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Abstract

The economic lot sizing problem with product returns and recovery is an
important problem that appears in reverse logistics, and has recently been
proved to be NP-hard. In this paper, we suggest a Variable Neighborhood
Search (VNS) metaheuristic algorithm for solving this problem. It is the first
time that such an approach has been used for this problem in the literature.
Our research contributions are threefold: first, we propose two novel VNS
variants to tackle this problem efficiently. Second, we present several new
neighborhoods for this combinatorial optimization problem, and an efficient
local search method for exploring them. The computational results, obtained
on a recent set of benchmark problems with 6480 instances, demonstrate that
our approach outperforms the state-of-the-art heuristic methods from the
literature, and that it achieved an average optimality gap equal to 0.283%
within average 8.3 seconds. Third, we also present a new benchmark set with
the largest instances in the literature. We demonstrate the robustness of the
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Preprint submitted to International Journal of Production Economics October 27, 2014

angelo
Typewritten Text
Please cite this paper as: Sifaleras A., Konstantaras I., and Mladenović N., "Variable neighborhood search for the economic lot sizing problem with product returns and recovery", International Journal of Production Economics, Elsevier Ltd., Vol. 160, pp. 133-143, 2015. The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.ijpe.2014.10.003



proposed VNS approach in this new benchmark set compared with Gurobi
optimizer.
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1. Introduction

Reverse logistics stands for all operations related to the return of products
and materials. It is a process of planning, implementing, and controlling
the efficient, cost effective flow of raw materials, in-process inventory, fin-
ished products and related information from the point of consumption to the
point of origin for the purpose of recovery value or proper disposal. Reusing
product, or material returns have gained considerable attention in industry
and academia because of economical, environmental and legislative reasons.
Balancing economic development with environmental protection is a key chal-
lenge to sustain manufacturing companies. Conventional manufacturing is
unsustainable because of its significant adverse environmental impacts. Re-
manufacturing can help companies to achieve sustainable manufacturing by
saving costs via reductions in consumption of natural resources. Remanufac-
turing can also help reduce environment burden by decreasing landfill wastes
and reclaim resources and energy already consumed in the original manufac-
turing of the products. Besides the environmental benefits, remanufacturing
also provides economic incentives to companies by selling the remanufactured
products and extending the life cycles of the products [13].

Remanufacturing transforms used products into like new ones. After dis-
assembly, sorting and cleaning, modules and parts are extensively inspected
and problematic parts are repaired, or if not possible, replaced by new parts
[16]. These operations allow a considerable amount of value incorporated in
the used product to be regained. Remanufactured products have usually the
same quality as the new products and are sold for the same price, but they
are less costly. The significance of remanufacturing is that it would allow
manufacturers to respond to environmental and legislative pressure by en-
abling them to meet waste legislation while maintaining high productivity for
high-quality, lower-cost products with less landing filling and consumption
of raw materials and energy [19].

Inventory management and control is one of the key decision making areas
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while managing product returns and remanufacturing. A scientific literature
review of the existing quantitative models on inventory control with prod-
uct returns and remanufacturing can be found in the recent work of Akcali
& Cetinkaya [1]. The Dynamic or Economic Lot Sizing Problem (DLSP or
ELSP) is one of the most extensively researched topics in inventory control
literature. ELSP considers a warehouse or retailer facing a dynamic and
deterministic demand for a single item over a finite horizon [40]. A lot of
research has been done on dynamic lot sizing since late 1950s after the sem-
inal paper [40]. For a general review of the economic lot sizing problem,
readers may refer to [6, 7]. The ELSP with remanufacturing options (EL-
SRP) is an extension of the classical Wagner Whitin model. The additional
feature is that in each period known quantities of used products enter the
system. These returns can be remanufactured to satisfy demand besides reg-
ular manufacturing. This means that there are two types of inventory: the
inventory of returns and the inventory of serviceables, where a serviceable
is either a newly manufactured item or a remanufactured returned item. In
ELSR problem, the traditional trade-off between set-up and holding costs is
extended with remanufacturing set-up cost and holding cost for returns.

Many different variants of the ELSR problem, described above, have been
studied. Richter & Sombrutzki [28] extended the classical Wagner-Whitin
model by introducing remanufacturing process. They assumed that the dy-
namic demand could be satisfied from two sources: newly produced items,
and the used ones, returned to the system, stored and remanufactured. They
presented a dynamic programming algorithm to determine the periods in
which products are manufactured and remanufactured. Richter & Weber [29]
introduced a reverse Wagner-Whitin model with variable manufacturing and
remanufacturing costs. They also investigated the behaviour of the system
with a disposal option. Golany et al. [14] studied a variant of ELSRP with
deterministic demand and return setting in the presence of disposal options
and provided a polynomial solution algorithm. Yang et al. [44] extended the
work by Golany et al. [14] on the concave cost functions. Based on a special
structure of the extreme-point optimal solutions for the minimum concave
cost problem, they developed a polynomial-time heuristic algorithm. Beltran
& Krass [5] studied the case where demand can be satisfied by new items
and unprocessed returned items, and the returned items can also be disposed.
They proposed some useful properties of the optimal solution (manufactur-
ing and disposal decisions) which led to a dynamic programming algorithm.
Pineyro & Viera [23] proposed and evaluated a set of inventory policies de-
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signed for the ELSRP under the assumption that remanufacturing the used
items is more suitable than disposing them and producing new items. Te-
unter et al. [36] presented two variants of the basic dynamic lot sizing model
with product returns. In the first model variant, it is assumed that there is a
joint set up cost for manufacturing and remanufacturing when the same pro-
duction line is used for both processes, and the second model variant assumed
separate set up costs for manufacturing and remanufacturing when separate
production lines are used. For these two models, several heuristic algorithms
were proposed and compared with the computational performance of modi-
fied versions of three well-known heuristics, namely Silver-Meal (SM), Least
Unit Cost, and Part Period Balancing. Teunter et al. [38] later advanced
the study of the ELSRP by developing fast but simple heuristics that can
provide near-optimal solutions. Schulz [30] proposed a generalization of the
Silver-Meal based heuristic introduced by Teunter et al. [36] for the separate
set up cost setting by using known results of the static lot sizing problem.

Recently, Nenes et al. [22] studied some inventory control policies for
inspection and remanufacturing and proposed alternative policies when both
demand of new products and returns of used products are stochastic; Helm-
rich et al. [27] added some valid inequalities to the original formulation of
the ELSRP to improve its formulation, and also presented reformulations
based on the shortest path problem for the ELSR problem. Also, Piñeyro
and Viera [24] extended the ELSR problem for the case where substitution
is allowed for remanufactured items.

Tang & Teunter [35] studied the multi product dynamic lot sizing problem
for a hybrid production line with manufacturing new products and reman-
ufacturing the returned products. They considered one manufacturing and
one remanufacturing lot for each product during a common cycle time and
formulated a Mixed Integer Linear Programming (MILP) problem to find an
exact solution. The multi-product dynamic lot sizing problem with two pro-
duction sources, manufacturing and remanufacturing, for which operations
are performed on separate dedicated lines was studied in [37]. The authors
proposed a mixed integer programming model to solve the problem for a
fixed cycle time, which can be combined with a cycle time search to find an
optimal solution. In [45], the multi-product ELSRP was further analyzed,
extending the scheduling policy from the common cycle to a basic period
policy. They relaxed the constraint of one manufacturing lot and one reman-
ufacturing lot for each product during a common cycle time studied in [35],
and they proposed an algorithm to solve their model.
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Recently, both trajectory-based and population-based metaheuristics were
used to tackle the ELSR problem. Piñeyro and Viera [23] suggested a Tabu
Search procedure for solving the problem tackled, even with a more general
cost structure and final disposing of returns. Li et al. [18] also developed
a Tabu Search (TS) algorithm based on an alternative mixed-integer linear
programming formulation. The TS algorithm solves the problem of several
small linear sub-problems of the original model. Moustaki et al. [21] studied
the behavior of Particle Swarm Optimization (PSO) algorithm on the ELSR
problem. The most suitable variants of the algorithm were identified, and the
necessary modifications in the formulation of the corresponding optimization
problem were provided. The performance of the above two metaheuristic
algorithms were compared with the Silver-Meal based heuristics, proposed
by Schulz [30], in each of the above papers, and showed that the proposed
algorithms can be considered as a promising alternative for solving ELSR
problem. In a very recent paper [4], the authors proved that the ELSR prob-
lem is NP-hard, and they constructed a heuristic method that uses dynamic
programming and the Wagner-Whitin algorithm to solve the problem.

