
ARTICLE IN PRESS

JID: INFSOF [m5G; May 17, 2017;2:4]

Information and Software Technology 0 0 0 (2017) 1–5

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The relation between technical debt and corrective maintenance in

PHP web applications

Theodoros Amanatidis a , Alexander Chatzigeorgiou

a , ∗, Apostolos Ampatzoglou

b

a Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
b Department of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands

a r t i c l e i n f o

Article history:

Received 3 October 2016

Revised 11 May 2017

Accepted 13 May 2017

Available online xxx

Keywords:

Technical debt

Corrective maintenance

Interest

PHP

Case study

Empirical evidence

a b s t r a c t

Context: Technical Debt Management (TDM) refers to activities that are performed to prevent the accu-

mulation of Technical Debt (TD) in software. The state-of-research on TDM lacks empirical evidence on

the relationship between the amount of TD in a software module and the interest that it accumulates.

Considering the fact that in the last years, a large portion of software applications are deployed in the

web, we focus this study on PHP applications.

Objective: Although the relation between debt amount and interest is well-defined in traditional eco-

nomics (i.e., interest is proportional to the amount of debt), this relation has not yet been explored in

the context of TD. To this end, the aim of this study is to investigate the relation between the amount of

TD and the interest that has to be paid during corrective maintenance.

Method: To explore this relation, we performed a case study on 10 open source PHP projects. The ob-

tained data have been analyzed to assess the relation between the amount of TD and two aspects of

interest: (a) corrective maintenance (i.e., bug fixing) frequency, which translates to interest probability

and (b) corrective maintenance effort which is related to interest amount .

Results: Both interest probability and interest amount are positively related with the amount of TD ac-

cumulated in a specific module. Moreover, the amount of TD is able to discriminate modules that are in

need of heavy corrective maintenance.

Conclusions: The results of the study confirm the cornerstone of TD research, which suggests that mod-

ules with a higher level of incurred TD, are costlier in maintenance activities. In particular, such modules

prove to be more defect-prone and consequently require more (corrective) maintenance effort.

© 2017 Elsevier B.V. All rights reserved.

1

a

T

(

r

i

n

e

o

o

o

a

p

o

C

t

n

v

(

T

t

h

0

. Introduction

In recent years, Technical Debt Management (TDM) has become

 popular research field in software engineering. The majority of

DM approaches are based on the two pillars of Technical Debt

TD) quantification, namely principal (i.e., the effort needed to

efactor the system in order to address existing inefficiencies) and

nterest (i.e., the additional effort needed in performing mainte-

ance, due to the existence of the principal). According to Alves

t al. [1] , interest can be perceived as a risk for software devel-

pment, and therefore its quantification should be assessed based

n two components: interest probability (i.e., how possible is that

ne module that holds TD will need maintenance) and interest

mount (i.e., the amount of additional effort). According to Am-

atzoglou et al. [2] interest is incurred while performing two types

f maintenance activities: (a) bug-fixing (namely corrective main-
∗ Corresponding author.

E-mail addresses: tamanatidis@uom.edu.gr (T. Amanatidis), achat@uom.gr (A.

hatzigeorgiou), apostolos.ampatzoglou@gmail.com (A. Ampatzoglou).

s

s

ttp://dx.doi.org/10.1016/j.infsof.2017.05.004

950-5849/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: T. Amanatidis et al., The relation between tec

Information and Software Technology (2017), http://dx.doi.org/10.1016/j
enance), and (b) adding new features (namely perfective mainte-

ance).

In the literature, one can identify several studies that have in-

estigated the relation between low levels of design-time qualities

e.g., coupling, bad smells, etc.) that constitute proxies of modules’

D amount —i.e., principal plus interest—and the maintenance in-

ensity on these modules [3–9] 1 :

• All studies agree that the more flaws a file is involved in, the

higher the likelihood to undergo defect-related changes.

• MacCormack and Sturtevant have found evidence on 2 indus-

trial projects that source files with higher levels of coupling are

associated with more extensive corrective maintenance [3] .

