ResearchGate

See discussions, stats, and author profiles for this publication at:

Who is Producing More Technical Debt? A
Personalized Assessment of TD Principal

Conference Paper - May 2017

CITATIONS READS
0 9

4 authors, including:

W University of Macedonia ﬁ University of Groningen

160 PUBLICATIONS 1,498 CITATIONS 53 PUBLICATIONS 247 CITATIONS

SEE PROFILE SEE PROFILE

' Aristotle University of Thessaloniki
186 PUBLICATIONS 2,362 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poiect Managing Technical Debt

ot JDeodorant: Extract Class refactorings

All content following this page was uploaded by on 19 April 2017.

The user has requested enhancement of the downloaded file. All in-text references are added to the original document

and are linked to publications on ResearchGate, letting you access and read them immediately.

https://www.researchgate.net/publication/315729354_Who_is_Producing_More_Technical_Debt_A_Personalized_Assessment_of_TD_Principal?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315729354_Who_is_Producing_More_Technical_Debt_A_Personalized_Assessment_of_TD_Principal?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Managing-Technical-Debt?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/JDeodorant-Extract-Class-refactorings?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Stamelos2?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Stamelos2?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aristotle_University_of_Thessaloniki?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Stamelos2?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Who is Producing More Technical Debt?
A Personalized Assessment of TD Principal

Theodoros Amanatidis
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
tamanatidis@uom.edu.gr

Apostolos Ampatzoglou
Department of Computer Science
Avristotle University of Thessaloniki
Thessaloniki, Greece
apamp@csd.auth.gr

ABSTRACT

Technical debt (TD) impedes software projects by reducing the
velocity of development teams during software evolution.
Although TD is usually assessed on either the entire system or on
individual software artifacts, it is the actual craftsmanship of
developers that causes the accumulation of TD. In the light of
extremely high maintenance costs, efficient software project
management cannot occur without recognizing the relation
between developer characteristics and the tendency to evoke
violations that lead to TD. In this paper, we investigate three
research questions related to the distribution of TD among the
developers of a software project, the types of violations caused by
each developer and the relation between developers’ maturity and
the tendency to accumulate TD. The study has been performed on
four widely employed PHP open-source projects. All developers’
personal characteristics have been anonymized in the study.

CCS CONCEPTS

» Software and its engineering — Software creation and
management — Software post-development issues— Maintaining
softwares Social and professional topics— Management of
computing and information systems — Software management —
Software maintenance

KEYWORDS

Technical Debt; Software Maintenance; Project Management

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org

MTD 2017, May 22,2017, Cologne, Germany

© 2017 ACM. ISBN 978-1-4503-4486-9/17/04..$15.00

Alexander Chatzigeorgiou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
achat@uom.gr

loannis Stamelos
Department of Computer Science
Aristotle University of Thessaloniki
Thessaloniki, Greece
stamelos@csd.auth.gr

1 INTRODUCTION

Tom DeMarco in his novel about project management (“The
Deadline™) [1] vividly claims that the most important part of any
successful software project is team and people. According to Mr.
Tompkins, the main character of the story, people do projects and
therefore getting the right people is essential. Different developers
have varying skills and capabilities in designing, developing and
maintaining software in the right manner. Unavoidably, the
members of a development team introduce design and code
violations at unequal rates and intensities, contributing differently
to the overall system Technical Debt [2].

Technical Debt principal (i.e., the effort needed to refactor a
system in order to address existing inefficiencies) is usually
assessed on design or code artifacts. However, since software
development is a highly people-centric activity, Technical Debt
Management (TDM) should also consider the individual members
of a team. To name an example, technical debt items with high
interest probability [3] (i.e. modules that hold TD and are very
likely to undergo maintenance in the future) should be assigned to
skilled and experienced developers to mitigate the involved risks.

Acknowledging that efficient project management cannot take
place unless people are carefully matched to tasks, in this paper
we present the results of a case study assessing the distribution of
TD among developers. Knowing whether some members of the
development team are more likely to introduce TD or particular
design/code violations can be of value to project managers to steer
the allocation of issues and maintenance tasks more effectively.
Moreover, we investigate whether the tendency to introduce TD is
related to the developer’s age in the project. The relevant research
questions have been investigated based on findings from four
widely employed PHP open-source projects with a long
development history.

