

zijl ·
cij
sl
·DW

(1)

Subject to

∑

i∈I

xij ≥ wj, ∀j ∈ J (2)

wi = 1, ∀i ∈ IO, if di > 0 (3)

xij ≤
1

2
· (wi + wj), ∀i ∈ NNL, ∀j ∈ NNO (4)

∑

j∈NNO

x0j = 1 (5)

∑

j∈NNL

xj(n+1) = 1 (6)

∑

j∈NNO

xij = wi, ∀i ∈ I, i 6= (n+ 1) (7)

∑

j∈NNL

xji = wi, ∀i ∈ I, i 6= 0 (8)

∑

i∈NNL

xij −
∑

i∈NNO

xji = 0, ∀j ∈ N − {0, (n+ 1)} (9)
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xij = 0, ∀i, j ∈ J (10)

∑

l∈L

zijl = xij , ∀i ∈ N, i 6= j, ∀j ∈ N (11)

∑

j∈N−{0,n+1}

f0j = Q (12)

∑

j∈N−{0,n+1}

fj(n+1) = 0 (13)

∑

j∈N,j 6=i

fji −
∑

j∈N,j 6=i

fij = di, ∀i ∈ N − {0, (n+ 1)} (14)

fij − (Q · (1− xij)) ≤
∑

u∈I

fui − di, ∀i ∈ I, ∀j ∈ J (15)

fji − (Q · (1− xji)) ≤
∑

u∈I

fuj, ∀i ∈ I, ∀j ∈ J (16)

fij ≤ (Q− di) · xij , ∀i ∈ N, ∀j ∈ N (17)

FLui + rui + (UFL · (1− xui))− FConsij ≥ FLij − (UFL · (1− xij)), ∀u ∈ N, ∀i ∈ N, ∀j ∈ N (18)

FLui + rui − (UFL · (1− xui))− FConsij ≤ FLij + (UFL · (1− xij)), ∀u ∈ N, ∀i ∈ N, ∀j ∈ N (19)

FL0i ≤ UFL− FCons0i + (UFL · (1− x0i)), ∀i ∈ NNO (20)

FL0i ≥ UFL− FCons0i + (2 · UFL · (1− x0i)), ∀i ∈ NNO (21)
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FLij ≤ UFL · xij, ∀i ∈ NNL, ∀j ∈ NNO (22)

FLij ≥ LFL · xij , ∀i ∈ NNL, ∀j ∈ NNO (23)

rij ≤ xij · (UFL− LFL), ∀i ∈ NNL, ∀j ∈ J (24)

rij+(UFL·(1−xij)) ≥ UFL−(FLui−FConsij)−(UFL·(1−xui)), ∀i ∈ NNO, ∀u ∈ NNL, ∀j ∈ J (25)

∑

i∈N

rij = 0, ∀j ∈ I (26)

FConsij ≥ λ·{
(

∑

l∈L

zijl · EFF · ES · ED · cij
sl

)

+
(

α·γ·((CW ·xij)+fij)·cij
)

+
(

β·γ·
∑

l∈L

zijl · s
2

l

)

}, ∀i ∈ N, ∀j ∈ N

(27)

xij ∈ {0, 1}, ∀i, j ∈ N, i 6= j (28)

zijl ∈ {0, 1}, ∀i, j ∈ N, i 6= j, ∀l ∈ L (29)

wi ∈ {0, 1}, ∀i ∈ N (30)

fij ≥ 0, ∀i, j ∈ N (31)

FLij, rij , FConsij ∈ [0, UFL], ∀i, j ∈ N (32)
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The first component of the objective function of the PTSPR (1) represents the taxation

cost of the pollutants emitted due to fuel consumption. The next component denotes the

refueling cost, while the last provides the wage cost of the driver. Constraints (2) guarantee

that if a fuel station is selected to be part of the route, it should be visited at least once.

All customers of the logistics system must be included in the constructed route, as indicated

by constraints (3). Constraints (4) guarantee that the vehicle will move between two nodes

only if they are selected to be part of the route. Constraints (5) ensure the departure of the

vehicle from the depot, while constraints (6) impose its return to the depot. Constraints (7)

and (8) guarantee that the vehicle will serve each customer once. Similarly, constraints (9)

impose the balance between the incoming and outgoing flows of the vehicle for each node

included in the constructed route. The vehicle cannot move from one fuel station to another,

as imposed by constraints (10). Vehicle movement at each active edge of the constructed

route must be carried out with a specific speed level imposed by constraints (11). Depending

on the load of the vehicle, constraints (12) ensure that the vehicle departs from the depot

fully loaded, while constraints (13) guarantee that it returns to the depot empty. Equations

(14), (15) and (16) constitute load balance constraints. More specifically, constraints (14)

refer to vehicle movements between customer nodes, while constraints (15) and (16) refer

to the load balance in the event of movement from customer to fuel station and from a fuel

station to a customer, respectively. Constraints (17) set an upper bound for the load of the

vehicle on each selected route. Constraints (18), (19), (20), and (21) impose the balance of

the fuel levels at each node of the structured logistics system taking into account the possible

refueling processes and fuel consumption. To clarify, constraints (20) and (21) refer to the

balance of the fuel level in the fuel tank of the vehicle while it moves from the depot to

any other node of the system. Load and fuel balance constraints act as subtour elimination

constraints. Constraints (22) and (23) establish upper and lower bounds of fuel level in the

vehicle fuel tank. Similarly, the constraints (24) and (25) set upper and lower bounds on the

quantity of refueling in the fuel stations visited. Constraints (26) impose that no refueling

will be performed at the customer locations. Constraints (27) refer to the calculation of

the fuel consumption for each active link in the constructed route. Constraints (28)-(32)
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represent the domain of the decision variables.

4. Solution approach

The PTSPR is a complex optimization problem. Furthermore, considering load and fuel

level balance constraints significantly increases its complexity. To this end, the utilization

of exact algorithms through commercial optimization solvers can contribute to the solution

of only small-scale problem instances. Thus, we focused on the development of a heuristic

algorithm for the solution of realistic size problem instances.

More specifically, a two-stage heuristic solution approach was designed considering the

fact that on an optimized route, the additional stops required for refueling are eliminated.

Furthermore, taking advantage of recent findings from Karakostas & Sifaleras (2022), we

developed a two-stage DA-GVNS-based heuristic method. The first stage is dedicated to

the optimization of the route, while the second focuses on fuel-based decisions. The overall

algorithmic approach is illustrated in Figure 1.

Figure 1: Proposed solution approach

The Nearest-Neighbor Heuristic (NNH) (Flood, 1956) is used to build an initial feasible

route, and a DA-GVNS is applied to optimize the initial route. Next, all the processes

depicted in the blue bar in Figure 1 are performed. If this process leads to refueling re-

quirements, the next steps will be applied. Otherwise, the solution method is completed by

applying a speed optimization method.

In the case of refueling requirements, a modified iterative heuristic method, based on

the Cheapest Insertion (Johnson & Papadimitriou, 1985), is applied to address refueling
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decisions. Next, the speed optimization method is applied.