In this work, we propose two novel variants of the Variable Neighborhood
Search (VNS) algorithm to find the optimal solution for the ELSR problem,
and also we assess their performance first on the test suite used by Schulz
[30], and second on a new benchmark set with more than four times larger
instances. The proposed VNS approach is also compared with the estab-
lished SM-based variants from [30] and other metaheuristics optimization
algorithms. Although VNS has also been applied to other inventory prob-
lems [2, 3, 41, 42, 43], this is the first time that it is used for this particular
problem.

1.1. Research contributions

The research contributions of this paper are as follows:

• Two novel VNS schemes are proposed for the first time and tested for
this combinatorial optimization ELSR problem. The methodological
contribution is based on the fact that the proposed VNS approaches
use new strategies for the local search and also for the shaking phase.
• Several new neighborhoods for this combinatorial optimization problem

are presented and an efficient local search method for exploring them
is described.
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• The computational results obtained on an established set of bench-
mark problems with 6480 instances show that our VNS metaheuristic
algorithm outperforms the state-of-the-art heuristic methods from the
literature, and that it is able to achieve an average optimality gap equal
to 0.283% within average 8.3 seconds.
• Our approach does not depend on any other, commercial or not, solver

for either computing a starting solution or an intermediate compu-
tation. Thus, it is a self-contained solver without any link to other
callable library API.
• The proposed VNS solver is quite fast and requires only 8.3 and 30

seconds to solve all the instances of this set of 6480 benchmark problems
on average and maximum case, respectively.
• A new benchmark set with the currently largest instances (52 periods)

in the literature have been developed and is made publicly available.
Computational results obtained on this new data set prove the robust-
ness of the proposed VNS approach.

1.2. Outline

The rest of the paper is organized as follows: Section 2 provides the basic
formulation of the problem. In Section 4, the neighborhood structures that
are used in our VNS approach are analytically described. The proposed
VNS metaheuristic algorithm is described in Section 3, where we also discuss
the necessary adaptation of the VNS framework in order to fit the specific
problem requirements. Section 5 exposes the obtained results, and the paper
concludes with Section 6.

2. Model formulation

The problem discussed in this paper is to satisfy the demand of items in
each period at the lowest possible total cost. The demand is given for a
finite planning horizon and is assumed to be not stationary. It can be sat-
isfied by both manufactured new items and remanufactured returned ones
(both known as “serviceables”). Also, the number of returns is known for all
periods and assumed to be not stationary. The returns can be completely
remanufactured and sold as the new ones. The problem studied in our paper
consists of the dynamic lot sizing model with both remanufacturing and man-
ufacturing setup costs, as it was introduced by [36] and studied by [30]. The
lot sizing problem under separate manufacturing and remanufacturing set up
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costs is suitable for situations where there are separate production lines, one
for manufacturing and one for remanufacturing. The aim is to determine the
number of remanufactured and manufactured items per period in order to
minimize the sum of set up costs of the manufacturing and remanufacturing
processes and holding costs for returns and serviceables under various oper-
ational constraints. Before presenting the formulation of the ELSR problem,
we first introduce some notations:

t: time period, t = 1, 2, . . . , T .

D(t): demand for time period t.

R(t): number of returned items in period t that can be completely remanu-
factured and sold as new.

hM : holding cost for the serviceable items per unit time.

hR: holding cost for the recoverable items per unit time.

zM(t): binary decision variable denoting the initiation of a manufacturing lot
in period t.

zR(t): binary decision variable denoting the initiation of a remanufacturing
lot in period t.

xM(t): number of manufactured items in period t.

xR(t): number of items that are eventually remanufactured in period t.

kM : manufacturing setup cost.

kR: remanufacturing setup cost.

yM(t): inventory level of serviceable items in period t.

yR(t): inventory level of items that can be remanufactured in period t.

The ELSR problem can be modeled as a MILP problem as follows [30]:

minC =
T∑
t=1

(kRzR(t) + kMzM(t) + hRyR(t) + hMyM(t)) , (1)

where:

zR(t) =

{
1, if xR(t) > 0,

0, otherwise,
zM(t) =

{
1, if xM(t) > 0,

0, otherwise,
(2)

are binary decision variables denoting the initiation of a remanufacturing or
manufacturing lot, respectively. Naturally, the model is accompanied by a
number of constraints [30]:
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yR(t) = yR(t− 1) +R(t)− xR(t),
yM(t) = yM(t− 1) + xR(t) + xM(t)−D(t),
∀ t = 1, 2, . . . , T.

(3)

xR(t) ≤MzR(t),
xM(t) ≤MzM(t),
∀ t = 1, 2, . . . , T.

(4)

yR(0) = yM(0) = 0,
zR(t), zM(t) ∈ {0, 1},
yR(t), yM(t), xR(t), xM(t) ≥ 0,
∀ t = 1, 2, . . . , T.

(5)

The constraints defined in Eq. (3) are the inventory balance equations
which compute the inventory of returns and serviceables, respectively. Equa-
tion (4) ensures that a fixed setup cost is incurred when remanufacturing or
manufacturing takes place, respectively. The parameter M is a sufficiently
large number; [30] suggests the use of the total demand during the planning
horizon. Finally, Eq. (5) ensures that the inventories are initially empty, sets
the indicator variables and prevents negative (re)manufacturing or inventory.

Some interesting properties of the considered model have been identified
in [36] such as that there is a possibility of attaining optimal solutions that
do not adhere to the zero–inventory property. Since the ELSR problem is
NP-hard, the need for efficient metaheuristic algorithms is visible.

3. Novel VNS schemes for solving ELSRP

VNS is a metaheuristic based on a systematic change of the neighborhood
structures within a search introduced by Mladenović and Hansen [20]. The
main idea of this trajectory-based method is to improve the incumbent solu-
tion by examining solutions belonging to different neighborhoods (intensifi-
cation or local search part), and sometimes letting, temporarily, the objective
function to deteriorate in order to escape from locally optimal solutions (di-
versification or shaking part). VNS has already been successfully used for
solving various combinatorial and global optimization problems [9, 15, 34, 39].

In this paper we suggest two VNS variants with new strategies for the
local search and also for the shaking phase, and describe their corresponding
reasoning. The first one, since the cardinality of the proposed neighborhoods
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is the same, is based on computation of the total number of local search im-
provements per neighborhood. This way, the most frequently used “moves”
/ neighborhoods are considered first. Thus, we suggest ordering neighbor-
hoods based on the success of local search improvements per neighborhood,
computed by using extensive preliminary testing, and use it in local search
phase of VNS. Such a local search and VNS obtained, we call Ordered Vari-
able Neighborhood Descent (OVND) and Ordered General VNS (OGVNS),
respectively. Furthermore, we also suggest a new strategy that is based on
random choice of all the neighborhoods in shaking phase of OGVNS. The
second one is based on random choice of neighborhoods in VND phase and
shaking phase of General VNS. Thus, the second VNS variant uses Ran-
domised VND as a local search and new Shaking and will be called Ran-
domised GVNS (RGVNS). More precisely, RGVNS takes only five randomly
chosen neighborhoods in each local search step and shaking phase.

Similarly to the majority of the metaheuristic implementations in the
literature, both schemes of our VNS approach for the solution of ELSRP
consist of several parts. Firstly, a heuristic initialization method is applied in
order to provide us with a starting solution. Afterwards, the VND heuristic is
applied to improve our starting solution. The last part of our VNS approach
is the shaking or perturbation phase.

3.1. Constructive Heuristic

Li et al. [18] in order to find an initial solution to the ELSRP for their
block-chain based tabu search algorithm used the commercial CPLEX solver
to solve a Linear Problem (LP). However, in cases where the solution of that
LP did not result in integer-valued variables, they again applied CPLEX to
solve an Integer Problem (IP). In this work, we have implemented a quite
simple constructive heuristic where the total demand is fulfilled by a single lot
(without remanufacturing units) in the first period. Although this proposed
initialization method cannot guarantee a quality starting solution, it is very
simple, runs in O(T ), and moreover it does not depend on other solvers or
optimization software packages [32]. Discussion on the quality of the starting
solutions over all test instances, produced by the proposed heuristic initial-
ization method is made later in Section 5.6. Also, Baki et al. [4] recently
proposed a heuristic construction method based on dynamic programming.
In contrast to such sophisticated initialization methods, we implemented a
quite simple constructive heuristic where the total demand is fulfilled by a
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single lot (without remanufacturing units) in the first period. This initial-
ization method is quite similar to the starting solution method proposed by
Piñeyro and Viera [24] of zero-remanufacturing.

