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Software teams are often asked to deliver new features within strict deadlines leading developers to deliberately 

or inadvertently serve “not quite right code” compromising software quality and maintainability. This non-ideal 

state of software is efficiently captured by the Technical Debt (TD) metaphor, which reflects the additional ef-

fort that has to be spent to maintain software. Although several tools are available for assessing TD, each tool 

essentially checks software against a particular ruleset. The use of different rulesets can often be beneficial as it 

leads to the identification of a wider set of problems; however, for the common usage scenario where developers 

or researchers rely on a single tool, diverse estimates of TD and the identification of different mitigation actions 

limits the credibility and applicability of the findings. The objective of this study is two-fold: First, we evaluate 

the degree of agreement among leading TD assessment tools. Second, we propose a framework to capture the 

diversity of the examined tools with the aim of identifying few “reference assessments” (or class/file profiles) 

representing characteristic cases of classes/files with respect to their level of TD. By extracting sets of clas-

ses/files exhibiting similarity to a selected profile (e.g., that of high TD levels in all employed tools) we estab-

lish a basis that can be used either for prioritization of maintenance activities or for training more sophisticated 

TD identification techniques. The proposed framework is illustrated through a case study on fifty (50) open 

source projects and two programming languages (Java and JavaScript) employing three leading TD tools.  

Keywords: technical debt, software quality, archetypal analysis, inter-rater agreement, empirical benchmark 

1. Introduction 

Throughout the software lifecycle, practitioners speed up the development process by compromising software 

quality and maintainability in favor of shorter time-to-market. This compromise has been effectively captured 

by the concept of Technical Debt (TD), as coined by Ward Cunningham (Cunningham, 1992), offering an anal-

ogy to the financial debt. In financial debt, one party borrows capital from another party and repays it back with 

some added interest. In the TD metaphor, the development team ‘borrows’ a certain amount of effort by deliver-

ing non-ideal code and repays it gradually in future iterations in the form of additional time and effort to per-

form maintenance on the non-ideal code. The increased maintenance effort, which is caused by the degradation 

of software maintainability, is considered as the “interest” that the development team has to pay in the long 

term. In contrast to financial debt, TD is hard or even impossible to measure accurately. The suggested practice, 

according to the OMG specification on Automated Technical Debt Measure (ATDM)1, is to consider as princi-

pal of TD (at the source code level) the total effort required to eliminate TD items, which are inefficiencies that 

have been identified in a software artifact under an established ruleset. However, even if developers are aware of 

parts of the code that “do not feel right” it is challenging to associate an exact numerical estimate with every 

rule violation. Software modules evolve over time and subtle or major changes in their TD might be incurred by 

the transition from one commit to the next, rendering the accurate monitoring of TD even more demanding. 

The limitations on accurately measuring TD lead to various shortcomings in both academia and industry, in the 

sense that one cannot control (or manage) what he/she cannot measure (DeMarco, 1986). Despite the fact that 

several tools are available for measuring and monitoring TD (notable examples include CAST AIP2, Squore3, 

 

1 https://www.omg.org/spec/ATDM/About-ATDM  
2 https://www.castsoftware.com/  
3 https://www.vector.com/int/en/products/products-a-z/software/squore/squore-software-analytics-for-project-monitoring/ 

https://www.omg.org/spec/ATDM/About-ATDM
https://www.castsoftware.com/
https://www.vector.com/int/en/products/products-a-z/software/squore/squore-software-analytics-for-project-monitoring/
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and SonarQube4), either commercial or open-source ones, the community has not concluded on a state-of-the-art 

solution that could be used as a basis for measuring TD (a full list with TD measurement tools that were found 

during our current research is presented in Section 2). Some shortcomings whose roots lie in the lack of a well-

established way for assessing (i.e., measuring and identifying) TD principal, are presented in Figure 1. 

 
Fig. 1 Shortcomings from diverse TD measurements 

Shortcomings in Research: The lack of a ground truth, even a commercial one, leads to construct validity 

threats in almost any kind of quantitative empirical study in the field, in the sense that it is not certain that any 

metric that attempts to capture TD principal is accurately measuring the real-world phenomenon. This problem 

does not lie only on limitations of the tools per se, but also on the underlying methodologies. In particular, each 

tool follows its own approach for detecting and measuring TD based on its own ruleset, while another tool might 

be based on an entirely different ruleset yielding a different amount for the total TD, but also pointing to differ-

ent parts of the code that need to be mitigated. Moreover, there are several research efforts trying to associate 

TD items (i.e., violations of coding practices in software artifacts, which according to the OMG Specification on 

ATDM – see footnote in first page, are considered instances of TD principal) with quality attributes of software. 

For example, studies have focused on the relation between TD principal and the presence of crosscutting con-

cerns in software requirements (Conejero et al., 2018), the existence of modularity violations, code smells and 

static analysis issues (Izurieta et al., 2012), code size, duplication and complexity (Nugroho et al., 2011) and 

architecture flaws (Nayebi et al., 2019). However, every such approach is heavily dependent on the employed 

tool for suggesting the ground truth, that is, the modules that actually have TD liabilities and need to be fixed. 

Obviously, if each tool identifies high-TD modules in a different way, the generalizability of these approaches is 

threatened to a large extent. 

Shortcomings in Practice. Despite the widespread adoption of the TD metaphor, it is far from clear which tool 

IT managers should trust for monitoring TD, or deciding the mitigation actions to be applied. One option would 

be to employ more than one TD tools for the evaluation of their software, but this is a costly one, since most of 

the existing tools are available only with a commercial license. Moreover, someone should also consider the 

effort to deploy the tools on their premises, configure them properly and eventually familiarize development 

tools with their usage. In addition to that, even with the use of multiple tools, the union of all possible fixes sug-

 

4 https://www.sonarqube.org 
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gested by different tools would yield an unrealistic amount of suggestions which would end up (even if they 

were accurate enough) to be useless in practice.  

Acknowledging the widespread adoption of the TD metaphor and the inherent limitation of existing tools to 

capture TD principal in a globally accepted way that best fits developers’ needs (Sadowski et al., 2015), in this 

study we aim at: (a) systematically investigating the degree of agreement among state-of-the-art TD measure-

ment tools on identifying and prioritizing TD principal (i.e. the effort to remediate inefficiencies) at class/file 

level; and (b) proposing an agreement-based benchmark approach that contributes to: (i) the exploration of all 

feasible assessments of TD principal provided by a set of alternative TD tools, (ii) the identification and charac-

terization of few divergent “reference assessments” (or archetypes); and (iii) the extraction of a subset of mod-

ules for which all employed tools agree on the presence of a high amount of TD principal, thus serving as an 

agreement-based benchmark of the “validated” top-rated classes/files5 in terms of TD principal assessment. 

To achieve the former goal, we make use of a well-known inter-rater agreement coefficient, namely the Ken-

dall’s W coefficient of concordance (Kendall, 1948). Regarding the second goal (benchmarking process), the 

Archetypal Analysis (AA) (Cutler and Breiman, 1994) is adopted, which is a multivariate statistical methodolo-

gy that explores a multidimensional space of measurements with the aim of identifying a set of few reference 

points, namely the archetypes, located on the boundaries of the swarm of given points. The derived archetypes 

(or reference points) represent divergent profiles in the examined space, whereas the methodology encompasses 

a mechanism for the evaluation of resemblance coefficients contributing to the evaluation of similarity for each 

point to the derived archetypes.  

To this end, we have employed three well-known tools that measure TD and analyzed 50 open source projects 

(25 Java and 25 JavaScript projects). The results of the proposed methodology are automatically reported 

through a web-based interactive toolbox to facilitate researchers and software practitioners to reproduce and 

explore the findings of the current study and easily retrieve a suitable benchmark for further experimentation 

(e.g., the training of other statistical or machine learning approaches to identify TD items). The TD Bench-

marker toolbox is implemented using the Shiny framework6 taking advantage of the R statistical language7 in an 

easy-to-use frontend. The toolbox is a free and academic on-going research project developed by Statistics and 

Information Systems Group (STAINS)8 at Aristotle University of Thessaloniki, Greece and is accessible 

through the paper’s web page9, at the website of the Software Engineering Group of University of Macedonia10, 

Greece.  

Apart from the empirical results and the extension of the body of knowledge in the field of TD management, an 

actionable outcome of this study is the provision of an agreement-based benchmark set of the most high-TD 

classes as indicated by the three tools altogether. The agreement-based benchmark is expected to alleviate the 

aforementioned limitations either directly or indirectly: regarding researchers the benchmark can be exploited 

for methodologies aiming at identifying TD items (targeting either high recall, or high precision), whereas it is 

also expected to aid practitioners since it will contribute to the development of novel tools that will be able to 

predict these items. More details on the implications of the benchmark for researchers and practitioners are pro-

vided in Section 5. 

The rest of the paper is organized as follows: In Section 2 we present the available TD assessment tools that we 

have managed to locate throughout our research and explain why we ended up with the three employed TD 

tools. In Section 3, our case study design is presented along with the objectives, the research questions, the data 

analysis and the methodology. In Section 4 we present and discuss our results and in Section 5 the implications 

to researchers and practitioners are highlighted. In Section 6 we unfold possible threats to validity of our study 

while in Section 7 we provide related work regarding previous studies on comparison of tools measuring TD 

and benchmarks in software maintenance. Finally, we conclude in Section 8. 

 

5 The term ‘class’ refers to the unit of analysis for Java projects, while the term ‘file’ refers to the unit of analysis for JavaS-

cript projects. Throughout the paper we primarily use the term ‘class’ for simplicity, but both units of analysis are consid-

ered, accordingly.  
6 https://shiny.rstudio.com  
7 https://www.r-project.org  
8 http://stains.csd.auth.gr  
9 https://se.uom.gr/index.php/projects/technical-debt-benchmarking 
10 https://se.uom.gr  

https://shiny.rstudio.com/
https://www.r-project.org/
http://stains.csd.auth.gr/
https://se.uom.gr/index.php/projects/technical-debt-benchmarking
https://se.uom.gr/
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2. TD Assessment Tools 

In this section we discuss TD assessment tools that either have been proposed in the context of research efforts 

(usually open-source or free) or are available as commercial software, by providing a brief description of their 

capabilities. Then we provide more details on the three tools that have been selected for this study explaining the 

rationale for their selection.  

During the previous years, numerous TD assessment tools have emerged; these tools are able to measure TD 

either in terms of cost or effort/time to repay TD. To identify as many tools as possible, we have conducted a 

non-systematic literature search, including grey literature (such as websites): 

• Literature search: Regarding our literature search, we relied on the IEEE Xplore11 and ACM Digital 

Library12 search engines. Our search string was applied on the title and abstract fields and had the fol-

lowing form: “technical debt” AND (measurement OR assessment OR estimation) AND (tool OR plat-

form). We gathered the studies that have been returned from the aforementioned search and filtered out 

those which neither introduce nor mention any TD tool in their title or abstract. 

• Web search: Throughout our web search, we used major search engines such as Google, Bing and Ya-

hoo, using the same query. The results led us either to the landing pages of the websites of the compa-

nies that own the tools or to articles introducing most well-known tools for assessing TD. 

Right below we provide a short description of the TD assessment tools that we have managed to locate through-

out our search. For each tool, we provide the study and the year in which it was first introduced or presented. 

The actual versions of the employed tools at the time of this study are provided in the end of this section. 

AnaConDebt (Martini and Bosch, 2016) is a tool that focuses on Architectural Debt. Since a change in the ar-

chitecture of a project can be really expensive and time consuming it is important to decide if and when this 

change should be implemented. The tool uses a large list of internal and external factors to estimate more accu-

rately the future principal and interest. It helps managers to decide when it is the right time to refactor the code 

of their software. 

CAST (Curtis et al., 2012) contains several sub-tools in order to provide the entire quality profile for the project. 

Health dashboard, Engineering dashboard, Security dashboard, CAST Appmark which is a benchmarking base 

to use as a comparison standard and CAST Enlighten with Imaging system that offers a visualization of the pro-

ject. This tool helps companies to perform "Shift Left" techniques to detect the issues of a project in early stages 

of its life cycle. This way the cost of fixing the issues is more tolerable. The tool implements the C-CPP, CISQ, 

CWE, NIST-SP-800-53R4, OMG-ASCQM, OWASP, PCI-DSS-V3.2.1 and STIG-V4R8 standards. By perform-

ing static analysis, a list of issues is created. Only a part of the problems will be solved and this part defines the 

technical debt metric.  

