Evaluating the Agreement among Technical Debt Measurement Tools: Building
an Empirical Benchmark of Technical Debt Liabilities

Theodoros Amanatidis?, Nikolaos Mittas?, Athanasia Moschou?, Alexander Chatzigeorgiou®, Apostolos Ampatzoglou?, and
Lefteris Angelis®

! Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
2 Department of Chemistry, International Hellenic University, Kavala, Greece
3 Department of Informatics, Aristotle University of Thessaloniki, Greece

tamanatidis@uom.edu.gr, nmittas@chem.ihu.gr, nasiamoschou@gmail.com, achat@uom.gr, a.ampatzoglou@uom.edu.gr,
lef@csd.auth.gr

Software teams are often asked to deliver new features within strict deadlines leading developers to deliberately
or inadvertently serve “not quite right code” compromising software quality and maintainability. This non-ideal
state of software is efficiently captured by the Technical Debt (TD) metaphor, which reflects the additional ef-
fort that has to be spent to maintain software. Although several tools are available for assessing TD, each tool
essentially checks software against a particular ruleset. The use of different rulesets can often be beneficial as it
leads to the identification of a wider set of problems; however, for the common usage scenario where developers
or researchers rely on a single tool, diverse estimates of TD and the identification of different mitigation actions
limits the credibility and applicability of the findings. The objective of this study is two-fold: First, we evaluate
the degree of agreement among leading TD assessment tools. Second, we propose a framework to capture the
diversity of the examined tools with the aim of identifying few “reference assessments” (or class/file profiles)
representing characteristic cases of classes/files with respect to their level of TD. By extracting sets of clas-
ses/files exhibiting similarity to a selected profile (e.g., that of high TD levels in all employed tools) we estab-
lish a basis that can be used either for prioritization of maintenance activities or for training more sophisticated
TD identification techniques. The proposed framework is illustrated through a case study on fifty (50) open
source projects and two programming languages (Java and JavaScript) employing three leading TD tools.

Keywords: technical debt, software quality, archetypal analysis, inter-rater agreement, empirical benchmark

1. Introduction

Throughout the software lifecycle, practitioners speed up the development process by compromising software
quality and maintainability in favor of shorter time-to-market. This compromise has been effectively captured
by the concept of Technical Debt (TD), as coined by Ward Cunningham (Cunningham, 1992), offering an anal-
ogy to the financial debt. In financial debt, one party borrows capital from another party and repays it back with
some added interest. In the TD metaphor, the development team ‘borrows’ a certain amount of effort by deliver-
ing non-ideal code and repays it gradually in future iterations in the form of additional time and effort to per-
form maintenance on the non-ideal code. The increased maintenance effort, which is caused by the degradation
of software maintainability, is considered as the “interest” that the development team has to pay in the long
term. In contrast to financial debt, TD is hard or even impossible to measure accurately. The suggested practice,
according to the OMG specification on Automated Technical Debt Measure (ATDM)?, is to consider as princi-
pal of TD (at the source code level) the total effort required to eliminate TD items, which are inefficiencies that
have been identified in a software artifact under an established ruleset. However, even if developers are aware of
parts of the code that “do not feel right” it is challenging to associate an exact numerical estimate with every
rule violation. Software modules evolve over time and subtle or major changes in their TD might be incurred by
the transition from one commit to the next, rendering the accurate monitoring of TD even more demanding.

The limitations on accurately measuring TD lead to various shortcomings in both academia and industry, in the
sense that one cannot control (or manage) what he/she cannot measure (DeMarco, 1986). Despite the fact that
several tools are available for measuring and monitoring TD (notable examples include CAST AIP?, Squore?®,

1 https://www.omg.org/spec/ATDM/About-ATDM
2 https://www.castsoftware.com/
3 https://www.vector.com/int/en/products/products-a-z/software/squore/squore-software-analytics-for-project-monitoring/

https://www.omg.org/spec/ATDM/About-ATDM
https://www.castsoftware.com/
https://www.vector.com/int/en/products/products-a-z/software/squore/squore-software-analytics-for-project-monitoring/

and SonarQube?), either commercial or open-source ones, the community has not concluded on a state-of-the-art
solution that could be used as a basis for measuring TD (a full list with TD measurement tools that were found
during our current research is presented in Section 2). Some shortcomings whose roots lie in the lack of a well-
established way for assessing (i.e., measuring and identifying) TD principal, are presented in Figure 1.

...but there is not ground
truth to compare my approach to

Propose Novel
Methods for TD
Assessment

O Empirically ...l am uncertain that the tool that |
Study TD have used captures the phenomenon
Monitor the. ...but tools do not agree in the amount
d Levels of TD in ~ of TD that | have in my system. | cannot
O my System

get them all

EO

@

| |
Software QA Expert
(]
O

Artifacts with
Highest TDto ™\
Refactor ,

...l cannot use all tool suggestions, | need the
O ones with the highest certainty

Fig. 1 Shortcomings from diverse TD measurements

Shortcomings in Research: The lack of a ground truth, even a commercial one, leads to construct validity
threats in almost any kind of quantitative empirical study in the field, in the sense that it is not certain that any
metric that attempts to capture TD principal is accurately measuring the real-world phenomenon. This problem
does not lie only on limitations of the tools per se, but also on the underlying methodologies. In particular, each
tool follows its own approach for detecting and measuring TD based on its own ruleset, while another tool might
be based on an entirely different ruleset yielding a different amount for the total TD, but also pointing to differ-
ent parts of the code that need to be mitigated. Moreover, there are several research efforts trying to associate
TD items (i.e., violations of coding practices in software artifacts, which according to the OMG Specification on
ATDM - see footnote in first page, are considered instances of TD principal) with quality attributes of software.
For example, studies have focused on the relation between TD principal and the presence of crosscutting con-
cerns in software requirements (Conejero et al., 2018), the existence of modularity violations, code smells and
static analysis issues (lzurieta et al., 2012), code size, duplication and complexity (Nugroho et al., 2011) and
architecture flaws (Nayebi et al., 2019). However, every such approach is heavily dependent on the employed
tool for suggesting the ground truth, that is, the modules that actually have TD liabilities and need to be fixed.
Obviously, if each tool identifies high-TD modules in a different way, the generalizability of these approaches is
threatened to a large extent.

Shortcomings in Practice. Despite the widespread adoption of the TD metaphor, it is far from clear which tool
IT managers should trust for monitoring TD, or deciding the mitigation actions to be applied. One option would
be to employ more than one TD tools for the evaluation of their software, but this is a costly one, since most of
the existing tools are available only with a commercial license. Moreover, someone should also consider the
effort to deploy the tools on their premises, configure them properly and eventually familiarize development
tools with their usage. In addition to that, even with the use of multiple tools, the union of all possible fixes sug-

4 https://www.sonarqube.org

https://www.sonarqube.org/

gested by different tools would yield an unrealistic amount of suggestions which would end up (even if they
were accurate enough) to be useless in practice.

Acknowledging the widespread adoption of the TD metaphor and the inherent limitation of existing tools to
capture TD principal in a globally accepted way that best fits developers’ needs (Sadowski et al., 2015), in this
study we aim at: (a) systematically investigating the degree of agreement among state-of-the-art TD measure-
ment tools on identifying and prioritizing TD principal (i.e. the effort to remediate inefficiencies) at class/file
level; and (b) proposing an agreement-based benchmark approach that contributes to: (i) the exploration of all
feasible assessments of TD principal provided by a set of alternative TD tools, (ii) the identification and charac-
terization of few divergent “reference assessments” (or archetypes); and (iii) the extraction of a subset of mod-
ules for which all employed tools agree on the presence of a high amount of TD principal, thus serving as an
agreement-based benchmark of the “validated” top-rated classes/files® in terms of TD principal assessment.

To achieve the former goal, we make use of a well-known inter-rater agreement coefficient, namely the Ken-
dall’s W coefficient of concordance (Kendall, 1948). Regarding the second goal (benchmarking process), the
Archetypal Analysis (AA) (Cutler and Breiman, 1994) is adopted, which is a multivariate statistical methodolo-
gy that explores a multidimensional space of measurements with the aim of identifying a set of few reference
points, namely the archetypes, located on the boundaries of the swarm of given points. The derived archetypes
(or reference points) represent divergent profiles in the examined space, whereas the methodology encompasses
a mechanism for the evaluation of resemblance coefficients contributing to the evaluation of similarity for each
point to the derived archetypes.

To this end, we have employed three well-known tools that measure TD and analyzed 50 open source projects
(25 Java and 25 JavaScript projects). The results of the proposed methodology are automatically reported
through a web-based interactive toolbox to facilitate researchers and software practitioners to reproduce and
explore the findings of the current study and easily retrieve a suitable benchmark for further experimentation
(e.g., the training of other statistical or machine learning approaches to identify TD items). The TD Bench-
marker toolbox is implemented using the Shiny framework® taking advantage of the R statistical language” in an
easy-to-use frontend. The toolbox is a free and academic on-going research project developed by Statistics and
Information Systems Group (STAINS)® at Aristotle University of Thessaloniki, Greece and is accessible
through the paper’s web page®, at the website of the Software Engineering Group of University of Macedonia®®,
Greece.

Apart from the empirical results and the extension of the body of knowledge in the field of TD management, an
actionable outcome of this study is the provision of an agreement-based benchmark set of the most high-TD
classes as indicated by the three tools altogether. The agreement-based benchmark is expected to alleviate the
aforementioned limitations either directly or indirectly: regarding researchers the benchmark can be exploited
for methodologies aiming at identifying TD items (targeting either high recall, or high precision), whereas it is
also expected to aid practitioners since it will contribute to the development of novel tools that will be able to
predict these items. More details on the implications of the benchmark for researchers and practitioners are pro-
vided in Section 5.

The rest of the paper is organized as follows: In Section 2 we present the available TD assessment tools that we
have managed to locate throughout our research and explain why we ended up with the three employed TD
tools. In Section 3, our case study design is presented along with the objectives, the research questions, the data
analysis and the methodology. In Section 4 we present and discuss our results and in Section 5 the implications
to researchers and practitioners are highlighted. In Section 6 we unfold possible threats to validity of our study
while in Section 7 we provide related work regarding previous studies on comparison of tools measuring TD
and benchmarks in software maintenance. Finally, we conclude in Section 8.

