Scheduling in parallel machines with two servers:
the restrictive case

Rachid Benmansour! [0000-0003—2553—4116] 41,4 Angelo
Sifaleras2[0000—0002-5696 7021]

! National Institute of Statistics and Applied Economics (INSEA),
SI2M Laboratory, Rabat, Morocco
r.benmansour@insea.ac.ma
2 Department of Applied Informatics, School of Information Sciences,
University of Macedonia, 156 Egnatia Str., Thessaloniki 54636, Greece
sifaleraQuom.gr

Abstract. In this paper we study the Parallel machine scheduling prob-
lem with Two Servers in the Restrictive case (PTSR). Before its pro-
cessing, the job must be loaded on a common loading server. After a
machine completes processing one job, an unloading server is needed to
remove the job from the machine. During the loading, respectively the
unloading, operation, both the machine and the loading, respectively the
unloading, server are occupied. The objective function involves the mini-
mization of the makespan. A Mixed Integer Linear Programming (MILP)
model is proposed for the solution of this difficult problem. Due to the
NP-hardness of the problem, a Variable Neighborhood Search (VNS) al-
gorithm is proposed. The proposed VNS algorithm is compared against
a state-of-the-art solver using a randomly generated data set. The re-
sults indicate that, the obtained solutions computed in a short amount
of CPU time are of high quality. Specifically, the VNS solution approach
outperformed IBM CPLEX Optimizer for instances with 15 and 20 jobs.

Keywords: Scheduling - Parallel machine - Mixed integer programming
- Variable neighborhood search - Single server.

1 Introduction

Sequencing and scheduling decisions are crucial in manufacturing and service in-
dustries. Scheduling jobs on parallel machines consists of determining the start-
ing time of each job and the machine that will process this job. The problem
has a myriad of applications in logistics, manufacturing, and network computing
etc. The literature on this subject is abundant as it is for the problem of parallel
machine scheduling problem with single server ([1,2,6,12]).

Formally the problem of minimizing the makespan C,,4, on the parallel ma-
chine with a single server is denoted by Pm, S1|p;, $;|Crmaz- In this notation, m
represents the number of machines, S1 represents the server, and p;, s; represent
the processing time and setup time (or loading time) of job i, respectively.

Please cite this paper as:

Benmansour R. and Sifaleras A., "Scheduling in parallel machines with two servers: The restrictive case”,
Variable Neighborhood Search (ICVNS 2021), Lecture Notes in Computer Science, Springer , Cham, Vol.
12559, pp. 71-82, 2021.

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-69625-2_6

2 Benmansour R. and Sifaleras A.

Considering this problem, Liu et al. [13] studied the objective of minimizing
the total weighted job completion time. They proposed a branch-and-bound
algorithm, a lower bound, and dominance properties.

In [12] the authors proposed two mixed integer programming formulations
for the problem with several machines. They proposed also a hybrid heuristic
algorithm combining Simulated Annealing (SA) and Tabu Search (TS) to min-
imize the total server waiting time. Recently El Idrissi et al. [7] proposed two
additional mixed integer programming formulations for the same problem with
better performance given especially by the time-indexed variables formulation.

In the paper of Torjai and Kruzslicz [17], the authors consider the situation
where the shared server is used to unload the jobs. As an application, the authors
studied a biomass truck scheduling problem. The trucks represent the machines
in charge of delivering biomass from different locations to a single refinery oper-
ating a single server.

The problem of considering both loading and unloading operations in order to
minimize the makespan was studied by Jiang et al. [11]. In their work the authors
considered only two parallel machine and a single server that is capable of doing
the loading and unloading operations. In addition to these assumptions, the
authors considered the non-preemptive case in which the loading and unloading
durations are both equal to one time unit. Given the NP-hardness nature of
the problem, they applied a List Scheduling (LS) and Longest Processing Time
(LPT) to solve this problem. Also they showed that LPT and LS LPT have tight
worst-case ratios of 4/3 and 12/7, respectively.

Some authors considered the problem with several servers. Ou et al. [15]
studied the parallel machine scheduling with multiple unloading servers in order
to minimize the total completion time of the jobs. As an application the authors
cite milk run operations of a logistics company that faces limited unloading
docks at the warehouse. The authors show that, the shortest-processing-time-
first (SPT) algorithm has a worst-case bound of 2. They also provide heuristics
and a branch-and-bound algorithm to solve the problem.