Algorithm 1 Heuristic initialization method
1: procedure Heuristic Start(T,R,D, xR, xM , yR, yM , zR, zM )
2: xR, zR, xM , zM , yR, yM ← 0
3: yR(1)← R(1)
4: for i = 2, T do
5: yR(i)← yR(i− 1) + R(i)
6: yM (T + 1− i)← yM (T + 2− i) + D(T + 2− i)
7: end for
8: xM (1)← yM (1) + D(1)
9: zM (1)← 1

10: end procedure

In the pseudocode (Heuristic Start) of the proposed heuristic initial-
ization method, please note that, the expressions in line 2 use whole array
operations as in Fortran. Thus, by xR = 0, we denote that xR(t) = 0,
∀t ∈ 1 . . . T .

3.2. VND algorithm

The number of different neighborhoods, and their corresponding order in the
Variable Neighborhood Descent (VND) and shaking procedures are very im-
portant factors for the efficiency of any VNS-based methodology, and thus
they consist well-studied issues of VNS. For example, Li et al. [18] report
four different neighborhoods using one-shift, two-shift, exchange, and cross
two-shift operators in their paper [18]. Following their notation, a neigh-
borhood N(σ) is a set of neighboring solutions in the solution space that
is formally defined as N(σ) = {solution σ′ obtained by applying one / or
more change(s) to σ}. VND constitutes a deterministic algorithm aiming to
intensify the local search in the neighborhoods described in Section 4, via a
systematic neighborhood change. As previously mentioned, the two proposed
VNS schemes have quite different strategies for local search. Regarding the
OGVNS variant, based on extensive testing of different combinations (de-
scribed later in Subsection 5.6), the following order of neighborhoods was
decided to be used in our experiments: [N4, N15, N1, N2, N10, N19, N12,
N8, N5, N18, N16, N7, N17, N14, N13, N3, N6, N11, N9]. Thus, the steepest
descent heuristic is used for kmax = |N | = 19 neighborhood structures (Nk,
where k = 1, . . . , kmax).
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Algorithm 2 VND
1: procedure VND(T,R,D, hR, hM , kR, kM , σ, kmax)
2: repeat
3: improvement← 0
4: for k ← 1, kmax do
5: for t← 1, T do
6: Find the best neighbor σ′ of σ (σ′ ∈ Nk(σ))
7: if the obtained solution σ′ is better than σ then
8: Set σ ← σ′

9: Set improvement← 1
10: end if
11: end for
12: end for
13: until improvement == 0
14: end procedure

On the other hand, the RGVNS variant takes kmax = 5 neighborhoods in
random order out of the 19 in each VND step. The VND algorithm sequen-
tially searches each neighbor for each period, with only a few exceptions (e.g.,
N1 and N2 cannot be applied for t = 1). The pseudo-code of the proposed
VND algorithm (VND) is as follows:

3.3. Randomized shaking phase of VNS

Each metaheuristic method has an intensification and a diversification method.
In both OGVNS and RGVNS variants, the VND algorithm and the shaking
phase constitute the intensification and diversification methods, respectively.
Once the VND is not able to further improve the current best (incumbent)
solution by local search, the randomized shaking phase starts in order to ex-
plore larger neighborhoods (OGVNS and RGVNS consider kmax = 19 and 5
neighborhoods in the shaking, respectively). The randomized shaking phase
is based on a shuffle to the order of neighborhoods, in order to get a new com-
plete random solution. Roughly speaking, the aim of the shaking phase is to
escape from locally optimal solutions, and thus it allows us to evaluate unex-
plored areas of the feasible region. More specifically, the randomized shaking
phase contributes in an uncontrolled expanding of the search to unexplored
regions in the solution space. Both variants of the proposed VNS approach
explore valleys surrounding a local optimum, until a stopping condition is
satisfied (i.e., a maximum computing time in our case).

We have implemented a shaking phase which can be described as large
neighborhood search. The fact that we shake k consecutive neighborhoods
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one-after-the-other from the beginning to the end, permits us to explore
far apart valleys containing near-optimal solutions. The pseudo-code of the
proposed VNS algorithm (VNS) is as follows:

Algorithm 3 VNS
1: procedure VNS(T,R,D, hR, hM , kR, kM , σ, kmax)
2: Apply the Heuristic Start method
3: while time < max time do
4: Apply the VND method
5: Shake k consecutive Nk (k ∈ 1 . . . kmax) one-after-the-other
6: Apply the Knuth Shuffle method and generate a random Nk order
7: end while
8: end procedure

In order to generate a random permutation of the initial order of neigh-
borhoods (i.e., in line 6 of the VNS pseudo-code), we apply the Knuth Shuffle

method. The latter method for generating a random permutation of a finite
set was originally published by Fisher & Yates in [12], later designed for com-
puter use by Durstenfeld in [10], and analytically described in the well-known
book by Knuth [17]. The time complexity of the Knuth shuffle method (or
Fisher-Yates shuffle method) is O(T ) (for the ELSRP with T periods). Since
the Knuth shuffle method requires a random number generator, we have used
a portable random generator based on the book by Press et al. [25]. This
way the proposed solver is independent of the compiler used each time, (i.e.,
the pseudo-random generator implemented by Intel Fortran, gfortran, etc.).

4. Neighborhood structures for solving ELSRP

4.1. Neighborhood structures

The neighborhood structures used are not nested, (i.e., each one does not
necessarily contain the previous) as happens usually in the case of VNS
implementations for other optimization problems (i.e., 2-opt, 3-opt for the
Traveling Salesman Problem (TSP)). For some optimization problems many
non-nested neighborhood structures may be designed, and then the ques-
tion of their order is essential for the final success of the method. Roughly
speaking, one way is to make their order in non-decreasing order of their
cardinality, another is to make random order and the third one is in using
memory. Puchinger & Raidl reported 10-20 MILP-based neighborhoods for
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the multidimensional knapsack problem [26], and also proposed to consider
the faster to search (or smaller) neighborhoods first.

Although several authors in the literature suggest that a small number of
neighborhoods (i.e., |N | = 3 or 4) is sufficient, we have followed a different
approach, which helped us to develop an efficient VND. In this paper, 19 dif-
ferent neighborhoods have been applied for adapting the VNS methodology
to the ELSRP. The reason for having so many different neighborhoods is due
to the fact that each neighborhood corresponds to a combination of different
“moves”. Such moves are either increment or reduction in the values of the
various decision variables (i.e., xM , xR, yM , yR). These different moves are
appropriately combined in order to balance any change in the Eqs. 3. This
way, we are able to visit neighboring solutions without any feasibility viola-
tions. A description of the neighborhoods follows:

N1(σ) = {σ′ | σ′ is obtained by shifting the set-up for manufacturing
zM(t) in one period from 0 to 1, by reducing only some yM variables and a
previous xM(i) variable, for some t = 1, 2, . . . , T , and i < t},

N2(σ) = {σ′ | σ′ is obtained by shifting the set-up for manufacturing
zM(t) in one period from 1 to 0, by increasing only some yM variables and a
previous xM(i) variable, for some t = 1, 2, . . . , T , and i < t},

N3(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufacturing
zR(t) in one period from 0 to 1, by strictly reducing some yR variables and
increasing some yM variables, for some t = 1, 2, . . . , T},

N4(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufacturing
zR(t) in one period from 0 to 1, by strictly reducing some yR, yM , and xM
variables, for some t = 1, 2, . . . , T},

N5(σ) = {σ′ | σ′ is obtained in case that when both the set-up for manu-
facturing zM(t) and remanufacturing zR(t) in one period exists, we shift the
set-up for remanufacturing zR(t) in that period from 1 to 0 by increasing
some yR variables, for some t = 1, 2, . . . , T},

N6(σ) = {σ′ | σ′ is obtained in case where both the set-up for manufac-
turing zM(t) and remanufacturing zR(t) in one period exists, and we shift
the set-up for manufacturing zM(t) in that period from 1 to 0 by increasing
some yR variables, for some t = 1, 2, . . . , T},
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N7(σ) = {σ′ | σ′ is obtained by shifting the set-up for manufacturing
zM(t) in one period from 1 to 0 (or reduce only that xM(t) variable) and
shift the set-up for remanufacturing zR(t) in that period from 0 to 1 (or in-
crease only that xR(t) variable), by strictly reducing some yR variables and
may also shift the set-up for manufacturing zM(t) in another period from 0
to 1, for some t = 1, 2, . . . , T},

N8(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufacturing
zR(t) in one period from 1 to 0, and shifting the set-up for manufacturing
zM(t) in that period from 0 to 1 (or increase only that xM(t) variable), by
strictly increasing some yR variables, for some t = 1, 2, . . . , T},