5 The term ‘class’ refers to the unit of analysis for Java projects, while the term ‘file’ refers to the unit of analysis for JavaS-
cript projects. Throughout the paper we primarily use the term ‘class’ for simplicity, but both units of analysis are consid-
ered, accordingly.

6 https://shiny.rstudio.com

7 https://www.r-project.org

8 http://stains.csd.auth.gr

° https://se.uom.gr/index.php/projects/technical-debt-benchmarking

10 https://se.uom.qr

https://shiny.rstudio.com/
https://www.r-project.org/
http://stains.csd.auth.gr/
https://se.uom.gr/index.php/projects/technical-debt-benchmarking
https://se.uom.gr/

2. TD Assessment Tools

In this section we discuss TD assessment tools that either have been proposed in the context of research efforts
(usually open-source or free) or are available as commercial software, by providing a brief description of their
capabilities. Then we provide more details on the three tools that have been selected for this study explaining the
rationale for their selection.

During the previous years, numerous TD assessment tools have emerged; these tools are able to measure TD
either in terms of cost or effort/time to repay TD. To identify as many tools as possible, we have conducted a
non-systematic literature search, including grey literature (such as websites):

e Literature search: Regarding our literature search, we relied on the IEEE Xplore** and ACM Digital
Library!? search engines. Our search string was applied on the title and abstract fields and had the fol-
lowing form: “technical debt” AND (measurement OR assessment OR estimation) AND (tool OR plat-
form). We gathered the studies that have been returned from the aforementioned search and filtered out
those which neither introduce nor mention any TD tool in their title or abstract.

e Web search: Throughout our web search, we used major search engines such as Google, Bing and Ya-
hoo, using the same query. The results led us either to the landing pages of the websites of the compa-
nies that own the tools or to articles introducing most well-known tools for assessing TD.

Right below we provide a short description of the TD assessment tools that we have managed to locate through-
out our search. For each tool, we provide the study and the year in which it was first introduced or presented.
The actual versions of the employed tools at the time of this study are provided in the end of this section.

AnaConDebt (Martini and Bosch, 2016) is a tool that focuses on Architectural Debt. Since a change in the ar-
chitecture of a project can be really expensive and time consuming it is important to decide if and when this
change should be implemented. The tool uses a large list of internal and external factors to estimate more accu-
rately the future principal and interest. It helps managers to decide when it is the right time to refactor the code
of their software.

CAST (Curtis et al., 2012) contains several sub-tools in order to provide the entire quality profile for the project.
Health dashboard, Engineering dashboard, Security dashboard, CAST Appmark which is a benchmarking base
to use as a comparison standard and CAST Enlighten with Imaging system that offers a visualization of the pro-
ject. This tool helps companies to perform "Shift Left" techniques to detect the issues of a project in early stages
of its life cycle. This way the cost of fixing the issues is more tolerable. The tool implements the C-CPP, CISQ,
CWE, NIST-SP-800-53R4, OMG-ASCQM, OWASP, PCI-DSS-V3.2.1 and STIG-V4R8 standards. By perform-
ing static analysis, a list of issues is created. Only a part of the problems will be solved and this part defines the
technical debt metric.

CodeScene (Tornhill, 2018) serves as a mean to preserve the quality of the code of the automated tests. It com-
bines repository mining with static code analysis and machine learning. Static analysis can detect the problems
in the project, but since the source code is treated as of the same importance, repository mining is necessary to
recognize behavioral data and social factors that can affect future decisions of refactoring. The results of the
metrics may have different meaning depending on the characteristics of each project. Machine learning is used
to identify patterns in order to prioritize these metrics and assign them the appropriate weight. The final result of
the tool is a catalogue with the problematic files ranked by their total impact.

DebtFlag (Holvitie and Leppéanen, 2013) is a tool for capturing, tracking and resolving technical debt in Java
systems. It consists of two parts; one plug in for Eclipse IDE which is responsible to collect the data from the
source code, and one web application to visualize the results. These two applications connect via a database.
The collected data is structured using the TDMF form, which was extended to cover the tool's needs. The tool
offers the results in such a way that can be used to manage technical debt in two levels; project level and imple-
mentation level with micromanagement.

1 https://ieeexplore.ieee.org
12 https://dl.acm.org/

https://ieeexplore.ieee.org/
https://dl.acm.org/

Debtgrep (Arvedahl, 2018) is an inhouse tool developed by Ericsson 4G 5G Baseband and its purpose is to pre-
vent technical debt. It uses a file where all rules are declared using regex. The rules can contain forbidden words
to restrict the usage of API and deprecated methods and also guidelines for design and architectural rules. The
rules can be applied only to a specific part of code such as new code. This tool supports the communication be-
tween the developing team members and enhance the consistency and the uniformity of the project.

DV8 (Nayebi et al., 2019) is a commercial extension of Titan (Xiao et al., 2014a). DV8 functions with DRSpac-
es (Xiao et al., 2014b), which are groups of system’s files that are architecturally related. Within DRSpaces,
DV8 computes three modularity metrics (Decoupling level, Propagation Cost and Independence Level) and de-
tects six architecture anti-patterns (Clique, Package Cycle, Improper Inheritance, Unstable Interface, Crossing
and Modularity Violation). DRSpaces (i.e. the subsets of architecturally related files) that are involved in a se-
lected set of issues are called ‘architecture roots’. The tool calculates the added maintenance cost due to each
instance of each anti-pattern, and the added maintenance cost of each architecture root. The source code analysis
is performed by the Understand tool®3,

Kiuwan®* is a proprietary code analysis tool that supports numerous programming languages and is capable of
integrating with several IDEs. It can be obtained under a commercial license and it can also be tested within a
free trial period.

NDepend (Chopra and Sachdeva, 2015) is a static analysis tool for .NET projects available in Visual Studio
Market Place. It offers a variety of code quality metrics and a visualization of the dependencies in the project.
The tool handles the source code as a form of database, and the user can define new evaluation rules using
LINQ to perform queries on it. Other features of the tool include reporting service and the ability of comparison
between the generations of the same project.

SonarQube (Campbell and Papapetrou, 2013) is a widely known tool used to track the quality and maintainabi-
lity of source code. The tool implements the MISRA, CWE, SANS and CERT rule standards to provide meas-
urements regarding complexity, duplications, code issues, maintainability, quality gates in combination with
technical debt, reliability, security, project size and test coverage. In addition, there are many plugins to extend
the available utilities, such as WebDriver for Selenium test analysis or AEM Rules set for Adobe. The meas-
urement of technical debt is an important component of SonarQube. The tool calculates the debt by multiplying
the number issues of each type with the average time the specific issue type needs to be fixed. Then the time is
multiplied with the cost for each man-day. The average time and the cost can be configured by the user. It uses
the SQALE method and provides a technical debt pyramid to help making decisions prioritizing tasks.

Squore (Baldassari, 2013) consists of three smaller tools. The first one, the analyzer, is used to collect data from
different sources (source code, tests and hardware component information) and build the project's hierarchy tree.
Then a more detailed measurement takes place for each one of the nodes based on the 1SO, HIS, SPICE and
MISRA rule standards. Last but not least, the tool also offers a dashboard for the visualization of the results. The
tool can be a part of Jenkins continuous integration and can also recognize which files are most important to
have Unit Tests in order to improve the efficiency.

TD-Tracker (Foganholi et al., 2015) is a web application, which provides a structured way to create a catalogue
with the issues in a project. The protocol, which is implemented, consists of three stages. For the first stage there
is a data collector where the problems are identified and a list is populated. The input data can come from either
an external source where, with appropriate mapping, the data can be stored directly to the database of the appli-
cation, or the integration with GitHub. After finishing the collection, the second stage begins where a semi-
automated task takes place. A user has to review the previous list with the issues, and decide which of them are
actual problems that need to be solved. Then there is the third stage with the longest duration of all three. In this
stage a user assigns tasks related to technical debt and also monitors the progress of them.

TEDMA (Fernandez-Sanchez et al., 2017) is an open tool, which analyzes different indices related to technical
debt during the evolution of a project. It is open to integrate with third party tools to extend the analysis. It con-
sists of three layers. The first is called Data Layer and holds the processes used to gather information about the
project, which is examined. Currently, Git repositories are used as data input. The second is the Service Layer

13 https://scitools.com/
14 https://www.kiuwan.com/

https://scitools.com/
https://www.kiuwan.com/

where there are three basic services. (i) Data loader service is responsible for offering the source code in a pro-
cessable form to the tool. Then analyzers such as PMD and Findbugs detect code smells and problems. (ii) Sta-
tistics service uses R to perform statistical analysis of the data. The analysis is performed at file level but it can
be extended to other levels of abstraction. (iii) Technical debt management model service uses models in Java
and R to support decision-making. The last layer is the Presentation Layer which is responsible for documenta-
tion and visualization.

VisminerTD (Mendes et al., 2019) is an open source web tool which monitors and manages technical debt com-
paring the results between different project's versions. When an issue is detected it can be tracked to determine
whether its TD was paid off or not. It uses the Repository Miner tool to collect data and metrics from code re-
positories. VisminerTD uses queries to the database of the Repository Miner to gather the preferred information
and present them to the user via a friendly interface. A set of graphical views are available to setup the search
settings and then manage the technical debt items.

Table 1 lists the tools that we have identified along with information, such as the website with contact or down-
load information, the corresponding study in which it was first introduced or presented, the type of license under
which the tool is available (commercial/free), the programming languages that the tool supports for static code
analysis and the type(s) of TD that it captures (as identified in previous studies (Alves et al., 2016; Li et al.,
2015)). TD types refer to specific categories of TD (e.g., architectural, design, code) or sub-categories based on
the cause of TD (e.g., architectural TD can be caused by architecture smells) (Li et al., 2015).

