JID: INFSOF [m5G;May 17, 2017;2:4]

Information and Software Technology 000 (2017) 1-5

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The relation between technical debt and corrective maintenance in
PHP web applications

Theodoros Amanatidis? Alexander Chatzigeorgiou®*, Apostolos Ampatzoglou®

2 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
b Department of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 3 October 2016
Revised 11 May 2017
Accepted 13 May 2017
Available online xxx

Context: Technical Debt Management (TDM) refers to activities that are performed to prevent the accu-
mulation of Technical Debt (TD) in software. The state-of-research on TDM lacks empirical evidence on
the relationship between the amount of TD in a software module and the interest that it accumulates.
Considering the fact that in the last years, a large portion of software applications are deployed in the
web, we focus this study on PHP applications.

Objective: Although the relation between debt amount and interest is well-defined in traditional eco-
nomics (i.e., interest is proportional to the amount of debt), this relation has not yet been explored in
the context of TD. To this end, the aim of this study is to investigate the relation between the amount of

Keywords:
Technical debt
Corrective maintenance

Interest TD and the interest that has to be paid during corrective maintenance.
EHP wud Method: To explore this relation, we performed a case study on 10 open source PHP projects. The ob-
ase study

tained data have been analyzed to assess the relation between the amount of TD and two aspects of
interest: (a) corrective maintenance (i.e., bug fixing) frequency, which translates to interest probability
and (b) corrective maintenance effort which is related to interest amount.
Results: Both interest probability and interest amount are positively related with the amount of TD ac-
cumulated in a specific module. Moreover, the amount of TD is able to discriminate modules that are in
need of heavy corrective maintenance.
Conclusions: The results of the study confirm the cornerstone of TD research, which suggests that mod-
ules with a higher level of incurred TD, are costlier in maintenance activities. In particular, such modules
prove to be more defect-prone and consequently require more (corrective) maintenance effort.

© 2017 Elsevier B.V. All rights reserved.

Empirical evidence

1. Introduction

In recent years, Technical Debt Management (TDM) has become
a popular research field in software engineering. The majority of
TDM approaches are based on the two pillars of Technical Debt
(TD) quantification, namely principal (i.e., the effort needed to
refactor the system in order to address existing inefficiencies) and
interest (i.e., the additional effort needed in performing mainte-
nance, due to the existence of the principal). According to Alves
et al. [1], interest can be perceived as a risk for software devel-
opment, and therefore its quantification should be assessed based
on two components: interest probability (i.e., how possible is that
one module that holds TD will need maintenance) and interest
amount (i.e., the amount of additional effort). According to Am-
patzoglou et al. [2] interest is incurred while performing two types
of maintenance activities: (a) bug-fixing (namely corrective main-

* Corresponding author.
E-mail addresses: tamanatidis@uom.edu.gr (T. Amanatidis), achat@uom.gr (A.
Chatzigeorgiou), apostolos.ampatzoglou@gmail.com (A. Ampatzoglou).

http://dx.doi.org/10.1016/j.infsof.2017.05.004
0950-5849/© 2017 Elsevier B.V. All rights reserved.

tenance), and (b) adding new features (namely perfective mainte-
nance).

In the literature, one can identify several studies that have in-
vestigated the relation between low levels of design-time qualities
(e.g., coupling, bad smells, etc.) that constitute proxies of modules’
TD amount—i.e., principal plus interest—and the maintenance in-
tensity on these modules [3-9]':

« All studies agree that the more flaws a file is involved in, the
higher the likelihood to undergo defect-related changes.

« MacCormack and Sturtevant have found evidence on 2 indus-
trial projects that source files with higher levels of coupling are
associated with more extensive corrective maintenance [3].

+ Feng et al. [4] and Nord et al. [5] have found evidence that files
participating in architectural flaws (especially in unstable inter-
faces) are highly correlated with bugs and changes.

T Due to space limitations, a separate related work section has been omitted. The
state-of-the-research on the subject is thoroughly presented in a recent secondary
study [1].

Please cite this article as: T. Amanatidis et al., The relation between technical debt and corrective maintenance in PHP web applications,
Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.05.004

http://dx.doi.org/10.1016/j.infsof.2017.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:tamanatidis@uom.edu.gr
mailto:achat@uom.gr
mailto:apostolos.ampatzoglou@gmail.com
http://dx.doi.org/10.1016/j.infsof.2017.05.004
http://dx.doi.org/10.1016/j.infsof.2017.05.004

JID: INFSOF

[m5G;May 17, 2017;2:4]

2 T. Amanatidis et al./Information and Software Technology 000 (2017) 1-5

« In an earlier study in 2013 [6], Zazworka et al. suggested that
dispersed coupling, god class symptoms, modularity violations
and multithread correctness issues are located in classes with
higher defect-proneness.