In [18] the authors studied the problem of scheduling non preemptively a
set of jobs identical parallel machines. Each job has to be loaded, on a given
machine, by one of multiple servers available. The authors show that, the problem
Pm, Sk|s; = 1|Cpaz is binary NP-hard and that the problem Pm, S(m—1)|s; =
1|Chuaz can be solved by a pseudo-polynomial algorithm. For a fixed number of
machines and servers the problem is unary NP-hard when considering maximum
lateness minimization.

As seen above, there are several articles dealing with the problem of parallel
machine scheduling with loading and unloading operations. In some cases only
one server was considered, and in other cases several servers were considered.
Also several researchers considered only the loading or unloading operations
whereas other researchers considered that the server can do both the loading
operation and the unloading operation.

To the best of our knowledge, the case where two servers are available has
not been studied before. One server is dedicated only for loading jobs on the

Scheduling in parallel machines with two servers: the restrictive case 3

machines and the other server is dedicated for unloading them from the ma-
chines. This problem is NP-hard as it is more difficult that the special case
P2, 51|pj, $;|Crae which is NP-hard (cf. [4]). The research contributions of this
work are summarized as follows:

— This paper considers the parallel machine scheduling problem with loading
and unloading servers.

— The general problem with restrictive and non-preemptive case is considered
for the first time.

— An efficient VNS algorithm is proposed to solve this problem.

The remaining of the paper is organized as follows. The description of the
problem and an illustrative example are given in Section 2. Section 3 presents
the mathematical formulation of the restrictive model. Section 4 provides a VNS
method for the solution of the PTSR. Finally, Sections 5 and 6 present our
experimental results and draw some conclusions, respectively.

2 Problem Description

This paper considers the parallel machine scheduling problem with loading and
unloading servers. In this problem, we consider two machines and a set 2; =
{1,2,...,n} of n independent jobs with integer processing times have to be
processed non-preemptively on a set of parallel machines with two servers. The
first server is dedicated to the loading of jobs on the machines and the second
server realizes the unloading of jobs immediately after their execution. During
the loading (respectively unloading) operation, both the machine and the load-
ing server (respectively unloading server) are occupied and after this operation,
the server becomes available for loading (respectively unloading) the next job.
It is assumed that, the jobs are simultaneously available for processing at the
beginning of the scheduling horizon, and that their processing times are fixed
and known in advance. The objective function in the PTSR problem consists of
minimizing the makespan.

2.1 Numerical example

Let’s assume we are given an instance with two parallel machines M1 and M2,
eight jobs, and two servers. One server is used to load the jobs on one of the
machines (denoted as L) and the other is used to unload them (denoted as U).
The other data are displayed in the following Table 2.1. For each job i, p;, (;,
and u; represent the processing time, the loading time, and the unloading time
of this job, respectively.

The optimal objective function value can be obtained by solving the MIP
formulation described in Section 3. IBM CPLEX Optimizer v12.6 requires 11.82
minutes to solve this problem. Figure 1 represents the corresponding schedule.
In this schedule the server L loads first the job J7 on the machine M1. This
operation take one unit of time. Then the processing of this job begins from

4 Benmansour R. and Sifaleras A.

Job123 45678

pi 651077965
l; 423 11213
u; 311 12343

Table 1. Example instance for n = 8.

time ¢ = 1 until ¢ = 7. At this time the second server U is used to unload the
J7 from machine M1. This operation takes four units of time. The makespan in
this schedule is equal to 46.

&[s 10] 11] 12 13[14| 15| 18] 17 15[13| 20[21] 22 23] 26 25[26] 27] 28[29[20[21| 22| 33| 24 35[26| 27] 38| 23] 40] a1 e2[ez as] a5

Fig. 1. The optimal schedule for the n = 10 problem instance

The problem is called restrictive because:

— once the job is loaded on the machine by the server L, it must be processed
immediately by the machine.

— once the job is processed by the machine, it must be unloaded immediately
by the server U.

If one of these conditions is not met, then the value of the optimal solution
can be improved. In this case, a non-restrictive version of the problem occurs.