Algorithm 1 provides the overall proposed solution method for the PTSPR. At the end

of each line, a link is provided to the appropriate section as a step-by-step explanation of the

pseudo-code. The overall solution approach typically begins by computing an initial feasible

route using the NNH (line 3). Subsequently, this route undergoes further enhancement

through a DA-GVNS method (line 4). Following this, for each link in this cost-effective

route, the load of the vehicle is assigned based on the demands of each customer (line 5),

and the fuel consumption, as well as the fuel levels at each node, are calculated (lines six

and seven, respectively). The eighth line of the pseudo-code denotes the application of a

check routine to assess if refueling is necessary at any point along the formed route. Should

refueling be required, fuel station nodes are selected using a modified CI approach (line

10), and the process concludes by optimizing the speed levels of the vehicle for each link of

the route (line 11). Alternatively, if refueling is not necessary, only the speed optimization

procedure is executed (line 14).
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Algorithm 1 Proposed solution method for the PTSPR

1: procedure TwoStage DA−GVNS(S, l2max, FailuresLimit, Local T imeLimit)

2: Assign values to the arguments of DA−GVNS ⊲ Section 4.2.6

3: S′ ←− NNH ⊲ Section 4.2.1

4: S ←− DA−GV NS(S′, kmax,max time, lmax, Shmax, Initial LS Order, Initial Shaking Order) ⊲

Section 4.2.2

5: S′ ←− ApplyLoads(S) ⊲ Section 4.3.1

6: S ←− CalculateFuelConsumption(S′) ⊲ Section 4.3.3

7: S′ ←− CalculateFuelLevels(S) ⊲ Section 4.3.4

8: Check Refueling Requirements ⊲ Section 4.3.5

9: if RefuelingRequirement = true then

10: S ←− modified CheapestInsertion(S′) ⊲ Section 4.3.6

11: S′ ←− SpeedOptimization(S) ⊲ Section 4.3.6

12: S ←− S′

13: else

14: S′ ←− SpeedOptimization(S) ⊲ Section 4.3.6

15: S ←− S′

16: end if

17: end procedure

4.1. Solution representation

To provide clarity, a PTSPR solution is denoted as S = {RP,RS, SL}, where RP represents

an array detailing the sequence of customers in the main route of the vehicle, RS takes

the form of a matrix that outlines the refueling schedule, and SL is a matrix illustrating

the speed levels for traversing the nodes within the integrated route. Specifically, with n

representing the count of operational nodes excluding the duplicate depot node, RS is an

n × n matrix with elements in the format (fuel station, refueling quantity). In instances

where no refueling is necessary between operational nodes, the corresponding cell in RS will

be denoted as (0, 0). Additionally, SL is a NNL×NNL matrix, where each cell designates

the speed level of the vehicle when traversing the corresponding link. Cells within SL that

do not pertain to active route links will be assigned a value of 0. Figures 2 and 3 present

an illustrative example of the representation of a PTSPR solution.
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Figure 2: Solution representation example (a)

Figure 3: Solution representation example (b)

The provided example comprises one depot (node 1), six customers (nodes 2-7), and three
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fuel stations. The matrix RP outlines the primary route of the problem, encompassing

the depot and the customers. Each cell in the matrix RS represents the refueling plan,

indicating the fuel station and the quantity of refueling required. For instance, in Figure 2,

the cell at row four and column two signifies that the vehicle, after departing from customer

four en route to customer two, should visit fuel station three for a refueling of 25 liters.

Similarly, when the vehicle travels from customer three to customer seven, it should visit

fuel station one to refuel 40 liters. The combination of matrices RP and RS yields the

final integrated route of the problem. Matrix SL encompasses all nodes, including the

depot, six customers, and three fuel stations. Therefore, the fuel stations are denoted by

the count of the depot and customers plus their corresponding numbers. Consequently, the

first fuel station corresponds to the eighth node, the second to the ninth, and the third to

the tenth node. In light of these clarifications, matrix SL provides the optimal speed levels

for traversing between the edges of the integrated route.

4.2. First stage of the proposed solution method

4.2.1. Construct an initial TSP route

The first step of the proposed solution method focuses on the use of the well-known NNH to

build a feasible TSP route starting from the depot, visiting all customers once, and returning

to the depot. At this initial step, the metric considered is the distance. From a technical

perspective, a vector of length |I| is utilized to store the sequence of nodes.

4.2.2. Optimize the initial TSP route

Variable Neighborhood Search (VNS) is a well-established metaheuristic framework, charac-

terized by its simplicity and efficiency for solving hard optimization problems (Hansen et al.,

2017; Brimberg et al., 2023). General VNS (GVNS) constitutes a variant of VNS that

has been utilized to efficiently solve several supply chain network optimization problems

(Mladenović et al., 2014; Menéndez et al., 2017; Karakostas et al., 2020).

DA-GVNS is a recently proposed GVNS extension, which uses low-level machine learning

procedures to reorder the operators used in both the improvement and the shaking phase
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(Karakostas & Sifaleras, 2022). The DA-GVNS was proved to be more efficient compared

to the conventional GVNS and its single-adaptive variants in the case of TSP. To this end,

we developed a DA-GVNS for the optimization of the initial TSP route, which consists of

the three following components:

• An adaptive pVND as the main improvement component,

• An adaptive intensified shaking method as the diversification component,

• a solution renewal step.

The structure of the developed DA-GVNS bears a resemblance to the one presented in

the work of Karakostas & Sifaleras (2022). However, the proposed DA-GVNS incorporates

the following new characteristics:

• additional local search operators were examined to determine their suitability for in-

clusion in the adaptive pVND framework,

• the adaptive search strategy (Karakostas et al., 2019b) was also considered.

4.2.3. Neighborhood structures

The following five neighborhood structures were considered as local search operators in the

adaptive pVND developed. These neighborhood structures can be applied under any search

strategy, as discussed in Subsection 5.3.

Relocate . This operator selects two nodes and removes the first one, i, from its current

location in the route, and re-inserts it next to the second one, j.

Figure 4 illustrates an example of the application of the Relocate operator on a five-node

route, where i = 4 and j = 5.

(a) (b)

Figure 4: Route instance before (a) and after (b) the application of the Relocate operator
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Swap. This operator, also known as 1-1 exchange, selects two nodes, i and j, from the

route and swaps them.

Figure 5 illustrates an example of the application of the swap operator on a five-node route,

where i = 4 and j = 5.

(a) (b)

Figure 5: Route instance before (a) and after (b) the application of the swap operator.

2-Opt . This operator breaks two edges (i, i+1) and (j, j+1) and reconnects them (Croes,

1958). It can also be implemented as a subtour reversal move (Hillier & Lieberman, 2021).

Figure 6 illustrates an example of the application of the 2-Opt operator on a six-node route,

where the first selected edge is (4, 2) and the second is (3, 6).

(a) (b)

Figure 6: Route instance before (a) and after (b) the application of the 2-Opt operator.

Or-Opt . Typically, this move operates by flexibly relocating one, two, or three consecutive

nodes within a solution (Or, 1976). However, in this particular context, its operation has

been fixed to the relocation of two consecutive nodes, resembling an Edge Relocation move.

Thus, the operator selects an edge (i, i+ 1) and a single node j from the route. It removes

the edge from its current location and re-inserts it exactly after the node j.

An example of Or-Opt applied on a six-node route, where the selected edge is (4, 2) and

j = 4, is illustrated in Figure 7.
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(a) (b)

Figure 7: Route instance before (a) and after (b) the application of the Or-Opt operator

Double-Bridge . This operator is a special case of the 4-Opt move in which four edges

{(i, i + 1), (j, j + 1), (m,m + 1), (w,w + 1)} are broken and reconnected differently {(i, j +

1), (w,m+1), (j, i+1), (m,w+1)}. To apply the double bridge, the following rule must be

respected: w > j > m > i.

Figure 8 provides an illustrative example of the Double-Bridge operator applied on a 16 nodes

route. The selected edges, denoted by their positions in the route, are (2, 3), (10, 11), (6, 7), (13, 14).

It is obvious that the selected positions respect the application rule, as w = 13 > j = 10 >

m = 6 > i = 2.

(a) Route instance before the application of the double-bridge operator.

(b) Route instance after the application of the double-bridge operator.

Figure 8: Comparison of route instances before and after the application of the double-bridge operator.

4.2.4. Adaptive pVND

The pVND is an extension of the basic VND method (Hansen et al., 2017), in which each

local search operator is applied until no further improvements can be found. Then, the

search continues with the next operator. This process continues until all considered local

search operators are applied. The adaptive pVND is enriched by an adaptive re-ordering

mechanism that redefines the execution order of the considered local search operators,

based on the number of improvements they achieved in each previous execution of the
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method (Todosijević et al., 2016; Karakostas & Sifaleras, 2022). To this end, the adaptive

re-ordering mechanism of the local search operators considers:

• The initial order of operators, Initial LS Order, as a vector of length lmax (lmax

denotes the total count of operators used during the improvement phase), which assigns

each position to an operator in the first iteration, or

• the current order of operators, Current LS Order, as a vector of length lmax, which

assigns each position to an operator for the following iterations,

• the number of improvements of each operator stored in the LS Improvements Counter,

a vector of length lmax. Each position represents an operator and the corresponding

value in this position represents the number of improvements achieved using this op-

erator in the previous execution,

and produces a new order of the operators, New LS Order by performing a descending

order of the operators in the Current LS Order or the Initial LS Order based on the

values of LS Improvements Counter. If no improvements occur, or if the same frequencies

of improvements as the previous iteration are observed across all operators, then the initial

order (Initial LS Order) is restored as the new sequence (Current LS Order) for the next

iteration.