Another work by Li et al. [7] suggests that two modularity met-
rics are strongly correlated with commit density: IPCI (Index
of Package Changing Impact) & IPGF (Index of Package Goal
Focus). Strong correlation was also found between corrective
maintenance and fan-out, file size and frequency of changes of
file in a study by Schwanke et al. in 2013 [8].

An interesting study has been carried out by Oliva et al. [9],
who searched for symptoms of increased rigidity and fragility
on a degraded software system (Apache Maven 1.x) which was
completely rewritten to Maven 2.x. The authors found signs
of increased fragility (i.e. tendency of a system to break when
changes are performed), but no definite evidence of increased
rigidity (i.e. difficulty in performing changes due to ripple ef-
fects).

The results of these studies, despite the fact that some of them
are only indirectly related to TD, have produced some evidence
about the relation between maintenance effort and TD. However,
the following limitations have been identified:

« Almost all studies quantify TD by means of few metrics,
whereas TD manifests itself through a number of parameters
in a software project.

» Most studies conducted research on a restricted sample of
projects limiting the generalizability of the results (except for
[4] and [7] that considered 10 and 13 projects, respectively).

 There is no relevant study that focuses on PHP web applica-
tions, which form the majority of operating code in Web today.

« There is no study that focuses on the interest that incurs when
performing corrective maintenance.

Based on the abovementioned limitations, the purpose of this
study is to provide insights into the relation between the accu-
mulated amount of TD in a module and the maintenance effort
spent on corrective activities. In particular, we investigate the re-
lation between TD amount and: (a) frequency of corrective main-
tenance activities (interest probability), and (b) the effort spent in
these activities (related to interest amount). To over-come the lim-
itations mentioned in the previous paragraph, we: (a) calculate TD
amount with SonarQube? that assesses TD based on seven axes of
code quality (e.g., code duplications, metrics, styling conventions,
etc.), (b) perform our case study on 10 open source PHP web ap-
plications, and (c) holistically investigate both interest probability
and interest amount.

2. Case study design

In this section, we present the case study design, based on the
guidelines reported by Runeson et al. [10].

2.1. Goal and research questions

The goal of this study is to examine whether the frequency and
the effort spent on corrective maintenance activities of a specific
module, is related to the amount of its TD. Based on this goal, the
main research question of this study can be formulated as follows:
“Is the amount of TD in a software module related to the frequency
and extent of corrective maintenance activities performed in it?” To
ease the reporting of the case study, from this main question, we
derived two research questions:

2 Available at: http://www.sonarqube.org

Table 1

Analyzed Projects.
Project #stars #releases
Codelgniter 12K 27
Symfony 12K 209
Composer 8K 24
Yii2 8K 13
Guzzle 7K 108
Slim 7K 74
Laravel (kernel) 6K 192
Piwik 6K 429
PHPunit 5K 402
Twig 3K 86

RQy: Is the TD amount of a file related to the number of times
that it underwent corrective maintenance?

RQ; aims at investigating whether files with higher amount of
TD are associated with more problems and therefore require
more frequent corrective maintenance. The presence of such
an association would imply that TD can serve as an indica-
tor for prioritizing maintenance and testing activities. More-
over, such a finding would validate the importance of TD as
a crucial parameter to be taken into account during software
development.

RQ,: Is the TD amount of a file related to the extent of modifica-
tion that it underwent during corrective maintenance?

Although the number of times a file undergoes corrective main-
tenance is a solid indicator of interest probability, to investigate
whether modules with high TD produce more interest, in RQ,, we
focus on the extent of maintenance effort, as captured by the num-
ber of modified lines.

It should be clarified that the proposed case study design does
not support the investigation of causal relationships between the
TD incurred in one revision and the amount of corrective main-
tenance in subsequent revisions. Such an analysis is an interesting
research topic but should be properly performed, since it would be
extremely difficult to associate changes in a specific commit, to the
TD as measured in one out of the many past revisions.

2.2. Cases and units of analysis

Our study focuses on web applications developed with PHP. The
motivation for focusing on PHP is that it holds the lion’s share
of operating Web applications today. The criteria for selecting the
projects are:

« the source code should be publicly available (data was retrieved
via GitHub’s API)

- projects should be actively maintained (until the date on which
this paper is written)

- projects should have at least 10 releases denoting jumps in
functionality or the addition of significant fixes® in their history
to justify evolution analysis

« projects should be popular (among the projects with most stars
in GitHub)

The list of the investigated projects (i.e., cases) is presented in
Table 1. This study is an embedded multiple-case study, because
we analyze every project at the file level (unit of analysis), whereas
the results are presented at the case (i.e., project) level. We used
files as a unit of analysis, since we include both object-oriented
and non-object-oriented code. Thus, the use of any other type of

3 The rationale for this choice is that any project with a history spanning more
than 10 significant releases underwent substantial adaptive maintenance and is
highly probable to have been the subject of corrective maintenance as well.