3 Mathematical Formulation of the Restrictive Model

In this case, the unloading of a job is carried out immediately after the end of
its processing.
Notations:

n the number of jobs

M = {1,2,...,m} set of the machines
— p; the processing time of job ¢

l; the loading time of job i

Scheduling in parallel machines with two servers: the restrictive case 5

u; the unloading time of job @

B A large positive integer

— 21 = {1,2,...,n} set of jobs to be processed on the machines

— 25 = {n+1,...,2n} set of jobs to be processed on the loading server, each
job ¢ has a duration [;

— 25 = {2n+1,...,3n} set of jobs to be processed on the unloading server,
each job ¢ has a duration u;

- 2= {1,2,...,3n} set of all the jobs

For the needs of modeling, we adopt the following notations: the p parameter
will represent the duration of jobs, whether on the machine or on the servers.
Thus:

Vie 1 pi=pi+1;+u;
Vie 2y pi=lin
Vi€ 23 p;=ui—on

Variables:

C; : the completion time of the job 4

xi = 1 if job i € {2 is processed on machine k and 0 otherwise
z;; = 1 if job 7 is processed before job j and 0 otherwise.

min Crox (1)
s.t. Comaw > Cy, Vi € (1, 2)
Z.’Eik =1, Vie -Ql, (3)

k=1
Ci > pi, Vied

(4)

C; <Cj—pj+ B3 — ik —zjk — 2i5), Vi£jeh,keM (5)
C; <Cj—pj+B(l—2zy), Yi#je (6)
C; <Cj—p;j+B(l—=zy), Yi#je (7)
Gitzi=1, VitjER (8)
Ci — (pi+w;) =Cippn, Vi€ (9)
Ci=Ciyon, Vi€ (10)
)

Tij, Zik € {0, 1}, V’L,j € _Q, Jj> (11

In this MIP model we aim to minimize the makespan Cj,q, (1). Constraints
set (2) states that makespan of an optimal schedule is greater than or equal to
the completion time of all executed jobs. In turns, the completion time of each
job is at least greater than or equal to the sum of the loading, the unloading and
the processing times of this job (4). Constraints (3) state that each job must be
processed on exactly one machine. Constraints sets (5), (6) and (7) guarantee,
respectively, that all jobs are scheduled on the loader, on the machines, and on

6 Benmansour R. and Sifaleras A.

the unloader without overlapping. The next constraints (8) impose that for each
couple of jobs (i, j), one must be processed before the other. Next, constraints (9)
are used to calculate the completion time of each job i. Since we are dealing
with the restrictive case, which states each job is immediately unloaded from
the machine after its execution, then the completion time of the job, Cj, is equal
to the completion time of the loading operation, C;4,, plus the processing time
and the unloading time p; + u;. Finally, constraints (10) are added to state that
the completion time of the job ¢ on the machine is equal to the completion time
of unloading operation of the same job. Constraint sets (11) define variables z; ;
and z; , as binaries.

4 Variable Neighborhood Search

4.1 General Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic method based on sys-
tematic changes in the neighborhood structure initially proposed by Mladenovié¢
and Hansen [14]. The simplicity and efficiency of the VNS method has attracted
several researchers the last decades and has lead to a large number of successful
applications in a wide range of areas [3, 16].

In this paper, we use the General VNS (GVNS) variant to solve the problem
in hand. GVNS employs the Variable Neighborhood Descent (VND) which con-
sists of a powerful local search step in each neighborhood rather than a simple
local search step in only one neighborhood per iteration. Thus, the VND method
constitutes the intensification part of the VNS and it is analytically described
in [5]. The pseudo-code of the algorithm is presented below (Algorithm 1).

Algorithm 1: GVNS

Data: xZ, lmaac, kmam, tmax
Result: Solution =
Generate an initial solution x;
repeat
I+ 1;
repeat
2’ + Shake(7, kmac lmax);
x" < VND(2', lymaz);
z,l + NeighborhoodChange(z,z"l);
until [= lnaq;
t < CpuTime() ;
until ¢ > t,4z;

The method NeighborhoodChange(z, 2, 1) is used to change (or not)
the current neighborhood structure. If the local optimum z” is better than the
incumbent z, then NeighborhoodChange keeps this solution instead of z (i.e.

Scheduling in parallel machines with two servers: the restrictive case 7

x < z'"), and the search returns to A7; otherwise, it sets [< [+ 1 in order to
find, if possible, a better solution in a different neighborhood.