Collecting and processing information at the level of individual
developers involves a number of ethical issues and therefore
should be performed with care. In the context of this study
gathered personal data, which are subject to statistical analysis,

mailto:a.ampatzoglou@rug.nl
mailto:stamelos@csd.auth.gr
mailto:permissions@acm.org
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==

has been de-identified. In any case, assessing the contribution of
the members of a development team to the system’s TD for
research purposes, should not share any kind of personal data with
third parties. On the other hand, performance appraisals within an
organization are a great and commonly used tool to evaluate how
employees have been performing. We note however, that any type
of performance analysis should respect ethics, ensuring for
example that developers are aware of the relevant process and that
any feedback will be accessible by the employees and will remain
confidential.

The rest of the paper is organized as follows: Section 2 provides
an overview of related work on the assessment of software quality
at the developer level, regardless of whether TD is explicitly
mentioned or not. The case study design is presented in Section 3
while the results for each of the investigated questions are
presented and discussed in Section 4. Implications to project
managers and developers are presented in Section 5, while threats
to the validity of the study are discussed in Section 6. Finally, we
conclude in Section 7.

2 RELATED WORK

In this section we present efforts that aimed at investigating how
the characteristics and coding habits of individual developers
relate to the introduction of code smells, violations and buggy
code that eventually undermine software quality.

Alves et al. investigated the influence of developers on the
introduction of code smells in 5 open source software systems [4].
Developers have been classified in different groups based on two
characteristics, namely: a) developer participation, calculated as
the time interval between his first and last commit and b)
developer authorship, representing the amount of modified files
and lines of code. The authors investigated how those two
characteristics are related to the insertion and/or removal of five
types of code smells: dead (unused) code, large classes, long
methods, long parameter list (of methods) and unhandled
exceptions. Results suggested that groups with fewer participation
in code development tended to have a greater engagement in the
introduction and removal of code smells. Authors supported that
groups with higher participation level code more responsibly
during maintenance whereas the other groups tend to focus on
error correction actions.

Tufano et al. analyzed developer-related factors, on 5 open source
Java projects, that could influence the likelihood of a commit to
induce a fix [5]. They found evidence that clean commits (i.e.,
commits that do not induce bugs or any kind of need to fix code)
have higher coherence than fix-inducing commits. Commits with
changes that are focused on a specific topic or subsystem are
considered more coherent than those with more scattered changes.
Furthermore, their results, surprisingly, suggested that developers
with higher experience perform more fix-inducing commits that
developers with lower experience. Authors claimed that this could
be happening due to the fact that more experienced developers
usually cope with more pretentious tasks.

Eyolfson et al. [6] analyzed the impact of three social
characteristics of commits on their bugginess: a) time of the day
the commit is performed, b) day of the week, and c) developer’s
experience (i.e. days of participation in the project) and commit
frequency. The study was performed on two open source projects
(the Linux kernel and PostgreSQL) and found evidence that late-
night commits are significantly buggier emphasizing that
developers that perform late-night commits should double-check
their code. They also found that more experienced developers
introduce fewer bugs. Furthermore, according to their results, the
day on which the code is written plays no significant role on the
‘bugginess’ of a commit something which contradicts what was
observed in an earlier study by Sliwerski et al. back in 2005 [7].
That study claimed that programming on Friday is more likely to
generate faults than on any other day.

Rahman and Devanbu [8] studied the impact of ownership and
experience of the developers on the quality of code. As
ownership, they considered the extent to which a developer
modifies a file along with others or on his own. They also
conceptualized two distinct types of experience that can affect the
quality of a developer’s work: specialized experience in a file (i.e.
developer’s contribution to a single file) and general experience in
the entire project (i.e., developer’s contribution to the entire
project). Their results highlighted that: a) code that is maintained
by many developers is less bug-prone, validating the “many
eyeballs — better code” theory, b) less specialized experience on
a specific file is associated with fix-inducing code to that file and
c) the lack of general experience on the overall project is not
consistently associated with faulty code.

Our study differs in that software quality is viewed from the
perspective of TD rather than the introduction of faults or selected
code smells. Although not all TD violations are considered as
harmful by development teams, examining a broader range of
design and code inefficiencies as well as the distribution of TD
introduction among developers can provide a more holistic view
on the competencies of a team.

