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Abstract This work presents efficient solution approaches for a new com-
plex NP-hard combinatorial optimization problem, the Pollution Location In-
ventory Routing problem (PLIRP), which considers both economic and en-
vironmental issues. A mixed-integer linear programming (MILP) model is
proposed and first, small problem instances are solved using the CPLEX
solver. Due to its computational complexity, General Variable Neighborhood
Search (GVNS)-based metaheuristic algorithms are developed for the solution
of medium and large instances. The proposed approaches are tested on 30 new
randomly generated PLIRP instances. Parameter estimation has been per-
formed for determining the most suitable perturbation strength. An extended
numerical analysis illustrates the effectiveness and efficiency of the underlying
methods, leading to high-quality solutions with limited computational effort.
Furthermore, the impact of holding cost variations to the total cost is studied.

Keywords Fuel Consumption - Location - Inventory - Routing - Variable
Neighborhood Search

1 Introduction

The Location Inventory Routing Problem (LIRP) is a complex NP-hard com-
binatorial optimization problem, which simultaneously tackles strategic (loca-
tion/allocation), tactical (inventory levels and replenishment rates) and oper-
ational (routing schedules) decisions (Javid and Azad2010; Zhang et al.|2014;
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[Rayat et all [2017). The main goal of this problem is to determine an optimal
schedule for achieving economic benefits, like total cost minimization (Jabir
. However, due to the fact that the supply chain activities emit pol-
lutants, such as carbon dioxide (C'O2), the environmental impact of logistics
should also be taken under consideration (Cheng et al.2017; Koc et al.|2014)).
More specifically, C'O, emissions are considered as the main cause of the global
warming, one of the major environment challenges (Cheng et al.|2017; [Demir|
et L2010

Freight transportation is mentioned as the main source of C'O,
let al.)2017; [Tolga et al.)2019). Especially, road transportation generates more
than 20% of the total CO3 emissions in European Union (Leenders et al.[2017)
and 30% in the Organization for Economic Co-operation and Development
(OECD) countries (Reichert et al2016)). C'O, emissions are proportional to
the amount of consumed fuel and the fuel consumption depends on speed,
acceleration, distance and total weight of the vehicle (curb and freight weight)
(Koc ot al2014).

The green logistics concept has been studied in many literature contri-
butions. The majority of them focus on routing problems, such as the Vehi-
cle Routing Problem (Bektas and Laportel2011} |Koc et al) [2014; [Poon-|
fthalir and Nadarajan, 2018; Skouri et al./2018). However, the structure of
a supply chain network can affect its functional efficiency by leading to un-
necessary delivery routes or redundant facilities (Adenso-Diaz et al.[2016). A
limited amount of works study the effect of environmental impact considera-
tion on the design of logistics optimization problems (Dukkanci et al.j2019).
[Koc et al| (2016) investigated the combined impact of depot location, fleet
composition and routing decisions on vehicle emissions especially in last mile
deliveries. They developed an Adaptive Large Neighborhood Search (ALNS)
metaheuristic and applied it on several instances with up to 100 customers.
They, concluded that circuitous routes can lead to faster speeds and lower costs
and CO5 emissions. [Toro et al.| (2017) proposed a bi-objective mixed-integer-
linear programming (MILP) model for the Green Capacitated Location Rout-
ing Problem (G-CLRP). They observed that the use of more vehicles leads
to significant fuel economy in the long term. |Cheng et al| (2016) examined
the impact of four carbon emission regulation policies. They proposed mixed-
integer-nonlinear programming (MINLP) models and linearization methods
along with a Genetic Algorithm (GA) for solving various problem instances.
Furthermore, several managerial insights were reported by extensive sensitivity
analyses. |Cheng et al.| (2017) introduced a Green Inventory Routing Problem
(GIRP) with heterogeneous fleet of vehicles in which environmental impacts
were taken into consideration. An exact branch-and-cut algorithm was devel-
oped for solving various problem instances and reporting managerial insights.

Despite the significance of considering the environmental impact of logistic
activities there is a lack of works on more complex and potentially realistic
problems, such as the Location Inventory Routing Problem (LIRP).
proposed a multi-objective MINLP model for the closed-loop
LIRP. A stochastic-possibilistic approach was used for handling the problem
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uncertainty. A hybrid self-adaptive GA and a Variable Neighborhood Search
(VNS) metaheuristic algorithm was developed in order to solve large-sized
instances. Karakostas et al.| (2019a) introduced a Pollution LIRP and proposed
a Basic VNS (BVNS) metaheuristic algorithm for the solution of medium-sized
problem instances.

This work presents a Pollution LIRP, which considers both economic and
environmental impacts of the main logistic activities, such as facilities location,
inventory control and vehicle routing. The main contributions of this work are
summarized as follows:

A new complex logistics optimization problem with environmental consid-

erations is proposed.

— An MIP model is formulated by integrating and modifying two models
from the literature (Zhang et al.|2014; |Cheng et al.;2017)).

— Driving wages are taken under consideration.

— Three VNS-based algorithms have been developed.

— A new benchmark set with the current largest instances of the Pollution
LIRP (PLIRP) reported in the open literature have been generated and
made publicly available.

— The impact of the flexible replenishment policy on building better routing
patterns is illustrated.

— A sensitivity analysis is performed for testing how the variation on holding

costs can affect the objective values of the problem instances.

The current work is structured as follows. Sections [2 and [3] present the
problem statement and the proposed solution algorithm, respectively. Section
[ provides the computational analysis for evaluating the performance of the
proposed method. Finally, Section [5| draws up concluding remarks and some
thoughts on potential future extensions.