Please cite this article as: T. Amanatidis et al., The relation between technical debt and corrective maintenance in PHP web applications,
Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.05.004

http://www.sonarqube.org
http://dx.doi.org/10.1016/j.infsof.2017.05.004

JID: INFSOF

|
T
rl r2 r3 ra rn

[m5G;May 17, 2017;2:4]

sis and hypothesis testing. For both questions, we perform exactly
the same analysis, but on different variables. For RQ; the testing
variable is [V2], whereas for RQ, the testing variable is [V3]. An

T. Amanatidis et al./Information and Software Technology 000 (2017) 1-5 3
. . Time of ‘closes’ when accompanied by a hash-tagged issue id. The tool for
issue-related commits . . 4
assessment analyzing GitHub data was developed by the first author.
commit; commit commit, !)
! 2 "oy 2.4. Data analysis
I
I
Z Z modified Z | To answer the research questions stated in Section 2.1, using
. / V7 100 Ty ! the data described in Section 2.3, we performed correlation analy-
FI IeX T T T T | >
I
I
I

File revisions

Fig. 1. Corrective maintenance at file level.

module (e.g., class) would not be possible. An alternative to this
study design could be to perform a per-version analysis, i.e. by
considering the TD amount of each file for every project version
and the corrective maintenance between successive versions, as a
unit of analysis. However, in such a case the TD of each version
would be correlated to the TD of previous versions, thus rendering
the data points of our study not independent.

2.3. Data Collection

For each unit of analysis (file), we recorded three variables. To
facilitate the following description of variables we illustrate related
concepts in Fig. 1:

« V1, Average TD of each file. All projects were analyzed with
SonarQube and TD of each file (in minutes) was retrieved via
the SonarQube. SonarQube calculates a file’s TD by summing up
the technical debt of every violation found on that file, which
is the estimated time to fix that violation. The debt for each file
represents various aspects of TD quantification, ranging from
programming convention violations (e.g., lack of comments) to
structural characteristics of the software (e.g., method complex-
ity), which can affect the maintainability and comprehensibility
of files. Since several revisions of each file have been analyzed,
the TD for each file is obtained as the average of the TD corre-
sponding to the file after each issue-related commit:

1 n
TDriex = . > TD(r)
i=1

The average for a file’'s TD offers the advantage of obtaining
a relatively accurate estimate, compared to alternatives, as it
characterizes the entire history of the file. On the contrary, as-
suming that TD remains relatively stable and considering only
the TD of the initial or the last revision would not be accurate
since by nature software systems are evolving and TD changes
over time.

V2, Number of times each file is modified due to corrective main-
tenance. Variable V2 corresponds to the total number of issue-
related commits (for the examined file) from the initial revision
to the time of assessment.

V3, Number of modifications (modified LOC) each file undergoes
during corrective maintenance. Variable V3 corresponds to the
average number of modified LOC (for the examined file) from
the initial to the last issue-related commit prior to the time of
assessment.

To calculate [V2] and [V3] we retrieved commit and issue data
for each project via the GitHub APIL For each project’s issue we
tracked the commit by which the issue was closed and eventually
found the files that were modified and the number of modified
lines in that file. GitHub identifies issue-related commits by recog-
nizing in the commit message the keywords ‘fixes’, ‘resolves’ and

overview of the data analysis strategy is presented in Table 2.

Additionally, the Mann-Whitney U Test (we did not use the in-
dependent sample t-test, since variables do not follow the nor-
mal distribution) is able to investigate the discriminative power
of the TD amount as an indicator of corrective maintenance fre-
quency and effort (RQ; and RQ,, respectively). In other words, we
investigate if modules with high levels of TD amount present more
frequent and more intense corrective maintenance activities, com-
pared to modules with lower TD amounts. We note that in order
to answer RQ,, we needed to transform [V3] from a continuous to
a binary variable. As low (high) TD files are characterized the ones
that have technical debt that falls below (higher than) the median
TD amount across all files for that project.

The aforementioned tests are fitting ways to assess the consis-
tency/correlation and discriminative power of metrics, as described
by 1061:1998 IEEE Standard for Software Quality Metrics.