• Feng et al. [4] and Nord et al. [5] have found evidence that files

participating in architectural flaws (especially in unstable inter-

faces) are highly correlated with bugs and changes.
1 Due to space limitations, a separate related work section has been omitted. The

tate-of-the-research on the subject is thoroughly presented in a recent secondary

tudy [1] .

hnical debt and corrective maintenance in PHP web applications,

.infsof.2017.05.004

http://dx.doi.org/10.1016/j.infsof.2017.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:tamanatidis@uom.edu.gr
mailto:achat@uom.gr
mailto:apostolos.ampatzoglou@gmail.com
http://dx.doi.org/10.1016/j.infsof.2017.05.004
http://dx.doi.org/10.1016/j.infsof.2017.05.004

2 T. Amanatidis et al. / Information and Software Technology 0 0 0 (2017) 1–5

ARTICLE IN PRESS

JID: INFSOF [m5G; May 17, 2017;2:4]

Table 1

Analyzed Projects.

Project #stars #releases

CodeIgniter 12K 27

Symfony 12K 209

Composer 8K 24

Yii2 8K 13

Guzzle 7K 108

Slim 7K 74

Laravel (kernel) 6K 192

Piwik 6K 429

PHPunit 5K 402

Twig 3K 86

t

w

f

b

n

T

t

r

e

T

2

m

o

p

T

w

t

fi

a
• In an earlier study in 2013 [6] , Zazworka et al. suggested that

dispersed coupling, god class symptoms, modularity violations

and multithread correctness issues are located in classes with

higher defect-proneness.

• Another work by Li et al. [7] suggests that two modularity met-

rics are strongly correlated with commit density: IPCI (Index

of Package Changing Impact) & IPGF (Index of Package Goal

Focus). Strong correlation was also found between corrective

maintenance and fan-out, file size and frequency of changes of

file in a study by Schwanke et al. in 2013 [8] .

• An interesting study has been carried out by Oliva et al. [9] ,

who searched for symptoms of increased rigidity and fragility

on a degraded software system (Apache Maven 1.x) which was

completely rewritten to Maven 2.x. The authors found signs

of increased fragility (i.e. tendency of a system to break when

changes are performed), but no definite evidence of increased

rigidity (i.e. difficulty in performing changes due to ripple ef-

fects).

The results of these studies, despite the fact that some of them

are only indirectly related to TD, have produced some evidence

about the relation between maintenance effort and TD. However,

the following limitations have been identified:

• Almost all studies quantify TD by means of few metrics,

whereas TD manifests itself through a number of parameters

in a software project.

• Most studies conducted research on a restricted sample of

projects limiting the generalizability of the results (except for

[4] and [7] that considered 10 and 13 projects, respectively).

• There is no relevant study that focuses on PHP web applica-

tions, which form the majority of operating code in Web today.

• There is no study that focuses on the interest that incurs when

performing corrective maintenance.

Based on the abovementioned limitations, the purpose of this

study is to provide insights into the relation between the accu-

mulated amount of TD in a module and the maintenance effort

spent on corrective activities. In particular, we investigate the re-

lation between TD amount and: (a) frequency of corrective main-

tenance activities (interest probability), and (b) the effort spent in

these activities (related to interest amount). To over-come the lim-

itations mentioned in the previous paragraph, we: (a) calculate TD

amount with SonarQube 2 that assesses TD based on seven axes of

code quality (e.g., code duplications, metrics, styling conventions,

etc.), (b) perform our case study on 10 open source PHP web ap-

plications, and (c) holistically investigate both interest probability

and interest amount.

2. Case study design

In this section, we present the case study design, based on the

guidelines reported by Runeson et al. [10] .

2.1. Goal and research questions

The goal of this study is to examine whether the frequency and

the effort spent on corrective maintenance activities of a specific

module, is related to the amount of its TD. Based on this goal, the

main research question of this study can be formulated as follows:

“Is the amount of TD in a software module related to the frequency

and extent of corrective maintenance activities performed in it? ” To

ease the reporting of the case study, from this main question, we

derived two research questions:
2 Available at: http://www.sonarqube.org

t

h

Please cite this article as: T. Amanatidis et al., The relation between tec

Information and Software Technology (2017), http://dx.doi.org/10.1016/j
RQ 1 : Is the TD amount of a file related to the number of times

that it underwent corrective maintenance?