2 Problem Description

The PLIRP is defined as a two-echelon supply chain network. Given:

— a set of time periods,

— a set of potential capacitated depots,

— a set of geographically distributed customers,

— a set of homogeneous capacitated fleet of vehicles,
— a single type of product,

— a period-variable demand of each customer

Determine:

the number and location of depots to be established,

— the allocation of customers to the opened depots,

the inventory levels at each customer,

the replenishment quantities and rates for each customer,
— the routes of vehicles,
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— the selection of a speed level for traveling each link of the scheduled net-

work.

In order to: minimize an objective function representing the total cost.
The key model assumption are as follows:

— each customer is serviced by one depot,

or more customer(s),

each customer is serviced by at most one vehicle in each time period,
a vehicle departs from and returns to the same depot after servicing one

the total delivered quantity to each customer over the time horizon must
be equal to its total demand,

The problem is formulated as a mixed integer programming model, by inte-
grating an LIRP model (Zhang et al.2014)) with a Green Inventory-Routing
problem (G-IRP) model (Cheng et al.;2017)). Its sets, parameters and variables
are provided in Tables and

Table 1 Sets of the mathematical model

Indices

Explanation

[T R~

set of nodes
set of candidate depots
set of customers
set of vehicles

set of discrete and finite planning horizon

set of speed levels

Table 2 Vehicles’ parameters.

Parameter Explanation Value

€ fuel-to-air mass ratio 17

g gravitational constant (m/s?) 9.811

p air density (kg/m?3) 1.20411

CR coefficient of rolling resistance 0.01t

n efficiency parameter for diesel engines 0.451

fe unit fuel cost (€/L) 1.3

fe unit CO2 emission cost (e/kg) 0.27931

fa driver wage (€/s) 0.0025!

o CO3 emitted by unit fuel consumption (kg/L)  2.669!

HVDF heating value of a typical diesel fuel (kj/g) 441

) conversion factor (g/s to L/s) 737!

6 road angle 0!

T acceleration (m/s?) 0!
CWyg curb weight (kg) 35002
EFFy engine friction factor (kj/rev/L) 0.251
ESy, engine speed (rev/s) 391
EDy, engine displacement (L) 2.771
CAD;, coefficient of aerodynamics drag 0.6!
FSA frontal surface area (m?) 91

VDTE, vehicle drive train efficiency 0.4!

1: (Cheng et al.[2017)

2: (Koc et al2014)
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The value of the parameter f. is calculated as the average of the petrol
prices in 40 European countries taken from the website www.globalpetrolprices.
com in 26th of February in 2018. The value of parameters f. and fy are con-
verted into Euro currency (26th of February, 2018).

Table 3 Rest PLIRP model parameters.

Notation Explanation
fi fixed opening cost of depot j
Cj storage capacity of depot j
h; unit inventory holding cost of customer 4
Qr loading capacity of vehicle k
d;t demand of customer ¢ in period ¢t
cij distance of locations pair (%, j)
Sr the value of the speed level r
PW weight of each product unit (1.5 kg)
M classic big-M parameter (100000)

Table 4 PLIRP model variables.

Notation Explanation
Yj 1 if j is opened; O otherwise
Zij 1 if customer ¢ is assigned to depot j; 0 otherwise
Tijkt 1 if node j is visited after ¢ in period ¢ by vehicle k
Qikt product quantity delivered to customer 7 in period t by vehicle k
Witp quantity delivered to customer ¢ in period p to satisfy its demand in period ¢
ikt load weight by travelling from node v to the customer 7 with vehicle k in period ¢
2Zyqvoktr 1 if vehicle k travels from node v1 to v2 in period ¢ with speed level r

The objective of the problem is the minimization of total supply chain
system cost, including the following cost components:

— Location Cost: ) f;y;, which represents the cost of opening the needed
jeJ
number of depots.

— Inventory Cost: Y- h; > [ 3di+ Y wip(t—p)+ > wup(t—p+|H|) |.
i€l teH peEH, p<t peEH,p>t
It consists of three cost components. The first component represents the
average inventory holding cost. The remaining terms impose penalty costs
for any early or late replenishment.

— Routing Cost: >° >~ > > cijxijre. It represents general routing costs,
i€V jEV teH k€K
such as vehicles’ maintenance and/or insurance costs.

— Fuel Consumption Cost: > > > > {)\(fc + (fe0))

i€V jeV keK teH

Z (zz;,jk” EF‘F‘)C ESk ED;,A, Ci]‘)

Sp

rER

+ <04’Yk (CWy ijit + Qijkt) Cij )Jr(ﬂk T Y, (sr Zzijktr)2) } The Com-

reR
prehensive Modal Emission Model (CMEM) is adopted (Barth et al.j2005).


www.globalpetrolprices.com
www.globalpetrolprices.com
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Thus, the fuel consumption is affected by vehicle specific characteristics,
such as the weight of the load, the vehicle’s speed and obviously the trav-
eling distance. More specifically, the following formulas are utilized.

_ J— €
A= HVDF)

~ % = T VDTE S

—a=74+¢gCR sinf + g CR cosf

— B =05 CAD p FSA,

The first component is the fuel consumption based on the vehicles’ engine
function, while the second cost term represents the cost of consumed fuel
because of the total vehicles’ weight (curb weights plus load weights). The
third one represents the fuel consumption cost related to the vehicles’ speed

levels.

— Driver Wages Cost: >, >> > > > fd(zz”";ﬂ, which represents the
i€V jeV keK tcH reR "

cost of the drivers wages.