3 CASE STUDY DESIGN

3.1 Research Obijectives and Research Questions

The aim of this study, expressed through a GQM formulation, is:
to analyze individual contributions by the project developers for
the purpose of evaluation with respect to the TD that they
introduce, from the point of view of software managers in the
context of software maintenance and evolution in open-source
projects.

Driven by this goal three relevant research questions have been
set: The first research question aims to investigate whether TD is
uniformly induced by all developers in a software project or is
mostly associated to the commits of specific developers.
Answering this research question and especially if common
patterns among the examined projects are found, could shed light
into the actual causes of design and code inefficiencies. The first
research question is formulated as follows:

https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==

RQ: Is TD uniformly distributed among the developers of a
software project?

The second research question concerns the particular TD
violations caused by each developer during his commits and
investigates whether there is any relation between violation types
and developers. Any evidence on commonly occurring violations
across all developers or individual members of the development
team can be of help to efficient technical management. The
second question is formulated as:

RQ,: Which TD violations are introduced by the developers of a

software project?

The third research question analyzes the relation between the
maturity of each developer in any project (obtained as the time
since his initial commit to the project) and his tendency of
inducing TD. It would be reasonable to assume that less
experienced developers introduce more TD and thus allocation of
work considering the maturity factor would enable effective TD
management. The last question is formulated as:

RQs;: What is the relation between TD and the maturity of

developers in a software project?

3.2 Case and Units of Analysis

This is an embedded multiple-case study, i.e. it studies multiple
cases, whereas each case is comprised of many units of analysis.
Specifically, the cases of the study are open source projects, and
units of analysis are the developers of each project. The reporting
of results is performed at the project/case level.

As subjects for our study, we employed recent commits (i.e. those
of the most recent year) of a selected branch during the
development history of 4 open source projects written in PHP.
The projects have been selected so as to have a long development
history and varying sizes. A short description of the goals of these
projects is provided below, whereas some demographics are
provided in Table I. Laravel (core) consists of the core source
code of one of the most popular PHP frameworks for building
web applications, Laravel, with more than 20 million downloads.
Composer is the most popular dependency manager for PHP with
more than 2 million downloads. Yii2 and CakePHP are two
actively maintained PHP frameworks with over 2.5 million and 1
million downloads respectively.

All developers who submitted at least 10 commits on the
examined branches of the selected projects have been used as
cases for this study (the lower limit of 10 commits has been set to
avoid considering in the study developers with partial or
circumstantial association to the project).

Table I: OSS PHP Project Demographics

#Developers Size of last

Project #Commits (considered) version (LOC)
Laravel (core) 1136 11 149K
Composer 807 7 8K
Yii2 2097 19 406K
Cakephp 1677 23 297K

3.3 Variables and Data Collection
3.3.1 Variables

For each unit of analysis (i.e. developer in a project) we recorded
the following variables in order to answer the research questions
that have been set:

[V1] DevID: unique developer identification id

[V2] Total TD: induced TD by all commits of the particular
developer during the examined time frame. Contributed TD
for a particular transition from one commit to the next is
obtained by SonarQube as the difference between the TD of
the files that the developer modified during the transition. It
can be positive or negative.

[V3] Number of modified lines: To normalize the contributed
TD over the amount of work performed by each developer
we recorded the number of lines that have been modified
during each commit (as the number of added and deleted
lines of code).

[V4] Normalized TD: Since the amount of TD that is introduced
by a developer is heavily dependent on the amount of code
that he contributes, to allow for a fair assessment the total
TD (V[2]) is normalized by dividing it with the number of
modified lines (V[3])

[V5] Types of TD violations: This variable consists in a map of
TD violation types and occurrence frequencies. It essentially
captures the types of TD violations caused by the commits
of each developer.

[V6] Developer Maturity: Time between the first commit that
each developer performed in the project’s history to the last
commit that he contributed. It captures the developer’s
maturity in the project.