4.2.5. Shaking method

According to the diversification phase of the developed DA-GVNS algorithm, the adap-

tive intensified shaking method proposed in the work of Karakostas & Sifaleras (2022) has

been adopted. This diversification method consists of three shaking local search operators

(Relocate, Swap, and 2-Opt) and an adaptive re-ordering mechanism.

In the shaking phase, these operators are not fully applied sequentially in the incumbent

route. Still, they are randomly performed for the number of times indicated by the intensity

parameter kmax. The adaptive shaking re-ordering mechanism is similar to the one utilized

in the improvement phase. The only difference is in the names of the parameters utilized:
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• lmax −→ Shmax

• Initial LS Order −→ Initial Shaking Order

• Current LS Order −→ Current Shaking Order

• LS Improvements Counter −→ Shaking Improvements Counter

• New LS Order −→ New Shaking Order.

For a more thorough understanding and in-depth exploration of the adaptive re-ordering

mechanisms employed in both the improvement and shaking phases, readers are directed to

the work of Karakostas & Sifaleras (2022).

4.2.6. DA-GVNS

Herein, the overall solution method is presented to optimize the TSP route. The algo-

rithm 2 summarizes the proposed DA-GVNS. This method receives an initial TSP solution

S, the maximum shaking intensity level kmax, the number of all local search and shaking

operators, lmax and Shmax respectively, as well as the initial order of these operators.

In accordance with the operational functionality of the algorithm provided, the sequenc-

ing of the shaking operators is dynamically updated in each new iteration, as delineated by

lines 4− 10. In the initial iteration, this updating process is initiated based on a predefined

order. Subsequently, in ensuing iterations, the reordering is contingent upon the outcomes

of the adaptive shaking mechanism. Furthermore, for each level of shaking intensity (line

12) and each selected shaking operator (lines 13 − 14), a diversification phase is executed

as outlined in line 15. Subsequently, the local search operators undergo reordering (lines

16− 22), and the solution derived from the shaking procedure is advanced to the improve-

ment phase of the algorithm, as indicated in line 24. The newly obtained solution undergoes

a comparative evaluation against the best solution identified hitherto (line 25). If it sur-

passes the current best, the latter is updated (line 26). The procedural sequence concludes

upon reaching the upper execution time limit, and the overall best solution identified is

reported (line 32).
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Algorithm 2 Double Adaptive GVNS

1: procedure DA-GVNS(S, kmax,max time, lmax, ShmaxInitial LS Order, Initial Shaking Order)

2: iteration = 1

3: while time ≤ max time do

4: if iteration = 1 then

5: Current Shaking Order = Initial Shaking Order

6: else

7: New Shaking Order = Shaking Adaptive Mechanism(Current Shaking Order,

8: Initial Shaking Order, Shmax)

9: Current Shaking Order = New Shaking Order

10: end if

11: for k ← 1 to kmax do

12: for i← 1 to Shmax do

13: l = Current Shaking Order(i)

14: S∗ = Shake(S, l)

15: if iteration = 1 then

16: Current LS Order = Initial LS Order

17: else

18: New LS Order = LS Adaptive Mechanism(Current LS Order,

19: Initial LS Order, lmax)

20: Current LS Order = New LS Order

21: end if

22: S′ = pV ND(S∗, lmax, Current LS Order)

23: if f(S′) < f(S) then

24: S ← S′

25: end if

26: end for

27: end for

28: iteration = iteration+ 1

29: end while

30: return S

31: end procedure
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4.3. Second stage of the proposed solution method

4.3.1. Apply vehicle’s load

The initial step of the second stage of the solution approach focuses on the configuration of

the load of the vehicle while it moves from one node to another. The quantity delivered to

each customer must be equal to his demand. Thus, an |I| × |I| matrix, Load(:, :), is utilized

to store the load of the vehicle while moving from a node i ∈ I to a node j ∈ I. It is

obvious that the load between the depot and the first customer node in the route will be

equal to the total demand of the customers, while the load of the vehicle when it returns to

the depot from the last customer node will be empty. The vehicle load will be decreased by

the demand of each previous customer node in the scheduled route.

4.3.2. Assign speed levels

The next step in the second stage of the proposed solution method includes the assignment

of speed levels to each active link of the scheduled route. To speed up this process, a speed

level of 70km/h was allocated to all edges of the route. This value was selected by applying

a ceiling function on the average of three different speed values (45, 55, 105), which leads to

ceiling(68.33) = 69 −→ 70km/h. The first two values have been found to be the best choice

in scheduling route planning considering fuel consumption (Karakostas et al., 2020, 2022),

while the last was the best as obtained using a commercial solver in preliminary testing of

the PTSPR model.

4.3.3. Fuel consumption calculation

This step focuses on the application of CMEM on the structured route to calculate the

amount of fuel consumed by the vehicle at each edge. The expressions 27 of the mathematical

model have been applied to achieve that. The calculated values are stored in a N×N matrix,

FuelConsumption(:, :).

4.3.4. Fuel levels calculation

The function of this step receives the scheduled route and the information produced in

the previous step to calculate the fuel levels at each node location in the route. The cal-
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culated values are stored in a vector of size N , named FuelLevel(:). The calculation of

this step follows the formula: FuelLevel(currentNode) = FuelLevel(previousNode) −

FuelConsumption(previousNode, currentNode). For clarity, the fuel level at the depot is

equal to the maximum level (FuelLevel(depot) = UFL).

4.3.5. Address refueling decisions

This step begins by scanning the fuel level at each node in the scheduled route. If a fuel

level is less than or equal to LFL, refueling is required before reaching this node location.

A logical variable is utilized to indicate in which location a refueling is required.

If refueling is required, a modified iterative variant of the Cheapest Insertion (CI) heuris-

tic is applied. The developed insertion heuristic receives the location, posI, of the node i

where the fuel level of the vehicle will be less than or equal to LFL with the current refuel-

ing schedule. It investigates which of the available fuel stations can be placed between the

edge (posI − 1, posI). Of these fuel stations, the most cost-effective is selected, considering

the impact of this move on the total cost of the logistics system. If the placement of any

fuel station on the selected edge is not valid, refueling is attempted on the previous edge,

(posI−2, posI−1). This process is executed in iterative mode until a valid refueling schedule

can be addressed.

The N×N×2 array, Refueling(:, :, :), is used to store refueling schedules. Refueling, (:

, :, 1) keeps the fuel station, while Refueling(:, :, 2) stores the amount of refueling. If no

refueling is required, this array stores zero values. After selecting both the proper fuel

station and its proper position on the route, a check for refueling requirements is performed.

The process continues until there are no more refueling requirements.

4.3.6. Speed Optimization

After the completion of the iterative modified Cheapest Insertion method, an update of

individual costs is performed. Then, the last component of the overall solution method is

applied. This improvement component is the Speed Optimization algorithm (Demir et al.,

2012; Karakostas et al., 2019a, 2022). From a procedural perspective, the Speed Optimiza-

tion algorithm receives a solution, S, and a set with the available speed levels, L, and selects
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the best speed level for each edge of the route.

5. Computational results

This section is designed to furnish a comprehensive overview of the computational per-

formance and behavior of the proposed solution method, coupled with a nuanced analysis

of pertinent managerial insights for the focal problem. Initially, elucidation is provided on

the computational environment and the generated problem benchmarks. Subsequently, a

detailed computational analysis is undertaken to discern the contributions of each operator

and to evaluate the impact of different diversification intensity levels and approaches. A

comparative study ensues, juxtaposing the proposed DA-GVNS against alternative solution

methods on symmetric TSPLib benchmarks, to assess the performance of the DA-GVNS.