3. Results

Table 3 lists the results of the conducted Spearman’s correla-
tion analysis for each project for both RQs. Concerning RQq, in all
ten projects there is a statistically significant positive correlation
between TD amount of a file and the number of times that file un-
derwent corrective maintenance (interest probability). Regarding
RQ,, in 8 out of 10 projects there is a statistically significant posi-
tive correlation between the amount of TD of a file and the extent
of modification that the file underwent during corrective mainte-
nance (related to interest amount).

To allow a visual interpretation of the results, in Fig. 2 we de-
pict the two indicators of the required effort (times that a file un-
dergoes defect-related changes and the extent of changes in terms
of lines of code) for each project, by differentiating between low
and high TD files. As it becomes evident from the box plots, the
required maintenance is always (except for one case in Fig. 2(b))
larger for high TD modules. This finding is also supported by the
results of the Mann-Whitney U test which suggest that [V2] and
[V3] in high-TD files are statistically different from [V2] and [V3]
in low-TD files ([V2]: p-value=~0.00, [V3]: p-value=~0.00). On
average, the number of times that a high TD file is modified is 1.9
times larger than the number of times a low TD file is changed. In
terms of the extent of change, the corresponding ratio is 2.4 to 1.

4. Threats to validity

The results of the study are subject to external validity threats
since the investigation has been performed on 10 PHP projects.
Further studies on other projects or languages would be valuable
in assessing the relation between TD amount and interest proba-
bility / amount in different contexts. Moreover, the assessment of
interest amount through the extent of modification poses a threat
to construct validity, since interest should be ideally quantified as

4 https://github.com/theoAm/githubGrabber

5 1061-1998 IEEE Standard for a Software Quality Metrics Methodology, IEEE
Standards, IEEE Computer Society, 31 December 1998 (re-affirmed 9 December
2009).

Please cite this article as: T. Amanatidis et al., The relation between technical debt and corrective maintenance in PHP web applications,
Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.05.004

https://github.com/theoAm/githubGrabber
http://dx.doi.org/10.1016/j.infsof.2017.05.004

JID: INFSOF

[m5G;May 17, 2017;2:4]

4 T. Amanatidis et al./Information and Software Technology 000 (2017) 1-5

Table 2
Data Analysis.

RQ Analysis Strategy

RQ Spearman Correlation [V1] and [V2] Mann-Whitney U Test for [V2] grouped by [V1]
RQ, Spearman Correlation [V1] and [V3] Mann-Whitney U Test for [V3] grouped by [V1]

Table 3

Spearman’s correlation results.
Project RQ1 RQ2

p r p r

Codelgniter 000 0293 0.08 -0.124
Symfony 0.00 0.301 0.00 0.280
Composer 0.00 0.544 0.00 0.310
Yii2 0.00 0278 0.00 0262
Guzzle 0.00 0366 0.01 0.178
Slim 0.00 0409 0.00 0.591
Laravel (kernel) 0.00 0.481 0.17 0.148
Piwik 0.00 0363 0.00 0.204
PHPunit 000 0.626 0.00 0290
Twig 000 0366 0.00 0433

the difference between the nominal effort for fixing an issue (i.e. in
case no TD were present) and the actual effort spent. The former
effort is unfortunately unknown. However, the findings observed
when high TD modules are contrasted to low TD ones, imply that
increased frequency and extent of modification are often encoun-
tered in files with increased interest amount.

A second threat to construct validity stems from the fact that
not all reported issues point to errors, but some of them might
contain a feature request or suggestion for performance improve-
ment. As a result any actions to handle this issue would consti-
tute adaptive or perfective maintenance rather than corrective one.
Another threat of the same category, is that bug-related commits,
which indeed fix an issue, but do not employ the keywords sought
by GitHub, will be missed. This threat implies that there might
be other bug-related commits which have been neglected in the
study.

Another threat pertaining to the construct validity of the study
stems from the fact that TD amount and the two employed indica-
tors of corrective maintenance are aggregated over multiple revi-
sions, possibly accounting for a significant period of time. As a re-
sult, especially in the case of variations of TD or corrective mainte-
nance during that time, it cannot be safely assumed that the mea-
sured levels of corrective maintenance correspond to the measured
TD. For example, an observed high level of corrective maintenance
in a module with high level of TD, could in fact be due to a partic-
ular sub-period in which the module had low TD.

Finally, the present study does not investigate whether the two
interest-related variables of the research questions (i.e., frequency
of modifications and extent of modification due to corrective main-
tenance) might be affected by the propagation of errors. In partic-
ular, we study the relation between the two aforementioned vari-
ables and the TD principal of the files in which errors have been
fixed, possibly neglecting the TD of the originating files (i.e., those
from which errors might have propagated). This treatment poses a
threat to construct validity and constitutes an interesting research
direction for future work.