3.3.2 Data Collection

In order to analyze developers’ recent activity and contribution to
Technical Debt we obtained the most recent year’s commit data
for every examined project via the GitHub API. This data includes
commit information, such as the author of the commit, the number
of changed lines of code, the modified files, the commit date and
of course the commit id (hash) in the repository. Next, the TD of
every project snapshot, corresponding to each commit, has been
calculated using SonarQube’. SonarQube is a widely employed
tool for assessing technical debt that quantifies the principal based
on several axes of code quality (e.g., code duplications, metrics,
styling conventions, etc.). In particular, we checked out the source
code corresponding to each commit and performed TD analysis
with SonarQube for every project snapshot. The entire process has
been fully automated by executing the required commands within
a bash script.

! Awvailable at: http://www.sonarqube.org

http://www.sonarqube.org/
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==

Once the analysis for each project snapshot has been completed,
commits have been grouped by developers and placed in
chronological order. For every developer’s commit the files that
he/she modified have been identified, and their TD amount has
been compared against the TD of the same files in the previous
commit? that involved those files. The difference in TD amount
that was detected between two successive commits (ignoring the
commits affecting other files) was added to each developer’s stack
and we eventually calculated the total contribution of each
developer to the project’s technical debt principal. The process of
obtaining the personalized principal contribution (delta of TD)
based on two successive commits is illustrated in Figure 1.

developer’s B
TD contribution

re
A TDgjex
i >
| |
Ideveloper B
developer B : %
% I
File Y File X
i i i >
commit commit commit
of developer A of developer B of developer B
affecting file X affecting file Y affecting file X

Commit History

Figure 1: Process of obtaining TD deltas for each developer

3.4 Data analysis

To answer the research questions stated in Section 3.1, using the
variables described in Section 3.3, we employed descriptive
statistics and hypothesis testing (for RQj3).

For checking whether the distribution of TD among developers is
uniform or not (RQ,), we will present the distribution as a bar
chart. To provide a more systematic view into the distribution of
TD we calculated the Gini coefficient for each project. The Gini
coefficient is a measure of statistical dispersion originally used for
quantifying the inequality of income distribution [9]. The value of
the Gini coefficient varies between zero and one. A Gini
coefficient (or index) equal to zero implies perfect equality in the
distribution (i.e. the case where all developers introduced the
same amount of TD). A Gini index equal to one, implies
maximum inequality (i.e. the case where one developer introduces
the entire TD of the system while all others introduce no TD at
all).

2 For the special case where a file was created in a particular commit and
thus did not exist in the previous commit, zero TD principal has been
assumed for the previous commit

To investigate whether developers have a tendency to introduce
particular TD violations (RQ,) we used a heatmap. Columns
correspond to the individual developers in each project (denoted
by their ID) while rows correspond to identified TD violations as
obtained by SonarQube. Frequently occurring violations are
denoted by darker colors. A completely black cell indicates that
the corresponding developer introduces only violations of one
type (that corresponding to the row). In case the violations by a
developer are distributed among many types, shading changes
according to the percentage of violations of each type.

Finally, to test whether developer maturity plays a role in the
number and severity of violations that they introduced we display
the findings as scatterplots (developer age vs. normalized TD) and
test the hypothesis whether normalized TD depends on age with
correlation analysis. Since correlation analysis on the limited data
points of each project leads to statistically insignificant results, for
this research question a combined dataset from all projects has
been formed. However, to avoid any biasing, the combined
dataset contains developer maturity and introduced normalized
TD expressed as a percentage: For each project, the maturity of
each developer (in days) is divided with the maturity of the most
experienced developer. Similarly, for each project, the normalized
TD (i.e. TD/LOC) for each developer, is divided by the maximum
normalized TD in that project. To further investigate whether
developer’s maturity is related to the amount of introduced TD
principal we have performed an independent study t-test, by
differentiating between less- and more-experienced developers
(we used as threshold the age in days corresponding to 50% of the
longest experience). The analysis strategy per research question is
summarized in Table II.

Table 11. Data Analysis

RQ Analysis Strategy

RO Bar-chart illustrating distribution of TD [V4] among
1| developers [V1] — Gini index for each distribution

RO Heatmap illustrating frequency and types of violations
2

[V5] per developer [V1]

RQ; | Scatterplot & correlation analysis between normalized
TD [V4] and developer age [V6]

Independent sample t-test, grouping variable [V6]
(threshold 50%) and testing variable [V4]

4 RESULTS AND DISCUSSION

In this section we present the results of the study organized per
research question along with an interpretation of the findings.