Thus, the total cost (TC) is calculated as: TC'= Location Cost+inventory Cost+
Routing Cost+ Fuel Consumption Cost+ Driver Wages Cost.
The mathematical formulation, of the problem under consideration, is as fol-
lows:

min TC (1)
Subject to
> zzijgr =1 Vi, jeV\Vke K.Vt e H (2)
reR
> aine — Y ajike = ¢ PW Vi€ ILVk € K.Vt € H (3)
eV eV
> wijer = Y wjine =0 VieV,Vke K, Vt e H (4)
jev JjeV
SN wim <1 VieH Viel (5)
jeV keEK
SN ajm <1 VteH, Viel (6)
JEV keEK
SN wi <1 VkeK, VteH (7)
iel jeJ

Tijie =0 Vi,jeJ, Vke K, Vtc H, i #j (8)
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> G <Qr VYkeK, VieH (9)
i€l
S ay=1 Viel (10)
jeJ
zijgyj VZ'EI, V]EJ (11)

i€l teH

Swurt Y. wum<l+z; Viel Vjeld VkeK WteH (13)
uel weV\{i}

Z Z Z Tjiee 2 y; VjiE€J (14)

i€l keK teH

S wi <y, VjeJd, VkeK, VteH (15)
el
Y wip=dy Viel VteH (16)
peH
Zwit?: Zqikp Viel Ve H (17)
teH keK
Gire MY wijpe Vi€l VteH VkeK (18)
JeEV
Z Tighe < Maiwe Vi€ I, Vt€ H, Vk € K (19)
jeEV
xijie €{0,1} Viel, VjeJ Vte H, Vke K (20)
y; €{0,1} VjeJ (21)
Zij € {O, 1} Viel, VjeJ (22)
Gkt SminQ Qp, ¥ dipp Vi€l VjeJ VEEK (23)
peH
wip < diy Viel Vt,pe H (24)

Constraints impose that a vehicle travels between nodes with a specific
speed level in each time period. Constraints act as subtour elimination
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constraints, as they declare that the difference between the total weight of the
incoming flow of product to a selected customer and the total weight of the
outcoming product flow of that customer equals the product weight delivered
to that customer in the selected time period with the selected vehicle. The
equilibrium between the interior and exterior flow of vehicles is guaranteed
by Constraints . Constraints and @ ensure that exactly one vehicle
visits each customer at each time period. Constraints guarantee that a
vehicle performs mostly one route at each time period. Constraints forbid
the movement of a vehicle between depots. Constraints @[) ensure that, the
total amount of products sent by a vehicle at a specific period does not exceed
the capacity of that vehicle. Constraints (10) guarantee that a vehicle will be
travelled from a depot to a customer only if that customer is allocated to the
depot. Constraints impose that a customer is assigned to a depot only if
that depot is selected to be opened. Constraints respect the capacity of
depots. A customer is connected to a depot, only if that customer is assigned
to that depot, according to Constraints . A vehicle departures from a
depot only if that depot is opened according to Constraints and . The
delivered amount of product to each customer at each time period satisfies the
demand of that customer, as guaranteed by Constraints . Constraints
ensure the equilibrium between scheduled and actual deliveries. A customer is
visited at a specific period, only if a replenishment is scheduled for that period,
according to Constraints ([18)). The rest constraints of the model declare the
nature of the decision variables.

3 Solution Approach

3.1 Construction Heuristic

The scope of the constructive phase is the generation of a feasible initial solu-
tion. In this work, a three-phased construction heuristic has been developed. In
the first phase, location and allocation decisions are made. Inventory-routing
decisions are determined in the second phase, while the speed levels for trav-
eling through the network nodes are selected in the last phase.

Initially, for taking the location and allocation decisions, a ratio-based se-
lection criterion is applied for opening the required depots while a nearest
customer allocation strategy has been employed for the assignment step. For
each one of the candidate depots, the ratio % is computed and
the depot with the minimum ratio is chosen. If two or more depots have the
same ratio, one of them is selected arbitrarily (commonly the first found). Ac-
cording to the customers’ allocation process, the nearest, to the opened depot,
customer is chosen and in the case that its total demand does not violate the
remaining capacity of the depot, the customer is assigned to that depot. This
initial step of construction heuristic is completed when all customers have been
allocated to the opened depots.

In each time period the allocated, to the opened depots, customers are
assigned to vehicles, by considering both their demand and the capacity of
vehicles. Then, the route of each utilized vehicle is built in a selected time
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period by applying the Random Insertion method (Glover et al./2001)). Ac-
cording to the inventory decisions, the delivered quantities are set equal to the
corresponding demand for each customer at each time period. Obviously, in
this initial phase if a customer does not require any quantity of the product in
a selected period, he will not be included in any route over that period. In the
last phase, the selection of the speed levels for traveling through the nodes of
the structured network is randomly performed.

3.2 Neighborhood Structures

In this work, five local search operators are used in the improvement phase
of each proposed solution method. These neighborhood structures are the fol-
lowing:

Inter-route Relocate: In this neighborhood structure a selected cus-
tomer is removed from its route and moved in the next position of an other
selected customer, who is assigned to a different route. Those two customers
can be allocated to the same or different depots. Both of the selected cus-
tomers must be visited by vehicles in the same time periods, in order this
move to be applicable. A replenishment shifting may be applied if a vehicle
capacity violation occurs. The following cases can be met by applying this
neighborhood:

— Case 1: The two selected customers are allocated to the same depot and
no vehicle capacity violations occur.

— Case 2: The selected customers are assigned to the same depot and vehicles
capacity violations occur.

— Case 3: The two selected customers are assigned to different depots and no
vehicle capacity violations occur.

— Case 4: The two selected customers are allocated to different depots and
vehicles capacity violations occur.

In the first case only routing decisions are made. In the second case, both
routing and inventory decisions are taken, while routing and allocation deci-
sions are considered in the third case of this move. In the last case, routing,
inventory and allocation decisions are simultaneously made. Figures (1| and
illustrate an example of this neighborhood, applied on routes allocated to the
same depot. The pairs of customers are (4, 1) in the first time period and (3, 5)
in the second time period.
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Period 1 Period 2

O

€<— 3

©

Fig. 1 Routes from the same depot in each time period before the application of the inter-
route relocate move.

Y

Period 1 Period 2

() O

O =0
N N © P -
\G 9 W

Fig. 2 Routes from the same depot in each time period after the application of the inter-
route relocate move.