VND (Algorithm 2) starts with an initial solution xy and continuously tries
to construct a new improved solution from the current solution x by exploring
its neighborhood N;(z). The process continues to generate neighboring solutions
until no further improvement can be made. In our implementation, we use the
first improvement search strategy as we choose a random solution as the initial
solution [9].

Algorithm 2: VND method

Data: z, limaas
Result: Solution z
repeat
I+ 1;
repeat
Select 2’ € NV (x) such that f(z') < f(z);
NeighborhoodChange(z,z’,l);
until | = lnaq;

until no improvement is made;
return x

The aim of a Shaking procedure used within a VNS algorithm is to escape
from local minima traps; thus, the Shaking method constitutes the diversification
part of the VNS. The Shaking procedure performs a number of random jumps
(k € {1,2,...,kmaz}) in a neighborhood N(z), 1 € {1,2,...,lne} from a
predefined set of neighborhoods. Note that, the [index is given as input by
Algorithm 1. In this work, k4, was set equal to five based on some preliminary
experiments.

Algorithm 3: Shake method

Data: z, kmaz, lmas

Result: Solution z

for k =1 to kmaz do
Select randomly z’ € N (z);
x

end

return x

VNS uses a finite set of neighborhood structures denoted as Nj, where [€
{1,2,...,lnaz}- The I*" neighborhood of solution x, Aj(z), is a subset of the
search space, which is obtained from the solution x by small changes. The VNS
(Algorithm 1) includes an improvement phase in which a VND method is ap-

8 Benmansour R. and Sifaleras A.

plied and a shaking phase used to escape local minima traps. These procedures
are executed alternately until fulfilling a predefined stopping criterion. The stop-
ping criterion of the proposed solution methodology was a maximum CPU time
allowed for the VNS, equal to five minutes.

4.2 Neighborhood structures

To design an efficient VNS algorithm one must carefully select the neighbor-
hoods structure to use. Some authors recommend the use of less than three
neighborhood structures [8]. We have developed the following three neighbor-
hood structures ({4, = 3) for the computational experiments:

— Neighborhood Nj(z) = Swap(z): The neighborhood set consists of all per-
mutations that can be obtained by swapping two adjacent jobs in the solution
T.

— Neighborhood N3 (z) = Swap2(z): It consists of all solutions obtained from
the solution x swapping two random jobs.

— Neighborhood N3(z) = Reverse(x): Given two jobs j and k we reverse the
order of jobs being between those two jobs.

4.3 Initial solution

The initial solution is chosen as a random permutation of the jobs. From any
sequence of the jobs, we can build the solution as follows: We start by loading
the first job on the machine Mj, and the second one on machine M. In this
case, the second job is directly loaded after the end of loading job 1 (i.e., without
idle time). For each one of the following jobs j, as soon as the server L becomes
available, we can load job j on one of the two available machines for processing.
Otherwise, one should wait for one of the machines to be available before loading
this job. It should be noted that, each time it must be checked that the end date
of the unloading of job j does not overlap with another job which is being
unloaded. If it is the case, it is necessary to shift the starting time of loading job
7 adequately.

4.4 Evaluation Function

Consider a permutation of jobs 0 = {1,2,...,n}. To evaluate the value of the
solution corresponding to o we will proceed as follows. At ¢ = 0 all resources are
available. The job 1 is scheduled on machine 1. This means that the job is loaded
on L which will take {; units of time. The machine M1 that is busy up to this
point will start the processing of this job. At the end of this operation, the jobs
are unloaded immediately from the machine using the resource U). Then we will
schedule job 2 as soon as possible on machine 2. We may face two possibilities
here. The first case is i) we will start loading this job on L just after the end of
loading operation of job 1. In this case, the resource U is available when job 2
is to be unloaded (i.e. job 1 has finished unloading). The second case is ii) we

Scheduling in parallel machines with two servers: the restrictive case 9

will shift the postpone the loading of job 2 so that at the time of unloading the
resource U will be available. For the following jobs, we must choose the earliest
starting date on the server and on one of the two machines so as to have an
execution without idle time and the smallest completion time possible on the
resource U. Finally, the value of the solution o will be the completion time of
the last scheduled job.