4.1.1 Distribution of TD among Developers

Figure 2 illustrates the distribution of the contributed TD during
the examined time frame among the developers who performed
commits in each project. To avoid biasing the results by the

amount of code written by each developer and thus ‘falsely
blaming’ a developer, the added TD is normalized over the
number of changed lines of code. On each chart the value of the
corresponding Gini index is also shown.

The pattern observed in each plot presents similarities across
projects. A limited number of developers (e.g. Developer-2 for
Laravel and Developer-5 and Developer-11 for CakePHP)
contribute a significant portion of the system’s technical debt (in
terms of TD per line of code), while the majority of developers
contribute significantly less violations. In a few cases developers
even have a negative TD contribution meaning that they remove
violations instead of introducing new ones when adding code.

The distribution in general is far from uniform as it is confirmed
by the Gini index which is remarkably similar in all projects. To

I 1O added (in minutes) per changed LOC
18

16
14 |
12 Gini index = 0.66
1.0
08
06
04 |

TD added (in minutes) per changed LOC

~ v o L3 @ @ A -] @ o N
& & & & & & & & & . o
& & & & & L& & & &
5 & 3 & g &S ES & & K& &
&£ & & & & & & & & d
[S) of & <f of <f <f &f F F I

(a) Laravel (core)

I 7O added (in minutes) per changed LOC
040

035 | Gini index = 0.65
030 |

025 |

0.20

045 |

o.m-I

005 | I

o lI N =EEN =

-0.05

TD added (in minutes) per changed LOC

(©) Yii2

provide an intuitive interpretation of the meaning of the Gini
index, it is noted that a Gini value of 0.66 implies that 80% of the
developers introduce approximately 1/3 of the system’s TD. The
rest 2/3 is introduced by only 20% of the developers. Therefore
there is a small group of developers that produce significant
amount of principal, whereas another larger set of developers
produces less technical debt confirming the Pareto principle.

We claim that TD principal is not equally distributed across
developers since at least one of them stands up as a main source
of producing violations (and therefore introducing principal).
On the contrary, there are cases in which developers consistently
remove violations (i.e., repay TD). However, this observation is
not consistent across all investigated projects

I 1D added (in minutes) per changed LOC
08

07

Q

(=]

S

= L

2 05 Gini index = 0.66

2

% 05

o

2 04

8

5 03

E

£ 02

el |

E

B | S R—

R ||
-01

A, 1 o be k2] @ 4
& & & & N o
e & K) 4@ (&)
o o o o o g o
(b) Composer

I 70 added (in minutes) per changed LOC
30

Gini index = 0.61

25

20

15

10 I

05 II

D.ll. . II.-_-I.-

TD added (in minutes) per changed LOC

~ &) o A o ~ o A > ~]
Qv* Q\e} Qv* Qe} Qk‘" ?\k & & & & & o
ﬁm ?}o II}'O '»0 V}L) \3} \:_)Q \\;) \QQ \\;) \OQ \‘_)Q
E & & & A O Y A
<« 9 ¢ e 9 F g F)

(d) CakePhP

Figure 2: Distribution of TD among developers

4.1.2 TD Violations per Developer

Figure 3 illustrates the most common violations in each of the
examined projects against the developers who introduce them, in
the form of a heatmap. The darker the color the more violations of
the corresponding type are introduced by the indicated developer.
A row that is relatively dark across all developers implies a

commonly occurring violation. On the other hand, a column with
many dark cells implies a developer that generates many different
types of violations.

The findings vary among projects, similarly to the total number of
different violation types encountered in each project (22 violation
types in Laravel to 30 types in CakePhP). Rows with many shaded

cells indicate common violation types introduced by many
developers. Such a violation is violation ‘php:51192” (of critical
importance) in all projects. According to SonarQube this violation
indicates the presence of String literals which are duplicated,
rendering the process of updating all occurrences in case of a
change, error-prone. Another relatively common violation among
developers in all projects is ‘php: 52037 (of minor importance).

php:S134- 100
php:S104-
php:S1488-

php:51448- -

php:S112- 80

php:S2037- -
php:51481-
php:S1066-
php:S139-
php:S138-

php:S131- -

php:S1125-

php:S108- -

php:S105-
php:S125-
php:S121-
php:51067-
php:51763- 20
php:5101-

php:S1172-

php:51192° EESS .