Figures [3] and [4] illustrate an example of this neighborhood, applied on
routes allocated to different depots. The move is applied on the pair of cus-
tomers (2,5) in all available time periods.

Period 1 Period 2

DQ/YG\:Q
°‘1" | »9’/ |
ONING

Fig. 3 Routes from different depots in each time period before the application of the inter-
route relocate move.
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Period 1 Period 2

Fig. 4 Routes from different depots in each time period after the application of the inter-
route relocate move.

Inter-route Exchange: This neighborhood swaps two customers from
different routes in the time horizon. The exchanged customers can be allocated
either to the same depot or different depots. If the customers are allocated
to the same depot, the swapping may not be applied in each time period.
However, in the second case the exchanging must be valid for all time periods,
in order to be applicable. The special cases of this move are summarized as
follows:

— Case 1: Vehicle capacity violation does not occur.
— Case 2: The demand of a customer exceeds the capacity of the vehicle
servicing the other customer in one or more time periods.

The first case makes only routing decisions, while in the second case routing
and inventory decisions are taken. Changes on allocation decisions will take
place only if the swapped customers are allocated to different depots. Figures
and [6] present an illustrative example of the inter-route exchange move applied
on routes allocated to the same depot for the case of customers (1,5) in the
first period and (2,4) in the second one.

Period 1 Period 2

Fig. 5 Routes from the same depot in each time period before the application of the inter-
route exchange move.
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Period 1 Period 2

£ -

Fig. 6 Routes from the same depot in each time period after the application of the inter-
route exchange move.

Figures[7f|and [8]depict an instance of the inter-route exchange move applied
on routes allocated to different depots for the pair of customers (2, 3).

Period 1 Period 2
o
Fig. 7 Routes from different depots in each time period after the application of the inter-
route exchange move.

Period 1 Period 2

Fig. 8 Routes from different depots in each time period after the application of the inter-
route exchange move.

Exchange Opened-Closed Depots: This neighborhood exchanges a
closed depot with an opened depot. For a selected closed depot, the cost change
for swapping it with each one of all opened depots, is calculated. Then, the
pair of the opened-closed depots with the minimum exchanging cost is selected.
Subsequently, it is examined if the scheduled swapping does not violate any ca-
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pacity constraint. After the validation checking step, the newly opened depot
is inserted in the routes assigned to the currently opened depot via a mini-
mum insertion cost procedure. This insertion process may involve customers
re-ordering in the routes. Obviously, the move is applied only if the overall cost
decreases, which consists of location and routing costs. Figure [J]illustrates the
an example of this neighborhood.

Fig. 9 Example of the Exchange Opened-Closed Depots neighborhood

Intra-route Relocate: In this move a selected customer is removed from
its current position in its route and moved in a different position in the same
route. Figure illustrates an example of the Intra-route Relocate neighbor-
hood, applied on the pair of customers (5,4).

Fig. 10 Example of the Intra-route Relocate neighborhood

2-2 Replenishment Exchange: In this neighborhood structure, two time
periods t; and 9 are randomly selected and the two most distant customers
i and b, both serviced in those two periods, are identified. The replenishment
of customer ¢ in period ¢; is moved to the period t2, and the replenishment
of customer b is moved from period t5 to period t;. Consequently, there is no
need to visit customers ¢ and b in periods t; and to respectively. If the total
cost decreases and there are no violations on the vehicles capacities, the move
is applied. To clarify the function of this neighborhood, an illustrative example
is provided in Figures[I1]and[I2] The most distant customers are 3 and 7. The
customer 3 is removed from its route in period 1 and his delivery is shifted in
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period 2, while the customer 7 is removed from his current route in period 2
and his delivered quantity is shifted in period 1.

Period 1 Period 2

Fig. 11 Example of network structure before the application of 2-2 Replenishment Ex-
change neighborhood

DeliveredQ_Shifted_Period1-to-Period2
Period 1

(D -
R

Y- O N2

\ .

& Oe——sp

X Q. 0

DeliveredQ_Shifted_Period2-to-Period1

Fig. 12 Example of network structure after the application of 2-2 Replenishment Exchange
neighborhood

In order to avoid potential violation of vehicles capacities, while applying
the Inter-route Relocate and the Inter-route Exchange moves, a shifting of
surplus product quantity may be applied.

3.3 Shaking Procedure

For escaping local optimum solutions, a shaking procedure with three local
search operators is proposed, including the following structures:
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— Inter-route Exchange.
— Exchange Opened-Closed Depots.
— Intra-Route Relocate.

In each iteration of this diversification method, one of the proposed local
search operators is randomly selected and a predefined number of random
jumps are applied. Its pseudo-code is given in Algorithm [I]

Algorithm 1 Shaking Procedure

procedure SHAKE(S, k, lmazx)

I = random_integer(1l, lmax)

for i + 1,k do
select case(l)
case(1)
S! « Inter — route_Exzchange(S)
case(2)
S! « Exzchange_-OpenedClosed-Depots(S)
case(3)
S! « Intra_Relocate(S)
end select

end for

Return S’

The shaking procedure receives an incumbent solution .S, the maximum
number of iterations k,,., executed in the perturbation phase and the number
of neighborhood structures [,,4, as input. A new solution S’ is obtained by
applying k (where 1 < k < kyq.) times one randomly selected neighborhood
of the above local search operators.

3.4 Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) is a flexible framework for building
heuristics, which manages a single solution at each step time (Hansen et al.| 2017)).
It systematically changes predefined neighborhood structures during the search
(Hansen et al) 2019; |Smiti et al., [2020; Derbel et al. 2019) and has been
successfully applied several times in location, inventory, and routing problems
(Jarboui et al.| 2013; Mjirda et al., 2014} [Karakostas et al.| [2020a; [Karakostas|
et al., 2020b)).