CodeScene (Tornhill, 2018) serves as a mean to preserve the quality of the code of the automated tests. It com-

bines repository mining with static code analysis and machine learning. Static analysis can detect the problems 

in the project, but since the source code is treated as of the same importance, repository mining is necessary to 

recognize behavioral data and social factors that can affect future decisions of refactoring. The results of the 

metrics may have different meaning depending on the characteristics of each project. Machine learning is used 

to identify patterns in order to prioritize these metrics and assign them the appropriate weight. The final result of 

the tool is a catalogue with the problematic files ranked by their total impact. 

DebtFlag (Holvitie and Leppänen, 2013) is a tool for capturing, tracking and resolving technical debt in Java 

systems. It consists of two parts; one plug in for Eclipse IDE which is responsible to collect the data from the 

source code, and one web application to visualize the results. These two applications connect via a database. 

The collected data is structured using the TDMF form, which was extended to cover the tool's needs. The tool 

offers the results in such a way that can be used to manage technical debt in two levels; project level and imple-

mentation level with micromanagement. 

 

11 https://ieeexplore.ieee.org  
12 https://dl.acm.org/  

https://ieeexplore.ieee.org/
https://dl.acm.org/
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Debtgrep (Arvedahl, 2018) is an inhouse tool developed by Ericsson 4G 5G Baseband and its purpose is to pre-

vent technical debt. It uses a file where all rules are declared using regex. The rules can contain forbidden words 

to restrict the usage of API and deprecated methods and also guidelines for design and architectural rules. The 

rules can be applied only to a specific part of code such as new code. This tool supports the communication be-

tween the developing team members and enhance the consistency and the uniformity of the project. 

DV8 (Nayebi et al., 2019) is a commercial extension of Titan (Xiao et al., 2014a). DV8 functions with DRSpac-

es (Xiao et al., 2014b), which are groups of system’s files that are architecturally related. Within DRSpaces, 

DV8 computes three modularity metrics (Decoupling level, Propagation Cost and Independence Level) and de-

tects six architecture anti-patterns (Clique, Package Cycle, Improper Inheritance, Unstable Interface, Crossing 

and Modularity Violation). DRSpaces (i.e. the subsets of architecturally related files) that are involved in a se-

lected set of issues are called ‘architecture roots’. The tool calculates the added maintenance cost due to each 

instance of each anti-pattern, and the added maintenance cost of each architecture root. The source code analysis 

is performed by the Understand tool13. 

Kiuwan14 is a proprietary code analysis tool that supports numerous programming languages and is capable of 

integrating with several IDEs. It can be obtained under a commercial license and it can also be tested within a 

free trial period. 

NDepend (Chopra and Sachdeva, 2015) is a static analysis tool for .NET projects available in Visual Studio 

Market Place. It offers a variety of code quality metrics and a visualization of the dependencies in the project. 

The tool handles the source code as a form of database, and the user can define new evaluation rules using 

LINQ to perform queries on it. Other features of the tool include reporting service and the ability of comparison 

between the generations of the same project. 

SonarQube (Campbell and Papapetrou, 2013) is a widely known tool used to track the quality and maintainabi-

lity of source code. The tool implements the MISRA, CWE, SANS and CERT rule standards to provide meas-

urements regarding complexity, duplications, code issues, maintainability, quality gates in combination with 

technical debt, reliability, security, project size and test coverage. In addition, there are many plugins to extend 

the available utilities, such as WebDriver for Selenium test analysis or AEM Rules set for Adobe. The meas-

urement of technical debt is an important component of SonarQube. The tool calculates the debt by multiplying 

the number issues of each type with the average time the specific issue type needs to be fixed. Then the time is 

multiplied with the cost for each man-day. The average time and the cost can be configured by the user. It uses 

the SQALE method and provides a technical debt pyramid to help making decisions prioritizing tasks. 

Squore (Baldassari, 2013) consists of three smaller tools. The first one, the analyzer, is used to collect data from 

different sources (source code, tests and hardware component information) and build the project's hierarchy tree. 

Then a more detailed measurement takes place for each one of the nodes based on the ISO, HIS, SPICE and 

MISRA rule standards. Last but not least, the tool also offers a dashboard for the visualization of the results. The 

tool can be a part of Jenkins continuous integration and can also recognize which files are most important to 

have Unit Tests in order to improve the efficiency. 

TD-Tracker (Foganholi et al., 2015) is a web application, which provides a structured way to create a catalogue 

with the issues in a project. The protocol, which is implemented, consists of three stages. For the first stage there 

is a data collector where the problems are identified and a list is populated. The input data can come from either 

an external source where, with appropriate mapping, the data can be stored directly to the database of the appli-

cation, or the integration with GitHub. After finishing the collection, the second stage begins where a semi-

automated task takes place. A user has to review the previous list with the issues, and decide which of them are 

actual problems that need to be solved. Then there is the third stage with the longest duration of all three. In this 

stage a user assigns tasks related to technical debt and also monitors the progress of them. 

TEDMA (Fernández-Sánchez et al., 2017) is an open tool, which analyzes different indices related to technical 

debt during the evolution of a project. It is open to integrate with third party tools to extend the analysis. It con-

sists of three layers. The first is called Data Layer and holds the processes used to gather information about the 

project, which is examined. Currently, Git repositories are used as data input. The second is the Service Layer 

 

13 https://scitools.com/ 
14 https://www.kiuwan.com/  

https://scitools.com/
https://www.kiuwan.com/
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where there are three basic services. (i) Data loader service is responsible for offering the source code in a pro-

cessable form to the tool. Then analyzers such as PMD and Findbugs detect code smells and problems. (ii) Sta-

tistics service uses R to perform statistical analysis of the data. The analysis is performed at file level but it can 

be extended to other levels of abstraction. (iii) Technical debt management model service uses models in Java 

and R to support decision-making. The last layer is the Presentation Layer which is responsible for documenta-

tion and visualization. 

VisminerTD (Mendes et al., 2019) is an open source web tool which monitors and manages technical debt com-

paring the results between different project's versions. When an issue is detected it can be tracked to determine 

whether its TD was paid off or not. It uses the Repository Miner tool to collect data and metrics from code re-

positories. VisminerTD uses queries to the database of the Repository Miner to gather the preferred information 

and present them to the user via a friendly interface. A set of graphical views are available to setup the search 

settings and then manage the technical debt items. 

Table 1 lists the tools that we have identified along with information, such as the website with contact or down-

load information, the corresponding study in which it was first introduced or presented, the type of license under 

which the tool is available (commercial/free), the programming languages that the tool supports for static code 

analysis and the type(s) of TD that it captures (as identified in previous studies (Alves et al., 2016; Li et al., 

2015)). TD types refer to specific categories of TD (e.g., architectural, design, code) or sub-categories based on 

the cause of TD (e.g., architectural TD can be caused by architecture smells) (Li et al., 2015). 

 

Table 1 List of identified TD assessment tools 

TD Tool (Website) Study License 
Supported Programming 

Languages 
Captured TD 

Type(s) 
AnaConDebt 
(https://anacondebt.com/node/7) 

(Martini and 

Bosch, 2016) 

commercial Java Architectural 

CAST AIP15 

(http://www.castsoftware.com/) 

(Curtis et al., 

2012) 

commercial Java, ASP, C/C++, JavaS-

cript, IOS, .NET, PHP, 

Python, ABAP, SQL 

 and more 

(see full list at website) 

Architectural, 

Code, Defect 

CodeScene 
(https://codescene.io/) 

(Tornhill, 

2018) 

commercial C/C++, C#, Java, JavaS-

cript, TypeScript, Python, 

Go, Visual Basic .Net, 

PHP, Ruby  

and more  

(see full list at website) 

Code, Design 

DebtFlag (-) (Holvitie and 

Leppänen, 

2013) 

- Java Code 

Debtgrep (-) (Arvedahl, 

2018) 

Inhouse use 

only 
Language agnostic Architectural, 

Code, Design, 

People 
DV8 

(https://archdia.com/pages/dv8-

user-guide) 

 

Understand:  

third party tool for source code 

analysis  

(https://scitools.com/) 

(Nayebi et al., 

2019) 

commercial Java, JavaScript,  C/C++, 

C#, Python , PHP  

and more 

(see full list here: 

https://scitools.com/feature

/supported-languages/) 

Architectural 

 

15 We will refer to it as “CAST” from this point on 
 

https://anacondebt.com/node/7
http://www.castsoftware.com/
https://codescene.io/
https://archdia.com/pages/dv8-user-guide
https://archdia.com/pages/dv8-user-guide
https://scitools.com/
https://scitools.com/feature/supported-languages/
https://scitools.com/feature/supported-languages/
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TD Tool (Website) Study License 
Supported Programming 

Languages 
Captured TD 

Type(s) 
Kiuwan 
(https://www.kiuwan.com/) 

- commercial ASP.NET, C, C#, C++, 

Java, JavaScript, JSP, PHP, 

Python, VB.NET, SQL, 

Ruby  

and more 

(see full list at website) 

Code 

NDepend 
(https://www.ndepend.com) 

(Chopra and 

Sachdeva, 

2015) 

commercial .NET Architectural, 

Code, Design, Test 

SonarQube 
(https://www.sonarqube.org) 

(Campbell and 

Papapetrou, 

2013) 

free  C/C++, C#, CSS, Go, Ja-

va, JavaScript, PHP, Py-

thon, Ruby, TypeScript, 

VB.NET  

and more 

(see full list at website) 

Architectural, 

Code, Design, 

Defect, Test 

Squore 
(https://www.vector.com) 

(Baldassari, 

2013) 

commercial Ada, C, C++, C#, Java, 

Cobol, PL, SQL, ABAP, 

PHP, Python, JavaScript 

Code, Test 

TD-Tracker 
(http://www2.fct.unesp.br/grupos

/lapesa/tdr/) 

(Foganholi et 

al., 2015) 

free 
 

Java, JavaScript, PLSQL, 

Apache Velocity, XML, 

XSL 

Code, Design, 

Defect, Documen-

tation, Infrastruc-

ture, Test 
TEDMA (-) (Fernández-

Sánchez et al., 

2017) 

- Java Architectural, 

Code 

VisminerTD 
(https://visminer.github.io/) 

(Mendes et al., 

2019) 

free Java Architectural, 

Build, Code, De-

sign, Defect, Doc-

umentation, Re-

quirement, People, 

Test 

Employed TD Assessment tools. Despite our goal to include in the study as many tools as possible, it has not 

been possible to employ all of the above tools for the measurement of TD for the target systems. Each tool had 

to fulfill the following conditions in order to be included in our study. In Table 2 we present which tools have 

been included in our study and which have been excluded (failing to satisfy all of the following conditions). 

• Condition 1: The tool had to be accessible somehow (download link, ftp server, etc.) with comprehen-

sive and sufficient documentation. 

• Condition 2: The tool had to be able to analyze Java and JavaScript code (as the target systems of the 

study are open source Java and JavaScript projects). 

• Condition 3: It was necessary to be able to obtain academic or research license for commercial or pro-

prietary tools. For non-proprietary tools the condition was considered fulfilled. 

• Condition 4: The tool had to provide an aggregate TD Principal index at class/file level, expressing ef-

fort in time or monetary terms, to remediate the identified inefficiencies (OMG Specification on 

ATDM16). Estimation of TD only at project level cannot be exploited to extract a benchmark set of 

most high-TD classes (for Java projects) and files (for JavaScript projects). This criterion is important 

for guaranteeing the uniformity of tools’ output, so that the results are comparable 

 

 

 

16 https://www.omg.org/spec/ATDM/About-ATDM 

https://www.kiuwan.com/
https://www.ndepend.com/
https://www.sonarqube.org/
https://www.vector.com/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
https://visminer.github.io/
https://www.omg.org/spec/ATDM/About-ATDM
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Table 2 List of TD tools with the conditions that they satisfied for their inclusion 

TD Tool Condition 1 Condition 2 Condition3 Condition 4 Tool used? 

AnaConDebt ✓ X X  no 

CAST ✓ ✓ ✓ ✓ yes 

CodeScene ✓ ✓ ✓ X no 

DebtFlag X X ✓  no 

Debtgrep X ✓ X  no 

DV8 ✓ ✓ ✓ X no 

Kiuwan ✓ ✓ X  no 

NDepend ✓ X ✓  no 

SonarQube ✓ ✓ ✓ ✓ yes 

Squore ✓ ✓ ✓ ✓ yes 

TD-Tracker ✓ ✓ ✓ could not deploy no17 

TEDMA X X ✓  no 

VisminerTD ✓ X ✓  no 

*In case a tool did not fulfill Conditions 1 - 3 or could not be successfully installed and deployed, Condition 4 could not be checked and thus 

the field was left blank. 

Ultimately, three tools were included in our study, namely CAST (version 8.3, year 2018), Squore (version 19.0, 

year 2019), and SonarQube (version 7.9, year 2019). All three tools are major TD tools, widely adopted by 

software industries and researchers and actively maintained, including comprehensive documentation. 