N9(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufacturing
zR(t) in one period from 1 to 0 and shifting the set-up for manufacturing
zM(t) in that period from 0 to 1 (or increase only that xM(t) variable), by
strictly reducing some yR variables and increasing some yM variables, for
some t = 1, 2, . . . , T},

N10(σ) = {σ′ | σ′ is obtained in case where between two periods with
zM values equal to 1, we reduce as much as possible some yM variables (and
perhaps shift the set-up for manufacturing zM(t) in one period from 1 to 0)
and increase some xM variables, for some t = 1, 2, . . . , T},

N11(σ) = {σ′ | σ′ is obtained in case where the set-up for manufactur-
ing zM(t) and remanufacturing zR(t) in one period exists, then between two
periods with zR values equal to 1, we reduce as much as possible some yR
variables (and perhaps shift the set-up for manufacturing zM(t) in another
period from 0 to 1), for some t = 1, 2, . . . , T},

N12(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufacturing
zR(t) in one period from 1 to 0, by strictly increasing some yM , yR variables,
and one xM variable, for some t = 1, 2, . . . , T},

N13(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufacturing
zR(t) in one period from 1 to 0 (or reduce only that xR variable) and shifting
the set-up for manufacturing zM(t) in that period from 0 to 1 (or increase
only that xM variable), by strictly reducing some yM and yR variables, for
some t = 1, 2, . . . , T},
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N14(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufacturing
zR(t) in one period from 1 to 0, by strictly reducing some yM and yR vari-
ables, for some t = 1, 2, . . . , T},

N15(σ) = {σ′ | σ′ is obtained by shifting the set-up for remanufactur-
ing zR(t) in one period from 1 to 0 (or reduce only that xR variable), by
strictly increasing some yR variables and reducing some yM variables, for
some t = 1, 2, . . . , T},

N16(σ) = {σ′ | σ′ is obtained by shifting the set-up for manufacturing
zM(t) in one period from 1 to 0 (or reduce only that xM variable) and shift-
ing the set-up for manufacturing zM(t) in another period from 0 to 1 (or
increase only that xM variable), by strictly reducing some yM variables, for
some t = 1, 2, . . . , T },

N17(σ) = {σ′ | σ′ is obtained by reducing some yM variables (and per-
haps shifting the set-up for manufacturing zM(t) in one period from 1 to 0)
and shifting the set-up for remanufacturing zR(t) in one period from 0 to
1 (or increase that xR variable), by reducing some yR variables, for some
t = 1, 2, . . . , T},

N18(σ) = {σ′ | σ′ is obtained by reducing some yR variables, by shifting
the set-up for remanufacturing zR(t) in one period from 0 to 1 and increasing
some yM variables, for some t = 1, 2, . . . , T},

N19(σ) = {σ′ | σ′ is obtained in case where between two periods with
zR values equal to 1, we reduce as much as possible some yR variables (and
perhaps shift the set-up for remanufacturing zR(t) in one of these two period
from 1 to 0) and increase one xM variable}.

Maintaining feasibility. The routines that implement these neighborhoods
have been designed to return only feasible solutions (σ′), in case it is pos-
sible. Otherwise, no change is made in the current solution (σ) for that
specific period t. However, in order to verify that our VNS implementation
is always working with feasible solutions, we have also developed an auxiliary
routine check feasibility that checks the feasibility in O(T ) time. This
way, all the intermediate solutions so as the final solution, are guaranteed to
be feasible.
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4.2. Illustrative example

Assume the following small example with T = 3 periods, in Table 1.

Table 1: Small example (T = 3) data.

T = 3 hR = 0.2 kR = 200
hM = 1 kM = 2000

t D R
1 130 63
2 160 70
3 200 40

By solving this small example with Gurobi, an optimal solution equal
to 2453.2 can be found. The initial solution computed by the constructive
heuristic of Subsection 3.1 follows in the upper part of Table 2.

Table 2: Incumbent & optimal solutions found by the constructive heuristic and a neigh-
boring solution in N4, respectively.

xR zR xM zM yR yM
0 0 490 1 63 360

Incumbent solution 0 0 0 0 133 200
0 0 0 0 173 0
0 0 317 1 63 187

Optimal solution 0 0 0 0 133 27
173 1 0 0 0 0

The above incumbent solution has an objective value equal to 2633.8
with a mean absolute percentage error equal to 7.36%. By applying the
proposed VND algorithm, an optimal solution can be reached if we search
for t = 3 in the neighborhood N4, (for t = 1 or 2 although we find feasible
neighboring solutions, their corresponding objective values are worse than
the current incumbent solution). Thus, the computation of the neighboring
solution in N4 for t = 3, is as follows: i) First, the value of the xR(3) variable
is increased from 0 to 173 (equal to yR(3)) and the corresponding binary
decision variable zR(3) variable is shifted from 0 to 1. ii) Second, in order to
balance the equations 3, we decrease the yR(3) variable from 173 to 0, and
iii) The variables yM(2), yM(1), and xM(1) are reduced from 200, 360, and
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490 to 27, 187, and 317 respectively. Thus, Equations 3 are balanced again.
The optimal solution found by searching for t = 3 in N4 is presented in the
lower part of Table 2.

5. Numerical testing

This Section presents comparative computational results of both proposed
VNS variants regarding different benchmark sets. Subsection 5.4 shows the
results of an extensive computational study of the VNS method, using the
well-known set of benchmark problems (6480 instances with T = 12 peri-
ods) proposed by Schulz in [30], and compared with state-of-the-art heuristic
methods. Subsection 5.5 describes a new benchmark set (with T = 52 peri-
ods), and demonstrate the robustness of the VNS approach, using large-scale
instances compared with Gurobi optimizer. It is noteworthy that, currently,
no other benchmark set for the ELSRP includes such a large number of 108
instances with this problem dimension (52 periods) in the literature.

The results of these two computational studies have shown that the
first variant (OGVNS algorithm) performs better than the second variant
(RGVNS algorithm) in the benchmark set by Schulz [30]. It appears that
the OGVNS variant computed approximately 2.5 times lower mean absolute
percentage error (0.283%) compared to the RGVNS variant (0.712%) with
kmax = 5 neighborhoods. Also, the RGVNS variant with kmax = 6 neighbor-
hoods achieved an error equal to (0.769%). This difference can be attributed
to the fact that the local search step of the OGVNS variant is more effi-
cient for small instances since it is based on kmax = 19 instead of kmax = 5
neighborhoods. However, this situation changes in the computational study
regarding the new large-scale instances. More specifically, it appears that
the RGVNS variant performs slightly better than the OGVNS variant. This
difference can be attributed to the fact that the instances are more than four
times larger, and the randomized local search step with kmax = 5 performs
quicker and better than the extensive ordered local search step with kmax =
19 neighborhoods. Due to these reasons, the following Subsections 5.4 and
5.5 describe the efficiency and effectiveness of the OGVNS and the RGVNS
variant, respectively.

5.1. Computing environment

We ran the experiments on a computer running Ubuntu Linux 14.04 64Bit
with an Intel Core i7 4770K CPU at 3.5 GHz with 8 MB L3 cache and
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32 GB DDR3 1600MHz main memory. Both VNS implementations were
implemented in Fortran and compiled, using the Intel Fortran 64 compiler XE
v.14.0.1.106 with the –fast option (on Linux it is equivalent to the collection
of options: –ipo, –O3, –no-prec-div, –static, and –xHost).

5.2. Stopping condition

Two stopping conditions were used in the proposed VNS approach. First,
our VNS metaheuristic algorithm stops if an (known) optimal solution has
been computed. Second, we stop our VNS metaheuristic algorithm in 30
seconds. This time limit was carefully selected due to two reasons. First,
this is a common time limit in the metaheuristics literature and acceptable
from a computational point of view. Second, the paper by Schulz [30] did
not report analytic computation times whereas the paper by Moustaki et
al. [21] and Li et al. [18] reported high worst-case time limits equal to 180
seconds and 430.98 seconds, respectively. However, all the instances of the
benchmark set of Schulz [30] were solved by our OGVNS algorithm within
average only 8.3 seconds.

5.3. Test instances by Schulz [30]

Our OGVNS algorithm was applied on exactly the same set of benchmark
problems proposed by Schulz in [30], which is an extended version of the set
of benchmark problems suggested in [36]. This set of test instances has been
solved by CPLEX 11 in order to find their optimal solutions. Specifically, it
consists of a full factorial study of several ELSRP instances with a common
planning horizon of T = 12 time periods. Each of the setup and the holding
costs kR, kM , and hR, hM , respectively, takes three different values. The
returns and demands are drawn from normal distributions with both small
and large deviations. The mean of the returns’ distribution assumes also
three different values (return ratios). The exact configuration of the test
problems is reported in Table 3.For each specific combination of parameter values, 20 different problem
instances were produced in [30]. The specific test suite was selected in our
study because it contained a large number of 6480 different problem in-
stances. Also, it facilitated comparisons with the results reported in [30]
for the adapted SM algorithm and its enhanced versions, and the results
reported in [21] for the PSO implementation adapted to the ELSRP.