php:S1142- 0
.] . ' : i ' ' ' ! '
&, 2, 2, 2,

e"%ﬂe &WDD@ D"%p@ D"WD% @"of% %"efuﬂp ey, %"E'/DDG D"E‘/Dﬂe “P/Dﬂ@ @VW”DQ

vy Ty Pery ey Py g Ve, By Py Pe, W,

(a) Laravel (core)

php:S1541-
php:51523-
php:5134- [| 70
php:S1068-

php:51488- |

php:S1144-

php:51116-

php:s1848- [| [] 50
php:51788- []

php:S104-

php:S1066-

php:51871- 50
php:S1067-

php:S881-

php:S2068-

php:S1763- 40
php:S112-

php:S108-

php:S51125-

php:S139- 30
php:5105- | |

php:5125-]

php:S1481-
php:S138-)
php:51185-
php:S1448-
php:si1oz-] L]
php:51172-
php:s1142- 10
php:S131-
php:S121-
php:S1301-
php:s2037-

14A2Q
zAQ -
£ A8Q -

b ABQ -

G ABQ -

9 A3Q -

£ A0 -

g A8Q -

6 A3 -
01 A2Q -
11420 -
TIAeQ -
£1 480 -
¥1 A8 -I
ST A9Q -
a1 ASq -
L1480 -
81480 -
61430 -

S

() Yii2

SonarQube identifies as violations cases where a reference to a
static class member from another method in the same class is not
employing the “static::” keyword. This might lead to
undesired behavior in the case of subclasses, as the original
definition of the member is referenced, rather than the overridden

one.
-)

php:51151-
php:51301-
php:51871-
php:51788-

php:S107-
php:S1068-
php:51125-
php:51488-
php:S1067-
php:S1144- 30

php:51142-

php:51172-
php:5112-
php:S1192-|
php:51541-
php:5108-
php:5134-
php:52037-|
php:51066~
php:51448-
php:5104-
php:5138-
php:S125-

ene:sta:- N] 0

0 ' ' 0 i | '
Developer 1 Developer 2 Developer 3 Developer 4 Developer 5 Developer 6 Developer 7

=
S

(b) Composer

php:S2010- 100
php:S1151-

php:S881-

php:51848-

php:51301-

php:S131-

php:S134- 80
php:5125-

php:5108-

php:S139-

php:S127-

php:52037-]

php:S1067- 50
php:51185-
php:51066-
php:51541-
php:51172-

i o
php:S104-
php:S1488- B

php:51871-

php:51862-

php:5105- | B | []

php:51481-) || 20
php:5138-

php:52068-

php:S1192-]] []

php:S112-

php:S1142-

php:51448-] |] o

T haq |
Z A3 -
£ A8 -
& ABQ -
G A3 -
9 4a(-
£ A8 -
g Aaq -
6 A -

0% 420 -
1z 430 -
2z 490 -
£2 490 -

(d) CakePhP

Figure 3: TD violation types per developer

Differences are also clearly visible between developers. Some
developers introduce violations of many different types, as
indicated by shaded cells in the corresponding columns. This is
for example the case for the first three developers of project
Laravel. In such cases, training actions focusing on the merits of

smell-free code can be planned as part of a project’s management
for selected members of the development team. On the other hand,
some developers produce violations of a very limited number of
types, even of a single type. This is for example the case for
developers with a single black cell in their column (i.e. 100% of

their violations belong to that specific type). Although the latter
information might be of limited value to a project manager, it
could be useful as a self-assessment tool for the developer. The
analysis points to the particular violations that a developer is
inclined to introduce, and if he acknowledges their importance,
can eventually modify his programming habits to eliminate them.

In principal a large variety of violations can be identified in
different projects, introduced by different developers. However,
we have pointed out to specific frequently recurring violations
for: (a) the same project, (b) the same developer, and (c) across

all projects.