3. Case Study Design 

3.1 Goal and Research Questions 

The goal of this study described according to the Goal-Question-Metric (GQM) approach (Solingen et al., 

2002), is as follows: “analyze the TD of software projects for the purpose of assessing the level of agreement 

of state-of-the-practice TD assessors (tools) and forming agreement-based TD benchmarks of high-TD (or low-

TD) classes with respect to the estimated level of principal, from the point of view of software researchers and 

practitioners in the context of Technical Debt Management (TDM)”. For the sake of generalization, we perform 

the assessment of the level of agreement among tools for two programming languages, namely Java and JavaS-

cript. The analysis of the two populations enables a meta-analysis in which we explore if the use of a different 

language has an effect on the level of agreement. The exploration of the programming language as a factor af-

fecting the level of agreement between tools is performed for each one of the following research questions: 

RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD measurement? 

RQ1 aims at investigating the degree to which widely employed TD tools agree upon the identification and 

assessment of TD at class level. The investigation of this RQ provides an insight to the diversity of the rules 

examined by each tool, in the sense that a low level of agreement essentially means that tools check for dif-

ferent rule violations. With a non-satisfying degree of agreement, it would be pointless to proceed with the 

 

17 TD-Tracker was not included in our study because we were not able to install and deploy it successfully. 
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benchmarking process and seek classes, which are identified as equally high-TD (or low-TD) by all assessors. 

Thus, RQ1 serves as a gate for the rest of our study.  

RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools?  
The TD of classes in any examined system, as measured by the employed tools, form a set of observations in 

a multidimensional space, in which each dimension represents TD evaluations provided by a specific tool. 

RQ2 aims at exploring this multidimensional space and determine the optimal number of archetypes, located 

on the boundaries of this space, so as to efficiently capture the diversity of all feasible assessments provided 

by the set of the examined TD tools. For example, this RQ can answer, whether few reference assessments are 

able to approximate the convex hull of the TD evaluations, which practically means low diversity among TD 

assessors or whether a higher number of archetypes would be required to accurately characterize the spectrum 

of TD measurements for a given system. 

RQ3: Which are the characteristics of the extracted archetypes? 
RQ3 aims at characterizing the extremal points that accurately encompass the space of TD measurements for 

all examined classes. The identified reference assessments essentially form a set of distinct archetypes, i.e., 

class profiles according to the measured level of TD. Two expected archetypes correspond to the profiles of 

classes having high or low TD based on the results of all employed tools. However, other archetypes may be 

identified based on the shape of the space of the obtained TD measurements.  

RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules? 
To facilitate the work of developers or researchers who seek a golden set of classes that can be safely assumed 

to be high-TD or low-TD, this RQ aims at formally extracting sets of classes which are close to a selected 

class profile or archetype. Retrieving for example the classes, which are in the close vicinity of the archetype 

depicting high TD in all employed tools, a development team can be confident that these classes suffer signif-

icantly from rule violations. Similarly, a researcher can use such a benchmark for training effective machine 

learning techniques to identify TD based on different parameters of the code, people or processes involved in 

the development.  

3.2 Selection of cases 

For this case study we analyzed 50 open source projects (listed in Table 3). The selected projects, which are 25 

Java and 25 JavaScript projects, have been analyzed considering their classes (for Java) and their files (for Ja-

vaScript) as units of analysis. The choice of classes/files as units of analysis allows us to trace the existence of 

TD at a low level of granularity, providing a common ground for comparison among the three tools. The criteria 

for selecting the 50 projects were the following: 

• All cases had to be Java and JavaScript projects stored on public repositories. 

• All selected cases had to be among the most popular repositories, with more than 3K stars in GitHub. 

• In order to obtain a representative dataset, the selected projects had to vary in terms of size, per lan-

guage. 

• All cases had to be actively maintained till the time of this study. This was not a strict criterion since 

projects with a release around the last year before the project selection process were not excluded from 

the study. 

3.3 Data Collection  

The source code (excluding test files) of each project was analyzed three times: one time for each of the em-

ployed TD tools. All three tools provide a metric of the total effort needed to eliminate technical debt in each 

class/file. This is the metric that was chosen for analysis since it provides a common ground for comparison. An 

issue that had to be addressed was that each tool has a different way to provide the results of its analysis. It was 

necessary to convert the result sets from each tool to the same form so as to proceed with further data pro-

cessing.  



Table 3 Characteristics of analyzed projects 

Java JavaScript 

Project Description LOC Version Project Description LOC Version 

arduino Physical computing platform 27K 1.8.10 ace Code editor 117K 1.4.8 

arthas Java Diagnostic tool to troubleshood production issues 28K 3.1.7 angular.js Web development framework 53K 1.7.9 

azkaban Workflow manager 79K 3.81.0 atom Text editor 138K 1.44.0 

cayenne Java object to relational mapping framework 348K 3.1.2 bluebird Promise library 20K 3.7.2 

deltaspike CDI management 146K 1.8.2 bower Front end package management 10K 1.8.8 

exoplayer Android media player 155K 2.11.1 brackets Code editor 129K 1.14.1 

fop Print formatter using XSL objects 292K 2.3 Chart.js Chart designer 10K 2.9.3 

gson Java library to convert Java Objects to JSON 25K 2.8.6 exceljs Excel Workbook Manager 23K 3.8.0 

javacv Wrappers of commonly used libraries 23K 1.5.2 fabric.js Framework for HTML5 canvas element 20K 4.0.0 

jclouds Toolkit for java cloud applications 482K 2.0.2 jquery Javascript library 20K 3.4.1 

joda-time Date and time handling 86K 2.10.5 karma Tool for test driven development 5K 4.4.1 

libgdx Game development framework 280K 1.9.10 Leaflet Mobile friendly interactive maps 24K 1.6.0 

maven Software project management and comprehension tool 106K 3.5.4 less.js Language extension for CSS 12K 3.11.1 

mina Network application framework 35K 2.0.19 moment Parsing validating manipulating and format-

ting dates 

183K 2.24.0 

nacos Cloud application and microservices build and man-

agement 

60K 1.1.4 mongoose Tool for MongoDB object modeling 22K 5.8.12 

opennlp Natural Language Processing toolkit 93K 1.8.4 mysql MySQL protocol implementation 8K 2.18.1 

openrefine Data management 69K 3.2 node Node.js JavaScript runtime 130K 13.9.0 

pdfbox Library of processing pdf documents 213K 2.0.9 pdf.js PDF viewer 69K 2.2.228 

redisson Java Redis client and Netty framework 133K 3.12.0 plotly.js Chart design library 92K 1.52.2 

RxJava Composing asynchronous and event-based programs 

with observable sequences 

310K 3.0.0 pm2 Production process manager 15K 4.2.3 

testng Testing framework 85K 7.1.1 prettier Code formatter 25K 1.19.1 

vassonic Performance framework for mobile websites 7K 3.1.1 sails Realtime MVC Framework for Node.js 10K 1.2.2 

wss4j Java implementation for security standards in web ap-

plications 

136K 2.2.2 sequelize Node.js ORM 17K 5.21.4 

xxl-job Distributed task scheduling framework 9K 2.1.2 webpack Bundler for js files for usage in a browser 36K 4.41.6 

zaproxy Security tool 187K 2.9.0 yarn Dependency management 24K 1.22.0 



• SonarQube has a WEB API available, so with the use of appropriate tools the results have been gath-

ered in json format. The API allows the filtering of the results in order to exclude test and properties 

files. SonarQube provides the results grouped by file. Besides file name, the number of the issues for 

each severity level, blocker, critical, major, minor and info, was summed up to the total amount of is-

sues of each class. All of them contribute to the SQALE index of the file, which is the metric depicting 

the effort to eliminate TD. 
• Squore provided the results in .csv files, which could be exported through platform’s user interface. In 

this case a parser was necessary to read the .csv files. Using the previous SonarQube exports as refer-

ence, the files were filtered to exclude test and property files as before. Blocker, critical, major and mi-

nor issues were summed up to get the total issues for each class. Technical debt metric is provided in 

man days and man hours and it had to be converted in minutes to form a canonical technical debt index 

with the same units as for the previous tool. 

• CAST provides metrics for the total project and not per file through its user interface. In this case, the 

results were retrieved directly from the database schema that the software uses during the code quality 

analysis. With appropriate SQL query, which was provided by the CAST team, csv files were extracted 

containing a list of total occurrences of each issue per class. With a new parser these issues were 

grouped, aggregating the TD in minutes and the total violations per class. Then again, the files of the 

classes were filtered with those of SonarQube as reference (test and property files were filtered out). 

To obtain a common and structured form of the results, the exports from the tools were transformed into XML 

files. As a result, an XML file per project for every tool was generated. The XML contains all the classes/files 

with some TD in the system, along with the total issues detected in the class and the amount of TD as calculated 

by the corresponding tool. With the results in the same form it was possible to merge them into a single dataset. 

This dataset was finally grouped by class for Java and by file for JavaScript projects, containing the path of the 

file and the TD of the class/file as calculated by each tool. The dataset for the 25 Java and the 25 JavaScript pro-

jects is publicly available at Zenodo18. 

3.4 Data Analysis Methodology 

In this section, we present background information necessary for facilitating the understanding of the statistical 

methodologies used to address the research questions of the current study. 

3.4.1 Inter-rater Agreement (RQ1)  

For the formal representation of our experimental setup, consider that the collection of TD assessments generat-

ed by all three tools, as described in Section 3.3, resulted in a 𝑛 × 𝑝 matrix 𝑋 (Table 4), in which, each row 

represents a class, whereas each of the 𝑝 column vectors provides the rankings of TD measurements evaluated 

by a specific tool for a given class. At this point, we have to clarify that in the proposed approach we decided to 

utilize the rankings instead of the raw TD measurements, since our intention was to keep the dataset immune to 

variations of TD measurements due to different scales among the three tools. Indeed, a tool might follow a 

stricter ruleset for the measurement of TD which might result in much higher TD of classes compared to the 

assessments of the rest of the tools. However, the ranking of the measurements among all tools remain unaffect-

ed by absolute values and thus is a more suitable approach for comparison. As far as the ranking mechanism 

concerns, we adopted the fractional ranking approach, in which the sample ranks of the values in a vector are 

computed, whereas in cases of ties the average of the ordinal rank (or fractional rank) is assigned to each tied 

observation.    

Table 4 Representation of the dataset from the TD assessment results from each employed tool19  

Class Tool 1 Tool 2 … Tool p 

𝐶1 𝑟11 𝑟12 … 𝑟1𝑝 

𝐶2 𝑟21 𝑟22 … 𝑟2𝑝 

… … … … … 

 

18 https://doi.org/10.5281/zenodo.3966202 
19 Although we have used 3 tools, we generalize the theoretical presentation of our approach for p tools 

https://doi.org/10.5281/zenodo.3966202
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For reasons of simplicity, we present the methodology of the proposed framework on a demonstrative exam-
ple (opennlp project) utilizing the TD assessments from two tools (CAST and Squore). In this case, the TD as-
sessments can be visualized through a scatter plot (Figure 2), in which each point represents a specific class 
with coordinates the TD rankings evaluated by the CAST (𝑥-axis) and Squore (𝑦-axis) tools.  

 

Fig. 2 Scatter plot for rankings of TD measurements of opennlp project as evaluated by TD tools (CAST, Squore) 

The exploration of the pattern for the swarm of points provides certain information regarding the agreement of 

the employed tools. More precisely, it seems that there is a subset of classes lying to the upper right corner that 

are identified as the most high-TD (high rankings for TD measurements) by both tools. On the other hand, the 

inspection of the graph indicates also that Squore identifies a subset of classes that accumulate the lowest TD 

assessments but at the same time, these specific classes present an amount of TD ranging from the lowest up to 

the highest ranks according to the CAST tool. Finally, there is also a small number of classes assessed as high-

TD by the Squore tool, but at the same time, the CAST tool tags them as classes accumulating a relatively small 

amount of TD. Hence, a critical question that deserves further investigation is the extent to which these tools 

agree upon the assessments of TD for a given set of classes.  