Following this, a dedicated computational study on the PTSPR generated benchmarks un-

folds, wherein the proposed solution method is rigorously compared with the commercial

solver, Gurobi. To conclude, the section culminates in the presentation of sensitivity analy-

ses, offering valuable managerial insights.

5.1. Computing environment

The proposed solution methods were implemented using the Fortran programming language.

Their execution was performed using the Intel Fortran compiler 18.0, under the optimization

option -O3, on a laptop PC (Windows 10 Home 64-bit with an Intel Core i7-9750H CPU at

2.6 GHz and 16 GB RAM). The execution time of DA-GVNS was set at 40s.

The proposed MILP model was implemented using the Gurobi-Python API v.10.0.0. In

the case of the Gurobi solver, an initial time limit of 2 hours was defined for execution.

However, if the commercial solver failed to produce any viable integer solution within the

initial time limit, the execution time was extended to 5 hours. Furthermore, the Gurobi

solver was configured with the following parameter settings: the “Aggregate” parameter

was set to a value of 2, the “Cuts” parameter was set to 3, the “NodefileStart” parameter

was set to 0.5, the “Threads” parameter was set to 1, the “NodeMethod” parameter was set

to 2, and the “MIPFocus” parameter was set to 1.
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5.2. Problem instances

To facilitate a comprehensive computational analysis, we generated 20 new benchmark in-

stances using a randomization process. Each instance is denoted as “TSP −|I|−|J |”, where

“|I|” represents the total number of operational nodes (comprising the depot and customers),

and “|J |” indicates the count of available fuel stations. Crucial details about each instance,

including these parameters, are explicitly stated in the initial line of the respective instance

file. The structure of each instance file adheres to the following format:

• The first line provides information about the total number of operational nodes and

available fuel stations.

• Subsequently, the second line furnishes the coordinates of the depot.

• The subsequent |I| − 1 lines contain the coordinates of individual customers.

• The next |J | lines offer the coordinates of available fuel stations along with their

respective fuel prices.

• The demand for each operational node (excluding the depot) is presented in the fol-

lowing |I| − 1 lines.

• The last line of each instance file specifies the vehicle capacity.

For the generation of instance data, the coordinates of nodes were systematically gener-

ated from a uniform distribution within the interval [0, 100]. Fuel prices were also randomly

drawn from a uniform distribution in the range [1.86, 2]. The demand of each customer was

generated using a normal distribution with a mean value (“mean”) selected from a uniform

distribution over the interval [5, 15] and a standard deviation (“sd”) generated from a uni-

form distribution over the interval [0, 5]. Lastly, the vehicle capacity was set equal to the

total demand of all customers in each instance. The new benchmark set is publicly available

at https://sites.uom.gr/sifalera/benchmarks.html.
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5.3. Neighborhoods contribution

This section focuses on the analysis of the contribution of each local search operator and

their combinations to the performance of the DA-GVNS for the solution of TSP instances.

To achieve that, each operator or combination examined was deployed in an adaptive pVND

within a best-improvement search strategy and a fixed adaptive intensified shaking method

(kmax = 8) from the literature (Karakostas & Sifaleras, 2022). For each operator or com-

bination of operators, a distinct version of the DA-GVNS was instantiated. These formed

versions of DA-GVNS were employed to address all generated problem instances. The re-

ported percentage performance deviations represent the averaged values obtained from 20

independent runs for each version of DA-GVNS. Figure 9 illustrates the contribution of

the six best-performing combinations. The reported gaps denote the average percentage

performance deviation between the solutions produced by the construction heuristic (NNH)

and those derived from each operator or combination, considering all generated problem

instances.

Figure 9: Contribution of local search operators

The combination of 2−Opt,Double−Bridge(DB), andRelocate led to the best performance,

and they were selected to be embedded in the adaptive pVND of the DA-GVNS. However,

it was noticed that by applying a limit on the depth of search of the DB operator, further

improvements could be achieved. Eight limits were tested and their results are presented
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in Table 5. The second column displays the results of the NNH, while the subsequent eight

columns showcase the outcomes obtained by the proposed DA-GVNS under the different

depth limits in the DB operator. Additionally, the reported percentage deviations denote

the average cost difference between the solutions reported by the DA-GVNS and those

achieved by the NNH.

Table 5: TSP objective values due to different iteration limits of DB operator

Limits 30 40 50 60 70 80 90 100

Instances NNH

TSP 15− 5 382361.95 342524.44 342524.44 342524.44 342524.44 342524.44 342524.44 342524.44 342524.44

TSP 25− 5 487364.45 413455.03 413455.03 413455.03 413455.03 413455.03 413455.03 413455.03 413455.03

TSP 30− 5 627282.29 461377.84 461377.84 461377.84 461377.84 461377.84 461377.84 461377.84 461377.84

TSP 50− 5 672069.38 557810.81 557810.81 557810.81 557810.81 557810.81 557810.81 557810.81 557810.81

TSP 60− 7 770221.86 630181.06 629083.06 629083.06 630181.06 629083.06 629083.06 629083.06 629083.06

TSP 85− 8 865519.43 724531.19 726725.63 730276.19 726725.63 730276.19 730276.19 728904.38 726421.19

TSP 100− 5 929140.65 786118.25 786118.25 791068.00 787256.38 791068.00 791068.00 791068.00 786118.31

TSP 100− 10 877334.55 766911.63 766911.63 766205.5 769814.79 766911.63 766911.63 766877.88 766877.88

TSP 120− 10 930409.07 754949.88 752402.69 752402.69 754949.88 752402.69 752402.69 754949.88 754949.88

TSP 150− 10 1212181.03 956616.88 959567.19 960980.19 958254.25 976451.94 961214.13 976370.35 962758.42

TSP 180− 10 1226097.03 1061925.59 1048815.25 1058317.99 1062862.75 1057517.13 1068073.50 1055985 1056697.25

TSP 200− 10 1326034.08 1063774.50 1042708.63 1065813.50 1045665.12 1056536.63 1054132.88 1059294.88 1063373.13

TSP 250− 15 1563876.1 1251372.87 1262667.38 1255730.13 1267016.75 1256106.63 1260179.25 1253221 1253294.63

TSP 300− 10 1548535.54 1326912.87 1334879.25 1323111.36 1317131.25 1330716.63 1326577.09 1320835.38 1337534.00

TSP 300− 15 1657858.99 1335881.00 1343165.34 1358638 1337177.23 1356147.00 1340949.13 1362002.88 1358126.86

TSP 500− 15 2071805.88 1728892.72 1724693.75 1710513.38 1727854.97 1731821.88 1711083.95 1741931.88 1739843.88

TSP 550− 20 2094172.87 1829014.00 1829445.13 1829605.35 1815240.75 1817877.60 1809373.32 1823656.86 1826993.21

TSP 800− 25 2551755.50 2285839.50 2311880.66 2287869.75 2295034.75 2302308.92 2286896.67 2296170.23 2289152.88

TSP 950− 25 2859461.53 2609325.44 2621502.25 2622188.75 2625357.95 2691807.13 2623086.60 2670185.68 2640867.87

TSP 1000− 25 2930022.80 2700425.74 2690389.20 2677735.61 2685292.44 2675633.75 2674790.94 2684273.95 2701768.95

Average 1379175.25 1179392.06 1180306.17 1179735.38 1179049.20 1184891.75 1178063.36 1184498.97 1183451.48

Gap % 14.49 14.42 14.46 14.51 14.09 14.58 14.12 14.19

The computational results of testing different limits on DB revealed that a limit of

80 iterations per call of the DB operator can lead to better solutions compared to other

values. After the configuration of the improvement phase of the developed DA-GVNS, we

focused on the computational analysis of the diversification phase. Due to the fact that

the improvement phase in this work is differentiated from the one considered in the work
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of Karakostas & Sifaleras (2022), shaking intensity levels, intensity strategies, and search

strategies were also investigated.