The Basic VNS (BVNS), the Variable Neighborhood Descent (VND), and
the General VNS (GVNS) are three of the most well-known variants of the
VNS. The BVNS alternates a shaking procedure with a local search operator,
while the VND explores several local search operators without using a diver-
sification procedure (Hansen et al) 2017} [Sdnchez-Oro et al [2017; Herran|
. According to the neighborhood change criteria, different sequen-
tial VND schemes have been proposed. Two of the mostly used VND schemes
are the pipe VND (pVND) and the cyclic VND (cVND) (Duarte et al. 2016).
In the pVND the search continues in the same neighborhood, while improve-
ments occurred. In the cVND, the neighborhood structures are alternated
regardless the achieved improvements. The GVNS extents the BVNS, by us-
ing a VND scheme as its main improvement step (Karakostas et al., [2019D;
[Frifita et al 2020). In this work, a BVNS, two GVNS (GVNS with ¢cVND
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and GVNS with pVND) solution methods and their corresponding adaptive
variants, have been developed. The execution of the developed VNS-based
methods is bounded by a time stopping criterion denoted by the parameter
mazx_time. The proposed solution algorithms are provided in the following
pseudo-codes.

Algorithm 2 Basic VNS

1: procedure BVNS(kmqx, maz_time, lmax)

S + Construction-Heuristic
1+ 1
while time < maxz_time do
for each neighborhood structure | do
for k < 1, kmagz do
S’ « Shake(S, k, lmaz)
S'" + Local_-Search(S’, 1)
if f(S") < f(S) then
S+ 8
end if
L+ 1+1
if I > lymae then
1+ 1
end if
end for
end for
end while
return S

Pttt e o e

Algorithm 3 GVNS,ynp

1: procedure GVNS(S, kmaz, maz_time, lymax)

end while
return S

2: S «+ Construction_-Heuristic
3: while time < maz_time do
4: for k + 1, kmae do

5: S# = Shake(S, k, lynax)
6: S’ = pVND(S*)

T if £(S’) < f(S) then
8: S « s’

9: end if

10: end for

11:

12:

The pseudo-code of the GV NS,y yp algorithm is exactly the same with
the pseudo-code of the GV NS,y np algorithm with the only difference that
it uses the cVND instead of pVND. The adaptive variants of these methods
uses an adaptive re-ordering mechanism of the local search operators. This
adaptive mechanism uses past experience, such the number of improvements
achieved by each operator and proceeds a different order. More specifically,
the array “Improvements_Counter” stores in its positions the improvements
achieved by each operator and then a descending sorting is performed on this
array by the use of the function Descending_Order(). The pseudo-code of this
mechanism is summarized in Algorithm [
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Algorithm 4 Adaptive_Order

1: procedure ADAPTIVE.ORDER(N _Order, Improvements_Counter)

if no improvement is found in any neighborhood then
Keep the same order

end if

if an improvement is found then

New_N_Order < Descending-Order(N_Order, Improvements-Counter)
N_Order < New_N_Order

end if

return N_Order

An example of the adaptive schemes is provided in the following pseudo-
code of the Adaptive GV NS,y np algorithm.

Algorithm 5 AGVNS,ynD

1: procedure AGVNSpVND (S, kmax lmax, max_time, N_Order, Improvements_Counter)
2: while time < maz_time do

3: S* = Shake(S, k)

4: N_Order + Adaptive.Order(N_Order, Improvements_Counter)
5: S! = pVND(S*, lmaz)

6: if £(S’) < f(S) then

7 S + s’

8: end if

9: end while

10: return S

11: end procedure=0

4 Computational Analysis and Results
4.1 Computing Environment & Parameter Settings

The proposed methods have been implemented in Fortran (Intel Fortran com-
piler 18.0 with optimization option /O3) and ran on a desktop PC running
Windows 7 Professional 64-bit with an Intel Core i7-4771 CPU at 3.5 GHz
and 16 GB RAM. The execution time limit for the proposed algorithms was
set at 60s. The PLIRP was also modeled in GAMS (GAMS 24.9.1) (Brooke
et al.11998) and its problem instances were solved using CPLEX 12.7.1.0 solver
with the time limit of 2h for the small-sized instances and 5h for medium and
large-sized instances. It should be mentioned that CPLEX ran in the same
computing environment with Intel Fortran compiler.

4.2 Computational results on PLIRP instances

In this work 30 new PLIRP instances have been created by following the
format of instances proposed in a previous work (Zhang et al. 2014)). They
are reported in the form X-Y-Z, where X represents the number of poten-
tial depots, Y the number of customers and Z is the number of time pe-
riods. These instances are available in: http://pse.cheng.auth.gr/index.
php/publications/benchmarks. Table [5| provides the average values of total
costs of all the 30 problem instances and for each solution method, using dif-
ferent ky,qz values. The first sub-column of the main columns 2-4 in Table [f]
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refers to the average performance of algorithms, while the second one focuses
on the best-found solutions.

Table 5 Shaking strength analysis on the performance of proposed methods

Method kmaz =5 kmaz = 10 kmaz = 12
Avg. TC  Best TC Avg. TC  Best TC Avg. TC  Best TC
BVNS 11,542.67 40,643.76 11,630.07  40,307.15 41,547.22  40,483.04
ABVNS 37,684.82  36,062.44 37,896.45  35,926.57 38,092.11  36,339.28
GVNSp,vND 35,304.38  34,455.14 35,055.97 34,295.98 35,403.77  34,559.92
AGV NSpvND 35,735.40  34,426.16 36,031.34  34,625.69 36,012.60 34,674.18
GVNS.vND 37,261.36  36,487.80 37,395.34  36,570.37 37,281.85  36,348.84
AGVNS.vND 37,687.23  36,361.82 37,715.74  36,416.86 37,570.39  36,375.08