RQ 1 aims at investigating whether files with higher amount of

TD are associated with more problems and therefore require

more frequent corrective maintenance. The presence of such

an association would imply that TD can serve as an indica-

tor for prioritizing maintenance and testing activities. More-

over, such a finding would validate the importance of TD as

a crucial parameter to be taken into account during software

development.

RQ 2 : Is the TD amount of a file related to the extent of modifica-

tion that it underwent during corrective maintenance?

Although the number of times a file undergoes corrective main-

enance is a solid indicator of interest probability, to investigate

hether modules with high TD produce more interest, in RQ 2 , we

ocus on the extent of maintenance effort, as captured by the num-

er of modified lines.

It should be clarified that the proposed case study design does

ot support the investigation of causal relationships between the

D incurred in one revision and the amount of corrective main-

enance in subsequent revisions. Such an analysis is an interesting

esearch topic but should be properly performed, since it would be

xtremely difficult to associate changes in a specific commit, to the

D as measured in one out of the many past revisions.

.2. Cases and units of analysis

Our study focuses on web applications developed with PHP. The

otivation for focusing on PHP is that it holds the lion’s share

f operating Web applications today. The criteria for selecting the

rojects are:

• the source code should be publicly available (data was retrieved

via GitHub’s API)

• projects should be actively maintained (until the date on which

this paper is written)

• projects should have at least 10 releases denoting jumps in

functionality or the addition of significant fixes 3 in their history

to justify evolution analysis

• projects should be popular (among the projects with most stars

in GitHub)

The list of the investigated projects (i.e., cases) is presented in

able 1 . This study is an embedded multiple-case study, because

e analyze every project at the file level (unit of analysis), whereas

he results are presented at the case (i.e., project) level. We used

les as a unit of analysis, since we include both object-oriented

nd non-object-oriented code. Thus, the use of any other type of
3 The rationale for this choice is that any project with a history spanning more

han 10 significant releases underwent substantial adaptive maintenance and is

ighly probable to have been the subject of corrective maintenance as well.

hnical debt and corrective maintenance in PHP web applications,

.infsof.2017.05.004

http://www.sonarqube.org
http://dx.doi.org/10.1016/j.infsof.2017.05.004

T. Amanatidis et al. / Information and Software Technology 0 0 0 (2017) 1–5 3

ARTICLE IN PRESS

JID: INFSOF [m5G; May 17, 2017;2:4]

Fig. 1. Corrective maintenance at file level.

m

s

c

a

u

w

t

2

f

c

f

t

f

l

n

‘

a

2

t

s

t

v

o

d

m

o

q

i

f

p

t

a

t

T

t

b

3

t

t

b

d

R

t

o

n

p

d

o

a

r

l

r

[

i

a

t

t

4

s

F

i

b

i

t

4 https://github.com/theoAm/githubGrabber
5 1061-1998 IEEE Standard for a Software Quality Metrics Methodology, IEEE

Standards, IEEE Computer Society, 31 December 1998 (re-affirmed 9 December

2009).
odule (e.g., class) would not be possible. An alternative to this

tudy design could be to perform a per-version analysis, i.e. by

onsidering the TD amount of each file for every project version

nd the corrective maintenance between successive versions, as a

nit of analysis. However, in such a case the TD of each version

ould be correlated to the TD of previous versions, thus rendering

he data points of our study not independent.