To clarify, three search strategies, the best improvement, the first improvement, and the

adaptive search strategy, were investigated. Based on the intensity of shaking, two intensity

strategies were evaluated, one that considers fixed kmax values and one in which the kmax

value is received as proportional to the number of the nodes. Thus, the following kmax values

were considered:

• fixed kmax values: (2, 4, 8, 10, 12, 15),

• kmax values proportional to |N |: (0.05×|N |, 0.1×|N |, 0.15×|N |, 0.2×|N |, 0.5×|N |).

Table 6 summarizes the average best objective values of all instances, achieved by employing

the most efficient combinations of search and shaking strategies.

Table 6: Best found objective values using different shaking and search strategies

Best Improvement First Improvement Adaptive Search

kmax = 2 kmax = 0.05 · |N | kmax = 10 kmax = 0.05 · |N | kmax = 15 kmax = 0.01 · |N |

Objective value 1179406.01 1184391.08 1160607.07 1207808.6 1131372.36 1171545.8

Gap % 14.48 14.12 15.85 12.43 17.97 15.05

The consideration of the kmax values received as proportional to the number of nodes

led to worse solutions than in the case of fixed shaking intensity levels. Although the best

improvement search strategy performed better in small instances, the first improvement

search strategy presented the best results in the case of large instances. However, the

adaptive search strategy performed significantly better than other approaches, leading to a

solution almost 18% better than the initial solution of the construction heuristic.

5.4. Computational analysis on PTSPR instances

This section presents the computational results of PTSPR instances using the proposed

solution method and the Gurobi solver. These results are provided in Table 7. In the primary

computational investigation, the study incorporates an 85-liter fuel tank capacity, along with
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a lower refueling threshold set at one-fourth of the upper fuel limit (UFL). With respect to

the remaining parameters, in summary, the problem-specific parameters delineated in Tables

2 and 3, along with the technical parameters, namely kmax = 15 and a limitation of 80

iterations per invocation of the DB, have been taken into account. Furthermore, considering

the adaptive search strategy, the best improvement is employed when the number of cities

is less than or equal to 600, while the first improvement strategy is applied otherwise. The

second column contains the objective values obtained using the DA-GVNS combined with

the modified CI heuristic, while the third one summarizes the results produced using the

overall method (DA-GVNS - CI - Speed Optimization). The value of each cell in these two

columns is the average of the objective values obtained by each method in 50 independent

runs. The consideration of the overall proposed solution method produces 28.51% better

solutions than DA-GVNS combined with CI. The last column provides the objective values

obtained by using the Gurobi solver. The abbreviation “NIS” indicates that no integer

solution was obtained using the Gurobi solver, whereas the abbreviation “OOM” signifies

an out-of-memory error encountered during the execution of the commercial solver.

Owing to the substantial computational complexity associated with the new optimiza-

tion problem, the commercial solver was capable of generating feasible integer solutions for

only seven out of the total 20 instances of the problem. Among these seven instances, four

were successfully solved within the initial execution time limit, while an extension of the

execution time limit was necessary for the remaining three instances. However, despite al-

lowing a maximum execution time of 5 hours, the commercial solver failed to produce any

feasible integer solutions for the “TSP-25-5” and “TSP-100-5” problem instances. Addi-

tionally, an out-of-memory error occurred for the remaining problem instances. Considering

these limitations, it becomes crucial to explore alternative approaches, such as the heuristic

method employed in this study. Although the commercial solver surpasses the heuristic in

terms of solution quality, it is noteworthy that the heuristic exhibits commendable efficiency,

requiring significantly less execution time to generate solutions. This indicates the poten-

tial of the heuristic to efficiently handle large-scale instances characterized by substantial

computational complexity.
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Furthermore, it is important to note that while the commercial solver consistently out-

performs the heuristic approach in terms of solution quality, the observed gap in solution

quality is significantly mitigated when considering the best solutions found by the heuristic.

Although the commercial solver may provide superior solutions for the limited instances it

can solve, the heuristic demonstrates its potential by consistently delivering competitive and

satisfactory solutions within a fraction of the execution time. By carefully analyzing and

leveraging the best solutions obtained from the heuristic, valuable insights can be gained,

enabling further improvements in solution quality. Therefore, despite the limitations of the

heuristic, its ability to yield viable and competitive solutions cannot be disregarded, making

it a valuable tool in addressing the computational complexities of the optimization problem

at hand.

Table 7: PTSPR objective values

Instance DA−GVNS − CIavg 2S −DA−GVNSavg 2S −DA−GVNSbest 2S −DA−GVNSworst 2S −DA−GVNSsd Gurobi

TSP 15− 5 285.66 210.41 203.75 270.31 20.17 182.32

TSP 25− 5 598.82 428.73 418.73 563.36 34.75 NIS

TSP 30− 5 509.30 351.26 340.36 476.57 38.33 303.90

TSP 50− 5 708.52 496.74 474.93 729.07 67.26 366.22

TSP 60− 7 1152.86 504.37 498.55 578.88 19.96 522.30

TSP 85− 8 1051.72 643.60 624.89 807.18 51.72 550.73

TSP 100− 5 1014.36 687.15 668.70 937.97 63.56 NIS

TSP 100− 10 1301.16 657.17 645.52 762.02 35.30 610.18

TSP 120− 10 993.63 682.25 670.45 818.75 40.43 12382.15

TSP 150− 10 1326.87 880.35 837.73 1295.81 118.78 OOM

TSP 180− 10 1362.75 990.92 947.83 1252.59 99.97 OOM

TSP 200− 10 1367.78 965.97 931.92 1198.90 72.71 OOM

TSP 250− 15 1655.61 1192.62 1145.15 1434.99 87.64 OOM

TSP 300− 10 1821.74 1305.13 1258.69 1604.41 116.31 OOM

TSP 300− 15 1761.00 1318.56 1290.17 1518.81 62.14 OOM

TSP 500− 15 2469.73 1874.83 1863.31 2011.15 39.48 OOM

TSP 550− 20 2503.22 1891.19 1857.81 2115.47 78.06 OOM

TSP 800− 25 3129.10 2404.96 2365.53 2687.53 98.92 OOM

TSP 950− 25 3452.54 2690.34 2677.01 2899.23 53.31 OOM

TSP 1000− 25 3838.11 2917.95 2875.27 3326.06 129.45 OOM

Average 1615.22 1154.72 1129.81 1364.45 66.36 -

According to the execution CPU time of the developed heuristic approach, the first

method required 40.05s for the solution of the largest instance, while the second required
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61.19s respectively (fixed 40s for the DA-GVNS, 0.05s for the CI and 21.14s for the Speed

Optimization). In our investigation of the analytical solutions for the five problem instances,

focusing specifically on the comparative performance between the commercial solver and the

heuristic method, we have observed a notable improvement achieved through the utilization

of lower speed levels. Specifically, our analysis reveals that the average speed attained by the

commercial solver across all instances is recorded as 46.56 km/h, while the corresponding

average speed obtained by the heuristic approach stands at 50.69 km/h. This discrepancy

in speed levels translates to a significant disparity in fuel consumption requirements. Based

on the solutions provided by the Gurobi solver, an average of 428.61 liters of fuel needs to be

refueled, whereas the heuristic approach necessitates an average refueling quantity of 526.93

liters. This increase of 8.87% in the average speed directly contributes to a subsequent rise

of 22.94% in average fuel consumption. Consequently, this increase in fuel consumption not

only results in higher costs associated with emissions taxation but also leads to an elevated

expenditure on refueling.