Table 1 List of identified TD assessment tools

Supported Programming Captured TD
TD Tool (Website) Study License Languages Type(s)
AnaConDebt (Martiniand | commercial Java Architectural
(https://anacondebt.com/node/7) Bosch, 2016)
CAST AIP® (Curtisetal., | commercial | Java, ASP, C/C++, JavaS- Architectural,
(http://www.castsoftware.com/) 2012) cript, 10S, .NET, PHP, Code, Defect
Python, ABAP, SQL
and more
(see full list at website)
CodeScene (Tornhill, commercial | C/C++, C#, Java, JavaS- Code, Design
(https://codescene.iof) 2018) cript, TypeScript, Python,
Go, Visual Basic .Net,
PHP, Ruby
and more
(see full list at website)
DebtFlag (-) (Holvitie and - Java Code
Leppénen,
2013)
Debtgrep (-) (Arvedahl, Inhouse use Language agnostic Architectural,
2018) only Code, Design,
People
DVv8 (Nayebi etal., | commercial | Java, JavaScript, C/C++, Architectural
(https://archdia.com/pages/dv8- 2019) C#, Python , PHP
user-guide) and more
(see full list here:
Understand: https://scitools.com/feature
third p_arty tool for source code /supported-lanauages))
analysis
(https://scitools.com/)

15 We will refer to it as “CAST” from this point on

https://anacondebt.com/node/7
http://www.castsoftware.com/
https://codescene.io/
https://archdia.com/pages/dv8-user-guide
https://archdia.com/pages/dv8-user-guide
https://scitools.com/
https://scitools.com/feature/supported-languages/
https://scitools.com/feature/supported-languages/

Supported Programming

Captured TD

TD Tool (Website) Study License Languages Type(s)
Kiuwan - commercial ASP.NET, C, C#, C++, Code
(https://www.kiuwan.com/) Java, JavaScript, JSP, PHP,

Python, VB.NET, SQL,
Ruby
and more
(see full list at website)
NDepend (Chopraand | commercial NET Avrchitectural,
(https://www.ndepend.com) Sachdeva, Code, Design, Test
2015)
SonarQube (Campbell and free C/C++, C#, CSS, Go, Ja- Acrchitectural,
(https://www.sonarqube.org) Papapetrou, va, JavaScript, PHP, Py- Code, Design,
2013) thon, Ruby, TypeScript, Defect, Test
VB.NET
and more
(see full list at website)
Squore (Baldassari, commercial Ada, C, C++, C#, Java, Code, Test
(https://www.vector.com) 2013) Cobol, PL, SQL, ABAP,
PHP, Python, JavaScript
TD-Tracker (Foganholi et free Java, JavaScript, PLSQL, Code, Design,
(http://www?2.fct.unesp.br/grupos al., 2015) Apache Velocity, XML, Defect, Documen-
[lapesa/tdr/) XSL tation, Infrastruc-
ture, Test
TEDMA (-) (Fernandez- - Java Architectural,
Sanchez et al., Code
2017)
VisminerTD (Mendes et al., free Java Acrchitectural,
(https://visminer.github.io/) 2019) Build, Code, De-

sign, Defect, Doc-
umentation, Re-
quirement, People,
Test

Employed TD Assessment tools. Despite our goal to include in the study as many tools as possible, it has not

been possible to employ all of the above tools for the measurement of TD for the target systems. Each tool had
to fulfill the following conditions in order to be included in our study. In Table 2 we present which tools have
been included in our study and which have been excluded (failing to satisfy all of the following conditions).

e Condition 1: The tool had to be accessible somehow (download link, ftp server, etc.) with comprehen-
sive and sufficient documentation.
e Condition 2: The tool had to be able to analyze Java and JavaScript code (as the target systems of the
study are open source Java and JavaScript projects).
e Condition 3: It was necessary to be able to obtain academic or research license for commercial or pro-
prietary tools. For non-proprietary tools the condition was considered fulfilled.
e Condition 4: The tool had to provide an aggregate TD Principal index at class/file level, expressing ef-
fort in time or monetary terms, to remediate the identified inefficiencies (OMG Specification on
ATDM?). Estimation of TD only at project level cannot be exploited to extract a benchmark set of
most high-TD classes (for Java projects) and files (for JavaScript projects). This criterion is important
for guaranteeing the uniformity of tools’ output, so that the results are comparable

16 https://www.omg.org/spec/ ATDM/About-ATDM

https://www.kiuwan.com/
https://www.ndepend.com/
https://www.sonarqube.org/
https://www.vector.com/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
https://visminer.github.io/
https://www.omg.org/spec/ATDM/About-ATDM

Table 2 List of TD tools with the conditions that they satisfied for their inclusion

TD Tool Condition 1 Condition 2 Condition3 Condition 4 Tool used?
AnaConDebt Vv X X no
CAST v v Vv v yes
CodeScene v v v X no
DebtFlag X X v no
Debtgrep X v X no
DV8 v v v X no
Kiuwan v v X no
NDepend v X v no
SonarQube v v v v yes
Squore v v v v yes
TD-Tracker v v v could not deploy not’
TEDMA X X v no
VisminerTD v X v no

*In case a tool did not fulfill Conditions 1 - 3 or could not be successfully installed and deployed, Condition 4 could not be checked and thus
the field was left blank.

Ultimately, three tools were included in our study, namely CAST (version 8.3, year 2018), Squore (version 19.0,
year 2019), and SonarQube (version 7.9, year 2019). All three tools are major TD tools, widely adopted by
software industries and researchers and actively maintained, including comprehensive documentation.

3. Case Study Design
3.1 Goal and Research Questions

The goal of this study described according to the Goal-Question-Metric (GQM) approach (Solingen et al.,
2002), is as follows: “analyze the TD of software projects for the purpose of assessing the level of agreement
of state-of-the-practice TD assessors (tools) and forming agreement-based TD benchmarks of high-TD (or low-
TD) classes with respect to the estimated level of principal, from the point of view of software researchers and
practitioners in the context of Technical Debt Management (TDM)”. For the sake of generalization, we perform
the assessment of the level of agreement among tools for two programming languages, namely Java and JavaS-
cript. The analysis of the two populations enables a meta-analysis in which we explore if the use of a different
language has an effect on the level of agreement. The exploration of the programming language as a factor af-
fecting the level of agreement between tools is performed for each one of the following research questions:

RQZ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD measurement?
RQ1 aims at investigating the degree to which widely employed TD tools agree upon the identification and
assessment of TD at class level. The investigation of this RQ provides an insight to the diversity of the rules
examined by each tool, in the sense that a low level of agreement essentially means that tools check for dif-
ferent rule violations. With a non-satisfying degree of agreement, it would be pointless to proceed with the

17 TD-Tracker was not included in our study because we were not able to install and deploy it successfully.

benchmarking process and seek classes, which are identified as equally high-TD (or low-TD) by all assessors.
Thus, RQ1 serves as a gate for the rest of our study.

RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools?

The TD of classes in any examined system, as measured by the employed tools, form a set of observations in
a multidimensional space, in which each dimension represents TD evaluations provided by a specific tool.
RQ?2 aims at exploring this multidimensional space and determine the optimal number of archetypes, located
on the boundaries of this space, so as to efficiently capture the diversity of all feasible assessments provided
by the set of the examined TD tools. For example, this RQ can answer, whether few reference assessments are
able to approximate the convex hull of the TD evaluations, which practically means low diversity among TD
assessors or whether a higher number of archetypes would be required to accurately characterize the spectrum
of TD measurements for a given system.

RQ3: Which are the characteristics of the extracted archetypes?
RQ3 aims at characterizing the extremal points that accurately encompass the space of TD measurements for
all examined classes. The identified reference assessments essentially form a set of distinct archetypes, i.e.,
class profiles according to the measured level of TD. Two expected archetypes correspond to the profiles of
classes having high or low TD based on the results of all employed tools. However, other archetypes may be
identified based on the shape of the space of the obtained TD measurements.

RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules?

To facilitate the work of developers or researchers who seek a golden set of classes that can be safely assumed
to be high-TD or low-TD, this RQ aims at formally extracting sets of classes which are close to a selected
class profile or archetype. Retrieving for example the classes, which are in the close vicinity of the archetype
depicting high TD in all employed tools, a development team can be confident that these classes suffer signif-
icantly from rule violations. Similarly, a researcher can use such a benchmark for training effective machine
learning techniques to identify TD based on different parameters of the code, people or processes involved in
the development.

3.2 Selection of cases

For this case study we analyzed 50 open source projects (listed in Table 3). The selected projects, which are 25
Java and 25 JavaScript projects, have been analyzed considering their classes (for Java) and their files (for Ja-
vaScript) as units of analysis. The choice of classes/files as units of analysis allows us to trace the existence of
TD at a low level of granularity, providing a common ground for comparison among the three tools. The criteria
for selecting the 50 projects were the following:
e All cases had to be Java and JavaScript projects stored on public repositories.
o All selected cases had to be among the most popular repositories, with more than 3K stars in GitHub.
e In order to obtain a representative dataset, the selected projects had to vary in terms of size, per lan-
guage.
e All cases had to be actively maintained till the time of this study. This was not a strict criterion since
projects with a release around the last year before the project selection process were not excluded from
the study.

3.3 Data Collection

The source code (excluding test files) of each project was analyzed three times: one time for each of the em-
ployed TD tools. All three tools provide a metric of the total effort needed to eliminate technical debt in each
class/file. This is the metric that was chosen for analysis since it provides a common ground for comparison. An
issue that had to be addressed was that each tool has a different way to provide the results of its analysis. It was
necessary to convert the result sets from each tool to the same form so as to proceed with further data pro-
cessing.

