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Abstract. This study explores the use of Autoregressive Integrated
Moving Average (ARIMA) and Long Short-Term Memory (LSTM) ma-
chine learning models in metaheuristic algorithms, with a focus on a
modified General Variable Neighborhood Search (GVNS) for the Ca-
pacitated Vehicle Routing Problem (CVRP). We analyze the historical
chain of actions in GVNS to demonstrate the predictive potential of these
models for guiding future heuristic applications or parameter settings in
metaheuristics such as Genetic Algorithms (GA) or Simulated Anneal-
ing (SA). This “optimizing the optimizer” approach reveals that, the
history of actions in metaheuristics provides valuable insights for predict-
ing and enhancing heuristic selections. Our preliminary findings suggest
that machine learning models, using historical data, offer a pathway to
more intelligent and data-driven optimization strategies in complex sce-
narios, marking a significant advancement in the field of combinatorial
optimization.
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1 Introduction

1.1 Metaheuristics in Combinatorial Optimization

Metaheuristic algorithms have evolved significantly to address complex and NP-
hard challenges in combinatorial optimization [12, 13], such as the CVRP [4].
Historically, these algorithms have evolved from simple solution-seeking methods
to sophisticated adaptive frameworks capable of intelligently navigating complex
solution spaces. This evolution reflects a continuous effort to enhance efficiency
and effectiveness in finding near-optimal solutions, especially in computationally
demanding scenarios.

1.2 Machine Learning Integration in Metaheuristics

The integration of machine learning into metaheuristics marks the latest ad-
vancement in this field, representing a significant leap in computational intelli-
gence. Building upon historical progress, our research incorporates ARIMA [5]
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and LSTM models [7] into the GVNS for the CVRP, aiming to capture and
leverage temporal dynamics in optimization processes. This integration is not
just an innovation, but a response to the growing need for more precise predic-
tive capabilities in dynamic environments. Based on recent studies in parallel
execution [9, 8, 1], learning-based neighborhood search [10, 14], and large neigh-
borhood search adaptations [6], our approach seeks to harness the potential of
machine learning to further refine and improve metaheuristic strategies.

2 Methodological and Experimental Setup

In this section, we outline our comprehensive methodological framework, which
begins with the innovative reconfiguration of the GVNS [2, 11] for the CVRP.
This approach is crucial for generating a robust dataset, essential for the subse-
quent training and optimization of ARIMA and LSTM models.

2.1 GVNS-Driven Data Collection and Analysis

The proposed modification of the GVNS metaheuristic consists of a different
neighborhood selection step, and it is tailored towards generating unbiased data
across CVRP instances. Through multithreaded data collection and extensive
preprocessing, including normalization and structuring, we prepare the data set
for pattern analysis using ARIMA and LSTM models. This strategic approach
seeks to evolve traditional metaheuristic algorithms into intelligent, adaptive
systems.

Data collection during GVNS iterations involves tracking each heuristic’s ap-
plication and outcome, quantified as binary values (success or failure) and con-
tinuous values (degree of solution improvement). This detailed data collection
is crucial for a robust analysis. The data set is then preprocessed for analy-
sis. ARIMA models are used for regression analysis to identify linear trends,
while LSTM networks address classification issues, adapt in processing sequen-
tial data. This combination allows for a comprehensive analysis of patterns in
decision making. We used CVRP instances from CVRPLib [3] (sets A, B, and
X), which offer various complexities, to validate our methodology in a structured
environment.

2.2 Model and Parameter Optimization

In our study, both ARIMA and LSTM models underwent meticulous optimiza-
tion processes to enhance their predictive accuracy for the GVNS algorithm.
ARIMA’s role was to forecast the “reward” value, with our analysis reveal-
ing some seasonality potentially influenced by GVNS’s cyclic phases. The Aug-
mented Dickey-Fuller and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests,
combined with Fourier Transform and Seasonal Decomposition, confirmed the
time series’ stationarity, leading us to favor ARIMA over SARIMA. We explored
a range of parameters, evaluated the models on Akaike Information Criterion
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(AIC) and Mean Squared Error (MSE), and settled on the ARIMA (5, 1, 5)
model for its optimal balance of AIC and high PRAUC, indicating its effec-
tiveness in predicting heuristic improvements. In optimizing the ARIMA model,
specific parameters are pivotal: “p” representing the order of autoregression,
“d” the degree of differencing, and “q” the moving average window, that to-
gether define the model’s structure. The performance of ARIMA (5, 1, 5) was
evaluated using the Mean Squared Error (MSE) and Akaike Information Cri-
terion (AIC), with lower values in both indicating better model fit. AIC was
particularly crucial for comparing the quality of different models. Additionally,
the Precision-Recall Area Under Curve (PRAUC) metric was utilized to assess
the binary classification effectiveness of ARIMA, an important aspect given the
imbalanced nature of our dataset.

Hyperparameter tuning of the LSTM model was conducted using the Hyper-
band method, targeting key parameters such as LSTM units, dropout rate, and
learning rate, which unveiled a preference for a BiLSTM structure to better cap-
ture temporal dependencies. The optimization involved systematic exploration
of critical hyperparameters. LSTM units affect the model’s complexity and its
ability to discern data patterns, with higher units offering greater complexity
at the cost of computational resources. Dropout rate mitigates overfitting by
omitting units during training, while the learning rate is vital for effective model
training, avoiding minima overshoots. The choice of loss function (MSE, MAE,
Binary Cross-Entropy) influences error quantification, and activation functions
(sigmoid, ReLU, tanh) affect data signal processing, crucial for learning. BiL-
STM’s bidirectional approach improves predictive accuracy by utilizing past and
future data. Batch size and epochs set the training sample size and cycles, and
the optimizer (SGD, RMSprop, Adam) impacts learning speed and efficiency.
The attention mechanism further refines the model by concentrating on par-
ticular input sequence segments, boosting performance on complex time-series
tasks.