4.1.3 TD vs. Developer Maturity

The third research question aims at investigating the relation
between a developer’s ‘age’ in the project and the TD that he
introduced per line of code. The corresponding scatterplot for
variables [V4] and [V6] is shown in Figure 4. The trendline in the
chart indicates a very moderate negative correlation between
developer maturity and introduced TD (note that both variables
are expressed as ratio over the highest developer maturity and the
highest TD/LOC in each project, respectively). However, the
p-value for Spearman correlation indicates that the results are not
statistically significant (p = 0.753). Thus, there is no evidence to
support the rejection of the corresponding null hypothesis (i.e. that
no monotonic correlation between the two variables exist).

1
0.8
0.6
0.4
0.2

0

TD/LOC (normalized)

-0.2

0.4
developer maturity (normalized)

Figure 4: Introduced TD versus developer maturity

To further investigate whether developer’s maturity plays any role
in the amount of introduced TD principal we have performed an
independent study t-test. However, the results of the test have not
suggested the rejection of the null hypothesis (sig: 0.8). Therefore,
we cannot claim that there is a difference in the mean TD incurred
by experienced and inexperienced software developers.

However, despite the lack of statistical evidence we can observe
that a larger number of immature developers is concentrated in the
top-20% most TD-incurring developers (5 immature against 1
experienced). This finding, in conjunction with the declining
trendline in the scatterplot opens up and interesting research
direction. In particular, the identification of additional factors
(apart from experience) that characterize the developer need to be

investigated so as to more accurately profile which types of
developers incur the most TD principal.

The collected data were not able to provide enough evidence on
the relationship between developers’ age and the amount of TD
that they introduce. However, a negative trendline has been
identified and 80% of the most TD-introducing developers have
been active for less than 33% of the project’s age (i.e., have low
project-related experience).

5 IMPLICATIONS OF THE STUDY

Any performance analysis at the level of individual people might
be viewed with skepticism. However, the provided perspective on
a system’s TD and its actual causes might prove beneficial to the
managers of software development teams and to the developers
themselves.

With respect to software project managers, resource allocation can
benefit by assigning artifacts with increased technical debt interest
probability to software engineers that tend to introduce less
technical debt principal or even remove technical debt. In a
similar line of thought, and without any intent to punish
developers, managers could identify developers who impair
software quality by introducing source code violations and
technical debt instances and try to upgrade their coding habits,
either by placing them next to more experienced developers or by
calling them to reflect on their common violations. Appropriate
guidelines or tooling to avoid the accumulation of particular
violations can also be developed, based on the findings from
previous projects.

With respect to software developers, the results on the
personalized assessment of technical debt can be a valuable self-
improvement tool. Developers can identify recurring problems
that they consciously or unconsciously introduce as well as their
locations in code. Moreover, critically analyzing their own
performance with respect to TD against the rest members of their
team can highlight opportunities for improvement.

Finally, the results of the study provide some useful research
implications as well. First, the outcomes of the study suggest that
an individual / personalized assessment of TD can be a
meaningful research direction that unveils interesting relations
that can guide TDM. Therefore, the topic deserves further
investigation. Some tentative future research direction are as
follows: (a) a personalized assessment of TD interest, (b) a
detailed analysis of specific violations, with respect to their
criticality, and (c) an elaborate personality / developers’
characteristics model that will provide a more accurate profile of
TD-prone developers.

6 THREATS TO VALIDITY

In this section we present and discuss threats to the validity of the
empirical study emphasizing on construct, reliability, external and
internal validity threats, according to the classification by
Runeson et al. [10].

Construct validity reflects to what extent the phenomenon under
study (i.e. introduction of technical debt principal by individual
developers) really represents what is investigated according to the
research questions. By selecting a particular tool for quantifying
technical debt, whereas other types of non-identified technical
debt exist, threats to construct validity emerge. However,
SonarQube is a widely employed tool for the assessment of
technical debt identifying a variety of design and code
inefficiencies.

The reliability of a case study is related to the extent by which the
collected information and the performed analysis can be replicated
with the same results. To mitigate reliability threats we explicitly
report the design of the case study and the statistical tests that
have been performed.

Internal validity threats are related to the identification of
confounding factors, that is, variables, other than the implied
independent variables (developer’s competence and maturity)
which might influence the value of the dependent variable
(introduced technical debt and technical debt types). Such threats
do apply in the presented study, since introduced technical debt
might be affected by the tasks assigned to (or chosen by) each
developer. For example, a highly skilled and experienced
developer might be inclined to take over the most complex and
demanding tasks limiting his ability to control the introduced
technical debt.