Table 3 Characteristics of analyzed projects

Java JavaScript
Project Description LOC | Version Project Description LOC | Version
arduino Physical computing platform 27K 1.8.10 ace Code editor 117K 1438
arthas Java Diagnostic tool to troubleshood production issues 28K 3.1.7 angular.js | Web development framework 53K 1.7.9
azkaban Workflow manager 79K 3.81.0 atom Text editor 138K 1.44.0
cayenne Java object to relational mapping framework 348K 3.12 bluebird Promise library 20K 3.7.2
deltaspike | CDI management 146K 1.8.2 bower Front end package management 10K 1.8.8
exoplayer | Android media player 155K 2111 brackets Code editor 129K 1.141
fop Print formatter using XSL objects 292K 2.3 Chart.js Chart designer 10K 2.9.3
gson Java library to convert Java Objects to JSON 25K 2.8.6 exceljs Excel Workbook Manager 23K 3.8.0
javacv Wrappers of commonly used libraries 23K 152 fabric.js Framework for HTML5 canvas element 20K 4.0.0
jclouds Toolkit for java cloud applications 482K 2.0.2 jquery Javascript library 20K 34.1
joda-time Date and time handling 86K 2.10.5 karma Tool for test driven development 5K 4.4.1
libgdx Game development framework 280K 1.9.10 Leaflet Mobile friendly interactive maps 24K 1.6.0
maven Software project management and comprehension tool 106K 354 less.js Language extension for CSS 12K 3.11.1
mina Network application framework 35K 2.0.19 moment Parsing validating manipulating and format- | 183K 2.24.0
ting dates
nacos Cloud application and microservices build and man- 60K 1.1.4 mongoose | Tool for MongoDB object modeling 22K 5.8.12
agement
opennlp Natural Language Processing toolkit 93K 184 mysql MySQL protocol implementation 8K 2.18.1
openrefine | Data management 69K 3.2 node Node.js JavaScript runtime 130K 13.9.0
pdfbox Library of processing pdf documents 213K 2.0.9 pdf.js PDF viewer 69K 2.2.228
redisson Java Redis client and Netty framework 133K 3.12.0 plotly.js Chart design library 92K 1.52.2
RxJava Composing asynchronous and event-based programs 310K 3.0.0 pm2 Production process manager 15K 4.2.3
with observable sequences
testng Testing framework 85K 7.1.1 prettier Code formatter 25K 1.191
vassonic Performance framework for mobile websites 7K 311 sails Realtime MVC Framework for Node.js 10K 1.2.2
wss4j Java implementation for security standards in web ap- 136K 2.2.2 sequelize Node.js ORM 17K 5.21.4
plications
xxl-job Distributed task scheduling framework 9K 2.1.2 webpack Bundler for js files for usage in a browser 36K 4.41.6
zaproxy Security tool 187K 2.9.0 yarn Dependency management 24K 1.22.0

e SonarQube has a WEB API available, so with the use of appropriate tools the results have been gath-
ered in json format. The API allows the filtering of the results in order to exclude test and properties
files. SonarQube provides the results grouped by file. Besides file name, the number of the issues for
each severity level, blocker, critical, major, minor and info, was summed up to the total amount of is-
sues of each class. All of them contribute to the SQALE index of the file, which is the metric depicting
the effort to eliminate TD.

e Squore provided the results in .csv files, which could be exported through platform’s user interface. In
this case a parser was necessary to read the .csv files. Using the previous SonarQube exports as refer-
ence, the files were filtered to exclude test and property files as before. Blocker, critical, major and mi-
nor issues were summed up to get the total issues for each class. Technical debt metric is provided in
man days and man hours and it had to be converted in minutes to form a canonical technical debt index
with the same units as for the previous tool.

e CAST provides metrics for the total project and not per file through its user interface. In this case, the
results were retrieved directly from the database schema that the software uses during the code quality
analysis. With appropriate SQL query, which was provided by the CAST team, csv files were extracted
containing a list of total occurrences of each issue per class. With a new parser these issues were
grouped, aggregating the TD in minutes and the total violations per class. Then again, the files of the
classes were filtered with those of SonarQube as reference (test and property files were filtered out).

To obtain a common and structured form of the results, the exports from the tools were transformed into XML
files. As a result, an XML file per project for every tool was generated. The XML contains all the classes/files
with some TD in the system, along with the total issues detected in the class and the amount of TD as calculated
by the corresponding tool. With the results in the same form it was possible to merge them into a single dataset.
This dataset was finally grouped by class for Java and by file for JavaScript projects, containing the path of the
file and the TD of the class/file as calculated by each tool. The dataset for the 25 Java and the 25 JavaScript pro-
jects is publicly available at Zenodo®®,

3.4 Data Analysis Methodology

In this section, we present background information necessary for facilitating the understanding of the statistical
methodologies used to address the research questions of the current study.

3.4.1 Inter-rater Agreement (RQ1)

For the formal representation of our experimental setup, consider that the collection of TD assessments generat-
ed by all three tools, as described in Section 3.3, resulted in a n X p matrix X (Table 4), in which, each row
represents a class, whereas each of the p column vectors provides the rankings of TD measurements evaluated
by a specific tool for a given class. At this point, we have to clarify that in the proposed approach we decided to
utilize the rankings instead of the raw TD measurements, since our intention was to keep the dataset immune to
variations of TD measurements due to different scales among the three tools. Indeed, a tool might follow a
stricter ruleset for the measurement of TD which might result in much higher TD of classes compared to the
assessments of the rest of the tools. However, the ranking of the measurements among all tools remain unaffect-
ed by absolute values and thus is a more suitable approach for comparison. As far as the ranking mechanism
concerns, we adopted the fractional ranking approach, in which the sample ranks of the values in a vector are
computed, whereas in cases of ties the average of the ordinal rank (or fractional rank) is assigned to each tied
observation.

Table 4 Representation of the dataset from the TD assessment results from each employed tool*®

Class Tool 1 Tool 2 Tool p
Cy "1 12 Tip
Gy 21 722 T2p

18 https://doi.org/10.5281/zen0d0.3966202
19 Although we have used 3 tools, we generalize the theoretical presentation of our approach for p tools

https://doi.org/10.5281/zenodo.3966202

For reasons of simplicity, we present the methodology of the proposed framework on a demonstrative exam-
ple (opennlp project) utilizing the TD assessments from two tools (CAST and Squore). In this case, the TD as-
sessments can be visualized through a scatter plot (Figure 2), in which each point represents a specific class
with coordinates the TD rankings evaluated by the CAST (x-axis) and Squore (y-axis) tools.

600/ * .'. ! b i:

* []J.z.“ L]

L] P e
® 00 O EDBIINE B

:Q.....-...
- e o L] '

‘ '—-q %.

Squore
t

200
© ¢ CHLUNEENENEIENGIEIEND GNe ©® 00 o

0 200 400 600
CAST

Fig. 2 Scatter plot for rankings of TD measurements of opennlp project as evaluated by TD tools (CAST, Squore)

The exploration of the pattern for the swarm of points provides certain information regarding the agreement of
the employed tools. More precisely, it seems that there is a subset of classes lying to the upper right corner that
are identified as the most high-TD (high rankings for TD measurements) by both tools. On the other hand, the
inspection of the graph indicates also that Squore identifies a subset of classes that accumulate the lowest TD
assessments but at the same time, these specific classes present an amount of TD ranging from the lowest up to
the highest ranks according to the CAST tool. Finally, there is also a small number of classes assessed as high-
TD by the Squore tool, but at the same time, the CAST tool tags them as classes accumulating a relatively small
amount of TD. Hence, a critical question that deserves further investigation is the extent to which these tools
agree upon the assessments of TD for a given set of classes.

To this regard, we make use of a statistical measure, namely the Kendall’s W coefficient of concordance (Ken-
dall, 1948), which belongs to the broader branch of methodologies known as inter-rater agreement analysis. In
general, there is a plethora of measures for evaluating the agreement among assessors and the choice should be
based on (i) the total number of assessors that assign to each subject a unique measurement (or rating), (ii) the
scale of measurement (nominal with two or more categories, ordinal, continuous scale) that is assigned to each
subject and (iii) the objectives of the analysis (Gwet, 2014). More specifically, the Scott’s (Scott, 1955) and
Cohen’s k (Cohen, 1960) are well-known measures for inter-rater agreement on a nominal dichotomous
(No/Yes, Negative/Positive) scale that can be used in cases, where there are exactly two assessors. For the case
of multiple assessors (more than 2) on nominal (either dichotomous or with multiple categories) or ordinal
scales, the Fleiss’s k (Fleiss, 1971), which is a generalization of Scott’s m coefficient and the weighted Cohen’s
k (Cohen, 1968) are possible choices that take into account not only the agreement but also the disagreement
among them. All the aforementioned coefficients share the same rationale that is to evaluate and statistically test
whether the average agreement between two (or more assessors) is significantly different than chance. An addi-
tional problem to the ordinal ratings, besides the fact that agreement and disagreement are no longer distinct
notions (Gwet, 2014), is the fact that there is another kind of agreement that may be of interest. This can be de-
fined “as the agreement among raters with respect to the ranking of subjects” (Gwet, 2014), which, in our case,
is related to the process of evaluating whether all assessors, agree on which classes are the highly-ranked, the
second highly-ranked and so on. In this case, the selection of the most appropriate agreement coefficients should
belong to the branch of measures of concordance (Gwet, 2014), since in general the variation of kappa statistics
evaluate the absolute agreement between ratings, while concordance coefficients measure the association be-
tween ratings. Finally, a well-known limitation of kappa statistics is their dependence on the number of catego-
ries of the response measurement, since they tend to be generally higher, when there are fewer categories (Wat-
son and Petrie, 2010).

Summarizing, the choice of Kendall’s W concordance coefficient instead of other kappa measures of agreement
was based on the facts that (i) it serves in a straightforward manner the investigation of RQ1, which is related to
the evaluation of the degree of agreement among TD measurement tools and (ii) it handles in an appropriate

12

way the characteristics of our experimental design, which involves three TD assessment tools (CAST, Squore,
SonarQube) and the derived rankings ranging from 1 up to n (the total number of the examined classes). Due to
the existence of a high number of tied ranks in each tool (Figure 2), we make use of a modification of the origi-
nal statistic that provides a correction for ties. The Kendall’s W statistic (Salkind, 2010) is defined as

1231 r#3p?n(n+1)?

p2n(n2-1)-pT

w)

where, 7 is the total number of the examined classes,),/ riz is the sum of the squared sums of ranks for each

of the 1 classes and p is the total number of the examined tools (three in our case). The term T is a correction
factor for tied ranks that is evaluated via the following formula

T =30t~ t) @

in which, tj is the number of tied ranks in each of g groups of ties, whereas the sum is evaluated over all

groups of ties found in all p tools of Table 4. Kendall’s W can take a range of values from 0 (indicating no
agreement) to 1 (indicating a perfect agreement among assessors). In addition, Schmidt (Schmidt, 1997) pro-
vides specific guidance through rules of thumb on how researchers should interpret experimental results based
on the evaluation of the Kendall’s W statistic. More specifically, a coefficient of 0.7 or higher can be interpreted
as a strong agreement among the set of assessors. For example, the evaluation of the Kendall’s W concordance
coefficient for the set of classes of our demonstrative example indicates a statistically significant strong agree-

ment between the CAST and Squore tools regarding their TD assessments, W = 0.874,p < 0.001.