.3. Data Collection

For each unit of analysis (file), we recorded three variables. To

acilitate the following description of variables we illustrate related

oncepts in Fig. 1:

• V1, Average TD of each file . All projects were analyzed with

SonarQube and TD of each file (in minutes) was retrieved via

the SonarQube. SonarQube calculates a file’s TD by summing up

the technical debt of every violation found on that file, which

is the estimated time to fix that violation. The debt for each file

represents various aspects of TD quantification, ranging from

programming convention violations (e.g., lack of comments) to

structural characteristics of the software (e.g., method complex-

ity), which can affect the maintainability and comprehensibility

of files. Since several revisions of each file have been analyzed,

the TD for each file is obtained as the average of the TD corre-

sponding to the file after each issue-related commit:

T D F ileX =

1

n

·
n ∑

i =1

T D (r i)

The average for a file’s TD offers the advantage of obtaining

a relatively accurate estimate, compared to alternatives, as it

characterizes the entire history of the file. On the contrary, as-

suming that TD remains relatively stable and considering only

the TD of the initial or the last revision would not be accurate

since by nature software systems are evolving and TD changes

over time.

• V2, Number of times each file is modified due to corrective main-

tenance . Variable V2 corresponds to the total number of issue-

related commits (for the examined file) from the initial revision

to the time of assessment.

• V3, Number of modifications (modified LOC) each file undergoes

during corrective maintenance . Variable V3 corresponds to the

average number of modified LOC (for the examined file) from

the initial to the last issue-related commit prior to the time of

assessment.

To calculate [V2] and [V3] we retrieved commit and issue data

or each project via the GitHub API. For each project’s issue we

racked the commit by which the issue was closed and eventually

ound the files that were modified and the number of modified

ines in that file. GitHub identifies issue-related commits by recog-

izing in the commit message the keywords ‘fixes’, ‘resolves’ and
Please cite this article as: T. Amanatidis et al., The relation between tec

Information and Software Technology (2017), http://dx.doi.org/10.1016/j
closes’ when accompanied by a hash-tagged issue id. The tool for

nalyzing GitHub data was developed by the first author. 4

.4. Data analysis

To answer the research questions stated in Section 2.1 , using

he data described in Section 2.3 , we performed correlation analy-

is and hypothesis testing. For both questions, we perform exactly

he same analysis, but on different variables. For RQ 1 the testing

ariable is [V2], whereas for RQ 2 the testing variable is [V3]. An

verview of the data analysis strategy is presented in Table 2 .

Additionally, the Mann-Whitney U Test (we did not use the in-

ependent sample t -test, since variables do not follow the nor-

al distribution) is able to investigate the discriminative power

f the TD amount as an indicator of corrective maintenance fre-

uency and effort (RQ 1 and RQ 2 , respectively). In other words, we

nvestigate if modules with high levels of TD amount present more

requent and more intense corrective maintenance activities, com-

ared to modules with lower TD amounts. We note that in order

o answer RQ 2 , we needed to transform [V3] from a continuous to

 binary variable. As low (high) TD files are characterized the ones

hat have technical debt that falls below (higher than) the median

D amount across all files for that project.

The aforementioned tests are fitting ways to assess the consis-

ency/correlation and discriminative power of metrics, as described

y 1061:1998 IEEE Standard for Software Quality Metrics. 5

. Results

Table 3 lists the results of the conducted Spearman’s correla-

ion analysis for each project for both RQs. Concerning RQ 1 , in all

en projects there is a statistically significant positive correlation

etween TD amount of a file and the number of times that file un-

erwent corrective maintenance (interest probability). Regarding

Q 2 , in 8 out of 10 projects there is a statistically significant posi-

ive correlation between the amount of TD of a file and the extent

f modification that the file underwent during corrective mainte-

ance (related to interest amount).

To allow a visual interpretation of the results, in Fig. 2 we de-

ict the two indicators of the required effort (times that a file un-

ergoes defect-related changes and the extent of changes in terms

f lines of code) for each project, by differentiating between low

nd high TD files. As it becomes evident from the box plots, the

equired maintenance is always (except for one case in Fig. 2 (b))

arger for high TD modules. This finding is also supported by the

esults of the Mann-Whitney U test which suggest that [V2] and

V3] in high-TD files are statistically different from [V2] and [V3]

n low-TD files ([V 2]: p-value = ∼0.00, [V3]: p-value = ∼0.00). On

verage, the number of times that a high TD file is modified is 1.9

imes larger than the number of times a low TD file is changed. In

erms of the extent of change, the corresponding ratio is 2.4 to 1.