To this regard, we make use of a statistical measure, namely the Kendall’s W coefficient of concordance (Ken-

dall, 1948), which belongs to the broader branch of methodologies known as inter-rater agreement analysis. In 

general, there is a plethora of measures for evaluating the agreement among assessors and the choice should be 

based on (i) the total number of assessors that assign to each subject a unique measurement (or rating), (ii) the 

scale of measurement (nominal with two or more categories, ordinal, continuous scale) that is assigned to each 

subject and (iii) the objectives of the analysis (Gwet, 2014). More specifically, the Scott’s 𝜋 (Scott, 1955) and 

Cohen’s 𝜅 (Cohen, 1960) are well-known measures for inter-rater agreement on a nominal dichotomous 

(No/Yes, Negative/Positive) scale that can be used in cases, where there are exactly two assessors. For the case 

of multiple assessors (more than 2) on nominal (either dichotomous or with multiple categories) or ordinal 

scales, the Fleiss’s 𝜅 (Fleiss, 1971), which is a generalization of Scott’s 𝜋 coefficient and the weighted Cohen’s 

𝜅 (Cohen, 1968) are possible choices that take into account not only the agreement but also the disagreement 

among them. All the aforementioned coefficients share the same rationale that is to evaluate and statistically test 

whether the average agreement between two (or more assessors) is significantly different than chance. An addi-

tional problem to the ordinal ratings, besides the fact that agreement and disagreement are no longer distinct 

notions (Gwet, 2014), is the fact that there is another kind of agreement that may be of interest. This can be de-

fined “as the agreement among raters with respect to the ranking of subjects” (Gwet, 2014), which, in our case, 

is related to the process of evaluating whether all assessors, agree on which classes are the highly-ranked, the 

second highly-ranked and so on. In this case, the selection of the most appropriate agreement coefficients should 

belong to the branch of measures of concordance (Gwet, 2014), since in general the variation of kappa statistics 

evaluate the absolute agreement between ratings, while concordance coefficients measure the association be-

tween ratings. Finally, a well-known limitation of kappa statistics is their dependence on the number of catego-

ries of the response measurement, since they tend to be generally higher, when there are fewer categories (Wat-

son and Petrie, 2010).    

Summarizing, the choice of Kendall’s W concordance coefficient instead of other kappa measures of agreement 

was based on the facts that (i) it serves in a straightforward manner the investigation of RQ1, which is related to 

the evaluation of the degree of agreement among TD measurement tools and (ii) it handles in an appropriate 
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way the characteristics of our experimental design, which involves three TD assessment tools (CAST, Squore, 

SonarQube) and the derived rankings ranging from 1 up to 𝑛 (the total number of the examined classes).  Due to 

the existence of a high number of tied ranks in each tool (Figure 2), we make use of a modification of the origi-

nal statistic that provides a correction for ties. The Kendall’s W statistic (Salkind, 2010)  is defined as  

𝑊 =
12 ∑ 𝑟𝑖

2𝑛
𝑖=1 3𝑝2𝑛(𝑛+1)2

𝑝2𝑛(𝑛2−1)−𝑝𝑇
     (1) 

where, 𝑛 is the total number of the examined classes, ∑ 𝑟𝑖
2𝑛

𝑖=1  is the sum of the squared sums of ranks for each 

of the 𝑛 classes and 𝑝 is the total number of the examined tools (three in our case). The term 𝑇 is a correction 

factor for tied ranks that is evaluated via the following formula  

𝑇 = ∑ (𝑡𝑘
3 − 𝑡𝑘)𝑔

𝑘=1       (2) 

in which, 𝑡𝑘 is the number of tied ranks in each of 𝑔 groups of ties, whereas the sum is evaluated over all 

groups of ties found in all 𝑝 tools of Table 4. Kendall’s W can take a range of values from 0 (indicating no 

agreement) to 1 (indicating a perfect agreement among assessors). In addition, Schmidt (Schmidt, 1997) pro-

vides specific guidance through rules of thumb on how researchers should interpret experimental results based 

on the evaluation of the Kendall’s W statistic. More specifically, a coefficient of 0.7 or higher can be interpreted 

as a strong agreement among the set of assessors. For example, the evaluation of the Kendall’s W concordance 

coefficient for the set of classes of our demonstrative example indicates a statistically significant strong agree-

ment between the CAST and Squore tools regarding their TD assessments, 𝑊 = 0.874, 𝑝 < 0.001. 

3.4.2 Benchmarking through Archetypal Analysis (RQ2 - RQ4) 

From what we have already mentioned, there are several available tools for assessing TD, whereas each tool is 

based on a different ruleset that may result to divergent TD assessments for a given project. Although, this fact 

could lead to the identification of alternative mitigation actions, the empirical evidence reveals that software 

practitioners and development teams usually base the measurement process of TD on a single tool. Having in 

mind that there is no ground truth for assessing TD, there is an imperative need for the empirical examination of 

the diversity produced by the utilization of a set of alternative TD tools. Indeed, the findings from the indicative 

example discussed in the previous section revealed that despite the fact that there is a strong agreement between 

the assessments provided by the two examined tools, the tools also disagree upon the measurement of TD of 

some classes.  

Towards this direction, we propose an agreement-based benchmark approach contributing to the empirical char-

acterization of the assessments provided by a set of 𝑝 alternative tools with respect to the derived TD evalua-

tions for a given set of 𝑛 examined classes. The benchmark framework is based on a statistical approach, name-

ly Archetypal Analysis (AA) (Cutler and Breiman, 1994). Describing the general principles of the methodology, 

AA is a data-driven multivariate method that explores a multidimensional space of points (or observations) with 

the aim of identifying certain observations, namely the archetypes, located on the boundaries of a swarm of giv-

en points (or convex hull). An interesting property of the methodology is the fact that the swarm of points can be 

represented as convex combinations of the archetypes. The latter provides a straightforward mechanism support-

ing the identification of a subset of points that are closer to a specific archetype, which in turn, can be used for 

benchmarking purposes. We note that although AA and Cluster Analysis (CA) share common ground, i.e., the 

exploration of a multidimensional space of points with the aim of identifying certain observations that represent 

specific profiles, they also present fundamental differences in terms of their goals. More specifically, AA aims 

at identifying points that lie on the convex hull of observations, or in other words observations that can be 

thought as “extreme” (at the edge of the set of points). In contrast, CA techniques focus on the exploration of 

points within the multivariate space with the objective of identifying points at the center of the profile. 

In our context, the input for AA is the 𝑛 × 𝑝 matrix 𝑋 (Table 4) representing the rankings of TD assessments 

derived from the analysis conducted through the utilization of a set of 𝑝 tools for a given project with 𝑛 classes. 

The algorithm of AA seeks for a matrix 𝑍 of 𝑘 × 𝑝, where 𝑘 and 𝑝 are the number of archetypes and dimensions 

(examined tools in our case), respectively through the computation of two coefficient matrices 𝑎 and 𝑏 minimiz-

ing the residual sum of squares (RSS) defined as 

RSS = ‖𝑋 − aZ𝑇‖2with 𝑍 = 𝑋𝑇𝑏     (3) 
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where ‖ ‖2 denotes the Euclidean matrix norm, subject to the following constraints: 

 
∑ 𝑎ij

𝑘
𝑗=1 = 1 with 𝑎ij ≥ 0 and 𝑖 = 1,..., 𝑛    (4) 

 
∑ 𝑏ji

𝑛
𝑖=1 = 1 with 𝑏ji ≥ 0 and 𝑗 = 1,..., 𝑘    (5) 

 
These constraints frame the two general properties of AA which are: (i) the approximated data (swarm of points) 

are convex combinations of the archetypes, i.e. 𝑋 = aZ𝑇, and (ii) the archetypes are convex combinations of the 

data points, i.e. 𝑍 = 𝑋𝑇𝑏. The term “convex combination” refers to the linear combination of points, when all 

coefficients are non-negative and their sum is equal to 1. Computationally, the algorithm reduces the RSS in Eq. 

(3) by iteratively calculating the archetypes along with the coefficient matrices 𝑎 and 𝑏. Summarizing, the ar-

chetypal solution provides an approximation of the convex hull defined by the swarm of points in the multidi-

mensional space through the evaluation of a few, not necessarily observed points, lying on the boundaries of the 

observed points.  

Due to the intuitive rational and interesting properties of AA, the method has been widely used for benchmark-

ing purposes in many scientific domains (Moliner and Epifanio, 2019), e.g. such as marketing (Li et al., 2003), 

astrophysics (Chan et al., 2003), sports analytics (Eugster, 2012), biology (Thøgersen et al., 2013), medicine 

(Elze Tobias et al., 2015), scientometrics and bibliometrics (Seiler and Wohlrabe, 2013), multi-document sum-

marization (Canhasi and Kononenko, 2014), neuroscience (Tsanousa et al., 2015) etc. In Software Engineering, 

AA has been introduced in (Mittas et al., 2014; Mittas and Angelis, 2020), in which the objectives were the 

evaluation of the predictive capabilities of a set of Software Effort Estimation (SEE) models and the building of 

ensembles using a subset of inferior models, whereas in (Kosti et al., 2016), the authors explored psychometric 

data in order to extract different software engineers profiles based on measurements from their personality and 

behavioral characteristics.        

Following a similar approach to (Porzio et al., 2008), in this study, AA constitutes the core methodology of a 

three-step process that facilitates the examination of the diversity of TD assessments provided by a set of alter-

native tools with the aim of identifying a set of classes exhibiting similarity to a selected archetype that can be 

used, in turn, for benchmarking purposes. Such classes can, for example, be classes with increased levels of TD 

as measured by all three tools, or TD-clean classes, which present limited inefficiencies. The three basic steps of 

the proposed approach summarized into the following points constitute the basis of our methodology for provid-

ing answers to RQ2 - RQ4: 
 

1. Identification of archetypes representing the reference assessments through the exploration of the di-

versity of TD assessments derived from the set of employed tools (RQ2).   

2. Reification of archetypal solution into the context of TDM through the identification of their character-

istics (RQ3).  

3. Identification and retrieval of a set of classes that are close to archetypes depicting either high TD or 

low TD assessments as suggested by all employed tools (RQ4).    

The implications of the three previous steps are clearly demonstrated through the application of the approach on 

the indicative example described in previous section. In Figure 3, the boundary of the grey area defines the con-

vex hull of all TD assessments derived from the CAST and Squore tools through the examination of classes 

from opennlp project. Based on the principles of AA, the archetypes representing the reference assessments will 

lie on this boundary, whereas the shape of the convex hull provides straightforward answers regarding the diver-

sity of the examined set of TD tools.  

A critical decision that someone has to take is the selection of an appropriate number of the 𝑘 archetypes that 

approximates the convex hull in an efficient way. Certainly, the number of archetypes plays a significant role to 

the efficient representation of the swarm of the observed points, since the diversity of the convex hull may be 

better captured, as the number of archetypes increases. In contrast, one has to take into consideration that an 

unnecessary large number of archetypes might not contribute further to the approximation of the convex hull, 

whereas it would also affect the benchmarking process, since the objective is the extraction of few reference 

assessments representing useful profiles of practical importance to both researchers and practitioners in TDM.  

To this regard, the graphical inspection of the swarm of TD assessments (Figure 3) suggests that the efficient 

number of archetypes capturing the diversity of the two examined TD tools is 𝑘 = 4 archetypes. In the trivial 

case of 𝑘 = 1, the archetypal solution is the centroid of the two-dimensional space representing the TD assess-
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ments matrix (Table 4), whereas its coordinates are easily calculated by the univariate sample mean values of 

TD rankings from each tool (sample means of CAST and Squore TD columns in Table 4).  

 

Fig. 3 Archetypal solutions (CAST, Squore) for opennnlp project  

 

Although the graphical inspection constitutes a straightforward manner for the identification of the appropriate 

number of archetypes in the special case of the two-dimensional space, i.e. the examination of assessment pro-

vided by two TD tools, this is not the case, when the number of the examined TD tools is higher than two (p>2). 

In order to provide certain guidelines about the decision upon the appropriate number of archetypes, Cutler and 

Breiman (Cutler and Breiman, 1994) suggest the utilization of the graphical inspection of the RSS reduction plot 

(or elbow plot). The RSS plot (Figure 4) constructed after consecutive executions of AA for different values of 

𝑘, (𝑘 = 1,2,3,4,5) confirms our intuitive beliefs derived from the graphical inspection of the two-dimensional 

example. More specifically, if we consider that the line displaying the RSS reduction looks like an arm, then an 

elbow appears at 𝑘 = 4, pointing out the optimal number of archetypes. The idea is that after this specific point 

(𝑘 > 4 ), the line flattens and hence, the extracted solution (𝑘 = 5) does not contribute to any further reduction 

of RSS. Summarizing, the practical implication of the first step (Step 1) of our proposed approach on the indica-

tive example, is that four reference assessments (archetypes) can capture the diversity of TD rankings derived 

from the static code analysis (by two tools) for the set of the examined classes of opennlp project.   