3.4.2 Benchmarking through Archetypal Analysis (RQ2 - RQ4)

From what we have already mentioned, there are several available tools for assessing TD, whereas each tool is
based on a different ruleset that may result to divergent TD assessments for a given project. Although, this fact
could lead to the identification of alternative mitigation actions, the empirical evidence reveals that software
practitioners and development teams usually base the measurement process of TD on a single tool. Having in
mind that there is no ground truth for assessing TD, there is an imperative need for the empirical examination of
the diversity produced by the utilization of a set of alternative TD tools. Indeed, the findings from the indicative
example discussed in the previous section revealed that despite the fact that there is a strong agreement between
the assessments provided by the two examined tools, the tools also disagree upon the measurement of TD of
some classes.

Towards this direction, we propose an agreement-based benchmark approach contributing to the empirical char-
acterization of the assessments provided by a set of p alternative tools with respect to the derived TD evalua-
tions for a given set of n examined classes. The benchmark framework is based on a statistical approach, name-
ly Archetypal Analysis (AA) (Cutler and Breiman, 1994). Describing the general principles of the methodology,
AA is a data-driven multivariate method that explores a multidimensional space of points (or observations) with
the aim of identifying certain observations, namely the archetypes, located on the boundaries of a swarm of giv-
en points (or convex hull). An interesting property of the methodology is the fact that the swarm of points can be
represented as convex combinations of the archetypes. The latter provides a straightforward mechanism support-
ing the identification of a subset of points that are closer to a specific archetype, which in turn, can be used for
benchmarking purposes. We note that although AA and Cluster Analysis (CA) share common ground, i.e., the
exploration of a multidimensional space of points with the aim of identifying certain observations that represent
specific profiles, they also present fundamental differences in terms of their goals. More specifically, AA aims
at identifying points that lie on the convex hull of observations, or in other words observations that can be
thought as “extreme” (at the edge of the set of points). In contrast, CA techniques focus on the exploration of
points within the multivariate space with the objective of identifying points at the center of the profile.

In our context, the input for AA is the n X p matrix X (Table 4) representing the rankings of TD assessments
derived from the analysis conducted through the utilization of a set of p tools for a given project with n classes.
The algorithm of AA seeks for a matrix Z of k X p, where k and p are the number of archetypes and dimensions
(examined tools in our case), respectively through the computation of two coefficient matrices a and b minimiz-
ing the residual sum of squares (RSS) defined as

RSS = || X — aZT||,with Z = XTb 3

13

where || ||, denotes the Euclidean matrix norm, subject to the following constraints:
Yija;=1witha;>0andi=1,..,n ()
fe1bi = 1withb; >0andj = 1,.,k (5)

These constraints frame the two general properties of AA which are: (i) the approximated data (swarm of points)
are convex combinations of the archetypes, i.e. X = aZT, and (ii) the archetypes are convex combinations of the
data points, i.e. Z = XTh. The term “convex combination” refers to the linear combination of points, when all
coefficients are non-negative and their sum is equal to 1. Computationally, the algorithm reduces the RSS in Eq.
(3) by iteratively calculating the archetypes along with the coefficient matrices a and b. Summarizing, the ar-
chetypal solution provides an approximation of the convex hull defined by the swarm of points in the multidi-
mensional space through the evaluation of a few, not necessarily observed points, lying on the boundaries of the
observed points.

Due to the intuitive rational and interesting properties of AA, the method has been widely used for benchmark-
ing purposes in many scientific domains (Moliner and Epifanio, 2019), e.g. such as marketing (Li et al., 2003),
astrophysics (Chan et al., 2003), sports analytics (Eugster, 2012), biology (Thegersen et al., 2013), medicine
(Elze Tobias et al., 2015), scientometrics and bibliometrics (Seiler and Wohlrabe, 2013), multi-document sum-
marization (Canhasi and Kononenko, 2014), neuroscience (Tsanousa et al., 2015) etc. In Software Engineering,
AA has been introduced in (Mittas et al., 2014; Mittas and Angelis, 2020), in which the objectives were the
evaluation of the predictive capabilities of a set of Software Effort Estimation (SEE) models and the building of
ensembles using a subset of inferior models, whereas in (Kosti et al., 2016), the authors explored psychometric
data in order to extract different software engineers profiles based on measurements from their personality and
behavioral characteristics.

Following a similar approach to (Porzio et al., 2008), in this study, AA constitutes the core methodology of a
three-step process that facilitates the examination of the diversity of TD assessments provided by a set of alter-
native tools with the aim of identifying a set of classes exhibiting similarity to a selected archetype that can be
used, in turn, for benchmarking purposes. Such classes can, for example, be classes with increased levels of TD
as measured by all three tools, or TD-clean classes, which present limited inefficiencies. The three basic steps of
the proposed approach summarized into the following points constitute the basis of our methodology for provid-
ing answers to RQ2 - RQ4:

1. Identification of archetypes representing the reference assessments through the exploration of the di-
versity of TD assessments derived from the set of employed tools (RQ2).

2. Reification of archetypal solution into the context of TDM through the identification of their character-
istics (RQ3).

3. Identification and retrieval of a set of classes that are close to archetypes depicting either high TD or
low TD assessments as suggested by all employed tools (RQ4).

The implications of the three previous steps are clearly demonstrated through the application of the approach on
the indicative example described in previous section. In Figure 3, the boundary of the grey area defines the con-
vex hull of all TD assessments derived from the CAST and Squore tools through the examination of classes
from opennlp project. Based on the principles of AA, the archetypes representing the reference assessments will
lie on this boundary, whereas the shape of the convex hull provides straightforward answers regarding the diver-
sity of the examined set of TD tools.

A critical decision that someone has to take is the selection of an appropriate number of the k archetypes that
approximates the convex hull in an efficient way. Certainly, the number of archetypes plays a significant role to
the efficient representation of the swarm of the observed points, since the diversity of the convex hull may be
better captured, as the number of archetypes increases. In contrast, one has to take into consideration that an
unnecessary large number of archetypes might not contribute further to the approximation of the convex hull,
whereas it would also affect the benchmarking process, since the objective is the extraction of few reference
assessments representing useful profiles of practical importance to both researchers and practitioners in TDM.

To this regard, the graphical inspection of the swarm of TD assessments (Figure 3) suggests that the efficient
number of archetypes capturing the diversity of the two examined TD tools is k = 4 archetypes. In the trivial
case of k = 1, the archetypal solution is the centroid of the two-dimensional space representing the TD assess-

14

ments matrix (Table 4), whereas its coordinates are easily calculated by the univariate sample mean values of
TD rankings from each tool (sample means of CAST and Squore TD columns in Table 4).

One Archetype Two Archetypes

Squore
Squore

CAST CAST

Squore

Squore

CAST CAST

Fig. 3 Archetypal solutions (CAST, Squore) for opennnlp project

Although the graphical inspection constitutes a straightforward manner for the identification of the appropriate
number of archetypes in the special case of the two-dimensional space, i.e. the examination of assessment pro-
vided by two TD tools, this is not the case, when the number of the examined TD tools is higher than two (p>2).
In order to provide certain guidelines about the decision upon the appropriate number of archetypes, Cutler and
Breiman (Cutler and Breiman, 1994) suggest the utilization of the graphical inspection of the RSS reduction plot
(or elbow plot). The RSS plot (Figure 4) constructed after consecutive executions of AA for different values of
k, (k = 1,2,3,4,5) confirms our intuitive beliefs derived from the graphical inspection of the two-dimensional
example. More specifically, if we consider that the line displaying the RSS reduction looks like an arm, then an
elbow appears at k = 4, pointing out the optimal number of archetypes. The idea is that after this specific point
(k > 4), the line flattens and hence, the extracted solution (k = 5) does not contribute to any further reduction
of RSS. Summarizing, the practical implication of the first step (Step 1) of our proposed approach on the indica-
tive example, is that four reference assessments (archetypes) can capture the diversity of TD rankings derived
from the static code analysis (by two tools) for the set of the examined classes of opennlp project.

100 .\
)]
7]
14
%75
c
=}
S
©
=]
g 50 .
e \‘
s ..
= ~
& 25
o -
S e
o e
0 - '7.. .
1 2 3 4 5
Archetypes

Fig. 4 RSS plot (CAST, Squore) for opennnlp project)

In the second step (Step 2), we focus on understanding the characteristics of the derived archetypes with the aim
of extracting information regarding their meaning from a practical point of view in TDM. The relative position
of the four archetypal solutions (Figure 3) and the graphical examination of the profiles plot (Figure 5) provide a
clear overview of what each archetype really represents. More specifically, the profiles plot shows the evaluated
TD rankings (CAST and Squore coordinates, Figure 3) for each archetype of the final solution. In addition, we

15

can also observe that the examination of the characteristics provides also a semantic categorization of the de-
rived archetypes into two distinct groups, which are (i) the Ruler and (ii) the Rebel archetypes?® (Pearson, 2015).
The former group (The Ruler) reifies a reference assessment profile, in which the two tools agree upon either on
low (The Min-Ruler archetype a,) or high (The Max-Ruler archetype a,) TD rankings assessments. The latter
group (The Rebels) reifies a reference assessment profile, in which the two tools do not agree on their TD rank-
ings assessments signifying a completely divergent behavior of the two assessors. Overall, the four archetypes
represent the following distinct reference assessment profiles with the following characteristics:

e The Max-Ruler (archetype a, in Figure 3d) represents the reference assessment corresponding to the
profile of classes accumulating high amount of TD based on the results of both tools (CAST and
Squore).

e The Min-Ruler (archetype a; in Figure 3d) represents the reference assessment corresponding to the
profile of classes accumulating low amount of TD based on the results of both tools (CAST and Squore).

e The Rebel 1 (archetype a, in Figure 3d) represents the reference assessment corresponding to the pro-
file of classes accumulating low amount of TD based on the results of the analysis from the CAST tool,
but on the same time, high amount of TD based on the results of Squore tool.

e The Rebel 2 (archetype a3 in Figure 3d) represents the reference assessment corresponding to the pro-
file of classes accumulating high amount of TD based on the results of the analysis from the CAST tool,
but on the same time, low amount of TD based on the results of Squore tool.