The obtained statistics were compared with the corresponding values re-
ported in the thorough analysis of Schulz [30] for four versions of the adapted
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Table 3: Parameter values for the test problems [30].

Parameter Value(s)
Description
Setup costs kM , kR ∈ { 200, 500, 2000 }
Holding cost for hM = 1
serviceable products
Holding cost for hR ∈ { 0.2, 0.5, 0.8 }
recoverable products
Demand for D(t) ∼ N

(
µD, σ

2
D

)
, µD = 100,

time period t σ2
D = 10%, 20% of µD

(10% small variance, 20% large variance)
Returns for R(t) ∼ N

(
µR, σ

2
R

)
, µR = 30%, 50%, 70% of µD,

time period t σ2
R = 10%, 20% of µR

(10% small variance, 20% large variance)

SM heuristic. The first version refers to SM with the options of (a) manufac-
ture only or (b) remanufacture (and manufacture if necessary), henceforth
denoted as SM2. The second version refers to SM2 with the additional op-
tions of (c) manufacturing first and remanufacture later, or (d) remanufacture
first and manufacture later, henceforth denoted as SM4. Moreover, compar-
isons included the enhanced versions SM+

2 and SM+
4 that are derived from

the previous ones by additionally checking if their solutions admit one of the
following improvements: (i) two consecutive time windows can be combined
or (ii) a remanufacturing lot can be increased [30]. All numerical results are
reported in Tables 4-7. Specifically, Table 4 reports the average, standard de-
viation, and maximum values of the percentage errors for the aforementioned
variants of the SM algorithm as well as for PSO and OGVNS. The first block
of the Table refers to all problem instances, followed by three blocks that
refer to the special cases of small and large variance for demand and returns,
as well as to different return ratios. Tables 5-7 complement the results for
different values of the manufacturing and remanufacturing setup cost, as well
as for different holding costs of the recoverable items. The error (or optimal-
ity gap) of each heuristic algorithm is computed as the difference between
the objective value of the incumbent solution and the objective value of the
(known) optimal solution.
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5.4. Experimental results on Schulz [30] benchmarks (T = 12)

As it is shown in Tables 4-7, the proposed OGVNS approach outperforms the
state-of-the-art heuristic methods (i.e., SM2, SM4, SM

+
2 , SM4

+, and PSO)
from the literature and was able to find 75.8% of the optimal solutions and
achieve an average cost error equal to 0.283% in a few seconds.

Table 4: Percentage cost error for all instances as well as for dif-
ferent variance of demand, returns, and return ratios.

Algorithm Avg. (%) Std. (%) Max. (%)
All Instances SM2 7.5 7.9 49.2

SM4 6.1 7.6 47.3
SM+

2 6.9 7.9 49.2
SM4

+ 2.2 2.9 24.3
PSO 4.3 4.5 49.8

OGVNS 0.3 0.8 8.9
Demand Small SM2 7.2 7.9 43.6

Variance SM4 6.0 7.6 47.3
SM+

2 6.6 7.9 43.5
SM4

+ 2.1 2.8 18.9
PSO 4.4 4.6 49.8

OGVNS 0.3 0.7 8.9
Large SM2 7.8 8.0 49.2
Variance SM4 6.1 7.5 43.9

SM+
2 7.2 8.0 49.2

SM4
+ 2.4 3.0 24.3

PSO 4.1 4.5 48.3
OGVNS 0.3 0.8 6.2

Returns Small SM2 7.3 7.8 47.2
Variance SM4 6.1 7.6 47.3

SM+
2 6.8 7.8 47.2

SM4
+ 2.2 2.9 21.1

PSO 4.3 4.6 46.7
OGVNS 0.3 0.8 6.2

Large SM2 7.7 8.0 49.2
Variance SM4 6.1 7.5 46.3

SM+
2 7.1 8.0 49.2

SM4
+ 2.3 2.9 24.3

PSO 4.2 4.5 49.8
OGVNS 0.3 0.7 8.9

Return Ratio 30% SM2 5.5 5.5 31.3
SM4 3.7 4.5 28.5
SM+

2 4.9 5.4 31.3
SM4

+ 1.2 1.8 12.1
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Table 4: Percentage cost error for all instances as well as for dif-
ferent variance of demand, returns, and return ratios.

Algorithm Avg. (%) Std. (%) Max. (%)
PSO 3.5 3.1 45.5

OGVNS 0.2 0.6 5.6
50% SM2 8.5 9.4 40.1

SM4 7.3 8.2 41.8
SM+

2 8.0 9.3 39.8
SM4

+ 2.3 2.7 16.2
PSO 4.1 4.0 34.0

OGVNS 0.3 0.7 6.0
70% SM2 8.4 8.0 49.2

SM4 7.2 8.7 47.3
SM+

2 8.0 8.0 49.2
SM4

+ 3.3 3.5 24.3
PSO 5.1 5.9 49.8

OGVNS 0.5 1.1 7.9

Table 5: Percentage cost error for different levels of manufacturing
setup cost.

Algorithm Avg. (%) Std. (%) Max. (%)
KM = 200 SM2 4.3 4.5 20.2

SM4 3.4 3.6 17.6
SM+

2 3.5 4.0 20.2
SM4

+ 2.3 2.6 13.5
PSO 4.0 3.1 45.5
OGVNS 0.4 0.8 6.0

KM = 500 SM2 5.4 5.2 25.1
SM4 3.9 3.9 19.3
SM+

2 4.8 4.9 23.7
SM4

+ 2.1 2.5 12.8
PSO 4.5 4.1 27.5
OGVNS 0.3 0.8 8.9

KM = 2000 SM2 12.8 9.9 49.2
SM4 10.9 10.4 47.3
SM+

2 12.6 9.9 49.2
SM4

+ 2.3 3.4 24.3
PSO 4.4 5.9 49.8
OGVNS 0.1 0.4 5.2
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Table 6: Percentage cost error for different levels of remanufactur-
ing setup cost.

Algorithm Avg. (%) Std. (%) Max. (%)
KR = 200 SM2 10.9 9.1 49.2

SM4 6.6 7.8 40.2
SM+

2 10.0 9.4 49.2
SM4

+ 1.9 2.1 11.8
PSO 5.7 5.5 49.8
OGVNS 0.5 1.0 8.9

KR = 500 SM2 7.9 6.6 34.7
SM4 8.1 8.2 47.3
SM+

2 7.3 6.6 34.7
SM4

+ 3.4 3.2 19.1
PSO 3.8 4.1 37.4
OGVNS 0.3 0.7 6.0

KR = 2000 SM2 3.7 6.0 29.4
SM4 3.5 5.7 25.7
SM+

2 3.6 5.9 29.4
SM4

+ 1.4 2.9 24.3
PSO 3.3 3.5 45.5
OGVNS 0.1 0.3 3.1

Our findings in Tables 5 and 6 show that the mean absolute percentage
error of the solutions was inversely proportional to the manufacturing & re-
manufacturing cost values. The same findings have also been verified in the
recent work by Li et al. in [18], regarding their block-chain based tabu search
algorithm for the ELSRP. One possible justification of this pattern is the fact
that the manufacturing / re-manufacturing decision seems appealing as the
respective setup costs become smaller; and thus more interesting combina-
tions occur that needs to be examined. In other case, if the manufacturing
/ re-manufacturing cost values become higher, then it is prohibitive either
to manufacture or re-manufacture and, therefore, keeping a stock of prod-
ucts in the inventory is the only viable way (that leads to fewer interesting
combinations to check).

Table 7: Percentage cost error for different levels of holding cost.

Algorithm Avg. (%) Std. (%) Maximum (%)
hR = 0.2 SM2 5.9 8.0 42.9

SM4 5.3 8.0 47.3
SM+

2 5.8 8.0 42.9
SM4

+ 1.7 2.5 21.1
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Table 7: Percentage cost error for different levels of holding cost.