 

Fig. 4 RSS plot (CAST, Squore) for opennnlp project) 

In the second step (Step 2), we focus on understanding the characteristics of the derived archetypes with the aim 

of extracting information regarding their meaning from a practical point of view in TDM. The relative position 

of the four archetypal solutions (Figure 3) and the graphical examination of the profiles plot (Figure 5) provide a 

clear overview of what each archetype really represents. More specifically, the profiles plot shows the evaluated 

TD rankings (CAST and Squore coordinates, Figure 3) for each archetype of the final solution. In addition, we 
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can also observe that the examination of the characteristics provides also a semantic categorization of the de-

rived archetypes into two distinct groups, which are (i) the Ruler and (ii) the Rebel archetypes20 (Pearson, 2015). 

The former group (The Ruler) reifies a reference assessment profile, in which the two tools agree upon either on 

low (The Min-Ruler archetype 𝑎1) or high (The Max-Ruler archetype 𝑎4) TD rankings assessments. The latter 

group (The Rebels) reifies a reference assessment profile, in which the two tools do not agree on their TD rank-

ings assessments signifying a completely divergent behavior of the two assessors. Overall, the four archetypes 

represent the following distinct reference assessment profiles with the following characteristics: 

• The Max-Ruler (archetype 𝑎4 in Figure 3d) represents the reference assessment corresponding to the 

profile of classes accumulating high amount of TD based on the results of both tools (CAST and 

Squore).  

• The Min-Ruler (archetype 𝑎1 in Figure 3d) represents the reference assessment corresponding to the 

profile of classes accumulating low amount of TD based on the results of both tools (CAST and Squore).      

• The Rebel 1 (archetype 𝑎2 in Figure 3d) represents the reference assessment corresponding to the pro-

file of classes accumulating low amount of TD based on the results of the analysis from the CAST tool, 

but on the same time, high amount of TD based on the results of Squore tool.      

• The Rebel 2 (archetype 𝑎3 in Figure 3d) represents the reference assessment corresponding to the pro-

file of classes accumulating high amount of TD based on the results of the analysis from the CAST tool, 

but on the same time, low amount of TD based on the results of Squore tool.  

 
Fig. 5 Reference assessment profiles (archetypes) (opennnlp project)  

After the reification of the archetypes, the final step (Step 3) of the proposed approach involves the identifica-

tion and retrieval of a set of classes that are close to a specific archetype gathering certain characteristics that 

can be used for TDM purposes. Α critical challenge in the TD community raises from the fact that although 

there are several available tools for measuring and monitoring TD, the community has not concluded on a state-

of-the-art solution that could be used as a ground truth for measuring TD. Developers and researchers 

acknowledge that TD estimates provided by any single tool are inherently subjective, reflecting a particular 

strategy for the identification of TD items. The existence of a basis of classes that are assessed as high TD mod-

ules by various tools would point to classes that can objectively be classified as validated high-TD modules and 

would boost relevant research. Currently, the lack of a commonly agreed way of quantifying TD impedes the 

development of approaches that could built on top of TD measurements, as in the case of machine learning ap-

proaches seeking to identify code or design problems employing alternative parameters as inputs. The ability to 

derive a benchmark of classes being close to the Max-Ruler archetype can be directly leveraged for training 

supervised learning-based algorithms. Similarly, the classes which have been validated as high-TD by all tools 

can be analyzed by development teams to seek non ideal coding practices and patterns so as to avoid them in 

future releases. On the other hand, benchmarks of classes formed by those that are close to Rebel archetypes 

essentially designate design or code inefficiencies which are captured by only one of the available tools, possi-

bly pointing to unique features identified by a particular ruleset. As a result, the union of classes belong to these 

sets would ensure the widest possible coverage of TD liabilities.    

 

20  The idea of archetypes was developed by psychologist C. Jung in his studies about drivers of human behavior. Pearson 

suggested the use of 12 archetypes among which the ‘Ruler’ denotes personalities whose goal is to create a prosperous, 

successful family or community, while for a ‘Rebel’ (also known as Outlaw) the motto is that rules are made to be broken. 

In our context, the ‘Ruler’ profile denotes a community of classes sharing the same assessment by all employed tools, 

while the ‘Rebel’ points to tools that in some sense break the rules and identify TD items in a different way than the rest.  
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The evaluation of the adjacency of a certain TD assessment (representing a given class) to each archetype can be 

practically accomplished through the matrix of the 𝑎-coefficients (Eq. 4). More importantly, due to the first 

property of AA, i.e. the approximated points are convex combinations of the archetypes that are summed to uni-

ty, the computed 𝑎-coefficients for each TD assessment provide an easily interpretable mechanism for quantify-

ing its resemblance to all archetypes. Table 5 displays the classes and their TD assessments that are close to the 

Max-Ruler archetype according to the threshold value of 𝑎 = 0.80 for characterizing the neighboring classes. 

By setting the threshold value of 𝑎 = 0.80, a set of 84 out of 701 total classes (almost 12% of the examined 

classes) can be considered as adjacent to the Max-Ruler archetype. This practically means that a practitioner has 

access to a set of classes that have been validated as high-TD classes by all tools. Due to space limitations, we 

present only the first and last five classes from the 84 that are close to the Max-Ruler archetype. Interpreting the 

vector of α-coefficients for a randomly selected class, e.g. 𝐶42 with (αMin-Ruler, αRebel 1, αRebel 2, αΜax-Ruler) = (0.091, 

0.000, 0.001, 0.908) (last four columns of Table 5), we can infer that 𝐶42 is 9.1%, 0.0%, 1.0% and 90.8% similar 

to the Min-Ruler, Rebel 1, Rebel 2 and Max-Ruler archetypes, respectively, and for this reason it is considered 

as a neighboring class to the Max-Ruler archetype.  

Finally, Figure 6 visualizes the neighbourhood of the Max-Ruler archetype (corresponding to the TD measure-

ments of the abovementioned 84 classes) with a black-scaled colour indicating the degree of resemblance for 

each TD assessment to this specific reference assessment profile. Moreover, points denoted by empty red circles 

represent classes that are not similar to the Max-Ruler archetype (𝑎 < 0.80) in terms of their TD assessments.     

 
Fig. 6 Scatter plot for neighboring classes to the Max-Ruler archetype (CAST, Squore) (opennnlp project)  

The final step of the benchmarking process is supported by a web application (TD Benchmarker) that has been 

developed which enables the extraction of benchmarks, consisting of classes being close to a selected archetype, 

for varying threshold values. Interested researchers can download the agreement-based benchmark of choice and 

retrieve the identified classes for further experimentation. Moreover, the application provides graphical illustra-

tions of the RSS plots and the reference assessment profiles. TD Benchmarker is available online21. 

RQ1: For RQ1, where we examine the level of agreement of the used tools with respect to the measured TD of 

classes, we employed the Kendall’s W coefficient of concordance which belongs to the broader branch of meth-

odologies known as inter-rater agreement analysis. 

For RQ2 – RQ4 we propose an agreement-based benchmark process, which is based on a statistical approach, 

namely Archetypal Analysis (AA).  

RQ2: In the first step of the benchmarking process, our aim is to calculate the required number of archetypes to 

effectively capture the diversity of the tools. In this regard, we determined the appropriate number of archetypes 

via the graphical inspection of the RSS reduction plot (or elbow plot). 

RQ3: In the second step of the benchmarking process we focus on understanding of the characteristics of the 

derived archetypes in our attempt to interpret them from the Technical Debt Management (TDM) point of view. 

Through the graphical examination of the Archetypal Solutions figure we were able to distinguish two main 

categories of the archetypes; the Ruler and the Rebel archetypes. 

RQ4: The final step of the benchmarking process involves the identification and extraction of a set of classes 

that are close to a specific archetype with specific characteristics that can be interpreted in terms of TDM. The 

extraction of the aforementioned set of classes was accomplished through the matrix of 𝛼-coefficients (Eq. 4). 

 

21 tool: https://se.uom.gr/index.php/projects/technical-debt-benchmarking 

    source code: https://github.com/theoam/TDBenchmarker 

https://se.uom.gr/index.php/projects/technical-debt-benchmarking
https://github.com/theoam/TDBenchmarker
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Table 5 Indicative set of classes that are close to the Max-Ruler archetype (CAST, Squore) (opennnlp project) 

Class Ranking 𝑎-coefficient 

ID Name Squore CAST The Min-Ruler The Rebel 1 The Rebel 2 The Max-Ruler 

𝐶1 /main/java/opennlp/tools/stemmer/snowball/turkishStemmer.java 701 699 0.000 0.000 0.000 1.000 

𝐶2 /main/java/opennlp/tools/stemmer/snowball/englishStemmer.java 699 696 0.001 0.004 0.000 0.995 

𝐶3 /main/java/opennlp/tools/stemmer/snowball/frenchStemmer.java 700 694 0.000 0.008 0.000 0.992 

𝐶4 /main/java/opennlp/tools/stemmer/snowball/portugueseStemmer.java 695 692 0.008 0.002 0.000 0.989 

𝐶5 /main/java/opennlp/tools/stemmer/snowball/hungarianStemmer.java 693 697 0.003 0.000 0.010 0.988 

 … … … … … … … … 

𝐶42 /main/java/opennlp/tools/formats/Conll03NameSampleStream.java 648 636 0.091 0.000 0.001 0.908 

… … … … … … … … 

𝐶80 /main/java/opennlp/tools/formats/ontonotes/OntoNotesNameSampleStream.java 650 581 0.072 0.117 0.000 0.812 

𝐶81 /main/java/opennlp/tools/ml/BeamSearch.java 616 573.5 0.142 0.047 0.000 0.811 

𝐶82 /main/java/opennlp/tools/util/ObjectStreamUtils.java 591 573.5 0.182 0.000 0.012 0.807 

𝐶83 /main/java/opennlp/tools/cmdline/namefind/TokenNameFinderTrainerTool.java 591 620 0.111 0.000 0.082 0.807 

𝐶84 /main/java/opennlp/tools/lemmatizer/LemmatizerME.java 591 610 0.126 0.000 0.067 0.807 
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4. Results 

4.1 RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD measurement? 

Based on the proposed methodology (see Section 3.4), the objective is to investigate the degree of agreement 

among the applied TD tools (RQ1). Table 6 summarizes the results concerning the evaluation of the Kendall’s 

W concordance coefficient for the set of the examined 50 projects. The results suggest that, in general, the three 

TD tools converge on the identification and measurement of TD at class/file level. Overall, the coefficient val-

ues range from 0.520 (for atom JavaScript project) to 0.853 (for javacv Java project). To this regard, it is mean-

ingful to continue with the benchmarking process and extract the subset of classes which have been indicated as 

high-TD (or low-TD) classes by all tools. On the other hand, the graphical inspection of the aggregated results 

(Figure 7 (dot plots)) and the distributions of the coefficients for Java and JavaScript projects (Figure 8(a), 

(boxplots)) shows that the type of language seems to present an effect on the estimated agreement of TD tools. 

Indeed, an independent-samples t-test indicated a statistically significant difference between the mean values of 

Kendall’s W concordance coefficient for Java (𝑀 =  0.777, 𝑆𝐷 =  0.045) and JavaScript (𝑀 =  0.647, 𝑆𝐷 =

 0.075) projects, 𝑡 = 7.403, 𝑝 < 0.001 (Figure 8(b), (error bars)). Levene’s test indicated unequal variances, 

𝐹 = 7.628, 𝑝 = 0.008, so the t-test under the unequal variances assumption was used, whereas the Kolmogo-

rov-Smirnov test for normality assumption showed that the estimated coefficients satisfied the normality as-

sumption, K-S 𝑍 = 0.893, 𝑝 = 0.403.  