The Max-Ruler The Min-Ruler

600

400

200
<o [
c
o The Rebel 1 The Rebel 2
14

600

400

200

0 - -
Squore CAST Squore CAST

Fig. 5 Reference assessment profiles (archetypes) (opennnlp project)

After the reification of the archetypes, the final step (Step 3) of the proposed approach involves the identifica-
tion and retrieval of a set of classes that are close to a specific archetype gathering certain characteristics that
can be used for TDM purposes. A critical challenge in the TD community raises from the fact that although
there are several available tools for measuring and monitoring TD, the community has not concluded on a state-
of-the-art solution that could be used as a ground truth for measuring TD. Developers and researchers
acknowledge that TD estimates provided by any single tool are inherently subjective, reflecting a particular
strategy for the identification of TD items. The existence of a basis of classes that are assessed as high TD mod-
ules by various tools would point to classes that can objectively be classified as validated high-TD modules and
would boost relevant research. Currently, the lack of a commonly agreed way of quantifying TD impedes the
development of approaches that could built on top of TD measurements, as in the case of machine learning ap-
proaches seeking to identify code or design problems employing alternative parameters as inputs. The ability to
derive a benchmark of classes being close to the Max-Ruler archetype can be directly leveraged for training
supervised learning-based algorithms. Similarly, the classes which have been validated as high-TD by all tools
can be analyzed by development teams to seek non ideal coding practices and patterns so as to avoid them in
future releases. On the other hand, benchmarks of classes formed by those that are close to Rebel archetypes
essentially designate design or code inefficiencies which are captured by only one of the available tools, possi-
bly pointing to unique features identified by a particular ruleset. As a result, the union of classes belong to these
sets would ensure the widest possible coverage of TD liabilities.

20 The idea of archetypes was developed by psychologist C. Jung in his studies about drivers of human behavior. Pearson
suggested the use of 12 archetypes among which the ‘Ruler’ denotes personalities whose goal is to create a prosperous,
successful family or community, while for a ‘Rebel’ (also known as Outlaw) the motto is that rules are made to be broken.
In our context, the ‘Ruler’ profile denotes a community of classes sharing the same assessment by all employed tools,
while the ‘Rebel’ points to tools that in some sense break the rules and identify TD items in a different way than the rest.

16

The evaluation of the adjacency of a certain TD assessment (representing a given class) to each archetype can be
practically accomplished through the matrix of the a-coefficients (Eq. 4). More importantly, due to the first
property of AA, i.e. the approximated points are convex combinations of the archetypes that are summed to uni-
ty, the computed a-coefficients for each TD assessment provide an easily interpretable mechanism for quantify-
ing its resemblance to all archetypes. Table 5 displays the classes and their TD assessments that are close to the
Max-Ruler archetype according to the threshold value of a = 0.80 for characterizing the neighboring classes.
By setting the threshold value of a = 0.80, a set of 84 out of 701 total classes (almost 12% of the examined
classes) can be considered as adjacent to the Max-Ruler archetype. This practically means that a practitioner has
access to a set of classes that have been validated as high-TD classes by all tools. Due to space limitations, we
present only the first and last five classes from the 84 that are close to the Max-Ruler archetype. Interpreting the
vector of a-coefficients for a randomly selected class, e.g. C,, with (aimin-Ruler, ORebel 1, OlRebel 2, OMax-Ruler) = (0.091,
0.000, 0.001, 0.908) (last four columns of Table 5), we can infer that C,, is 9.1%, 0.0%, 1.0% and 90.8% similar
to the Min-Ruler, Rebel 1, Rebel 2 and Max-Ruler archetypes, respectively, and for this reason it is considered
as a neighboring class to the Max-Ruler archetype.

Finally, Figure 6 visualizes the neighbourhood of the Max-Ruler archetype (corresponding to the TD measure-
ments of the abovementioned 84 classes) with a black-scaled colour indicating the degree of resemblance for
each TD assessment to this specific reference assessment profile. Moreover, points denoted by empty red circles
represent classes that are not similar to the Max-Ruler archetype (a < 0.80) in terms of their TD assessments.

" .1
-
‘-‘\“7 ‘ A
) U. "

; L e S8

600 7y € T

(] c

B

[=]

=

[=2

»n

500

400

400 500 600 700
CAST

Fig. 6 Scatter plot for neighboring classes to the Max-Ruler archetype (CAST, Squore) (opennnlp project)

The final step of the benchmarking process is supported by a web application (TD Benchmarker) that has been
developed which enables the extraction of benchmarks, consisting of classes being close to a selected archetype,
for varying threshold values. Interested researchers can download the agreement-based benchmark of choice and
retrieve the identified classes for further experimentation. Moreover, the application provides graphical illustra-
tions of the RSS plots and the reference assessment profiles. TD Benchmarker is available online?.

RQ1: For RQ1, where we examine the level of agreement of the used tools with respect to the measured TD of
classes, we employed the Kendall’s W coefficient of concordance which belongs to the broader branch of meth-
odologies known as inter-rater agreement analysis.

For RQ2 — RQ4 we propose an agreement-based benchmark process, which is based on a statistical approach,
namely Archetypal Analysis (AA).

RQ2: In the first step of the benchmarking process, our aim is to calculate the required number of archetypes to
effectively capture the diversity of the tools. In this regard, we determined the appropriate number of archetypes
via the graphical inspection of the RSS reduction plot (or elbow plot).

RQ3: In the second step of the benchmarking process we focus on understanding of the characteristics of the
derived archetypes in our attempt to interpret them from the Technical Debt Management (TDM) point of view.
Through the graphical examination of the Archetypal Solutions figure we were able to distinguish two main
categories of the archetypes; the Ruler and the Rebel archetypes.

RQ4: The final step of the benchmarking process involves the identification and extraction of a set of classes
that are close to a specific archetype with specific characteristics that can be interpreted in terms of TDM. The
extraction of the aforementioned set of classes was accomplished through the matrix of a-coefficients (Eq. 4).

2 tool: https://se.uom.gr/index.php/projects/technical-debt-benchmarking
source code: https://github.com/theoam/TDBenchmarker

17

https://se.uom.gr/index.php/projects/technical-debt-benchmarking
https://github.com/theoam/TDBenchmarker

Table 5 Indicative set of classes that are close to the Max-Ruler archetype (CAST, Squore) (opennnlp project)

Class Ranking a-coefficient
ID Name Squore CAST The Min-Ruler The Rebel 1 The Rebel 2 The Max-Ruler
Cy /main/java/opennlp/tools/stemmer/snowball/turkishStemmer.java 701 699 0.000 0.000 0.000 1.000
¢ /main/java/opennlp/tools/stemmer/snowball/englishStemmer.java 699 696 0.001 0.004 0.000 0.995
C3 /main/java/opennlp/tools/stemmer/snowball/frenchStemmer.java 700 694 0.000 0.008 0.000 0.992
Cy /main/java/opennlp/tools/stemmer/snowball/portugueseStemmer.java 695 692 0.008 0.002 0.000 0.989
Cs /main/java/opennlp/tools/stemmer/snowball/hungarianStemmer.java 693 697 0.003 0.000 0.010 0.988
Cyr /main/java/opennlp/tools/formats/Conll03NameSampleStream.java 648 636 0.091 0.000 0.001 0.908
Cgo /main/java/opennlp/tools/formats/ontonotes/OntoNotesNameSampleStream.java 650 581 0.072 0.117 0.000 0.812
Cgq /main/java/opennlp/tools/ml/BeamSearch.java 616 5735 0.142 0.047 0.000 0.811
Cs2 /main/java/opennlp/tools/util/ObjectStreamUltils.java 591 5735 0.182 0.000 0.012 0.807
Cg3 /main/java/opennlp/tools/cmdline/namefind/TokenNameFinderTrainerTool.java 591 620 0.111 0.000 0.082 0.807
Cgs /main/java/opennlp/tools/lemmatizer/LemmatizerME.java 591 610 0.126 0.000 0.067 0.807

18

4., Results
4.1 RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD measurement?

Based on the proposed methodology (see Section 3.4), the objective is to investigate the degree of agreement
among the applied TD tools (RQ1). Table 6 summarizes the results concerning the evaluation of the Kendall’s
W concordance coefficient for the set of the examined 50 projects. The results suggest that, in general, the three
TD tools converge on the identification and measurement of TD at class/file level. Overall, the coefficient val-
ues range from 0.520 (for atom JavaScript project) to 0.853 (for javacv Java project). To this regard, it is mean-
ingful to continue with the benchmarking process and extract the subset of classes which have been indicated as
high-TD (or low-TD) classes by all tools. On the other hand, the graphical inspection of the aggregated results
(Figure 7 (dot plots)) and the distributions of the coefficients for Java and JavaScript projects (Figure 8(a),
(boxplots)) shows that the type of language seems to present an effect on the estimated agreement of TD tools.
Indeed, an independent-samples t-test indicated a statistically significant difference between the mean values of
Kendall’s W concordance coefficient for Java (M = 0.777, SD = 0.045) and JavaScript (M = 0.647, SD =
0.075) projects, t = 7.403, p < 0.001 (Figure 8(b), (error bars)). Levene’s test indicated unequal variances,
F =7.628, p = 0.008, so the t-test under the unequal variances assumption was used, whereas the Kolmogo-

rov-Smirnov test for normality assumption showed that the estimated coefficients satisfied the normality as-
sumption, K-S Z = 0.893, p = 0.403.