5 Computational results

We generated the data as suggested by Hasani et al. [10]. Hence, we randomly
generated server load 7 in the interval {0.5,1,2} for each server, where n =
E(s;)/E(p;) and E(x) denotes the mean of x, and s; can either represents the
loading time [; for the server L or the unloading time u; for the server U. The
processing times p; were uniformly distributed in the interval (0, 100), and the
loading and unloading times, respectively /; and u; were uniformly distributed
in the interval (0,100n). Furthermore, we generated instances for n € {15, 20}.
Ten instances were randomly generated for each of the above values of n and for
the additional values of n.

All tests presented in this section were conducted on a personal computer
running Windows 7 with an Intel®Core(™) i7 vPro with a clock speed at 2.90
GHz CPU and 16 GB of RAM. Also, IBM CPLEX Optimizer v12.6 was used
for the solution of the MIP optimization problems.

In Table 2, which is subdivided into two parts, we have reported the results
of 60 instances solved by VNS and by CPLEX. These cases relate to problems of
size n = 15 jobs and problems of size n = 20 jobs. For n = 15, the first column
represents the instance k. The second represents the values of the server load 7.
The third column represents the best value found by VNS in a time limit of five
minutes. The fourth column represents the best value (upper bound) found by
CPLEX in one hour. Finally, the last column, represents the relative MIP gap
(difference between the lower and upper bounds) computed by CPLEX.

In Table 2, for instances with 15 jobs, VNS finds a better solution than
CPLEX in 87% of the cases. VNS performance is even better for large instances.
In fact, for n = 20, VNS always finds a better solution for each case than CPLEX,
whether the time limit is five minutes or five seconds. We report here only the
solutions found in five minutes since they were better than those found in five
seconds. Note that in both cases, we have written in bold the best values found
by VNS. Finally, we should highlight the fact that, the MIP model for n = 20,
m = 2, n = 0.5 was not able to solve optimally the first instance even after six
hours.

10 Benmansour R. and Sifaleras A.

n =15 n = 20
n GVNS CPLEX GAP (%) n GVNS CPLEX GAP (%)

k
0.5 818 818 45.35 |1 0.5 1055 2342 88.95
0.5 873 873 39.09 |2 0.5 1156 2450 89.14
0.5 784 782 43.48 |3 0.5 991 2466 89.45
0.5 845 845 3943 |4 0.5 1151 2496 89.51
0.5 785 785 33.20 |5 0.5 1052 2616 89.77
0.5 816 816 3480 |6 0.5 987 2399 88.22
0.5 697 695 21.57 |7 0.5 1140 2631 90.07
0.5 832 832 39.06 |8 0.5 989 2755 88.85
0.5 724 724 3590 |9 0.5 1033 2522 88.90
100.5 723 723 29.05 [100.5 957 2756 90.28
1053 1053 33.20 |1 1486 3897 89.09
1178 1177 41.83 |2 1643 3801 87.57
1063 1064 2820 |3 1646 3548 87.78
1075 1079 3243 |4 1526 4090 90.56
1197 1198 39.65 |5 1456 3774 88.45
1007 1008 31.80 |6 1601 3968 88.82
1280 1283 42.18 |7 1377 4227 89.70
1394 1395 45.96 |8 1660 3560 88.07
1171 1168 36.30 |9 1448 4041 89.58
1324 1325 40.24 0 1336 4207 89.46
2215 2224 39.53 |1 2610 6323 88.40
2042 2049 36.12 |2 2959 6149 87.75
2003 2009 37.36 |3 2323 7413 88.17
1920 1926 34.74 |4 2828 6366 86.30
1771 1777 33.65 |5 2465 6605 88.49
1786 1786 41.71 |6 2270 6450 88.62
1908 1914 33.52 |7 2373 6191 87.70
2058 2059 44.52 |8 2839 6368 88.08
2027 2040 39.69 |9 2520 6936 90.58
2206 2210 40.32 0 2727 7182 89.23

[t
=

k
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9

NN DNDNNNDNDNDDNDINRF = == =
NNNNNDNNNDNNDNNNRFRRPRRRRRRRRRR2 e

—_

0

—_

Table 2. Computational results

6

Scheduling in parallel machines with two servers: the restrictive case 11

Conclusions and Future Work

This work studied the parallel machine scheduling problem with two servers
in the restrictive case. Also, a mixed integer linear programming model and a
variable neighborhood search approach were presented for the solution of the
proposed problem. The VNS solution approach showed a very good computa-
tional performance and computed solutions of better quality than CPLEX for
instances with 15 or 20 jobs. Studying problems with more than two machines
consists an interesting research idea for future work. Also, a similar model cor-
responding to the non-restrictive case is also interesting as a generalization of
the proposed model.