Finally, as in any other empirical study, the results are subject to
external validity threats. External validity deals with our
possibility to generalize the findings. To mitigate this threat we
have selected four widely known PHP projects which have
evolved over a number of years. Nevertheless, further studies are
required to thoroughly analyze the parameters that drive
developers to introduce TD.

7 CONCLUSIONS

Software development is a complex activity requiring experience,
skills and significant mental effort. Artifacts produced by
developers are systematically analyzed in terms of quality, which
recently is successfully captured by the Technical Debt metaphor.
In this paper, we have attempted to investigate, through a case
study on four open-source PHP projects, the relation between
introduced TD principal and developers.

The findings confirm the belief that developers’ competencies
vary, since the distribution of technical debt among developers is
highly imbalanced. Moreover, different developers introduce
different technical debt violations; however, some recurring
violations can be identified across developers and projects.
Finally, there is no statistically significant evidence that more
experienced developers introduce less technical debt per line of

code. Such findings but more importantly the ability to perform a
personalized assessment of technical debt can be a valuable tool
for effective project management and self-assessment and
improvement.

ACKNOWLEDGEMENT

This work was financially supported by the action "Strengthening
Human Resources Research Potential via Doctorate Research™ of
the Operational Programme: "Human Resources Development
Program, Education and Lifelong Learning, 2014-
2020", implemented from State Scholarship Foundation (IKY)
and co-financed by the European Social Fund and the Greek
public (National Strategic Reference Framework (NSRF) 2014 —
2020)

REFERENCES

[1] T. DeMarco, The Deadline: A Novel About Project Management.
New York: Computer Bookshops, 1997.

[2] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From
Metaphor to Theory and Practice,” IEEE Softw., vol. 29, no. 6, pp.
18-21, Nov. 2012.

[3] N.S.R.Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola, F.
Shull, and C. Seaman, “Identification and management of technical
debt: A systematic mapping study,” Inf. Softw. Technol., vol. 70, pp.
100-121, Feb. 2016.

[4] L. Alves, R. Choren, and E. Alves, “An Exploratory Study on the
Influence of Developers in Code Smell Introduction,” in
Proceedings of the 10th International Conference on Software
Engineering Advances (ICSEA 2015), Barcelona, Spain, 2015.

[5] M. Tufano, G. Bavota, D. Poshyvanyk, M. Di Penta, R. Oliveto, and
A. De Lucia, “An empirical study on developer- related factors
characterizing fix- inducing commits,” J. Softw. Evol. Process, vol.
29, no. 1, Jan. 2017.

[6] J. Eyolfson, L. Tan, and P. Lam, “Do Time of Day and Developer
Experience Affect Commit Bugginess?,” in Proceedings of the 8th
Working Conference on Mining Software Repositories, New York,
NY, USA, 2011, pp. 153-162.

[7]1 J. Sliwerski, T. Zimmermann, and A. Zeller, “Don’t Program on
Fridays! How to Locate Fix-Inducing Changes,” in Proceedings of
the 7th Workshop on Software Reengineering, Bad Honnef,
Germany, 2005.

[8] F. Rahman and P. Devanbu, “Ownership, experience and defects: a
fine-grained study of authorship,” n Proceedings of the 334
International Conference on Software Engineering, Waikiki,
Honolulu, USA, 2011, p. 491.

[9] C. Gini, “Measurement of Inequality of Incomes,” Econ. J., vol. 31,
no. 121, pp. 124-126, 1921.

[10] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples, 1st
ed. Wiley Publishing, 2012.

https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/233813965_Technical_Debt_From_Metaphor_to_Theory_and_Practice?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/310387600_An_empirical_study_on_developer-related_factors_characterizing_fix-inducing_commits_Developer-related_factors_characterizing_fix-inducing_commits?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221657052_Do_time_of_day_and_developer_experience_affect_commit_bugginess?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/221553876_Ownership_Experience_and_Defects_a_fine-grained_study_of_Authorship?el=1_x_8&enrichId=rgreq-e751a65fe5e7279533892f28d18bd147-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1NDtBUzo0ODQ3NzY5OTkxNjU5NTJAMTQ5MjU5MTI1MTM2OA==
https://www.researchgate.net/publication/315729354