Java JavaScript
0.90
0.85 L4
Y A
0.80 eeaooves?®
;
0n0.75 .® °
-= L ...
0.70
'g I ...ooo
c
0065
v .
.
0.60
.
o0
0.55 es®
°
0.50
@ @ » @ i @ ~ n v
neXx Qe 9 QS8 50 o ENuw =08 0, 0 8 =8
RPN bR T e o e K T R
= L0 Nm N2> SC0ESO8 03 -aE>030%gaEg S DS
E2 S 5w >8 0058 x%xTnotolTExs R20ox0 5258822020603 sa85ch
BETa Sg;xgcgﬁ*ggﬁ“—“a xS ngJEE‘a_ngEon 2" 5 22¢8
T = Qg © £
Fig. 7 Dot plots with the aggregated results of Kendall’s W concordance coefficient
95% Confidence Intervals
0.80
0.8
0.75
o
=0.7{
@
2 0.70
- |
X -
0.61
0.65
Java JavaScripl Java JavaScript
(@) (b)

Fig. 8 Box plots (a) and error bars (b) of the distributions of Kendall’s W concordance coefficient

19

Table 6 Kendall’s W Concordance Coefficient among all three TD tools for each analyzed system

Project W W W W W W W W W
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Java
0.820 0.776 0.770 0.790 0.811
arduino (p <0.001) exoplayer (p <0.001) joda-time (p <0.001) opennlp (p <0.001) testng (p <0.001)
0.803 0.740 0.804 0.781 0.800
arthas (p <0.001) fop (p <0.001) Libgdx (p <0.001) openrefine (p <0.001) vassonic (p <0.001)
0.793 0.820 0.692 0.736 0.774
azkaban (p <0.001) gson (p <0.001) Maven (p <0.001) pdfbox (p <0.001) wss4j (p <0.001)
0.766 0.853 0.681 0.797 0.795
cayenne (p <0.001) javacv (p <0.001) Mina (p <0.001) redisson (p <0.001) xxl-job (p <0.001)
0.716 0.688 0.788 0.828 0.800
deltaspike (p <0.001) jclouds (p <0.001) Nacos (p <0.001) RxJava (p <0.001) zaproxy (p <0.001)
JavaScript
0.694 0.712 0.645 0.653 0.637
ace (p <0.001) brackets (p <0.001) Karma (p <0.001) mysql (p <0.001) prettier (p <0.001)
0.739 0.667 0.553 0.684 0.693
angular.js (p <0.001) Chart.js (p <0.001) Leaflet (p <0.001) node (p <0.001) sails (p <0.001)
0.520 0.553 0.572 0.724 0.547
atom (p <0.001) exceljs (p <0.001) less.js (p <0.001) pdf.js (p <0.001) sequelize (p =0.002)
0.611 0.643 0.537 0.692 0.643
bluebird (p <0.001) fabric.js (p <0.001) moment (p <0.001) plotly.js (p <0.001) webpack (p <0.001)
0.684 0.768 0.754 0.722 0.533
bower (p <0.001) jquery (p <0.001) mongoose (p <0.001) pm2 (p <0.001) yarn (p <0.001)

20

The general conclusion from the evaluation of the Kendall’s W concordance coefficients and the rule of thumb
proposed by Schmidt (1997) (see Section 3.4.1) is that in the case of Java projects, there is noted a statistically
significant (p < 0.001) and strong agreement among the three tools regarding the TD assessments for the set of
the conducted experiments with a mean value of 0.777 accompanied by a 95% CI ranging into the interval
[0.758,0.795]. In contrast, despite the fact that a statistically significant agreement among TD assessments is
also indicated for the set of JavaScript projects, the strength of the agreement is characterized as moderate, since
it presents a mean value of 0.647 with a 95% CI of [0.616, 0.678]. A possible interpretation for this finding is
that tools for analyzing the quality of Java code (e.g. through static analysis) are more mature, compared to
those for analyzing JavaScript, which are substantially younger. Therefore, it seems that along with their evolu-
tion Java analyzers have also converged on how the analysis is performed and what is deemed as an important
problem for a codebase. On the other hand, it seems that JavaScript analyzers are in a more experimental stage,
and therefore lower consensus is reached.

4.2 RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools?

After the verification of a statistically significant agreement among the three TD tools for the set of Java and
JavaScript projects, the next challenge involves the benchmarking process with the aim to extract a set of classes
identified as the most high-TD ones from all applied tools. Due to the extensive numerical and graphical results,
we indicatively present the findings derived from the analysis (Step 1 - Step 3, see Section 3.4.2) on opennlp
project. Through this manner, it can be also highlighted to both researchers and practitioners how the proposed
methodology can be easily generalized to any experimental setup without constraints regarding the number of
applied TD tools. Finally, we remind that the set of the experimental results along with the raw dataset of TD
estimates for the 25 Java and 25 JavaScript projects are publicly available at Zenodo?.

Generalizing the methodology presented above (Section 3.4.2), the relative positions of the TD assessments via
the three tools can be represented by a scatter plot in a three-dimensional space (Step 1). Figure 9 displays the
TD assessments, in which each point represents again, a specific class with coordinates the TD rankings evalu-
ated by the SonarQube (x-axis), CAST (y-axis) and Squore (z-axis) tools. Despite the fact that drawing conclu-
sions from the inspection of a three-dimensional plot is not a straightforward task, the shape of the swarm of
points reveals an intrinsic pattern. More precisely, there is a subset of classes that are concentrated on the upper
left corner of the plot, corresponding to classes that accumulate a high amount of TD as it is assessed by the
whole set of the applied tools. On the other hand, it is also obvious that there are also other regions on the graph
indicating divergent behaviour of the applied tools in terms of their TD assessments. The practical implication
of this phenomenon is that the three TD tools signify different mitigation actions, which is the consequence of
the utilization of different rulesets in the evaluation process of TD.

Fig. 9 Scatter plot (3D) for the rankings of the TD assessments (all three tools) (opennlp project)

22 https://doi.org/10.5281/zenod0.3966202

21

https://doi.org/10.5281/zenodo.3966202

Indeed, the examination of the RSS (Figure 10) after the consecutive executions of the AA algorithm for differ-
ent values of archetypes shows that the convex hull of the swarm of points can be adequately approximated by
k = 8 archetypes. Generally, the examination of the RSS plots for the remaining datasets led us to conclude
that this specific number of archetypes k = 8 is a rational generalization for the whole set of our experiments.

100 o

-~
(3]

Percentage reduction of RSS
[\ (3]
(3] (=]

1 2 3 5
Archetypes

Fig. 10 RSS plot (SonarQube, CAST, Squore) (opennnlp project)

4.3 RQ3: Which are the characteristics of the extracted archetypes?

Having defined the appropriate number of archetypes (k = 8), the next step (Step 2) of the proposed approach
concerns the reification of the extracted reference assessment profiles through the examination of their charac-
teristics. Figure 11 summarizes the profile plots for each archetype of the derived solution. The examination of
the characteristics of the eight profiles reveals, again, that there are two distinct groups (Ruler and Rebel) that
have also been identified in the case of the TD assessments on the two-dimensional space (CAST and Squore)
(see Section 3.4.2). Besides this fact, the analysis brings to the surface a new type of profile with specific char-
acteristics regarding the assessments of the three tools. More specifically, the Partner? archetype represents a
reference assessment profile, in which two of the applied tools indicate a high amount of TD, whereas on the
same time, the third tool is not able to identify it indicating a low amount of TD.

The Rebel 1 The Rebel 2 The Rebel 3
600
2 . . .
200
0 1 - ——
The Partner 1 The Partner 2 The Partner 3
600
-E400
o
200
I — -
0 . . .
The Min-Ruler The Max-Ruler Sonar Squore CAST
600
400
200
, I mmm_

Sonar Squore CAST

Sonar Squore CAST

Fig. 11 Reference assessment profiles (archetypes) from the assessments by all three tools (opennnlp project)

2 The Partner archetype refers to personalities whose goal is being in a relationship with people and surroundings. In analo-

gy, the Partner profile in our case denotes cases where two of the three tools exhibit high agreement.

22

The characteristics of the k = 8 reference assessments (Figure 11) are fully described below:

e The Max-Ruler is the type of the reference assessment indicating a high amount of TD based on the re-
sults of all applied tools (SonarQube, CAST, Squore).

e The Min-Ruler is the type of the reference assessment indicating a low amount of TD based on the re-
sults of all applied tools (SonarQube, CAST, Squore).

e The Partner 1 is the type of the reference assessment indicating a high amount of TD based on the re-
sults from SonarQube and Squore tools and simultaneously, a low amount of TD based on the results of
CAST tool.

e The Partner 2 is the type of the reference assessment indicating a high amount of TD based on the re-
sults from SonarQube and CAST tools and simultaneously, a low amount of TD based on the results of
Squore tool.

e The Partner 3 is the type of the reference assessment indicating a high amount of TD based on the re-
sults from Squore and CAST and tools and simultaneously, a low amount of TD based on the results of
Sonar tool.

e The Rebel 1 is the type of the reference assessment indicating a high amount of TD based on the results
from SonarQube tool and simultaneously, a low amount of TD based on the results of Squore and CAST
tools.

e The Rebel 2 is the type of the reference assessment indicating a high amount of TD based on the results
from CAST tool and simultaneously, a low amount of TD based on the results of SonarQube and Squore
tools.

e The Rebel 3 is the type of the reference assessment indicating a high amount of TD based on the results
from Squore tool and simultaneously, a low amount of TD based on the results of SonarQube and CAST
tools.

An interesting conclusion of the analysis on the remaining forty-nine datasets is that the abovementioned types
of archetypes are applicable for the entire spectrum of projects and classes. It is reasonable to assume that the
identified types of archetypes would be valid for any humber of employed tools. For example, there will always
be some classes identified as having high TD (or low TD) by all assessors (conforming to the Max-Ruler or the
Min-Ruler archetype). Nevertheless, the number of commonly identified high-TD (or low-TD) classes is ex-
pected to decrease with the number of tools. Similarly, it is also highly probable that one of the employed tools
will tag some classes as high-TD while all other tools will not, according to the Rebel archetype, or that some
subsets of tools might agree to a larger extent (Partners). This inherent trade-off should be considered by devel-
opment teams when opting for particular quality assurance tools. The ‘intersection’ of commonly agreed arte-
facts with TD principal is expected to become lower as the number of tools increases and the benefit of obtain-
ing wider coverage should be weighed against the diversity of the findings and the difficulties in incorporating
multiple tools in the workflow. Practitioners and researchers should be assisted in focusing on the modules that
are most likely to suffer from TD and to this end the next RQ aims at selecting the right set of classes for further
analysis.

4.4 RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules?

In the last step of the methodology (Step 3), the focus is now on the identification of classes that are close to the
archetype signifying top-TD classes as assessed by all tools. Practically, we seek for classes settled in the neigh-
borhood of the Max-Ruler archetype, which in turn can be specified through the definition of a threshold value
for a coefficient. For example, in project opennlp, if we set a = 0.80 as a threshold value to capture a strong
similarity (or adjacency) to the Max-Ruler archetype (in analogy to the 2-tool representative) example presented
in Section 3.4.2), for three tools we would obtain 54 top-rated TD classes (7.70% of the total), while for two
tools we obtained 84 top-rated TD classes (11.98%). The decrease in the number of commonly identified high-
TD classes confirms the observation that the higher the number of assessors, the smaller the number of top-rated
classes pointed out by all tools.