Method kmaz = 15 kmaz = 18 kmaz = 20
Avg. TC Best TC Avg. TC Best TC Avg. TC Best TC
BVNS 41,549.48  40,407.81 41,495.84  40,681.73 41,724.02  40,557.38
ABVNS 38,227.76  36,312.05 38,184.58  36,627.57 38,504.86  37,158.58
GVNSp,vND 35,473.07  34,574.27 35,310.72  34,520.85 35,684.59  34,572.27
AGV NSp,v~ND 35,783.10  34,608.32 35,814.60  34,565.73 35,735.4  34,563.19
GVNS.vND 37,373.07  36,510.59 37,283.29  36,549.10 37,431.34  36,474.75
AGVNS.yNp  37,522.14  36,331.10 37,784.85  36,233.78 37,717.24  36,290.09

According to the reported solutions, the parameter value ko, = 5 pro-

duces in average the best values for the proposed BVNS, ABVNS and GV NS .vnD

algorithms. The AGV NS,y np algorithm performs better by using a shaking
strength of kp,er = 15, while the AGV NS,y np algorithm produces better
solution using the parameter value k4, = 20. The results achieved using the
GV NSpvnp with the parameter value k., = 10 were the best found so-
lutions in average compared with either the same scheme but with different
kmae values or the other schemes (18.5% from BVNS, 7.5% from ABVNS, and
6.3% from GVNS.ynp, 7% from GVNS.ynp and 1.94).

From a problem size perspective, the AGV NS,y np algorithm produces
better solutions for small-sized instances (using k.,q. = 20) and medium-sized
instances (using kmay = 5) than other approaches, while the GV NS,y np
algorithm using the shaking strength k,,q, = 10 is more efficient than other
methods for the solution of large problem cases.

From this analysis it is noticed that classic GVNS-based methods provide
better solutions than their corresponding adaptive variants. An explanation
of this conspicuous observation is that using the adaptive re-ordering mech-
anism leads to further time consumption. Thus, the number of iterations of
the improvement phase is significantly decreased for the case of large-sized
instances.

The GV N Spv np uses the Speed Selection Procedure after each local search
operator. Table [] illustrates potential difference between this GVNS scheme
and GV NS,y np which applies the SSP once after the completion of a pV N.D
iteration. The initial scheme is called GV NS,y nyp-1 and the second one,
GVNSPVND,Q.
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Table 6 Results achieved by the two GV NS,y nyp schemes on the 30 PLIRP instances

Instance GVNSPVND,l,A’Ug GVNSPVND,l,BESt GVNSPVND,Q,A’UQ GVNSPVND,Q,BGSt

1-9-3 25,336.12 25,131.71 25,142.51 24,932.36
4-10-3 20,776.21 20,649.12 20,780.24 20,709.14
4-10-5 17,503.66 17,481.13 17,491.73 17,445.33
4-12-5 27,127.71 27,069.97 27,133.89 26,958.58
4153 16,174.14 16,116.6 16,182.92 16,070.26
5-12-3 25,571.71 25,514.4 25,619.41 25,437.45
5-15-3 16,430.51 16,389.54 16,501.02 16,418.06
5-15-5 20,186.32 20,058.49 20,348.43 20,164.08
5-18-3 22,202.75 22,109.4 22,216.44 22,041.49
5-20-3 20,023.01 19,845.57 20,078.84 19,989.58
6-40-5 24,561.19 24,116.99 24,575.04 24,341.58
7-52-5 21,218.05 20,950.23 21,270.73 21,159
7-55-7 26,922.81 26,574.72 26,677.95 26,287.57
8-60-5 31,514.82 31,076.11 31,428.91 30,732.43
8-65-7 48,265.4 47,764.15 48,251.36 47,599.15
9-70-5 30,936.66 30,665.22 31,419.68 30,691.73
9-75-7 29,260.28 28,588.11 30,856.81 20,836.59
9-85-5 28,994.05 26,784.22 30,735.91 26,815.18
9-88-7 32,165.91 31,768.12 32,015.68 31,844.08
10-90-7 27,532.91 26,879.52 27,924.18 27,274.21

15-100-7 15,320.21 15,080.38 15,211.79 14,990.04
15-100-10 39,134.05 38,666.61 39,425.27 38,661.29
15-120-10 38,945.91 37,473.08 41,930.15 40,152.04
20-150-10 41,981.88 40,608.95 41,535.43 40,381.66
20-180-12 74,109.8 73069.77 75,688.98 74,869.72
25-200-12 75,429.81 72,587.55 74,513.52 68,146.04
30-250-10 50,017.53 47,756.68 51,379.41 48,755.04
30-270-10 58,450.29 56,708.96 59,376.01 56,637.84
35-300-10 73,763.83 71,014.24 71,539.39 69,361.56
35-310-12 71,821.7 70,379.8 72,096.53 68,963.52

Average 35,055.97 34,295.08 35,311.61 34,255.55

Despite the fact that, the GV NS,y np-2 scheme produces more best val-
ues than the GV NS,ynp-1, the GV NS,ynp-1 is slightly better in terms
of average solution quality. The previous results demonstrate that a further
improved solution method can be proposed by adopting a hybrid scheme.
More specifically, for the solution of small- and medium-sized instances the
AGV NSyv np method with a shaking strength of k4, = 20 will be applied,
while the GV NS,y np using kpqer = 10 will be selected for larger problems.
The overall process of the solution method is illustrated in Algorithm [6]

Algorithm 6 Hybrid_ GV NS,y nND

procedure HYBRID ALGORITHM(maz_time, lmazx)

S <+ Construction_Heuristic
if small-sized instance then

Emax — 20

S/ — AGV NS,y ND(S: kmagz, maz_time, lmagz)
else if medium-sized instance then

kmaz +— 5

S" « AGVNS,yND(S; kmax, maz-time, lmax)
else

kEmax < 10

S! GVNSLy ND(S, kmax, maz_time, lmax)
end if
return S’




20 Panagiotis Karakostas et al.

The second column of Table[7|reports the results achieved by GAMS/CPLEX.