. Threats to validity

The results of the study are subject to external validity threats

ince the investigation has been performed on 10 PHP projects.

urther studies on other projects or languages would be valuable

n assessing the relation between TD amount and interest proba-

ility / amount in different contexts. Moreover, the assessment of

nterest amount through the extent of modification poses a threat

o construct validity, since interest should be ideally quantified as
hnical debt and corrective maintenance in PHP web applications,

.infsof.2017.05.004

https://github.com/theoAm/githubGrabber
http://dx.doi.org/10.1016/j.infsof.2017.05.004

4 T. Amanatidis et al. / Information and Software Technology 0 0 0 (2017) 1–5

ARTICLE IN PRESS

JID: INFSOF [m5G; May 17, 2017;2:4]

Table 2

Data Analysis.

RQ Analysis Strategy

RQ 1 Spearman Correlation [V1] and [V2] Mann-Whitney U Test for [V2] grouped by [V1]

RQ 2 Spearman Correlation [V1] and [V3] Mann-Whitney U Test for [V3] grouped by [V1]

Table 3

Spearman’s correlation results.

Project RQ1 RQ2

p r p r

CodeIgniter 0 .00 0 .293 0 .08 −0.124

Symfony 0 .00 0 .301 0 .00 0 .280

Composer 0 .00 0 .544 0 .00 0 .310

Yii2 0 .00 0 .278 0 .00 0 .262

Guzzle 0 .00 0 .366 0 .01 0 .178

Slim 0 .00 0 .409 0 .00 0 .591

Laravel (kernel) 0 .00 0 .481 0 .17 0 .148

Piwik 0 .00 0 .363 0 .00 0 .204

PHPunit 0 .00 0 .626 0 .00 0 .290

Twig 0 .00 0 .366 0 .00 0 .433

Fig. 2. Discriminative power of TD amount (left/right bars correspond to low/high

TD files, respectively).

d

d

e

s

m

t

w
the difference between the nominal effort f or fixing an issue (i.e. in

case no TD were present) and the actual effort spent. The former

effort is unf ortunately unknown. However, the findings observed

when high TD modules are contrasted to low TD ones, imply that

increased frequency and extent of modification are often encoun-

tered in files with increased interest amount.

A second threat to construct validity stems from the fact that

not all reported issues point to errors, but some of them might

contain a feature request or suggestion for performance improve-

ment. As a result any actions to handle this issue would consti-

tute adaptive or perfective maintenance rather than corrective one.

Another threat of the same category, is that bug-related commits,

which indeed fix an issue, but do not employ the keywords sought

by GitHub, will be missed. This threat implies that there might

be other bug-related commits which have been neglected in the

study.

Another threat pertaining to the construct validity of the study

stems from the fact that TD amount and the two employed indica-

tors of corrective maintenance are aggregated over multiple revi-

sions, possibly accounting for a significant period of time. As a re-

sult, especially in the case of variations of TD or corrective mainte-

nance during that time, it cannot be safely assumed that the mea-

sured levels of corrective maintenance correspond to the measured

TD. For example, an observed high level of corrective maintenance

in a module with high level of TD, could in fact be due to a partic-

ular sub-period in which the module had low TD.

Finally, the present study does not investigate whether the two

interest-related variables of the research questions (i.e., frequency

of modifications and extent of modification due to corrective main-

tenance) might be affected by the propagation of errors. In partic-

ular, we study the relation between the two aforementioned vari-

ables and the TD principal of the files in which errors have been

fixed, possibly neglecting the TD of the originating files (i.e., those

from which errors might have propagated). This treatment poses a

threat to construct validity and constitutes an interesting research

direction for future work.

5. Discussion and conclusions

The results of this study suggest that TD amount is indeed cor-

related with maintenance effort. In particular, developers appear

to spend more time on fixing issues in files with high levels of ac-

crued technical debt, compared to files that present less TD. There-

fore, project managers should take quality-oriented decisions to
Please cite this article as: T. Amanatidis et al., The relation between tec

Information and Software Technology (2017), http://dx.doi.org/10.1016/j
eter the appearance of software units with increased technical

ebt.