Herein, we investigate the potential improvements in the quality of the solution that can

be achieved by extending the execution time limit of the 2S −DA − GVNS. Specifically,

we explore four distinct execution time limits (60s, 120s, 300s, 360s) for the DA−GVNS

method, focusing on the five small and medium-sized problem instances. Table 8 presents

the average, best, and worst objective values, together with the corresponding standard

deviation, derived from 50 independent runs of the 2S −DA−GVNS under these varying

time limits. By extending the time limit to 381.19s (360s for DA-GVNS and 21.19s for the CI

within Speed Optimization), a significant improvement in the efficiency of the 2S −DA −

GVNS compared to the Gurobi solver appeared; despite the latter requires considerably

longer execution time (2-5 hours).
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Table 8: Impact of execution time adjustments

Instance Gurobi
Execution CPU Time limits

60 s 120s 300s 360s

TSP 15-5 182.32

Average 209.66 205.82 203.40 188.64

Best 203.75 203.75 182.32 182.32

Worst 243.87 243.87 219.65 219.65

SD 10.94 7.01 9.60 10.47

TSP 30-5 303.9

Average 333.76 327.40 322.60 319.07

Best 324.67 303.90 303.90 303.90

Worst 340.36 340.36 340.34 340.34

SD 7.82 9.89 9.28 10.49

TSP 50-5 366.22

Average 479.61 479.45 478.10 477.79

Best 474.93 474.93 474.93 474.93

Worst 490.06 490.06 490.06 482.46

SD 5.69 4.31 4.60 3.69

TSP 85-8 550.73

Average 627.31 626.32 562.51 548.79

Best 624.89 624.89 559.03 542.08

Worst 649.84 637.61 566.37 563.50

SD 6.33 3.41 3.05 8.72

TSP 100-10 610.18

Average 609.33 603.70 579.26 575.08

Best 580.05 570.34 562.75 562.75

Worst 694.65 694.65 580.05 580.05

SD 33.82 34.56 3.41 7.77

Table 9 provides the total and individual costs of the best-found solution for each PTSPR.

The asterisk symbol serves as an indicator that the best solution for a particular instance

was obtained through the utilization of the commercial solver.
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Table 9: Total and individual costs of the best-found solution

Instance Total Cost Driver Wage Cost Emissions Tax Cost Refueling Cost

TSP 15− 5∗ 182.32 68.42 67.77 46.15

TSP 25− 5 418.63 103.06 131.54 184.03

TSP 30− 5∗ 303.90 101.68 93.30 108.92

TSP 50− 5∗ 366.22 114.46 107.62 144.14

TSP 60− 7 498.55 134.56 150.35 213.65

TSP 85− 8 542.08 177.79 128.69 235.6

TSP 100− 5 668.70 176.05 191.49 301.16

TSP 100− 10 562.75 194.94 141.35 226.46

TSP 120− 10 670.45 176.14 189.07 189.07

TSP 150− 10 837.73 217.58 220.84 399.31

TSP 180− 10 947.83 242.63 239.62 465.57

TSP 200− 10 931.92 238.91 223.65 469.35

TSP 250− 15 1145.15 287.20 295.17 562.78

TSP 300− 10 1258.69 312.51 323.31 622.87

TSP 300− 15 1290.17 319.01 316.97 654.19

TSP 500− 15 1863.31 430.04 458.85 974.42

TSP 550− 20 1857.81 428.02 431.74 998.04

TSP 800− 25 2365.53 522.40 586.99 1256.14

TSP 950− 25 2677.01 527.87 667.09 1437.05

TSP 1000− 25 2875.27 613.84 717.60 1543.83

5.5. Sensitivity analysis

The dimensions of the fuel tank and the refueling policy are recognized as two pivotal pa-

rameters in the proposed model. Consequently, additional computational analysis is deemed

necessary to assess the influence of potential variations in these parameters on the structure

and cost of the logistics system. This examination aims to provide a deeper understand-

ing of the implications and repercussions associated with fluctuations in the values of these

critical parameters. It is crucial to emphasize that the conducted sensitivity analyses were

performed exclusively using the heuristic approach, specifically relying on the best solutions

found and reported by the algorithm, under a maximum execution time limit of 61.19s.

This choice was motivated by the heuristic’s remarkable capability to generate solutions for

problem instances of varying sizes, including those characterized as large-scale, which hold
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practical significance in the context of the study.

According to the fuel tank, we considered three additional sizes, (105L, 125L, 150L),

while for the refueling, the following two refueling policies were examined, LFL = 1
3
×UFL,

and LFL = 1
2
× UFL.

Tables 10, 11, 12, and 13 provide a comprehensive overview of the alterations observed in

the total costs, fuel costs, emission taxation costs, and driver wages costs, associated with

different combinations of fuel tank sizes and refueling policies.

Table 10: Average values of the best-found total costs (e) for all PTSPR instances

Fuel Tank Size (L) LFL = 1

4
× UFL LFL = 1

3
× UFL LFL = 1

2
× UFL

85 1129.81 Infeasible Infeasible

105 1238.05 1180.68 1213.73

125 1178.22 1178.16 1181.74

150 1138.83 1137.04 1145.18

Table 11: Average values of the best-found refueling costs (e) for all PTSPR instances

Fuel Tank Size (L) LFL = 1

4
× UFL LFL = 1

3
× UFL LFL = 1

2
× UFL

85 569.92 Infeasible Infeasible

105 638.24 604.12 621.47

125 601.66 602.62 606.77

150 573.81 573.71 578.53

Table 12: Average values of the best-found emissions taxation costs (e) for all PTSPR instances

Fuel Tank Size (L) LFL = 1

4
× UFL LFL = 1

3
× UFL LFL = 1

2
× UFL

85 290.32 Infeasible Infeasible

105 333.23 316.22 330.29

125 316.17 316.34 313.23

150 311.08 308.14 309.39
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Table 13: Average values of the best-found driver wages costs (e) for all PTSPR instances

Fuel Tank Size (L) LFL = 1

4
× UFL LFL = 1

3
× UFL LFL = 1

2
× UFL

85 269.56 Infeasible Infeasible

105 266.08 260.2 261.97

125 260.39 259.19 261.74

150 253.94 255.2 257.21

Initially, it is noteworthy that the cost of refueling significantly contributes to the overall

system cost. With a specific focus on the impact of alternative fuel tank sizes on the total

cost, the following observations emerge. Under the influence of the main refueling policy

(LFL = 1
4
· UFL), employing a fuel tank capacity of 105 liters instead of 85 liters results

in a notable increase of approximately 9.6% in the total cost. However, employing even

larger fuel tanks appears to alleviate this cost escalation. Specifically, an increase of 4.28%

is observed when employing a fuel tank capacity of 125 liters, while a marginal increase of

0.8% is observed when transitioning from an 85-liter fuel tank to a 150-liter fuel tank. These

observations can be attributed directly to fluctuations in fuel consumption and, consequently,

the required refueling quantities. Moreover, employing larger fuel tanks prompts the solution

methodology to adopt higher speed levels, thereby achieving a subtle balance between costs

related to fuel consumption and driver wages.

When considering the second refueling policy (LFL = 1
3
· UFL), a notable observa-

tion emerges: employing an 85-liter fuel tank renders the design of feasible logistic plans

unattainable. This observation underscores the pivotal role of adopting an analytical fuel

consumption model that accounts for various vehicle characteristics and integrates it into

refueling decisions. Specifically, in this particular case, the absence of a refueling decision

would result in the determination of a routing plan with a total fuel consumption amount,

negating the realistic necessity of approaching fuel stations to meet the evident refueling

requirement. Similarly, associating fixed fuel consumption rates with each distance (link)

would fail to capture the realistic limitations arising from vehicle-specific attributes.

Continuing with the observations made under the influence of the second refueling policy,
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employing a 125-liter fuel tank instead of a 105-liter fuel tank leads to a marginal reduction

in total cost. However, utilizing a 150-liter fuel tank presents substantial cost benefits

compared to the alternatives of 105-liter and 125-liter fuel tanks (yielding cost reductions of

3.7% and 3.5% respectively). These findings underscore the potential cost-saving advantages

of employing larger fuel tanks, as they enable more efficient utilization of available resources,

thereby optimizing the overall logistics planning process. More specifically, the utilization

of larger fuel tanks results in reduced refueling requirements, as lower quantities of fuel need

to be replenished along the route. This reduction in refueling needs not only saves on fuel

costs but also enables the solution methodology to apply higher speed levels in certain links

of the route. By operating at higher speeds, the driver wage costs can be mitigated, as

the time required for transportation is reduced. Consequently, the combination of reduced

fuel costs and lower driver wage costs contributes to overall cost savings when larger fuel

tanks are employed. These findings underscore the importance of considering the interplay

between fuel tank sizes, refueling strategies, and their impact on both fuel-related costs and

driver wage expenses for efficient logistics planning.