As it can be noticed, the CPLEX solver can solve only eight out of ten small-
sized instances within a time limit of 2h. No solution, using CPLEX, was found
for the rest of the problem instances. In the third column, the average objective
values achieved by the Hybrid_GV N S,y np, while the fourth column contains
the best results achieved by the Hybrid_GV NS,y np algorithm. The last two
columns provide the solution gaps between CPLEX and Hybrid_GV NS,y np.
According to the reported results, the Hybrid_GV N Spy np provides 2.4% bet-
ter results than CPLEX (approximately 3% focused on the best found solutions
of the Hybrid.GV NS,y np algorithm). Based on the fact that, the CPLEX
solver cannot provide any feasible solution for medium- and large-sized in-
stances even within a time limit of 5h and its high computational time for
finding the reported solutions in the case of the small-sized instances it can
be concluded that, the proposed Hybrid_-GV N Spv np algorithm is an efficient
method for solving large-scale PLIRP instances.

Table 7 Comparative analysis between CPLEX and Hybrid GV NS,y np on the small-
and medium-sized instances

Instance CPLEX (a) Hybrid. GVNS,ynp-Avg (b) Hybrid GVNS,ynp-Best (c) Gap(b—a)(%) Gap(c—a)(%)

193 25,182.74 25,065.69 24,775.13 0.46 1.62
4-10-3 19,908.16 20,787.31 20,619.48 -4.42 -3.52
4-10-5 17,786.65 17,502.38 17,4575 1.6 1.85
4-12-5 26,741.55 27,053.31 26,958.67 117 -0.81
4-15-3 15,370.4 16,125.36 15,968.86 -4.91 -3.89
5-12-3 25,353.81 25,517.97 25,451.99 -0.65 -0.39
5-15-3 18,670.19 16,422.19 16,406.91 12.04 12.12
5-15-5 N/A 18,224.79 18,084.47 - -
5-18-3 26,353.47 22,078 21,982.96 16.22 16.58
5-20-3 N/A 20,124.22 19,878.09 - -
6-40-5 N/A 24,872.74 24,090.17 - -
7-52-5 N/A 21,093.97 20,810.7 - -
7-55-7 N/A 26,702.27 26,470.52 - -
8-60-5 N/A 31,436.84 31,249.98 . .
8-65-7 N/A 47,497.09 46,207.73 - -
9-70-5 N/A 30,978.96 30,310.59 - -
9-75-7 N/A 29,266.82 28,533.75 - -
9-85-5 N/A 27,883.9 27,014.67 - -
9-88-7 N/A 31,860.02 31,750.8 - -
10-90-7 N/A 27,129.59 26,708.53 - -

Table [§| reports the best known solutions of the 30 PLIRP instances.
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Table 8 Best known solutions for the 30 PLIRP instances

Instance BKS Instance BKS
4-9-3 24,775.13 9-70-5 30,310.59
4-10-3 20,619.48 9-75-7 28,533.75
4-10-5 17,457.5 9-85-5 27,014.67
4-12-5 26,958.67 9-88-7 31,750.8
4-15-3 15,968.86 10-90-7 26,708.53
5-12-3 25,451.99 15-100-7 15,080.38
5-15-3 16,406.91  15-100-10  38,666.61
5-15-5 20,012.77  15-120-10  37,473.08
5-18-3 21,982.96  20-150-10  40,608.95
5-20-3 19,878.09 20-180-12  73,069.77
6-40-5 24,090.17  25-200-12  72,587.55
7-52-5 20,810.7 30-250-10  47,756.68
7-55-7 26,470.52  30-270-10  56,708.96
8-60-5 31,249.98  35-300-10  71,014.24
8-65-7 46,207.73 35-310-12 70,379.8

Table [0 summarizes the number of the vehicles used for each problem instance
using the Hybrid_GV N S,y yp algorithm. According to the number of opened
depots, all the proposed methods open exactly two depots in each problem in-
stance. Based on the total demand of customers, two depots are the minimum
required for fulfilling customers demands per instance. A replenishment pol-
icy highly impacts the produced solutions. Furthermore, a flexible replenish-
ment policy enables the building of cost efficient routing patterns (Zachariadis
et al.[2009; |Zhang et al.[2014]).

Table 9 Number of used vehicles per instance using Hybrid GV NS,y nD

Instance #Vehicles Instance #Vehicles Instance #Vehicles

4-9-3 4 6-40-5 7 15-100-7 4
4-10-3 5 7-52-5 4 15-100-10 4
4-10-5 3 7-55-7 3 15-120-10 4
4-12-5 3 8-60-5 13 20-150-10 5
4-15-3 3 8-65-7 28 20-180-12 9
5-12-3 6 9-70-5 8 25-200-12 8
5-15-3 4 9-75-7 3 30-250-10 4
5-15-5 10 9-85-5 5 30-270-10 5
5-18-3 8 9-88-7 4 35-300-10 11
5-20-3 5 10-90-7 3 35-310-12 4

Figure [I3]illustrates the effect of flexible replenishment policy on the rout-
ing and the inventory costs. More specifically, the values of routing and in-
ventory costs reported in the successful iterations of the GV NS,y np-1 are
depicted. Routing costs can be decreased by allowing flexible reorder points
and order quantities for the customers due to the reduction of deliveries or
the efficient clustering of customers into routes. For instance, the deliveries
to a distant customer can be reduced by replenishing it with more product



22 Panagiotis Karakostas et al.

quantities in less time periods. Also, this shifting of product quantities results
on more available space in the vehicles, so more customers can be serviced by
the same vehicle. This can lead to cost efficient routing circuits. On the other
hand, the deferred deliveries leads to an increase in the inventory cost.
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Fig. 13 Effect of flexible replenishment policy on the relationship between routing and
inventory costs.