Algorithm Avg. (%) Std. (%) Maximum (%)
PSO 4.5 5.2 49.8
OGVNS 0.2 0.7 6.2

hR = 0.5 SM2 7.5 7.7 49.2
SM4 6.5 7.6 42.4
SM+

2 7.0 7.7 49.2
SM4

+ 2.3 3.0 24.3
PSO 4.3 4.5 45.5
OGVNS 0.3 0.7 5.9

hR = 0.8 SM2 9.1 7.7 44.4
SM4 6.3 7.0 40.3
SM+

2 8.1 7.8 44.4
SM4

+ 2.8 3.0 20.6
PSO 4.0 3.9 42.9
OGVNS 0.3 0.8 8.9

The performance of each aforementioned method is measured by the per-
centage error, which is defined as the percentage gap between the optimal
solution (zopt) and the best solution found by our OGVNS algorithm (zbest).
The mean absolute percentage error per each problem instance is computed
as 100× (zbest − zopt)/zopt. The same way of computing the percentage error
was used in the studies by Schulz [30] and Moustaki et al. [21]. Therefore, a
fair comparison between these five approaches (i.e., SM2, SM4, SM

+
2 , SM4

+,
and PSO) is guaranteed. However, it would not be correct to compare the
proposed OGVNS algorithm with the recent work by Li et al. [18], since
the authors used a different way of computing the mean absolute percent-
age error (i.e., 100 × (zbest − zopt)/zbest ), as it is reported in their paper.
Regardless of this difference, Li et al. [18] report in their paper that their
block-chain tabu search algorithm achieved an average cost error equal to
0.00082% (using this different way of computing the error) on the same set
of benchmark problems. On the other hand, our current implementation
achieves an average cost error equal to 0.283% on the same set of benchmark
problems. However, it should be noted that our proposed implementation
has two distinct benefits. First, it does not depend on any other, commercial
or not, integer programming solver (such for example as CPLEX which is
required in their implementation). For example, in case of larger problems
(e.g., T = 52 periods), even the CPLEX solver might require a large amount
of computational time to provide only a starting solution. Second, our pro-
posed OGVNS approach is considerably faster. The average and maximum
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computational time for each test instance is only 8.3 and 30 seconds respec-
tively, whereas the block-chain based tabu search algorithm presented in [18]
require 53.4 and 490.4 seconds on average and maximum case, respectively,
as it is depicted in Table 8. In case that the same time-limit of 490.4 seconds
was also used by our solver instead of 30 seconds then, even lower average
optimality gap would have been found. However, the special focus was to
provide not only optimal or near-optimal solutions for the ELSRP but also
to achieve low computational times, too.

Table 8: Computational times of TS-DLRR [18] and OGVNS.

Computational times
Algorithm Avg. (sec.) Max. (sec.)

All instances TS-DLRR 53.68 490.38
OGVNS 8.30 30.00

Demand Small variance TS-DLRR 58.68 490.38
OGVNS 8.00 30.00

Large variance TS-DLRR 48.69 484.33
OGVNS 7.60 30.00

Returns Small variance TS-DLRR 54.48 490.38
OGVNS 8.30 30.00

Large variance TS-DLRR 52.80 484.33
OGVNS 8.00 30.00

Return ratio 30% TS-DLRR 56.51 490.38
OGVNS 7.50 30.00

50% TS-DLRR 51.75 475.93
OGVNS 8.00 30.00

70% TS-DLRR 52.80 484.33
OGVNS 9.10 30.00

kM 200 TS-DLRR 54.79 484.33
OGVNS 11.90 30.00

500 TS-DLRR 65.12 490.38
OGVNS 8.80 30.00

2000 TS-DLRR 41.14 413.68
OGVNS 3.90 30.00

kR 200 TS-DLRR 65.38 478.91
OGVNS 12.20 30.00

500 TS-DLRR 61.65 490.38
OGVNS 09.20 30.00

2000 TS-DLRR 34.02 484.33
OGVNS 3.30 30.00

hR 0.2 TS-DLRR 49.50 475.93
OGVNS 7.20 30.00

0.5 TS-DLRR 55.18 484.33
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Table 8: Computational times of TS-DLRR [18] and OGVNS.

Computational times
Algorithm Avg. (sec.) Max. (sec.)
OGVNS 8.50 30.00

0.8 TS-DLRR 56.37 490.38
OGVNS 8.90 30.00

5.5. Experimental results on larger instances (T = 52)

Although the proposed VNS approach outperforms other metaheuristic ap-
proaches in the well-known benchmark set by Schulz [30], we demonstrate
the robustness by additional computational experiments with even larger in-
stances. Thus, we have developed a new full factorial study with a common
planning horizon T of 52 periods for each instance. This new proposed bench-
mark was designed with the same parameter values as in Schulz [30], but it
features significantly more difficult instances that are more than four times
larger. In this new set of benchmark problems, both setup cost parameters
kR and kM can be equal to 200, 500, and 2000. Additionally, the holding
cost hM for the serviceable items per unit time is set to one, and the holding
cost hR for the recoverable items per unit time can be equal to 0.2, 0.5, and
0.8. Moreover, the customer demands D follow a normal distribution with
a mean of 100 units per period, and the amounts of returned products R
follow a normal distribution with a mean of 30, 50, and 70 units per period.
Furthermore, the coefficient of variation in the normal distributions was set
to 10% (small variance) and 20% (large variance).

For each setting of the return and demand values, four instances were
randomly drawn. Thus, totally 34 × 22 × 4 = 108 different instances were
created. Efforts were made to solve each one of them using the latest version
of the state-of-the-art Gurobi optimizer v5.6.2 within a reasonable amount of
time set to 1 hour and tolerance set to 10−4. However, due to the increased
computational difficulty, the Gurobi optimizer solved only 54 instances to
optimality. Regarding the remaining instances, the Gurobi optimizer has
only computed an upper bound of the optimal objective value. Therefore,
the proposed RGVNS implementation is compared using all the instances
with either optimal solutions or only suboptimal. Our RGVNS variant is
compared against Gurobi in order to present the mean optimality error as in
the previous Subsection 5.4 and the differences in CPU time.

It is noteworthy that this new benchmark set is more difficult and larger
than those that have ever been used in the literature, for the ELSR problem.
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Also, it is the largest one with a realistic planning horizon of 52 weeks per
year. Apart from the Schulz data set, other smaller data sets include the data
set by Li et al. [18] with only 10 instances with dimension T = 50, solved to
optimality. This new benchmark set is publicly available from the authors
web site: http://users.uom.gr/~sifalera/benchmarks.html. Interested
readers may find all the 108 instances, with either the optimal solutions found
by Gurobi in the 54 instances or the currently best known solutions for the
remaining 54 instances. Regular updates will be made, once new optimal
solutions or new best feasible solutions are found, in the future.

As it is shown in Figure 1, the RGVNS variant achieves an average cost
error equal to 2.44% (note that, the optimal values are denoted with bold
font). However, this performance was achieved using only 30 seconds in av-
erage, compared to 2450.55 seconds that was required by Gurobi. Totally,
the Gurobi solver required 81.69 times more computational time for reaching
these (either optimal or suboptimal) solutions. Nevertheless, the proposed
RGVNS approach computed a feasible solution for all the remaining 54 in-
stances, whereas it was not possible for the Gurobi optimizer to compute the
optimal solution.

26



N
o

G
u
ro

b
i
5
.6
.2

R
a
n
d
o
m
iz
e
d

V
N
S

z
B

e
s
t

C
P
U

(s
e
c
s)

z
V

N
S

C
P
U

(s
e
c
s)