References

10.

11.

Abdekhodaee, A.H., Wirth, A.: Scheduling parallel machines with a single server:
some solvable cases and heuristics. Computers & Operations Research 29(3), 295—
315 (2002)

Bektur, G., Sarag, T.: A mathematical model and heuristic algorithms for an un-
related parallel machine scheduling problem with sequence-dependent setup times,
machine eligibility restrictions and a common server. Computers & Operations
Research 103, 46-63 (2019)

Benmansour, R., Sifaleras, A., Mladenovié¢, N. (eds.): Variable Neighborhood
Search. 7th International Conference, ICVNS 2019, Rabat, Morocco, October 3-5,
2019, Revised Selected Papers, LNCS, vol. 12010. Springer, Cham (2020)
Brucker, P., Dhaenens-Flipo, C., Knust, S., Kravchenko, S.A., Werner, F.: Com-
plexity results for parallel machine problems with a single server. Journal of
Scheduling 5(6), 429-457 (2002)

. Duarte, A., Mladenovié¢, N., Sdnchez-Oro, J., Todosijevié¢, R.: Variable Neighbor-

hood Descent, pp. 1-27. Springer International Publishing, Cham (2016)
Elidrissi, A., Benbrahim, M., Benmansour, R., Duvivier, D.: Variable neighborhood
search for identical parallel machine scheduling problem with a single server. In:
Variable Neighborhood Search. ICVNS 2019. Lecture Notes in Computer Science.
vol. 12010, pp. 112-125. Springer (2019)

Elidrissi, A., Benmansour, R., Benbrahim, M., Duvivier, D.: Mip formulations
for identical parallel machine scheduling problem with single server. In: 2018 4th
International Conference on Optimization and Applications (ICOA). pp. 1-6. IEEE
(2018)

Glover, F.W., Kochenberger, G.A.: Handbook of metaheuristics, vol. 57. Springer
Science & Business Media (2006)

Hansen, P., Mladenovié, N., Pérez, J.A.M.: Variable neighbourhood search: meth-
ods and applications. Annals of Operations Research 175(1), 367-407 (2010)
Hasani, K., Kravchenko, S.A., Werner, F.: Block models for scheduling jobs on
two parallel machines with a single server. Computers & Operations Research 41,
94-97 (2014)

Jiang, Y., Zhang, Q., Hu, J., Dong, J., Ji, M.: Single-server parallel-machine
scheduling with loading and unloading times. Journal of Combinatorial Optimiza-
tion 30(2), 201-213 (2015)

12

12.

13.

14.

15.

16.

17.

18.

Benmansour R. and Sifaleras A.

Kim, M.Y., Lee, Y.H.: Mip models and hybrid algorithm for minimizing the
makespan of parallel machines scheduling problem with a single server. Computers
& Operations Research 39(11), 24572468 (2012)

Liu, G.S., Li, J.J., Yang, H.D., Huang, G.Q.: Approximate and branch-and-bound
algorithms for the parallel machine scheduling problem with a single server. Journal
of the Operational Research Society 70(9), 1554-1570 (2019)

Mladenovié, N., Hansen, P.: Variable neighborhood search. Computers & Opera-
tions research 24(11), 1097-1100 (1997)

Ou, J., Qi, X., Lee, C.Y.: Parallel machine scheduling with multiple unloading
servers. Journal of Scheduling 13(3), 213-226 (2010)

Sifaleras, A., Salhi, S., Brimberg, J. (eds.): Variable Neighborhood Search. 6th In-
ternational Conference, ICVNS 2018, Sithonia, Greece, October 4-7, 2018, Revised
Selected Papers, LNCS, vol. 11328. Springer, Cham (2019)

Torjai, L., Kruzslicz, F.: Mixed integer programming formulations for the biomass
truck scheduling problem. Central European Journal of Operations Research 24(3),
731-745 (2016)

Werner, F., Kravchenko, S.A.: Scheduling with multiple servers. Automation and
Remote Control 71(10), 21092121 (2010)