Similarly, analogous observations arise when examining the impact of the third, more

stringent, refueling policy (LFL = 1
2
· UFL). It is observed that employing an 85-liter

fuel tank renders the generation of feasible logistic plans unachievable, underscoring the

necessity for alternative approaches. Notably, the adoption of larger fuel tanks is associated

with substantial cost benefits. These findings further reinforce the notion that considering

larger fuel tank sizes plays a crucial role in optimizing the logistics planning process and

achieving cost efficiency.

Turning our attention to the influence of fluctuations in refueling policies on overall costs

for each fuel tank scenario, it is apparent that the utilization of the second refueling policy

aligns more favorably with the use of a 105-liter or 125-liter fuel tank. Conversely, adopting

more relaxed refueling policies proves more advantageous when employing a 150-liter fuel

tank.

To gain deeper insights into these observations, Tables 14 and 15 offer a comprehensive

analysis of the number of refueling stops and the corresponding total refueling quantities for
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each problem case, accounting for different fuel tank sizes and refueling policies. The symbol

“X” in these Tables signifies the absence of a feasible solution for the given combination of

fuel tank capacity and refueling policy.

Table 14: Number of intermediate refueling stops for each problem case

LFL = 1

4
· UFL LFL = 1

3
· UFL LFL = 1

2
· UFL

Instance 85L 105L 125L 150L 85L 105L 125L 150L 85L 105L 125L 150L

TSP 15− 5 1 1 1 1 X 1 1 1 X 1 1 1

TSP 25− 5 3 3 2 1 X 2 2 1 X 3 2 1

TSP 30− 5 2 2 2 1 X 2 2 1 X 2 2 1

TSP 50− 5 3 3 3 2 X 3 3 2 X 3 3 2

TSP 60− 7 3 3 3 2 X 3 3 2 X 3 3 2

TSP 85− 8 4 4 3 3 X 4 3 3 X 4 3 3

TSP 100− 5 4 5 3 3 X 3 3 3 X 5 3 3

TSP 100− 10 4 4 4 3 X 3 3 3 X 4 4 3

TSP 120− 10 4 5 3 3 X 4 4 3 X 5 4 3

TSP 150− 10 5 6 5 4 X 5 5 3 X 6 5 4

TSP 180− 10 6 7 5 4 X 5 5 4 X 7 5 4

TSP 200− 10 6 7 5 4 X 5 5 4 X 6 5 4

TSP 250− 15 7 8 6 5 X 6 6 5 X 8 6 5

TSP 300− 10 8 9 7 6 X 7 7 6 X 8 7 6

TSP 300− 15 8 8 7 5 X 6 7 5 X 8 7 6

TSP 500− 15 12 12 9 7 X 9 9 8 X 12 9 7

TSP 550− 20 12 12 10 8 X 10 10 8 X 12 10 8

TSP 800− 25 15 15 12 10 X 12 12 10 X 15 12 10

TSP 950− 25 17 17 14 11 X 14 14 11 X 16 14 11

TSP 1000− 25 18 18 15 12 X 15 15 12 X 18 15 12
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Table 15: Total refueling quantities for each problem case (in liters)

LFL = 1

4
· UFL LFL = 1

3
· UFL LFL = 1

2
· UFL

Instance 85L 105L 125L 150L 85L 105L 125L 150L 85L 105L 125L 150L

TSP 15− 5 32.61 36.35 44.31 44.31 X 44.31 44.31 44.31 X 36.35 44.31 44.31

TSP 25− 5 94.07 124.83 85.73 44.26 X 84.07 78.76 44.26 X 124.83 84.07 44.26

TSP 30− 5 71.49 69.06 86.53 49.48 X 90.74 92.4 50.52 X 69.06 93.41 50.52

TSP 50− 5 108.06 124.41 149.73 112.34 X 149.73 149.73 112.42 X 116.38 149.73 109.23

TSP 60− 7 109.6 124.16 138.6 114.7 X 142.2 138.6 112.57 X 124.16 138.6 109.06

TSP 85− 8 161.98 162.84 151.61 176.13 X 197.02 151.61 171.23 X 163.92 149.01 174.01

TSP 100− 5 156.52 207.84 138.04 175.46 X 139.31 139.31 173.46 X 201.66 139.31 169.58

TSP 100− 10 152.79 168.34 195.45 168.21 X 142.85 142.7 170.48 X 168.34 201.48 170.75

TSP 120− 10 160.44 210.16 145.12 176.12 X 191.14 199.91 181.15 X 206.22 196.45 172.08

TSP 150− 10 202.55 251.92 252.67 239.47 X 245.97 249.55 180.4 X 250.68 245.07 239.47

TSP 180− 10 240.63 299.86 250.75 229.67 X 253.95 251.31 240.41 X 295.23 248.5 238.05

TSP 200− 10 247.82 297.75 253.64 246.47 X 255.11 260.43 235.8 X 257.18 253.03 233.7

TSP 250− 15 289.07 336.35 304.3 300.63 X 305.58 303.21 305.68 X 344.38 308.25 302.6

TSP 300− 10 328.5 397.01 354.45 367.84 X 356.07 360.4 362.15 X 342.66 353.89 363.83

TSP 300− 15 336.47 348.63 353.96 307.49 X 313.91 351.81 308.84 X 344.65 362.92 367.09

TSP 500− 15 509.47 543.94 479.52 453.78 X 488.73 476.96 510.31 X 532.05 484.12 457.23

TSP 550− 20 516.51 542.52 536.44 516.41 X 540.71 536.33 516.25 X 542.01 531.47 583.67

TSP 800− 25 656.39 704.18 677.24 662.21 X 672.33 665.76 663.49 X 700.31 671.89 599.31

TSP 950− 25 753.38 814.95 792.49 753.72 X 795.43 794.94 750.08 X 764.48 791.98 752.78

TSP 1000− 25 806.37 874.42 857.29 820.4 X 866.93 871.2 819.58 X 868.75 854.16 822.58

Average 296.74 331.98 312.39 297.96 X 313.8 312.96 297.67 X 322.67 315.08 300.21

It is important to emphasize that the aforementioned observations are contingent upon

the underlying assumptions and specific characteristics of the problem at hand. Never-

theless, these findings demonstrate the efficacy of the proposed method in aiding logistics

decision-makers in designing efficient logistic plans by thoroughly examining various alterna-

tive scenarios. By investigating the impact of different fuel tank sizes and refueling policies,

the proposed method offers valuable insights that facilitate informed decision-making and

enhance the overall effectiveness and cost-efficiency of logistics operations. These observa-

tions underscore the significance of considering alternative scenarios and refining logistics

strategies to optimize resource utilization and achieve sustainable transportation solutions
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in real-world logistics environments.

6. Comparative study on symmetric TSPLib instances

This section presents a comparative analysis between the fundamental component of our

proposed solution methodology, the DA-GVNS, and other efficient heuristic algorithms doc-

umented in the literature for solving symmetric instances derived from the TSPLib dataset.

The results produced by our proposed solution method are compared with those achieved

by several heuristic algorithms, including a DA-GVNS (Karakostas & Sifaleras, 2022), an

improved VNS (iVNS) (Hore et al., 2018), another VNS (Bingüler & Bulkan, 2015), as well

as two nature-inspired heuristics, a Discrete Symbiotic Organisms Search algorithm (DSOS)

(Ezugwu & Adewumi, 2017) and a combinatorial Bee algorithm (cBA) (Sahin, 2023). The

average objective values obtained by each solution method under consideration are presented

in Table 16. It is noteworthy that the reported results for VNS Bingüler & Bulkan (2015)

correspond to the best-found values.