 

Fig. 7 Dot plots with the aggregated results of Kendall’s W concordance coefficient 

 

(a)     (b) 

Fig. 8 Box plots (a) and error bars (b) of the distributions of Kendall’s W concordance coefficient 
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Table 6 Kendall’s W Concordance Coefficient among all three TD tools for each analyzed system 

Project W 

(p-value) 
W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

Java 

arduino 

0.820 

(𝑝 <0.001) exoplayer 

0.776 

(𝑝 <0.001) joda-time 

0.770 

(𝑝 <0.001) opennlp 

0.790 

(𝑝 <0.001) testng 

0.811 

(𝑝 <0.001) 

arthas 

0.803 

(𝑝 <0.001) fop 

0.740 

(𝑝 <0.001) Libgdx 

0.804 

(𝑝 <0.001) openrefine 

0.781 

(𝑝 <0.001) vassonic 

0.800 

(𝑝 <0.001) 

azkaban 

0.793 

(𝑝 <0.001) gson 

0.820 

(𝑝 <0.001) Maven 

0.692 

(𝑝 <0.001) pdfbox 

0.736 

(𝑝 <0.001) wss4j 

0.774 

(𝑝 <0.001) 

cayenne 

0.766 

(𝑝 <0.001) javacv 

0.853 

(𝑝 <0.001) Mina 

0.681 

(𝑝 <0.001) redisson 

0.797 

(𝑝 <0.001) xxl-job 

0.795 

(𝑝 <0.001) 

deltaspike 

0.716 

(𝑝 <0.001) jclouds 

0.688 

(𝑝 <0.001) Nacos 

0.788 

(𝑝 <0.001) RxJava 

0.828 

(𝑝 <0.001) zaproxy 

0.800 

(𝑝 <0.001) 

JavaScript 

ace 

0.694 

(𝑝 <0.001) brackets 

0.712 

(𝑝 <0.001) Karma 

0.645 

(𝑝 <0.001) mysql 

0.653 

(𝑝 <0.001) prettier 

0.637 

(𝑝 <0.001) 

angular.js 

0.739 

(𝑝 <0.001) Chart.js 

0.667 

(𝑝 <0.001) Leaflet 

0.553 

(𝑝 <0.001) node 

0.684 

(𝑝 <0.001) sails 

0.693 

(𝑝 <0.001) 

atom 

0.520 

(𝑝 <0.001) exceljs 

0.553 

(𝑝 <0.001)  less.js 

0.572 

(𝑝 <0.001) pdf.js 

0.724 

(𝑝 <0.001) sequelize 

0.547 

(𝑝 =0.002) 

bluebird 

0.611 

(𝑝 <0.001) fabric.js 

0.643 

(𝑝 <0.001) moment 

0.537 

(𝑝 <0.001) plotly.js 

0.692 

(𝑝 <0.001) webpack 

0.643 

(𝑝 <0.001) 

bower 

0.684 

(𝑝 <0.001) jquery 

0.768 

(𝑝 <0.001) mongoose 

0.754 

(𝑝 <0.001) pm2 

0.722 

(𝑝 <0.001) yarn 

0.533 

(𝑝 <0.001) 
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The general conclusion from the evaluation of the Kendall’s W concordance coefficients and the rule of thumb 

proposed by Schmidt (1997) (see Section 3.4.1) is that in the case of Java projects, there is noted a statistically 

significant (𝑝 < 0.001) and strong agreement among the three tools regarding the TD assessments for the set of 

the conducted experiments with a mean value of 0.777 accompanied by a 95% CI ranging into the interval 

[0.758, 0.795]. In contrast, despite the fact that a statistically significant agreement among TD assessments is 

also indicated for the set of JavaScript projects, the strength of the agreement is characterized as moderate, since 

it presents a mean value of 0.647 with a 95% CI of [0.616, 0.678]. A possible interpretation for this finding is 

that tools for analyzing the quality of Java code (e.g. through static analysis) are more mature, compared to 

those for analyzing JavaScript, which are substantially younger. Therefore, it seems that along with their evolu-

tion Java analyzers have also converged on how the analysis is performed and what is deemed as an important 

problem for a codebase. On the other hand, it seems that JavaScript analyzers are in a more experimental stage, 

and therefore lower consensus is reached. 

4.2 RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools? 

After the verification of a statistically significant agreement among the three TD tools for the set of Java and 

JavaScript projects, the next challenge involves the benchmarking process with the aim to extract a set of classes 

identified as the most high-TD ones from all applied tools. Due to the extensive numerical and graphical results, 

we indicatively present the findings derived from the analysis (Step 1 - Step 3, see Section 3.4.2) on opennlp 

project. Through this manner, it can be also highlighted to both researchers and practitioners how the proposed 

methodology can be easily generalized to any experimental setup without constraints regarding the number of 

applied TD tools. Finally, we remind that the set of the experimental results along with the raw dataset of TD 

estimates for the 25 Java and 25 JavaScript projects are publicly available at Zenodo22. 

Generalizing the methodology presented above (Section 3.4.2), the relative positions of the TD assessments via 

the three tools can be represented by a scatter plot in a three-dimensional space (Step 1). Figure 9 displays the 

TD assessments, in which each point represents again, a specific class with coordinates the TD rankings evalu-

ated by the SonarQube (x-axis), CAST (y-axis) and Squore (z-axis) tools. Despite the fact that drawing conclu-

sions from the inspection of a three-dimensional plot is not a straightforward task, the shape of the swarm of 

points reveals an intrinsic pattern. More precisely, there is a subset of classes that are concentrated on the upper 

left corner of the plot, corresponding to classes that accumulate a high amount of TD as it is assessed by the 

whole set of the applied tools. On the other hand, it is also obvious that there are also other regions on the graph 

indicating divergent behaviour of the applied tools in terms of their TD assessments. The practical implication 

of this phenomenon is that the three TD tools signify different mitigation actions, which is the consequence of 

the utilization of different rulesets in the evaluation process of TD. 

 
Fig. 9 Scatter plot (3D) for the rankings of the TD assessments (all three tools) (opennlp project)  
 

22 https://doi.org/10.5281/zenodo.3966202 

https://doi.org/10.5281/zenodo.3966202
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Indeed, the examination of the RSS (Figure 10) after the consecutive executions of the AA algorithm for differ-

ent values of archetypes shows that the convex hull of the swarm of points can be adequately approximated by 

𝑘 = 8 archetypes. Generally, the examination of the RSS plots for the remaining datasets led us to conclude 

that this specific number of archetypes 𝑘 = 8 is a rational generalization for the whole set of our experiments.     

 

Fig. 10 RSS plot (SonarQube, CAST, Squore) (opennnlp project) 

4.3 RQ3: Which are the characteristics of the extracted archetypes? 

Having defined the appropriate number of archetypes (𝑘 = 8), the next step (Step 2) of the proposed approach 

concerns the reification of the extracted reference assessment profiles through the examination of their charac-

teristics. Figure 11 summarizes the profile plots for each archetype of the derived solution. The examination of 

the characteristics of the eight profiles reveals, again, that there are two distinct groups (Ruler and Rebel) that 

have also been identified in the case of the TD assessments on the two-dimensional space (CAST and Squore) 

(see Section 3.4.2). Besides this fact, the analysis brings to the surface a new type of profile with specific char-

acteristics regarding the assessments of the three tools. More specifically, the Partner23 archetype represents a 

reference assessment profile, in which two of the applied tools indicate a high amount of TD, whereas on the 

same time, the third tool is not able to identify it indicating a low amount of TD. 

 
Fig. 11 Reference assessment profiles (archetypes) from the assessments by all three tools (opennnlp project) 

 

23  The Partner archetype refers to personalities whose goal is being in a relationship with people and surroundings. In analo-

gy, the Partner profile in our case denotes cases where two of the three tools exhibit high agreement.  
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The characteristics of the 𝑘 = 8 reference assessments (Figure 11) are fully described below: 

• The Max-Ruler is the type of the reference assessment indicating a high amount of TD based on the re-

sults of all applied tools (SonarQube, CAST, Squore).  
• The Min-Ruler is the type of the reference assessment indicating a low amount of TD based on the re-

sults of all applied tools (SonarQube, CAST, Squore).  
• The Partner 1 is the type of the reference assessment indicating a high amount of TD based on the re-

sults from SonarQube and Squore tools and simultaneously, a low amount of TD based on the results of 

CAST tool. 

• The Partner 2 is the type of the reference assessment indicating a high amount of TD based on the re-

sults from SonarQube and CAST tools and simultaneously, a low amount of TD based on the results of 

Squore tool.      

• The Partner 3 is the type of the reference assessment indicating a high amount of TD based on the re-

sults from Squore and CAST and tools and simultaneously, a low amount of TD based on the results of 

Sonar tool.      

• The Rebel 1 is the type of the reference assessment indicating a high amount of TD based on the results 

from SonarQube tool and simultaneously, a low amount of TD based on the results of Squore and CAST 

tools.      

• The Rebel 2 is the type of the reference assessment indicating a high amount of TD based on the results 

from CAST tool and simultaneously, a low amount of TD based on the results of SonarQube and Squore 

tools.    

• The Rebel 3 is the type of the reference assessment indicating a high amount of TD based on the results 

from Squore tool and simultaneously, a low amount of TD based on the results of SonarQube and CAST 

tools. 

An interesting conclusion of the analysis on the remaining forty-nine datasets is that the abovementioned types 

of archetypes are applicable for the entire spectrum of projects and classes. It is reasonable to assume that the 

identified types of archetypes would be valid for any number of employed tools. For example, there will always 

be some classes identified as having high TD (or low TD) by all assessors (conforming to the Max-Ruler or the 

Min-Ruler archetype). Nevertheless, the number of commonly identified high-TD (or low-TD) classes is ex-

pected to decrease with the number of tools. Similarly, it is also highly probable that one of the employed tools 

will tag some classes as high-TD while all other tools will not, according to the Rebel archetype, or that some 

subsets of tools might agree to a larger extent (Partners). This inherent trade-off should be considered by devel-

opment teams when opting for particular quality assurance tools. The ‘intersection’ of commonly agreed arte-

facts with TD principal is expected to become lower as the number of tools increases and the benefit of obtain-

ing wider coverage should be weighed against the diversity of the findings and the difficulties in incorporating 

multiple tools in the workflow. Practitioners and researchers should be assisted in focusing on the modules that 

are most likely to suffer from TD and to this end the next RQ aims at selecting the right set of classes for further 

analysis.  

4.4 RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules? 

In the last step of the methodology (Step 3), the focus is now on the identification of classes that are close to the 

archetype signifying top-TD classes as assessed by all tools. Practically, we seek for classes settled in the neigh-

borhood of the Max-Ruler archetype, which in turn can be specified through the definition of a threshold value 

for 𝑎 coefficient. For example, in project opennlp, if we set 𝑎 = 0.80 as a threshold value to capture a strong 

similarity (or adjacency) to the Max-Ruler archetype (in analogy to the 2-tool representative) example presented 

in Section 3.4.2), for three tools we would obtain 54 top-rated TD classes (7.70% of the total), while for two 

tools we obtained 84 top-rated TD classes (11.98%). The decrease in the number of commonly identified high-

TD classes confirms the observation that the higher the number of assessors, the smaller the number of top-rated 

classes pointed out by all tools.   

To examine the effect of the defined threshold value 𝑎 on the percentage of top-rated classes extracted by the 

proposed approach, based on the source code analysis via the set of selected TD tools, we conducted sensitivity 

analysis. More precisely, we evaluated the percentage of top-rated classes for a set of threshold values of 𝑎-

coefficients ranging from 0.60 to 0.90 increasing by a step of 0.05. In addition, there is an imperative need to 

investigate whether the type of language presents an effect on the percentages of top-rated classes for the above 

set of threshold values, since the inter-rater agreement analysis presented in Section 4.1 revealed a statistically 

significant effect of the type of language on the estimated concordance coefficients. Thus, an interesting issue 
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that deserves further investigation is whether the type of language also affects the percentages of the top-rated 

classes.    

Figure 12 summarizes the results from which, we can generally infer that the percentage of top-rated classes 

decreases as the threshold value increases for both language types. Practically, the selection of a higher thresh-

old value imposes a stricter policy for the identification of high-TD classes by all employed tools. Another in-

teresting finding is the fact that the percentages of top-rated classes/files seems to be generally higher for Java 

projects in comparison to JavaScript projects.    

 

Fig. 12 Percentage of top-rated classes assessed by all three tools for increasing levels of threshold values 𝑎 (sensitivity 

analysis) 

So, the next issue is to investigate, whether the observed phenomena can be generalized to the population of 

OSS projects with similar characteristics. For this reason, we use the Linear Mixed Effects (LME) models (Pin-

heiro and Bates, 2000) that are able to model simultaneously two types of effects that are (i) the fixed effects, a 

term that is used to represent factors that may affect the mean value of interest, and (ii) the random effects that 

may have an impact only the variance of the response variable.  

In our experimental setup, the experimental unit for which, we wish to draw conclusions regarding the response 

variable Percentage (i.e. the percentage of top-rated classes) is the project, which in fact, represents a unit drawn 

at random from an infinite unknown population of projects. For this reason, one should take into account and 

incorporate into the analysis, the random effect of the factor Project, in order to model the inherent variability 

caused by this random selection from the set of all possible OSS projects. Regarding the fixed effects that can 

been thought as the effect of specific factors of interest on the response Percentage, we have to examine two 

factors that are (i) the threshold value (Threshold) of 𝑎 denoting the closeness to the Max-Ruler archetype and 

(ii) the type of language (Language). Besides the abovementioned two main effects (Threshold, Language), 

there is also a need to examine the interaction effect of Threshold and Language (Threshold× Language), since 

the effect of the threshold value of 𝑎 on the percentage of top-rated classes may not be the same at the two levels 

of language types (Java/JavaScript).      