5. Discussion and conclusions

The results of this study suggest that TD amount is indeed cor-
related with maintenance effort. In particular, developers appear
to spend more time on fixing issues in files with high levels of ac-
crued technical debt, compared to files that present less TD. There-
fore, project managers should take quality-oriented decisions to

10.0- . . .
L] L] LN] L] LN L L]
. . L) . o
w 75-
[=4
i=] . . - o
w
2
28
E
o
F 50- o . .
S
w
OEJ * o
=
25-
)
code- COIflpo- lara- guﬁle ph}l)unil pl'wik slim sy'm‘fony tv'n'g yif2
igniter ser vl Project
()
30-
.
L]
L]
Q
O 20-
-
i L .
3 J
g a4
k]
£
2 10~ °
L3
L

0~
code- compo- lara- guzzle phpunit piwik slim symfony twig yii2
igniter ser vel Project

(b)

Fig. 2. Discriminative power of TD amount (left/right bars correspond to low/high
TD files, respectively).

deter the appearance of software units with increased technical
debt.

With respect to practitioners, the results provide additional
evidence that TD undermines software maintenance and that it
should be taken under consideration before any design and imple-
mentation decision. Moreover, the domain of the study suggests
that TD appears to be important in a web context as well. Soft-
ware engineers can take advantage of such empirical evidence to

Please cite this article as: T. Amanatidis et al., The relation between technical debt and corrective maintenance in PHP web applications,
Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.05.004

http://dx.doi.org/10.1016/j.infsof.2017.05.004

ARTICLE IN PRESS

JID: INFSOF

[m5G;May 17, 2017;2:4]

T. Amanatidis et al./Information and Software Technology 000 (2017) 1-5 5

convince management about the importance and need to manage
TD. From a research perspective, since there is sufficient empirical
evidence of the impact of TD amount on corrective maintenance,
the need to devise a framework for assessing the associated risk
and costs of managing TD becomes essential.

References

[1] N.SR. Alves, T.S. Mendes, M.G. de Mendonga, R.O. Spinola, E. Shull, C. Seaman,
Identification and management of technical debt: a systematic mapping study,
Inf. Softw. Technol. 70 (Feb. 2016) 100-121.

A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, A. Chatzigeorgiou, A financial
approach for managing interest in technical debt, in: B. Shishkov (Ed.), Busi-
ness Modeling and Software Design, Springer International Publishing, 2015,
pp. 117-133.

[3] A. MacCormack, D.J. Sturtevant, Technical debt and system architecture: the
impact of coupling on defect-related activity, J. Syst. Softw. 120 (Oct. 2016)
170-182.

Q. Feng, R. Kazman, Y. Cai, R. Mo, L. Xiao, Towards an architecture-centric ap-
proach to security analysis, in: 2016 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA), 2016, pp. 221-230.

2

[4

[5] R.L. Nord, I. Ozkaya, EJ. Schwartz, F. Shull, R. Kazman, Can knowledge of tech-
nical debt help identify software vulnerabilities? 9th Workshop on Cyber Se-
curity Experimentation and Test (CSET 16), 2016.

[6] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull, Com-
paring four approaches for technical debt identification, Softw. Qual. J. 22 (3)
(Apr. 2013) 403-426.

[7] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, A. Ampatzoglou, An empirical investigation

of modularity metrics for indicating architectural technical debt, in: Proceed-

ings of the 10th International ACM Sigsoft Conference on Quality of Software

Architectures, New York, NY, USA, 2014, pp. 119-128.

R. Schwanke, L. Xiao, Y. Cai, Measuring architecture quality by structure plus

history analysis, in: Proceedings of the 2013 International Conference on Soft-

ware Engineering, Piscataway, USA, 2013, pp. 891-900.

G.A. Oliva, I. Steinmacher, I. Wiese, M.A. Gerosa, What can commit meta-

data tell us about design degradation? in: Proceedings of the 2013 Interna-

tional Workshop on Principles of Software Evolution, New York, NY, USA, 2013,

pp. 18-27.

[10] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software

Engineering: Guidelines and Examples. John Wiley & Sons, 2012.

[8

[9

http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://dx.doi.org/10.1016/j.infsof.2017.05.004

	The relation between technical debt and corrective maintenance in PHP web applications
	1 Introduction
	2 Case study design
	2.1 Goal and research questions
	2.2 Cases and units of analysis
	2.3 Data Collection
	2.4 Data analysis

	3 Results
	4 Threats to validity
	5 Discussion and conclusions
	 References