Table 16: Comparison between the proposed method and other solution approaches

Instance Optimal Proposed method DA-GVNS iVNS VNS DSOS cBA

a280 2579 2674 2644

ali535 202339 214198 217371

att48 10628 10628 10628 10628

att532 27686 29268 28924

bayg29 1610 1610 1610 1610

bays29 2020 2020 2020 2020 2020

berlin52 7542 7542 7542 7544.36 7542 7542.60 7544

bier127 118282 118660 120077 119006.39

brazil58 25395 25395 25395 25592.72

brg180 1950 1972 1974

burma14 3323 3323 3323

ch130 6110 6148 6166 6153.72 6368

ch150 6528 6570 6608 6644.95 6554

d198 15780 15913 15943 16079.28 15889

d493 35002 36515 36769 35864

d657 48912 52525 52209

d1291 50801 55199 55269 56095.33

d1655 62128 66860 67551 70337.23

d2103 80450 83643 84088

dantzig42 699 699 699 699

dsj1000 18659688 19925278 20212596

eil51 426 426 427 428.98 426 427.90

eil76 538 538 539 552.57 538 547.40

eil101 629 632 637 648.27 644 650.60

Continued on next page
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Table 16 – continued from previous page

Instance Optimal Proposed method DA-GVNS iVNS VNS DSOS cBA

fl417 11861 12093 12129 12183.14

fl1400 20127 20983 22408 21085.98

fl1577 22249 23990 24350

fl3795 28772 31011 35948

fnl4461 182566 201459 216965

fri26 937 937 937 937 937

gil262 2378 2472 2479 2501.86 2427

gr17 2085 2085 2085 2085

gr21 2707 2707 2707 2707

gr24 1272 1272 1272 1272 1272

gr48 5046 5046 5046 5046 5046

gr96 55209 55413 55448 55774

gr120 6942 7007 6998 7127

gr137 69853 70285 70233

gr202 40160 41163 41411 43668

gr229 134602 137861 137400

gr431 171414 179891 181904

gr666 294358 311923 314951

hk48 11461 11461 11461 11461

kroA100 21282 21286 21286 21695.79 21624 21409.50 21285

kroB100 22141 22167 22172 22140.20 22715 22339.20 22212

kroC100 20749 20786 20775 20809.29 20818 20881.60 20855

kroD100 21294 21370 21297 21490.62 21621 21439.10 21415

kroE100 22068 22124 22149 22193.80 22424 22231.10 22132

kroA150 26524 26758 26829 26947.17 26734

kroB150 26130 26462 26499 26537.04 28700 26302

kroA200 29368 29920 30002 30339.67 29533

kroB200 29437 30124 30203 30453.22 64871 29837

lin105 14379 14409 14379 14395.64 14596 14396

lin318 42029 43612 43664 43964.93 42972.42 42965

nrw1379 56638 60140 60484

p654 34643 35009 35569

pa561 2763 2904 2927

pcb442 50778 52959 53020 50800.24 51836

pcb1173 56892 61214 61979 63435.95

pcb3038 137694 149146 156236 154565.40

pr76 108159 108159 108183 108159 108644

pr107 44303 44693 44303 44314.92 46071 44445.10

pr124 59030 59080 59090 59051.82 59813 59429.10 59210

pr136 96772 97336 97827 97985.84 101477 97673.20

pr144 58537 58537 58537 58563.97 59834 58817.10 58688

pr152 73682 73921 74070 73855.11 78294 74785.70

pr226 80369 80879 80749 80514.64 88494 81100

pr264 49135 50127 50143 51197.14 52798.90

pr299 48191 50300 50113 50373.12 50335.20 48694

pr439 107217 111880 113495 111771.20

pr1002 259045 278881 277329 280563.90 278381.51 277525

pr2392 378032 404981 414866 425431.78

rat99 1211 1215 1218 1241.26 1228.37

rat195 2323 2376 2387 2453.81 2352

rat575 6773 7255 7284 7362.51 7117.32

rat783 8806 9343 9458 9707.36 9102.67

rd100 7910 7911 7952 7918.36 8022

rd400 15281 15971 15899 16250.21

rl1304 252948 278501 282173

rl1323 270199 287821 295999 295611.20

Continued on next page
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Table 16 – continued from previous page

Instance Optimal Proposed method DA-GVNS iVNS VNS DSOS cBA

rl1889 316536 348928 344692

rl5915 565530 630953 688397

rl5934 556045 616836 660342

si175 21407 21425 21434

si535 48450 48848 49505

si1032 92650 93054 92909

st70 675 675 675 677.11 679.20 677

swiss42 1273 1273 1273 1273

ts225 126643 127256 126990

tsp225 3916 4037 4024

u159 42080 42595 50778 42467.61

u574 36905 39261 46286 39629.11

u724 41910 44440 46112 45729.71

u1060 224094 241639 241646

u1432 152970 163439 166283

u1817 57201 62391 62140

u2152 64253 70265 70628

u2319 234256 242826 243401 262595.60

ulysses16 6859 6859 6859 6859

ulysses22 7013 7013 7013 7013

vm1084 239297 254445 257842

vm1748 336556 357650 371452 366757.80

Comparing the outcomes obtained by our DA − GVNS with those achieved by other

solution methods, reported in the literature, our method yielded improvements of 1.29%

(1.56%), 1.06% (1.23%), 5.54% (5.7%), and 0.7% (0.9%) over the solutions presented by the

DA− GV NS∗, the iV NS, a traditional V NS, and the DSOS, respectively. However, the

cBA reported 0.6% (0.24%) superior values compared to our method, while our approach

demonstrated a slight advantage of 0.22% when the execution time of our method was

adjusted to match the average execution time of cBA (117s). The percentages in parentheses

denote the performance deviations resulting from an increase in the execution time limit of

our method from 40s to 60s.

7. Conclusions

The present study addresses a novel variant of the TSP, known as the Pollution TSP with

Refueling (PTSPR). This variant encompasses comprehensive decisions regarding fuel con-

sumption and refueling, which are integrated into the traditional TSP framework. To tackle

this new problem, a novel MILP model was developed. Small problem cases were solved
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utilizing the commercial solver, Gurobi. Moreover, a Two-Stage Double-Adaptive General

Variable Neighborhood Search (DA-GVNS) algorithm was developed to effectively solve

large-scale instances of the PTSPR. To assess the performance of the proposed solution

method, and gain insights into the logistics system’s structure and costs, extensive compu-

tational experiments and sensitivity analyses were conducted. These analyses examined the

impact of potential fluctuations in key model parameters, shedding light on the robustness

and adaptability of the proposed approach in addressing real-world logistics challenges.

Based on the extensive analyses conducted in this study, it was deemed necessary to ex-

plore additional refueling policies and fuel tank sizes beyond the initially considered options.

Our findings highlight the significance of adopting larger fuel tanks in conjunction with more

stringent refueling policies, as this combination can yield substantial cost savings. This cost

reduction can primarily be attributed to the attainment of a better balance between fuel

consumption-related costs and driver wage costs.

The computational and sensitivity analyses conducted in this study have yielded valu-

able insights, paving the way for several potential avenues of future research. Firstly, there

is a need for further exploration and development of alternative refueling policies that strike

a harmonious balance between cost considerations and operational efficiency. Moreover,

the examination of speed limits and their consequential impact on network structure and

refueling requirements is of considerable interest. Additionally, incorporating more realis-

tic scenarios and uncertainties within the model would enhance our understanding of how

fluctuations in crucial model parameters, such as fuel prices and demand patterns, impact

the structure and cost dynamics of the logistics system. From a technical standpoint, fu-

ture research efforts could focus on designing new combined local search operators that

simultaneously address both routing and refueling decisions, thus enhancing the efficiency

of the proposed solution method. Furthermore, considering the adoption of relocation oper-

ators instead of swap operators in the post-optimization method holds promise for further

improvements.
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Dukkanci, O., Kara, B. Y., & Bektaş, T. (2019). The green location-routing problem. Computers &

Operations Research, 105 , 187–202.

Ezugwu, A. E., & Adewumi, A. O. (2017). Discrete symbiotic organisms search algorithm for travelling

salesman problem. Expert Systems With Applications , 87 , 70–78.

Flood, M. (1956). The Traveling-Salesman Problem. Operations Research, 4 , 61–75.

Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European

Journal of Operational Research, 245 , 81–99.

45
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