Table 1 details the models that perform the best. Also, the final hyperparame-
ter configuration for the BiLSTM model, as detailed in Table 2, was strategically
chosen to strike a balance between computational resources and predictive accu-
racy. This resulted in an optimized BiLSTMmodel. Both the ARIMA and LSTM
models were meticulously fine-tuned to complement each other, thus providing
comprehensive predictive insights within the GVNS framework.
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Table 1. Top 3 ARIMA Models

Rank p d q AIC MSE

Top 3 Models Based on AIC

1 5 0 5 470.7783 2.0643

2 5 1 5 471.7483 1.8388

3 5 1 6 472.6345 1.8477

Top 3 MSE-based models

1 3 1 6 495.4785 1.8168

2 5 1 2 487.4079 1.8381

3 6 1 6 475.7171 1.8388

Table 2. LSTM Model Hyperparameters

Hyperparameter Range Best Value

LSTM Units 32 to 512 (step: 32 ) 256

Dropout Rate 0.0 to 0.5 (step: 0.1) 0.1

Learning Rate
1e-4 to 1e-2
(sampling=”log”)

0.0079

Loss Functions
MSE, MAE, Binary
Cross-Entropy

Mean
Squared
Error

Activation
Functions

sigmoid, relu, tanh tanh

Bidirectional
setting

True/False True

Batch Size 32 to 512 256

Epochs 10 to 100 100

Optimizers
SGD, RMSprop,
Adam

Adam

Attention
Mechanism

True/False True

3 Results and Analysis

Our study showcases the potential of machine learning, particularly ARIMA and
LSTM, in interpreting the sequence of actions in metaheuristic algorithms such
as GVNS, GA and SA. By analyzing historical data from heuristic applications,
we demonstrate how these models can predict and influence future heuristic
choices, thus optimizing the decision-making process within these algorithms.

The selection of ARIMA and LSTM models in our study illustrates the com-
plexity of decision-making in forecasting actions. ARIMA effectively predicts
continuous outcomes such as “reward”, providing linear insights, while LSTM
excels in binary classification, crucial for different decision-making scenarios. The
ARIMA(5, 0, 5) model, with its high AIC, accurately predicts “reward” values.
This suggests that maintaining a focus on recent historical actions, up to five
steps back, could be crucial to accurately forecasting outcomes in metaheuristic
processes. Despite its limitations in accuracy and PRAUC, its ability to capture
short-term historical trends is notable.

Conversely, the BiLSTM model significantly surpasses ARIMA in both accu-
racy and PRAUC, demonstrating its superior capability in binary classification
and effective handling of sequential data. This highlights its potential as a robust
tool for guiding heuristic decisions in metaheuristic algorithms. For a detailed
comparison of the performance of the models, particularly highlighting their
respective strengths in predictive accuracy, readers are encouraged to refer to
Table 3, which presents a comprehensive overview of the performance metrics of
the top models.

In conclusion, the findings of this study have far-reaching implications for the
broader field of optimization and algorithm design. The successful integration
of ARIMA and LSTM models within metaheuristics such as GVNS, GA, and
SA demonstrates a promising path toward more intelligent, data-driven decision-
making processes. This approach can be extended to other complex optimization
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Table 3. Top Models Performance (ARIMA & LSTM)

Metric Best Model
based on

AIC (5, 0, 5)

Best Model
based on

MSE (3, 1, 6)

LSTM Model

MSE 2.06431 1.81686 -

AIC 470.7783 495.4785 -

Accuracy 0.52658 0.53291 0.788956

PRAUC 0.57666 0.48160 0.673414

scenarios, opening up new avenues for research in algorithm efficiency and effec-
tiveness. Future studies might explore the integration of different machine learn-
ing models or delve into real-time data adaptation, further advancing the field
of combinatorial optimization. By leveraging historical data to inform heuristic
choices, this research contributes to the ongoing evolution of metaheuristic algo-
rithms, moving them toward more adaptive, predictive, and efficient frameworks.

4 Exploring the Future of Machine Learning in
Metaheuristics

Our study, focused on analyzing data generated by a modified VNS approach
for CVRP, indicates the potential of machine learning models like ARIMA and
LSTM in enhancing metaheuristic algorithms. While our research is specific to
VNS, the principle can be extended to other metaheuristics such as Genetic Al-
gorithms and Simulated Annealing. For example, in GA, the history of genetic
operations could be analyzed to predict their effectiveness, while in SA, the
sequence of temperature adjustments and their outcomes could inform future
adjustments. Integrating ML into these algorithms involves challenges such as
adapting to unique operational frameworks, ensuring data quality, and managing
computational demands. Future research should explore the broad application
of machine learning models in various optimization contexts, integrate real-time
data for adaptive strategies, and investigate advanced machine learning method-
ologies. This trajectory aims to significantly enhance the problem-solving capa-
bilities of metaheuristics, leading to more optimized solutions in diverse and
complex optimization scenarios.

5 Conclusions

This study represents a pioneering effort to blend machine learning with meta-
heuristics, specifically through the lens of time-series analysis. Integrating ARIMA
and LSTM models into the VNS framework for the CVRP demonstrated the
potential to significantly enhance the algorithm’s decision-making process. Our
preliminary findings pave the way for future research in this direction, promis-
ing more efficient and effective solutions in combinatorial optimization’s vast and
challenging domain. The generalization of this approach to other metaheuristics
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holds substantial promise, heralding a new era in the development of optimiza-
tion strategies.
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