E
rr
o
r
(%

)
1

8
6
9
8
.8

3
6
0
0
.0
0

8
8
9
5
.2

3
0

2
.2
6

2
8
7
8
1
.8

3
6
0
0
.0
0

9
1
8
5
.4

3
0

4
.6
0

3
8
5
4
1
.6

3
1
8
7
.8
8

8
7
9
3
.8

3
0

2
.9
5

4
8
9
4
3
.8

3
6
0
0
.0
0

9
3
9
1
.2

3
0

5
.0
0

5
9
7
1
7
.0

3
6
0
0
.0
0

9
8
5
3
.0

3
0

1
.4
0

6
9
9
6
2
.5

3
6
0
0
.0
0

1
0
2
4
0
.5

3
0

2
.7
9

7
9
5
9
8
.0

3
6
0
0
.0
0

9
9
5
5
.0

3
0

3
.7
2

8
9
8
0
3
.5

3
6
0
0
.0
0

1
0
3
2
7
.0

3
0

5
.3
4

9
1
0
2
6
6
.2

1
0
9
5
.0
8

1
0
5
7
3
.8

3
0

3
.0
0

1
0

1
0
8
1
2
.8

3
6
0
0
.0
0

1
1
1
8
4
.8

3
0

3
.4
4

1
1

1
0
2
9
0
.8

3
6
0
0
.0
0

1
0
4
4
5
.4

3
0

1
.5
0

1
2

1
0
7
4
5
.6

3
6
0
0
.0
0

1
1
0
2
7
.0

3
0

2
.6
2

1
3

1
3
2
0
1
.0

3
6
0
0
.0
0

1
3
5
6
8
.0

3
0

2
.7
8

1
4

1
2
1
3
1
.4

3
6
0
0
.0
0

1
2
3
8
7
.4

3
0

2
.1
1

1
5

1
3
0
1
8
.4

3
6
0
0
.0
0

1
3
4
0
3
.6

3
0

2
.9
6

1
6

1
1
8
5
3
.2

3
6
0
0
.0
0

1
2
2
3
0
.6

3
0

3
.1
8

1
7

1
4
2
3
6
.5

3
6
0
0
.0
0

1
4
4
2
9
.5

3
0

1
.3
6

1
8

1
3
1
5
1
.0

3
6
0
0
.0
0

1
3
6
6
0
.0

3
0

3
.8
7

1
9

1
3
9
0
2
.0

3
6
0
0
.0
0

1
4
2
7
8
.5

3
0

2
.7
1

2
0

1
3
4
9
5
.5

3
6
0
0
.0
0

1
3
7
2
5
.0

3
0

1
.7
0

2
1

1
4
8
4
2
.4

3
6
0
0
.0
0

1
5
0
6
3
.6

3
0

1
.4
9

2
2

1
4
1
2
2
.2

3
6
0
0
.0
0

1
4
5
9
5
.4

3
0

3
.3
5

2
3

1
4
5
6
1
.2

3
6
0
0
.0
0

1
4
8
5
4
.4

3
0

2
.0
1

2
4

1
3
8
6
5
.9

3
6
0
0
.0
0

1
4
4
2
8
.2

3
0

4
.0
6

2
5

2
5
6
5
7
.2

1
2
5
4
.0
5

2
6
0
6
8
.2

3
0

1
.6
0

2
6

2
1
2
4
7
.4

3
3
2
7
.1
7

2
2
0
1
6
.8

3
0

3
.6
2

2
7

2
4
3
6
4
.4

4
0
3
.3
5

2
4
9
8
8
.2

3
0

2
.5
6

2
8

2
0
3
2
9
.0

2
0
0
9
.0
3

2
0
4
7
9
.4

3
0

0
.7
4

2
9

2
6
5
6
1
.0

5
7
4
.8
5

2
6
8
8
8
.0

3
0

1
.2
3

3
0

2
2
3
3
2
.5

8
4
0
.3
3

2
2
8
5
1
.5

3
0

2
.3
2

3
1

2
6
6
2
5
.5

6
8
5
.6
3

2
7
3
2
6
.0

3
0

2
.6
3

3
2

2
3
2
2
9
.5

5
0
8
.3
7

2
3
9
4
5
.5

3
0

3
.0
8

3
3

2
7
8
7
2
.6

7
2
4
.7
7

2
8
4
8
2
.2

3
0

2
.1
9

3
4

2
4
1
1
6
.8

3
3
5
.6
5

2
5
4
2
6
.0

3
0

5
.4
3

3
5

2
6
7
6
2
.4

2
9
3
.7
2

2
7
8
2
3
.6

3
0

3
.9
7

3
6

2
4
0
6
5
.2

3
3
4
.7
3

2
4
7
8
5
.8

3
0

2
.9
9

3
7

1
0
6
2
2
.2

2
1
8
1
.1
9

1
0
9
3
7
.4

3
0

2
.9
7

3
8

1
2
0
1
1
.0

3
5
5
0
.7
5

1
2
2
6
6
.8

3
0

2
.1
3

3
9

1
0
6
5
2
.2

1
9
9
.0
3

1
0
8
6
7
.0

3
0

2
.0
2

4
0

1
1
7
4
1
.6

3
6
0
0
.0
0

1
2
0
8
8
.6

3
0

2
.9
6

4
1

1
2
2
4
9
.5

3
6
0
0
.0
0

1
2
5
8
5
.0

3
0

2
.7
4

4
2

1
3
8
4
5
.0

3
6
0
0
.0
0

1
3
9
9
8
.5

3
0

1
.1
1

4
3

1
2
3
0
9
.0

5
6
9
.9
3

1
2
6
1
6
.0

3
0

2
.4
9

4
4

1
3
6
2
7
.0

3
6
0
0
.0
0

1
3
8
9
5
.0

3
0

1
.9
7

4
5

1
3
3
4
8
.0

3
6
0
0
.0
0

1
3
5
8
4
.4

3
0

1
.7
7

4
6

1
5
0
3
0
.8

3
4
2
2
.2
4

1
5
5
4
3
.4

3
0

3
.4
1

4
7

1
3
6
3
5
.6

6
8
8
.2
6

1
3
9
7
9
.0

3
0

2
.5
2

4
8

1
5
0
5
1
.8

3
6
0
0
.0
0

1
5
7
8
8
.2

3
0

4
.8
9

4
9

1
5
6
2
5
.4

3
6
0
0
.0
0

1
5
9
8
2
.8

3
0

2
.2
9

5
0

1
5
4
4
7
.8

3
6
0
0
.0
0

1
5
9
8
4
.8

3
0

3
.4
8

5
1

1
4
9
9
7
.8

3
6
0
0
.0
0

1
5
4
0
9
.6

3
0

2
.7
5

5
2

1
5
1
7
6
.6

3
6
0
0
.0
0

1
5
4
9
4
.0

3
0

2
.0
9

5
3

1
6
7
8
2
.0

3
6
0
0
.0
0

1
7
1
7
2
.0

3
0

2
.3
2

5
4

1
7
1
0
2
.5

3
6
0
0
.0
0

1
7
7
5
7
.0

3
0

3
.8
3

N
o

G
u
ro

b
i
5
.6
.2

R
a
n
d
o
m
iz
e
d

V
N
S

z
B

e
s
t

C
P
U

(s
e
c
s)

z
V

N
S

C
P
U

(s
e
c
s)