With respect to practitioners, the results provide additional

vidence that TD undermines software maintenance and that it

hould be taken under consideration before any design and imple-

entation decision. Moreover, the domain of the study suggests

hat TD appears to be important in a web context as well. Soft-

are engineers can take advantage of such empirical evidence to
hnical debt and corrective maintenance in PHP web applications,

.infsof.2017.05.004

http://dx.doi.org/10.1016/j.infsof.2017.05.004

T. Amanatidis et al. / Information and Software Technology 0 0 0 (2017) 1–5 5

ARTICLE IN PRESS

JID: INFSOF [m5G; May 17, 2017;2:4]

c

T

e

t

a

R

[
onvince management about the importance and need to manage

D. From a research perspective, since there is sufficient empirical

vidence of the impact of TD amount on corrective maintenance,

he need to devise a framework for assessing the associated risk

nd costs of managing TD becomes essential.

eferences

[1] N.S.R. Alves , T.S. Mendes , M.G. de Mendonça , R.O. Spínola , F. Shull , C. Seaman ,
Identification and management of technical debt: a systematic mapping study,

Inf. Softw. Technol. 70 (Feb. 2016) 100–121 .
[2] A . Ampatzoglou , A . Ampatzoglou , P. Avgeriou , A . Chatzigeorgiou , A financial

approach for managing interest in technical debt, in: B. Shishkov (Ed.), Busi-
ness Modeling and Software Design, Springer International Publishing, 2015,

pp. 117–133 .
[3] A. MacCormack , D.J. Sturtevant , Technical debt and system architecture: the

impact of coupling on defect-related activity, J. Syst. Softw. 120 (Oct. 2016)

170–182 .
[4] Q. Feng , R. Kazman , Y. Cai , R. Mo , L. Xiao , Towards an architecture-centric ap-

proach to security analysis, in: 2016 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA), 2016, pp. 221–230 .
Please cite this article as: T. Amanatidis et al., The relation between tec

Information and Software Technology (2017), http://dx.doi.org/10.1016/j
[5] R.L. Nord , I. Ozkaya , E.J. Schwartz , F. Shull , R. Kazman , Can knowledge of tech-
nical debt help identify software vulnerabilities? 9th Workshop on Cyber Se-

curity Experimentation and Test (CSET 16), 2016 .
[6] N. Zazworka , A. Vetrò, C. Izurieta , S. Wong , Y. Cai , C. Seaman , F. Shull , Com-

paring four approaches for technical debt identification, Softw. Qual. J. 22 (3)
(Apr. 2013) 403–426 .

[7] Z. Li , P. Liang , P. Avgeriou , N. Guelfi, A. Ampatzoglou , An empirical investigation
of modularity metrics for indicating architectural technical debt, in: Proceed-

ings of the 10th International ACM Sigsoft Conference on Quality of Software

Architectures, New York, NY, USA, 2014, pp. 119–128 .
[8] R. Schwanke , L. Xiao , Y. Cai , Measuring architecture quality by structure plus

history analysis, in: Proceedings of the 2013 International Conference on Soft-
ware Engineering, Piscataway, USA, 2013, pp. 891–900 .

[9] G.A. Oliva , I. Steinmacher , I. Wiese , M.A. Gerosa , What can commit meta-
data tell us about design degradation? in: Proceedings of the 2013 Interna-

tional Workshop on Principles of Software Evolution, New York, NY, USA, 2013,

pp. 18–27 .
10] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software

Engineering: Guidelines and Examples . John Wiley & Sons, 2012.
hnical debt and corrective maintenance in PHP web applications,

.infsof.2017.05.004

http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30202-6/sbref0009
http://dx.doi.org/10.1016/j.infsof.2017.05.004

	The relation between technical debt and corrective maintenance in PHP web applications
	1 Introduction
	2 Case study design
	2.1 Goal and research questions
	2.2 Cases and units of analysis
	2.3 Data Collection
	2.4 Data analysis

	3 Results
	4 Threats to validity
	5 Discussion and conclusions
	 References