It should be mentioned that, the solutions obtained by the Hybrid_GV N Spv np
algorithm do not always follow the previous relation. In some cases, the algo-
rithm splits the routes in order to reduce the routing cost without increasing
the inventory cost. However, the splitting strategy leads to the usage of more
vehicles.

4.3 Sensitivity analysis

To further consider the significance of the flexible replenishment policy, the
effect of holding costs on the total cost is studied through a parametric analysis.
Holding costs are crucial for the performance of logistics design and operation.
In the literature, several works studied the effect of holding cost variations
on the overall performance of logistic systems (Hu et al2018} |Alfares and
. In this work, two testing scenarios are considered. In the first
one, a holding cost increase by 10% is examined, while in the second one
the holding cost is increased by 15%. The Hybrid GV NS,y np algorithm,
which marked as the most efficient between the proposed solution methods,
was used for solving the problem instances in these two scenarios. Table
provides both the average and best found results per scenario. To clarify, the
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terms OV _Avg_X% and OV _Best_X % refer to the Objective Value in average
or best case (respectively), under a holding cost variation of X %.

Table 10 The average and best found results in sensitivity analysis scenarios

Instance OV _Avg_10% OV _Best_10% OV _Avg_15% OV _Best_15%

4-9-3 25,181.77 25,041.14 25,188.46 25,031.23
4-10-3 20,863.64 20,781.04 20,848.53 20,793.92
4-10-5 17,520.59 17,432.05 17,525.54 17,475.08
4-12-5 27,082.38 26,984.32 27,107.96 27,029.25
4-15-3 16,126.86 16,044.12 16,119.94 15,980.26
5-12-3 25,598.02 25,485.53 25,519.32 25,485.46
5-15-3 16,435.71 16,399.19 16,435.47 16,419.09
5-15-5 20,285.74 19,992.44 20,357.95 20,184.11
5-18-3 22,096.39 22,014.08 22,096.62 21,975.62
5-20-3 20,033.03 19,932.21 20,021.84 19,940.18
6-40-5 25,032.92 24,918.66 24,720.14 24,404.99
7-52-5 21,321.34 21,167.21 21,383.7 21,154.03
7-55-7 27,103.04 26,566.88 26,828.2 26,664.36
8-60-5 31,558.35 30,769.91 31,495.14 31,157.83
8-65-7 48,084.16 47,074.4 48,907.25 48,480.28
9-70-5 31,429 30,582.42 31,426.12 30,949.3
9-75-7 29,717.7 29,010.54 30,748.95 29,495.22
9-85-5 29,476.81 27,049.91 29,153.98 27,418.47
9-88-7 32,205.27 31,682.29 32,245.75 32,156.69
10-90-7 28,073.3 27,728.77 28,111.57 27,222.74

15-100-7 15,949.38 15,378.73 15,627.67 15,129.28
15-100-10 40,619.23 39,295.37 39,715.32 38,962.52
15-120-10 40,926.89 39,351.76 42,157.16 40,537.22
20-150-10 42,974.34 41,330.91 45,801.18 41,101.49
20-180-12 75,943.7 73,496.76 75,164.3 73,597.62
25-200-12 77,760.61 73,258.41 78,961.45 73,650.02
30-250-10 53,034.67 50,785.36 52,581.2 50,516.56
30-270-10 60,394.23 56,942.57 59,424.19 57,147.17
35-300-10 77,476.23 73,685.28 77,152.02 71,780.28
35-310-12 72,246.86 69,485.7 74,525.83 69,823.05

Average 35,751.74 34,655.6 35,911.76 34,722.11

The results indicate that, the second scenario produces 0.45% worse so-
lutions in average comparing to the first one. Moreover, the initial average
solutions of the instances are 1.98% and 2.44% better than those achieved in
the first and the second scenario respectively, which means that the objective
value seems to be sensitive on the changes of the holding costs. However, the
adoption of a flexible replenishment policy keeps the increase of the cost in
relatively low levels.

Also, there are some instances in which better solutions were produced by
increasing the holding costs. This is justified as, an increase in the holding
costs, forces the usage of more vehicles (max two more than the reported
vehicles in Table @ in order to form better routing patterns, thus leading to
further routing cost reduction.



24 Panagiotis Karakostas et al.

5 Conclusions

This work presents a new green supply chain network optimization prob-
lem, which considers both economic and environmental concerns. GVNS- and
Adaptive GVNS-based solution approaches have been developed for the effi-
cient solution of medium- and large-sized instances. A new set of 30 random
generated instances is used in extended numerical analyses. A computational
kmaz parameter analysis has been made. This analysis indicates that, the
GVNS scheme which uses the pipe VND (GVNS,ynp) method in its im-
provement process is proved to be the most efficient method. In addition,
the effect of executing the Speed Selection Procedure either after each local
search operator or in the end of each VND iteration is tested. The GVNS
scheme which uses the Speed Selection Procedure after each local search op-
erator proved as the most efficient solution method. However, from a problem
size perspective, a hybrid solution approach, which uses the Adaptive GVNS
(AGV NS,y np) algorithm with different ky,q. values for the solution of small-
and medium-sized instances and the GV NS,y np for solving large problem
cases. This hybrid solution scheme is compared with the CPLEX solver in ten
small-sized instances. The proposed solution method produces approximately
3% better solutions than CPLEX. Finally, a sensitivity analysis is performed
to study the effect of the variations of holding costs on the objective value.
The results illustrate that, any increase on the holding costs affects the ob-
jective value. However, the use of the flexible replenishment policy keeps the
increase of total cost in relatively low levels. Some exceptions are noticed by
using more vehicles.

Current work focuses on the investigation of an adaptive mechanism for
re-ordering the shaking operators in alternative shaking schemes, in order to
further improve the efficiency of the proposed methods. Also, other local search
operators will be investigated both in the improvement and shaking steps of
the algorithm. Finally, the consideration of the average time-to-target may be
a useful metric for further performance evaluation of the developed methods.
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