Regarding the fixed component structure, which describes the main and interaction terms that will be included 

in the inferential process, the optimal structure was defined through the protocol proposed by Zuur et al. (Zuur 

et al., 2009). Described briefly, a model (defined as the beyond model) examining all factors of interest and their 

possible interactions is fitted and tested against a second model after omitting the higher order interaction term 

through the Likelihood Ratio (LR) test. In case of an insignificant finding, the selection is based on the principle 

of parsimony, which practically means that simpler models with similar explanatory power are preferred over 

more complex models with more parameters but slightly better fit. To this end, the Akaike Information Criterion 

(AIC) is used for the comparison process, while the model with the lowest AIC value should be preferred over 

the competitive ones.     
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The comparison of the beyond model (mentioned above) incorporating the main effects of Threshold and Lan-

guage and their interaction term Threshold× Language against the model without the interaction term Thresh-

old× Language did not reveal a statistically significant difference 𝜒2 = 6.055, 𝑝 = 0.417. The practical impli-

cation of this result is that the effect of the threshold value of 𝑎 on the percentage of top-rated classes is the 

same for both language types (Java/JavaScript). The fitting of the final LME model containing only the main 

effects revealed statistically significant main effects for both Threshold (𝐹 = 299.634, 𝑝 < 0.001) and type of 

Language (𝐹 = 29.493, 𝑝 < 0.001) on the mean percentage values of top-rated classes. We have also to note 

that all models were fitted on the logarithmic transformations of the raw percentages, due to the violation of 

homoscedasticity assumption of model’s residuals.     

Moreover, the post-hoc analysis through Tukey’s HSD test (Pinheiro and Bates, 2000) for the factor Threshold  

indicates statistically significant differences (𝑝 < 0.05) between the pairs of consecutive levels of threshold 

values (as shown in Figure 13, the error bar does not cross the vertical dashed line of zero). Finally, in Table 7, 

we report the expected mean percentage (accompanied by 95% CI) of top-rated classes for both language types 

in the population of OSS projects with similar characteristics in order to provide an indication of how many 

classes will be assessed as top-rated by all applied tools.   

 
Fig. 13 Post-hoc analysis for LME model (sensitivity analysis) 

Table 7 Estimated mean percentage with 95% CI for each threshold value 𝑎 (sensitivity analysis) 

 Java JavaScript 

Threshold Estimation 95 % CI Estimation 95 % CI 

0.60 15.24 [13.17, 17.64] 9.11 [7.87, 10.55] 

0.65 13.06 [11.28, 15.12] 7.81 [6.75, 9.04] 

0.70 11.13 [9.62, 12.89] 6.65 [5.75, 7.70] 

0.75 8.92 [7.71, 10.32] 5.33 [4.61, 6.17] 

0.80 6.81 [5.88, 7.88] 4.07 [3.52, 4.71] 

0.85 4.87 [4.21, 5.64] 2.91 [2.52, 3.37] 

0.90 3.28 [2.84, 3.80] 1.96 [1.70, 2.27] 

As it can be observed from Table 7, out of the total population of classes in each project and depending on the 

threshold value, only a small portion lying into the intervals [3.28%, 15.24%] and [1.96%, 9.11%] for Java and 

JavaScript projects, respectively, is characterized as having high-TD based on the findings of all three tools. 

Generally speaking, and without taking into consideration the type of language, this relatively low number of 

classes, in the neighborhood of the Max-Ruler archetype can be acknowledged as a basis concerning the high-

TD classes. The resulting agreement-based benchmark can drive further research by denoting the few modules 

carrying “real-TD”, rather than dealing with all candidates extracted by a single tool, which are not confirmed 

by other tools. Any future approach, leveraging also the power of machine learning, could be trained to accu-

rately identify the top-rated classes capturing TD in a more realistic manner. It should be noted that a similar 



 

26 
 

methodology could be applied for extracting a benchmark of low-TD classes. Such a set of classes might be 

valuable for studying the principles and practices resulting in cleaner code. Nevertheless, given the current pri-

orities of development teams and researchers we have focused on benchmarks of high-TD classes. Besides the 

abovementioned findings, the analysis also indicates that irrespective to the applied threshold value 𝑎 for char-

acterizing similar classes to the Max-Ruler archetype, the percentages of the high-TD classes are expected to be 

higher for Java projects compared to the corresponding percentages derived from the analysis on JavaScript 

projects. In the Appendix, we conduct a sensitivity analysis in order to examine the variability of the classes 

belonging to the Max-Ruler archetype. 

5. Implications to Practitioners and Researchers 

In this section, we revisit the main outcomes of this study from the perspectives of practitioners and researchers. 

However, it should be borne in mind that any identified implications are subject to the limitations of the context 

in which our study has been performed. In particular, the current study has considered only the types of TD 

identified by the selected tools (namely design and code debt) and two programming languages (namely Java 

and JavaScript). Moreover, the findings are based on a single measure of TD (i.e. principal) excluding other 

indices such as the severity or the type of the identified inefficiencies.  

Overcome construct validity threats in research (researchers). As mentioned in the introductory section, the re-

search community within the TD field lacks an ultimate process to accurately capture TD principal and thus, any 

empirical study or technique based on TD estimates runs the risk of not accurately measuring the real-world 

phenomenon under study. Each tool follows its own approach for detecting and measuring TD, based on a dis-

tinct ruleset, yielding a different amount for the total TD, but also pointing to different parts of the code that 

need to be mitigated, compared to other tools. There are several studies trying to identify high-TD modules and 

studies investigating the association of accrued TD with other factors. However, such approaches are heavily 

dependent on the employed tool for suggesting the ground truth, that is, the modules that actually have TD lia-

bilities and need to be fixed. Apparently, because each tool evaluates TD in a different way, the generalizability 

of these approaches is threatened to a large extent.  

The two aspects of the proposed methodology, that is, the estimation of inter-rater agreement among TD tools 

and the use of archetypal analysis for identifying classes having a desired profile (e.g. high-TD levels by all 

tools) can be applied by researchers to form a more reliable basis for their experiments. More conveniently, re-

searchers can also employ the already available benchmarks of high-TD classes (but also classes having a dif-

ferent profile if needed) from the online TD Benchmarker web application. Consequently, leveraging the power 

of multiple TD tools using the proposed approach can assist in the mitigation of construct validity threats that is 

currently present in the field of TD. 

Highlight critical modules with validated highest TD (practitioners). Despite the widespread adoption of the TD 

metaphor, it is far from clear which tool IT managers should integrate in the development and maintenance pro-

cess. Employing more than one TD tool for the evaluation of their software might be a costly option, since most 

of the existing tools are available only with a commercial license. Moreover, each tool requires significant effort 

to deploy, properly configure and familiarize with. However, even if a development team employs more than 

one tool, the union of all findings, would result in an unrealistic amount of suggestions, rendering the process 

intractable. Based on the proposed methodology, practitioners can highlight the classes that have been identified 

as high-TD classes by all employed tools leading to a manageable number of target classes. Development teams 

can take advantage of such agreement-based benchmark sets and focus only on the modules of their system that 

are validated as high-TD modules. With respect to the benefit of the already derived benchmarks from the ana-

lyzed systems, developers can focus on the classes close to the Max-Ruler archetype and gain insight into the 

root causes of the accumulation of TD in these classes and potentially avoid non-ideal coding practices in the 

future. Moreover, the non-unanimous archetypes (Rebel and Partner archetypes) can be valuable, as well. The 

existence of these archetypes is the key factor that differentiates one tool from the others. If only unanimous 

archetypes existed, this would mean that all tools generate the same results pointing to the same classes/files 

with accrued TD principal. Through the exploration of classes/files in the vicinity of non-unanimous archetypes 

development teams can gain insight into how TD tools differ on the measurement and prioritization of TD prin-

cipal. With such knowledge, developers can more confidently invest in the TD tool that best fits their perception 

of when a class/file is tagged as high-TD (or low-TD). 
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Collection of available TD tools (researchers and practitioners). Last but not least, another contribution of our 

work is the localization and collection of available TD assessment tools, as presented in Section 2. The list is by 

no means an exhaustive one, as numerous other tools offer functionality related to the identification of code 

smells, anti-patterns, rule violations, excessive metric values, etc. all of which are indicators of the existence of 

TD in software. Nevertheless, the presented tools can serve as starting point both for practitioners who are 

searching for a TD tool to integrate into their development process as well as researchers who are seeking an 

appropriate assessor of TD principal. In both cases, the proposed methodology can assist in the critical appraisal 

of the agreement or the diversity among tool findings.   

6 Threats to Validity 

In this section, we present and discuss potential threats to the validity of our case study, focusing on construct, 

reliability, and external validity (Runeson and Höst, 2008; Wohlin et al., 2000). Internal validity is not consid-

ered, since causal relations have not been studied. 

Construct Validity. Concerning construct validity, it can be argued that the basis of TD cannot be formed solely 

on the findings of TD assessment tools and as a result the study might inaccurately capture the actual phenome-

non. The employed tools perform static source code analysis and thus the identified liabilities are primarily re-

lated to code TD, and in certain cases might also point to design or architectural problems. But according to the 

literature (Alves et al., 2016; Li et al., 2015) several other types of TD have been identified and might be present 

throughout all phases of the software development lifecycle, including Test, Documentation, Build, Infrastruc-

ture TD, etc. Consequently, the extracted TD measurements and the resulting benchmark represent only a por-

tion of the system TD. However, code TD has been one of the mostly studied type of TD (Li et al., 2015) and 

the target of most available tools, including the ones that have not been used in this study. Furthermore, the 

steps of the proposed methodology are equally applicable to the findings regarding any type of TD and thus 

benchmarks can be derived for other types of problems, provided that suitable measurement tools are available.  

Another important threat to construct validity pertains to the exclusion from the study of other TD-related in-

formation, such as the specific type of the identified inefficiencies or their severity. Indeed, it might be the case 

that the level of agreement among tools varies depending on type/severity of issues and we believe that this war-

rants a further study. Although TD principal is an aggregate measure encompassing all kinds of identified prob-

lems, development teams would be more assured in case different tools agree on the more severe problems or 

the type of problems which they consider relevant to their software. Nevertheless, both aspects of the proposed 

approach for the quantification of the level of agreement among the tools and the extraction of representative 

archetypes can be applied to any subset of the identified TD issues.  

Reliability. The described methodology outlines all steps followed to carry out the inter-rater agreement and 

archetypal analysis along with the provided web application that allows the extraction of benchmarks (sets of 

classes close to the Max-Ruler archetype) mitigates reliability threats. One potential threat to the ability of repli-

cating this study and reaching the same results is related to the optimal number of archetypes defined in Step 1 

of the proposed approach (Section 3.4.2). The selection of the appropriate number of archetypes that is able to 

capture the diversity of the examined TD tools based on the inspection of the multidimensional space is, to some 

extent, a subjective process, especially in the case of a three-dimensional plot. In addition, the above visualiza-

tion practice is not applicable in case the number of tools is higher than three. In these cases, the practitioner 

should base his/her choice on the examination of the profile plots and most importantly, on the inspection of the 

RSS plot to conclude on the appropriate number of archetypes. In our experimental setup, the investigation of 

these graphical manners led us to the definition of the optimal number of eight archetypes, which is a rational 

and common-sense finding, since the derived archetypes represent expected behaviors, in cases where three TD 

tools with partially different rulesets are used for benchmarking purposes. Finally, the Open Science Replication 

Package (TD Benchmarker source code24 and AA tool support with dataset25) are validated by the Open Science 

Board. The links to these resources are provided as footnotes in this manuscript. 

 

24 https://github.com/theoam/TDBenchmarker 
25 https://doi.org/10.5281/zenodo.3966202 

https://github.com/theoam/TDBenchmarker
https://doi.org/10.5281/zenodo.3966202
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External Validity. Regarding the external validity of the proposed approach, a potential threat to the generaliza-

tion of the results is related to the identification and retrieval of the set of classes that are close to the Max-Ruler 

archetype (Step 3, Section 3.4.2), since the extracted set is certainly affected by the subjectivity and strictness of 

the practitioner. To this regard, we conducted a sensitivity analysis in order to examine how the choice of the 

threshold value for 𝑎-coefficient defining the neighbour classes affects the percentage of classes that belongs to 

the extracted benchmark set. Moreover, this work investigates the research questions in the context of 50 open 

source projects. Due to the limited number and types of the analyzed systems the conclusions regarding the ob-

served level of agreement among the tools and the number of archetypes which are sufficient to capture the 

swarm of the observed points, probably cannot be generalized across other domains, programming languages or 

to proprietary software. A similar threat to external validity stems from the selection of TD assessment tools in 

the sense that our analysis was based on the identified violations, which in turn reflect the particular ruleset of 

each tool. Therefore, the findings on the agreement of TD assessment tools cannot be generalized beyond the 

employed tools. 