E
rr
o
r
(%

)
5
5

1
6
5
9
1
.4

3
6
0
0
.0
0

1
7
1
4
9
.5

3
0

3
.3
6

5
6

1
7
2
1
7
.9

3
6
0
0
.0
0

1
7
5
4
4
.0

3
0

1
.8
9

5
7

1
8
0
4
7
.5

3
6
0
0
.0
0

1
8
2
1
5
.6

3
0

0
.9
3

5
8

1
8
7
8
0
.2

3
6
0
0
.0
0

1
9
1
5
8
.4

3
0

2
.0
1

5
9

1
7
7
4
2
.8

3
6
0
0
.0
0

1
8
3
3
7
.2

3
0

3
.3
5

6
0

1
8
6
4
6
.5

3
6
0
0
.0
0

1
9
2
1
2
.6

3
0

3
.0
4

6
1

2
7
6
2
3
.8

3
2
0
0
.4
0

2
8
4
2
8
.2

3
0

2
.9
1

6
2

2
4
8
9
2
.6

2
6
8
9
.2
0

2
5
5
6
2
.4

3
0

2
.6
9

6
3

2
6
5
8
7
.4

1
4
9
6
.0
8

2
8
0
8
3
.0

3
0

5
.6
3

6
4

2
4
2
5
2
.4

9
3
6
.5
7

2
4
5
9
6
.2

3
0

1
.4
2

6
5

2
9
3
2
8
.5

2
2
0
0
.1
0

3
0
0
3
3
.0

3
0

2
.4
0

6
6

2
6
9
6
1
.5

3
6
0
0
.0
0

2
7
5
4
4
.0

3
0

2
.1
6

6
7

2
8
4
8
4
.0

7
1
3
.4
4

2
9
1
3
9
.0

3
0

2
.3
0

6
8

2
7
0
1
9
.0

2
1
1
5
.6
9

2
8
1
1
6
.0

3
0

4
.0
6

6
9

3
0
5
1
5
.4

1
1
4
9
.5
8

3
1
1
1
7
.4

3
0

1
.9
7

7
0

2
8
7
5
8
.4

3
6
0
0
.0
0

3
0
0
1
4
.6

3
0

4
.3
7

7
1

2
9
8
6
4
.6

6
5
8
.3
0

3
0
4
9
7
.4

3
0

2
.1
2

7
2

2
8
1
9
5
.1

3
6
0
0
.0
0

3
0
2
6
7
.6

3
0

7
.3
5

7
3

1
4
4
4
3
.4

3
.4
7

1
4
8
3
5
.4

3
0

2
.7
1

7
4

1
8
3
6
4
.0

1
4
5
.9
9

1
8
5
1
7
.4

3
0

0
.8
4

7
5

1
4
9
5
4
.0

7
.7
5

1
5
0
0
7
.0

3
0

0
.3
5

7
6

1
7
8
5
7
.8

2
9
.3
7

1
7
9
7
9
.2

3
0

0
.6
8

7
7

1
8
5
4
6
.0

1
0
.7
8

1
8
9
0
3
.5

3
0

1
.9
3

7
8

2
3
0
6
9
.5

1
1
9
.9
9

2
3
2
6
6
.5

3
0

0
.8
5

7
9

1
8
6
5
7
.5

1
0
.2
9

1
8
8
2
1
.0

3
0

0
.8
8

8
0

2
3
3
2
9
.0

3
3
.3
9

2
3
4
4
9
.5

3
0

0
.5
2

8
1

2
0
9
9
9
.8

1
8
.8
0

2
1
4
3
1
.8

3
0

2
.0
6

8
2

2
6
5
1
9
.6

4
6
.3
3

2
7
0
4
8
.6

3
0

1
.9
9

8
3

2
1
1
1
4
.4

9
.7
1

2
1
6
4
9
.4

3
0

2
.5
3

8
4

2
6
1
6
2
.8

1
2
.5
0

2
7
1
4
2
.6

3
0

3
.7
5

8
5

1
9
6
4
6
.0

1
4
2
3
.7
4

1
9
8
3
4
.8

3
0

0
.9
6

8
6

2
2
5
6
7
.6

1
1
3
4
.4
9

2
3
1
2
8
.6

3
0

2
.4
9

8
7

1
9
8
8
0
.4

2
1
0
7
.8
5

1
9
9
6
3
.6

3
0

0
.4
2

8
8

2
2
4
8
3
.8

4
2
7
.8
7

2
2
6
4
6
.6

3
0

0
.7
2

8
9

2
3
0
1
3
.5

3
6
0
0
.0
0

2
3
1
9
0
.0

3
0

0
.7
7

9
0

2
7
0
7
6
.0

3
6
0
0
.0
0

2
7
6
3
2
.0

3
0

2
.0
5

9
1

2
2
7
0
6
.5

7
7
5
.3
3

2
3
0
9
0
.5

3
0

1
.6
9

9
2

2
6
7
5
4
.0

3
6
0
0
.0
0

2
6
7
9
3
.0

3
0

0
.1
5

9
3

2
5
8
9
0
.8

3
6
0
0
.0
0

2
6
1
1
8
.8

3
0

0
.8
8

9
4

3
0
2
2
9
.2

3
6
0
0
.0
0

3
0
6
6
9
.6

3
0

1
.4
6

9
5

2
6
1
8
8
.8

2
8
3
9
.4
4

2
6
9
3
5
.8

3
0

2
.8
5

9
6

2
9
5
0
4
.4

2
7
9
5
.4
9

3
0
2
3
1
.2

3
0

2
.4
6

9
7

3
2
9
5
2
.4

2
2
5
0
.3
6

3
3
5
1
2
.0

3
0

1
.7
0

9
8

3
3
3
3
2
.2

3
6
0
0
.0
0

3
3
9
4
0
.0

3
0

1
.8
2

9
9

3
3
0
7
2
.4

2
3
0
9
.8
1

3
3
5
8
6
.2

3
0

1
.5
5

1
0
0

3
3
1
1
5
.0

2
9
3
6
.2
0

3
3
5
3
9
.2

3
0

1
.2
8

1
0
1

3
6
2
8
5
.9

3
6
0
0
.0
0

3
6
5
8
1
.0

3
0

0
.8
1

1
0
2

3
7
2
0
5
.5

3
6
0
0
.0
0

3
8
2
6
5
.5

3
0

2
.8
5

1
0
3

3
6
1
7
3
.5

3
1
2
8
.8
3

3
7
1
9
4
.0

3
0

2
.8
2

1
0
4

3
6
8
1
7
.0

3
2
5
3
.0
5

3
7
8
6
1
.5

3
0

2
.8
4

1
0
5

3
8
7
2
8
.0

3
6
0
0
.0
0

3
9
0
2
0
.2

3
0

0
.7
5

1
0
6

4
0
3
1
0
.4

3
6
0
0
.0
0

4
1
2
6
1
.8

3
0

2
.3
6

1
0
7

3
8
6
1
1
.2

3
6
0
0
.0
0

3
9
2
8
1
.0

3
0

1
.7
3

1
0
8

3
9
8
2
6
.1

3
0
8
3
.3
2

4
0
9
3
2
.4

3
0

2
.7
8

A
v
g
.

2
4
5
0
.5
5

3
0

2
.4
4

F
ig

u
re

1
:

R
es

u
lt

s
o
n

la
rg

er
in

st
a
n

ce
s

(T
=

5
2
).

27



5.6. Discussion

In Table 11, we report the evolution of the optimality gap, (i.e., percentaged
minimum error, average error, and maximum error) after each phase of the
OGVNS algorithm regarding the set of benchmarks by Schulz [30]. As we
can see, the heuristic start that was employed reached an average error of
135.9%. Although this initialization method did not contribute a quality
starting solution, it was rapid and thus it permitted us to vastly improve
it during the next phase. The VND algorithm is afterward applied to that
starting solution, reducing the average error to 8.4%. Last, using the shaking
procedure based on a complete random order of neighborhoods, an average
error of 0.283% is reached.

Table 11: Percentage cost error after each OGVNS phase.

Min. (%) Avg. (%) Max. (%)
Heuristic start 13.7 135.9 385.3
VND 0.0 8.4 50.9
Shaking phase 0.0 0.3 8.9

Although a single significant improvement is sometimes more effective
than several minor improvements, we decided to count the number of im-
provements caused by each neighborhood structure instead of the magnitude
of the improvements per neighborhood structure. This way, the most often
used neighborhood structures were placed first in the order of the VND al-
gorithm, in order to accelerate the search. As it was shown, neighborhoods
N15, N4, N2, and N1 contributed the most in the VND method with 29.5%,
26.0%, 12.1%, and 11.1%, respectively. This information resulted after an
extensive preliminary testing of the proposed OGVNS algorithm on all in-
stances. Afterward, the neighborhoods were sorted according to the number
of their local search improvements. This order was finally used by the OVND
algorithm on all instances. An equally interesting option would be to test a
different order based on the magnitude of the improvements per neighbor-
hood structure instead of the numbers of improvements.

6. Conclusions and future work

In this paper we have addressed the economic lot sizing problem with prod-
uct returns and recovery in reverse logistics. We have proposed two novel
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VNS metaheuristic algorithms that employ new strategies for both the local
search step and the shaking process. Our VNS approach tackles the NP-
hard ELSR problem efficiently and outperforms the state-of-the-art heuristic
methods from the literature (SM variants and PSO). We presented several
new neighborhoods for this combinatorial optimization problem and an ef-
ficient local search method for exploring them. Finally, we also described a
new simple heuristic initialization method for this problem. Based on exten-
sive numerical testing, using a recent large set of benchmark problems with
6480 instances, our approach was able to achieve an average optimality gap
equal to 0.283% within average 8.3 seconds. Finally, a new benchmark set
with the currently largest instances (52 periods) in the literature has been
developed and made publicly available. The results got by using this latter
set showed that the proposed VNS approach is quite efficient in solving large
problems with a small optimality gap.

A subject for a future work is the adaptation of OGVNS to multi-product
dynamic lot sizing problems in closed-loop supply chain [33], and other com-
bined problems of inventory and network optimization [31]. Furthermore, it
would be interesting to develop a parallel implementation of our proposed
metaheuristic OGVNS algorithm (e.g., [8, 11]).
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ence (MEC XXVIII) on Variable Neighborhood Search, Electronic Notes
in Discrete Mathematics 39 (2012) 1–4.

[35] O. Tang, R.H. Teunter, Economic lot scheduling problem with returns,
Production and Operations Management 15 (2006) 488–497.

[36] R.H. Teunter, Z.P. Bayindir, W. Van den Heuvel, Dynamic lot sizing
with product returns and remanufacturing, International Journal of Pro-
duction Research 44 (2006) 4377–4400.

32



[37] R.H. Teunter, K. Kaparis, O. Tang, Multi–product economic lot schedul-
ing problem with separate production lines for manufacturing and re-
manufacturing, European Journal of Operational Research 191 (2008)
1241–1253.

[38] R.H. Teunter, O. Tang, K. Kaparis, Heuristics for the economic lot
scheduling problem with returns, International Journal of Production
Economics 118 (2009) 323–330.
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