7. Related Work 

Since our first goal was to study the level of agreement among TD tools, in this section we present previous 

studies that compare the techniques and results of tools that explicitly or implicitly measure TD. Our second 

goal was to extract an agreement-based benchmark set of validated high-TD classes; therefore, we discuss other 

approaches to build such benchmarks or extract thresholds in the broader area of software maintenance. 

7.1 Comparison of Tools measuring Technical Debt 

In a previous case study (Kazman et al., 2015), the authors aimed at locating the architecture debts of a proprie-

tary web portal system owned by a software outsourcing company using their own tool, Titan. The results of the 

Titan tool (TitanDebts) were compared to the results of the SonarQube tool (SonarDebts) that the company was 

already using. By examining the overlap between TitanDebts and SonarDebts, the authors found that ¼ of the 

total files (25 files) were found in the intersection of the most problematic files that Titan and SonarQube have 

identified. To this regard, the authors concluded that the Titan tool (which identifies architecture debts more 

effectively) and the SonarQube tool detect substantially different and complementary sets of files. 

A case study in 2014 (Zazworka et al., 2014) compared four different techniques of TD evaluation (with the 

associated tool to run the analysis) including code smells (tool: codevizard), automatic static analysis issues 

(tool: FindBugs), grime build up and modularity violations (tool CLIO). The authors investigated whether the 

set of selected techniques/tools report the same set of modules as problematic and which was the overlap among 

them. The classes of 13 Hadoop releases were measured and 30 metrics were compared. The results of the study 

showed that the four techniques/tools had very little overlap, pointing to different problems in different modules. 

In an experimental study (Griffith et al., 2014), the authors investigated the correspondence between several 

technical debt estimation approaches and external software quality models. Specifically, they evaluated (a) So-

narQubes’s, (b) CAST’s and (c) Marinescu’s method (Marinescu, 2012) of technical debt estimation against the 

QMOOD quality model, which encompasses the quality attributes; reusability, flexibility, understandability, 

functionality, extendibility and effectiveness. They did not find evidence for strong relationship between the TD 

estimates and the quality attributes of the QMOOD model, except for one estimation method regarding only the 

flexibility and effectiveness quality attributes. The authors concluded that “it is important that industry practi-

tioners, ensure that the technical debt estimate they employ accurately depicts the effects of technical debt as 

viewed from their quality model”. 

In a recent study (Ernst et al., 2017), the authors, being motivated by the perception that design problems are 

more significant than coding errors for long-term software maintenance, aimed at investigating how three major 

TD tools (CAST, NDepend, SonarQube) capture design debt. Particularly, the authors distinguished the rules 

that capture design debt from a total of 466 examined rules from all three tools. Their results showed that all 

three tools mainly focus on non-design debt (only 19% of the rules captured design issues). Particularly, NDe-

pend focuses the most on design rules (26% of its total rules are design-related), then follows CAST with 17% 

and SonarQube with 13%. 
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Fontana et al. (2016) examined the impact of the elimination of architectural problems in four Java projects on 

the quality indices of four tools (SonarQube, inFusion, Structural Analysis of Java (SA4J) and Structure101). 

The results showed that the architectural refactorings in the four examined systems did not have any impact on 

the SQALE index of SonarQube and as far as SA4J is concerned, its stability index was affected only in one 

system. Consequently, the authors concluded that the SQALE index of SonarQube and the stability index of 

SA4J are not capable of effectively capturing the notion of architectural debt. 

In another study (F. A. Fontana et al., 2016), the authors compared the techniques of five tools (CAST, inFu-

sion, Sonargraph, SonarQube and Structure101) that provide some kind of Technical Debt Index (TDI). The 

comparison of the tools showed that all tools except for SonarQube exploit architectural information to form 

their TDIs. Moreover, two of the tools (inFusion and Structure101) do not calculate the cost for TD remediation 

(TD principal) whilst they only calculate the cost of keeping the software as it is (TD interest). On the other 

hand, CAST and SonarQube calculate only TD Principal and not TD interest. As far as the output measurement, 

CAST and Sonargraph output cost in terms of US dollars, SonarQube in terms of time to remedy issues, while 

the rest produce either abstract values or values that are not expressed in money or time. 

According to the abovementioned studies that compared different TD measurement tools, the results of each 

tool diverged from the results of the others. This phenomenon emphasizes our motivation to compare the TD 

estimates of several TD tools and extract the high-TD modules as identified by the tools altogether. It should be 

also noted that the aforementioned studies employed tools that measure TD either explicitly (generating a direct 

Technical Debt Index) or implicitly (generating a general quality index). Nevertheless, we remind that, in our 

study, we employed tools that explicitly output a Technical Debt Index to allow for more focused and direct 

comparison of the results on TD measurement. 

7.2 Benchmarks in Software Maintenance 

Several studies attempt to establish benchmark datasets so that software quality assessment approaches can be 

compared against them. Quite often the related research effort aims at building benchmarks to extract repre-

sentative thresholds for source code metrics or quality indices, which can then serve as baseline for comparison 

with actual values of the systems under evaluation. A notable example of such benchmarks is the benchmark 

repository of Software Improvement Group (SIG) against which any selected system can be compared in terms 

of code quality and maintainability (Baggen et al., 2012). Below we provide an overview of studies, in which 

the authors developed benchmarks and aimed at deriving thresholds for the evaluation of software quality (in 

descending chronological order). 

In a recent study (Mori et al., 2018), the authors defended the idea that the extraction of metric thresholds should 

be tailored to each software domain. They collected a large set of 3107 Java systems across 15 domains from 

GitHub26 and measured a set of 8 source code metrics with the CK Tool27. The aforementioned metrics reflected 

size, complexity and inheritance aspects of software. Then, the authors derived metric thresholds using the 

method supported by TDTool (Veado et al., 2016). In particular, thresholds have been selected so as to represent 

various groups (i.e. high-90% and very high-95%) of the sorted metric values. The authors found evidence that 

"metric thresholds vary across domains and most domain-specific thresholds differ from generic thresholds". 

Döhmen et al. (2016) built a benchmark for maintainability evolution with data from approximately 1750 indus-

trial software systems. The data was collected from the Software Analysis Warehouse (SAW), a property of the 

Software Improvement Group (SIG). SAW contains the results of the software quality analyses that SIG con-

ducts. The study focused on the production source code of the projects excluding testing and auto-generated 

code. The authors created a prototype of a benchmark for maintainability evolution. The benchmark was based 

on a group of systems, which were close to a selected open source system, Crawljax, in terms of maintainability 

and volume. The authors, first, selected the systems which had the 5% closest maintainability transitions to 

Crawljax and then, with the use of Empirical Cumulative Distribution Function (ECDF) found the systems that 

developed equal or worse than the compared system. 

 

26 https://github.com/ 
27 https://github.com/mauricioaniche/ck 

https://github.com/
https://github.com/mauricioaniche/ck
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Comparison against existing systems has also been used as a method for assessing the software quality of a 

commercial system, property of an international company in the logistics domain (Yamashita, 2015). The sys-

tem was analyzed in terms of size, complexity, modularity, redundancy and technical debt with the utilization of 

SonarQube and NDepend. To evaluate the quality of the system, the author compared it with the quality of a set 

of 1892 open source projects from GitHub of similar age and programming language. The author calculated the 

metrics of each project with SonarQube and then extracted the percentile thresholds of the metrics with RTTool 

(Oliveira et al., 2014a). The system's metric was considered "normal" if its value was near the middle percen-

tiles and vice versa. The aforementioned benchmark was applied at file and at system level with aggregated val-

ues. 

The notion of balance between real and ideal software design was used in a study in 2014 (Oliveira et al., 

2014b), in which the authors described a method for deriving relative thresholds for source code metrics. The 

method was based on evidence that source code metrics follow fat-tailed distributions, meaning that there is no 

typical value for them (Ferreira et al., 2012). Therefore, the authors suggested that it is acceptable for some met-

rics not to follow absolute thresholds. To this regard, they proposed the concept of relative thresholds for evalu-

ating source code metrics, where a percentage of source code entities should have values lower than an upper 

limit, whilst another percentage of entities is accepted to exceed upper limit due to specific requirements. The 

method was evaluated by applying it on the classes of 106 Java systems and extracting thresholds for seven met-

rics.  

A benchmark-oriented calculation of TD was proposed by Mayr et al. (2014). Their benchmark-based model for 

calculation of Remediation Costs of software combined features from three existing TD calculation approaches; 

CAST model, SQALE model and the SIG model. Measures obtained with these models were normalized in 

terms of lines of code before used in the proposed model. For each metric, the authors calculated a quartile-

based distribution dividing the normalized values of the metric in four areas. Metrics with values that laid below 

the lower or above the upper areas were considered non-conforming to the benchmark dataset. Ultimately, the 

authors tested their model by applying it on two open source projects, the quality of which had been previously 

evaluated and compared against the benchmark database. The experiment showed that the model was able to 

calculate remediation costs that reflected the relative (to the benchmark database) quality of the projects. 

In another study (Alves et al., 2010), a method for extracting metric thresholds from benchmark data was de-

signed. The method was applied on a benchmark of 100 C# and Java systems proprietary and open-source from 

a broad range of domains. The metrics were extracted for every entity of the system (method and file level) and 

were normalized with the weight of the entity. As weight of the entity, its size in terms of LOC was considered. 

Then the normalized metrics were placed in percentiles, from which the thresholds derived. Their contribution 

to the industry was to successfully use the thresholds derived with their methodology instead of the thresholds 

based on experts’ opinion. 

8. Conclusions and Future Work 

The Technical Debt metaphor successfully captures, in monetary terms, the penalty that has to be paid because 

of shortcuts during software development. These shortcuts are known to introduce architectural, design and code 

inefficiencies in software systems and various TD tools aim at identifying them by testing the source code 

against specific rulesets. However, TD tools provide different estimates of TD principal pointing to different 

mitigation actions. These discrepancies make a lot of people in academia and practice skeptical about the validi-

ty of existing TD tools and hinder the further development of TD research as no ground truth for accurate TD 

instances can be established. 

To address these limitations in the TD community we performed an empirical study whose goal was twofold: (a) 

to determine the level of agreement among three well-known TD tools and (b) build agreement-based bench-

marks of high-TD classes/files from a dataset resulting from 50 open-source projects. Inter-rater agreement has 

been assessed, using Kendall’s W coefficient of concordance. To capture the diversity of the examined tools 

with the aim of identifying representative class profiles we relied on archetypal analysis. Once the derived refer-

ence assessments are characterized, it is straightforward to extract sets of classes exhibiting similarity to a se-

lected profile (e.g. that of high TD levels in all employed tools) and in this way establish a basis. 
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The findings of the inter-rater agreement analysis suggest that there is a statistically significant and strong 

agreement among the three TD tools on the measurement of TD at class level. However, a substantial degree of 

disagreement has also been observed for the measured TD level for numerous classes. The application of the 

archetypal analysis revealed that three types of reference assessments can successfully capture the spectrum of 

TD measurements provided by three tools: One set of archetypes represents classes identified as high-TD mod-

ules by only one of the tools, the second profile encompasses classes for which two of the tools agree on the 

measured TD level, while the final type of archetype signifies a high amount (or low amount) of TD based on 

the results of all applied tools. Selecting the classes in the vicinity of the latter archetype yields an agreement-

based benchmark of classes tagged as high-TD by all tools. Such benchmarks, beyond their value as fields of 

study for poor development practices that led to low quality classes, can potentially form the basis for training 

more sophisticated TD identification and measurement approaches. 

The goal of this study was to shed light into the level of agreement among TD tools and to establish a process 

for deriving an agreement-based benchmark set of high/low TD artifacts. Any interpretation of the results con-

sidering different perspectives, such as development context, role of developers (tester, designer, analyzer, etc.) 

was beyond the scope of this paper. Nevertheless, this forms a really interesting area of future work. Another 

interesting line of research would be to investigate to which degree TD tools are compliant with the guidelines 

of the OMG Specification on Automated Technical Debt Measure28, accompanied by an experience report on 

how to use these tools, problems that practitioners might face during their installation, configuration, and analy-

sis, as well as a guide on how the TD Benchmarker can be used. 

We also acknowledge that the nature of the examined rules by each tool might be a decisive factor for the TD 

principal estimates per class/file. Drilling down to the level of individual rule violations which are detected by 

each tool, can shed light into the cause of their agreement or discrepancy. We plan to conduct such a study to 

investigate the similarity among the examined rules by mapping the rules adopted by each tool to the rules em-

ployed by the other tools. 
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