To examine the effect of the defined threshold value a on the percentage of top-rated classes extracted by the
proposed approach, based on the source code analysis via the set of selected TD tools, we conducted sensitivity
analysis. More precisely, we evaluated the percentage of top-rated classes for a set of threshold values of a-
coefficients ranging from 0.60 to 0.90 increasing by a step of 0.05. In addition, there is an imperative need to
investigate whether the type of language presents an effect on the percentages of top-rated classes for the above
set of threshold values, since the inter-rater agreement analysis presented in Section 4.1 revealed a statistically
significant effect of the type of language on the estimated concordance coefficients. Thus, an interesting issue

23

that deserves further investigation is whether the type of language also affects the percentages of the top-rated
classes.

Figure 12 summarizes the results from which, we can generally infer that the percentage of top-rated classes
decreases as the threshold value increases for both language types. Practically, the selection of a higher thresh-
old value imposes a stricter policy for the identification of high-TD classes by all employed tools. Another in-
teresting finding is the fact that the percentages of top-rated classes/files seems to be generally higher for Java
projects in comparison to JavaScript projects.

Java JavaScript

arduino arthas azkaban cayenne deltaspike angular.js atom bluebird bower

exoplayer fop gson javacv jclouds brackets Chartjs exceljs fabric.js jquery

/

/
/
/
7
/

/
/
/
/
/
{
/

—_
=

; joda-time libgdx maven mina nacos karma Leaflet less.js moment mongoose
gzu

10 0...... '%.... ‘..'.‘. ‘...“. ‘tq..‘. g..'”.

% |0000999| s0sss0, 000000y *S0eey,
B opennlp openrefine pdfbox redisson RxJava mysql node pdf.js plotly.js pm2

o

/
/
/
/
/
/

testng vassonic wss4j xxl-job Zaproxy prettier sails sequelize webpack yarn

0 | i ."‘“l **%cee **0q00
0.6 0.7 0.8 0.90.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.90.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Threshold Threshold

Fig. 12 Percentage of top-rated classes assessed by all three tools for increasing levels of threshold values a (sensitivity
analysis)

20
10

/
¢
/
/
{

So, the next issue is to investigate, whether the observed phenomena can be generalized to the population of
OSS projects with similar characteristics. For this reason, we use the Linear Mixed Effects (LME) models (Pin-
heiro and Bates, 2000) that are able to model simultaneously two types of effects that are (i) the fixed effects, a
term that is used to represent factors that may affect the mean value of interest, and (ii) the random effects that
may have an impact only the variance of the response variable.

In our experimental setup, the experimental unit for which, we wish to draw conclusions regarding the response
variable Percentage (i.e. the percentage of top-rated classes) is the project, which in fact, represents a unit drawn
at random from an infinite unknown population of projects. For this reason, one should take into account and
incorporate into the analysis, the random effect of the factor Project, in order to model the inherent variability
caused by this random selection from the set of all possible OSS projects. Regarding the fixed effects that can
been thought as the effect of specific factors of interest on the response Percentage, we have to examine two
factors that are (i) the threshold value (Threshold) of a denoting the closeness to the Max-Ruler archetype and
(ii) the type of language (Language). Besides the abovementioned two main effects (Threshold, Language),
there is also a need to examine the interaction effect of Threshold and Language (Threshold* Language), since
the effect of the threshold value of a on the percentage of top-rated classes may not be the same at the two levels
of language types (Java/JavaScript).

Regarding the fixed component structure, which describes the main and interaction terms that will be included
in the inferential process, the optimal structure was defined through the protocol proposed by Zuur et al. (Zuur
et al., 2009). Described briefly, a model (defined as the beyond model) examining all factors of interest and their
possible interactions is fitted and tested against a second model after omitting the higher order interaction term
through the Likelihood Ratio (LR) test. In case of an insignificant finding, the selection is based on the principle
of parsimony, which practically means that simpler models with similar explanatory power are preferred over
more complex models with more parameters but slightly better fit. To this end, the Akaike Information Criterion
(AIC) is used for the comparison process, while the model with the lowest AIC value should be preferred over
the competitive ones.

24

The comparison of the beyond model (mentioned above) incorporating the main effects of Threshold and Lan-
guage and their interaction term Threshold* Language against the model without the interaction term Thresh-
old* Language did not reveal a statistically significant difference y? = 6.055,p = 0.417. The practical impli-
cation of this result is that the effect of the threshold value of a on the percentage of top-rated classes is the
same for both language types (Java/JavaScript). The fitting of the final LME model containing only the main
effects revealed statistically significant main effects for both Threshold (F = 299.634,p < 0.001) and type of
Language (F = 29.493,p < 0.001) on the mean percentage values of top-rated classes. We have also to note
that all models were fitted on the logarithmic transformations of the raw percentages, due to the violation of
homoscedasticity assumption of model’s residuals.

Moreover, the post-hoc analysis through Tukey’s HSD test (Pinheiro and Bates, 2000) for the factor Threshold
indicates statistically significant differences (p < 0.05) between the pairs of consecutive levels of threshold
values (as shown in Figure 13, the error bar does not cross the vertical dashed line of zero). Finally, in Table 7,
we report the expected mean percentage (accompanied by 95% CI) of top-rated classes for both language types
in the population of OSS projects with similar characteristics in order to provide an indication of how many
classes will be assessed as top-rated by all applied tools.

95% Confidence Intervals

| p<0.001 | :
0.90-0.85 | i]
I
| p<0.001 ‘ !
0.85 - 0.80/ ‘ | 1
I
| p<0.001 | !
0.80 - 0.75 | | :
| p<0.001 | :
0.75-0.70 | | .
I
| p=0.008 ;o
0.70 - 0.65/ | |
1
| p=0.011 Lo
0.65 - 0.60; , |
0.4 0.2 ol.u
Differences in the mean Percentages (logarthimic scale)
Fig. 13 Post-hoc analysis for LME model (sensitivity analysis)
Table 7 Estimated mean percentage with 95% CI for each threshold value a (sensitivity analysis)
Java JavaScript
Threshold Estimation 95 % CI Estimation 95 % ClI
0.60 15.24 [13.17, 17.64] 9.11 [7.87, 10.55]
0.65 13.06 [11.28, 15.12] 7.81 [6.75, 9.04]
0.70 11.13 [9.62, 12.89] 6.65 [5.75, 7.70]
0.75 8.92 [7.71,10.32] 5.33 [4.61, 6.17]
0.80 6.81 [5.88, 7.88] 4.07 [3.52,4.71]
0.85 4.87 [4.21, 5.64] 291 [2.52, 3.37]
0.90 3.28 [2.84, 3.80] 1.96 [1.70, 2.27]

As it can be observed from Table 7, out of the total population of classes in each project and depending on the
threshold value, only a small portion lying into the intervals [3.28%, 15.24%] and [1.96%, 9.11%)] for Java and
JavaScript projects, respectively, is characterized as having high-TD based on the findings of all three tools.
Generally speaking, and without taking into consideration the type of language, this relatively low number of
classes, in the neighborhood of the Max-Ruler archetype can be acknowledged as a basis concerning the high-
TD classes. The resulting agreement-based benchmark can drive further research by denoting the few modules
carrying “real-TD”, rather than dealing with all candidates extracted by a single tool, which are not confirmed
by other tools. Any future approach, leveraging also the power of machine learning, could be trained to accu-
rately identify the top-rated classes capturing TD in a more realistic manner. It should be noted that a similar

25

methodology could be applied for extracting a benchmark of low-TD classes. Such a set of classes might be
valuable for studying the principles and practices resulting in cleaner code. Nevertheless, given the current pri-
orities of development teams and researchers we have focused on benchmarks of high-TD classes. Besides the
abovementioned findings, the analysis also indicates that irrespective to the applied threshold value a for char-
acterizing similar classes to the Max-Ruler archetype, the percentages of the high-TD classes are expected to be
higher for Java projects compared to the corresponding percentages derived from the analysis on JavaScript
projects. In the Appendix, we conduct a sensitivity analysis in order to examine the variability of the classes
belonging to the Max-Ruler archetype.

5. Implications to Practitioners and Researchers

In this section, we revisit the main outcomes of this study from the perspectives of practitioners and researchers.
However, it should be borne in mind that any identified implications are subject to the limitations of the context
in which our study has been performed. In particular, the current study has considered only the types of TD
identified by the selected tools (namely design and code debt) and two programming languages (namely Java
and JavaScript). Moreover, the findings are based on a single measure of TD (i.e. principal) excluding other
indices such as the severity or the type of the identified inefficiencies.

Overcome construct validity threats in research (researchers). As mentioned in the introductory section, the re-
search community within the TD field lacks an ultimate process to accurately capture TD principal and thus, any
empirical study or technique based on TD estimates runs the risk of not accurately measuring the real-world
phenomenon under study. Each tool follows its own approach for detecting and measuring TD, based on a dis-
tinct ruleset, yielding a different amount for the total TD, but also pointing to different parts of the code that
need to be mitigated, compared to other tools. There are several studies trying to identify high-TD modules and
studies investigating the association of accrued TD with other factors. However, such approaches are heavily
dependent on the employed tool for suggesting the ground truth, that is, the modules that actually have TD lia-
bilities and need to be fixed. Apparently, because each tool evaluates TD in a different way, the generalizability
of these approaches is threatened to a large extent.

The two aspects of the proposed methodology, that is, the estimation of inter-rater agreement among TD tools
and the use of archetypal analysis for identifying classes having a desired profile (e.g. high-TD levels by all
tools) can be applied by researchers to form a more reliable basis for their experiments. More conveniently, re-
searchers can also employ the already available benchmarks of high-TD classes (but also classes having a dif-
ferent profile if needed) from the online TD Benchmarker web application. Consequently, leveraging the power
of multiple TD tools using the proposed approach can assist in the mitigation of construct validity threats that is
currently present in the field of TD.

Highlight critical modules with validated highest TD (practitioners). Despite the widespread adoption of the TD
metaphor, it is far from clear which tool IT managers should integrate in the development and maintenance pro-
cess. Employing more than one TD tool for the evaluation of their software might be a costly option, since most
of the existing tools are available only with a commercial license. Moreover, each tool requires significant effort
to deploy, properly configure and familiarize with. However, even if a development team employs more than
one tool, the union of all findings, would result in an unrealistic amount of suggestions, rendering the process
intractable. Based on the proposed methodology, practitioners can highlight the classes that have been identified
as high-TD classes by all employed tools leading to a manageable number of target classes. Development teams
can take advantage of such agreement-based benchmark sets and focus only on the modules of their system that
are validated as high-TD modules. With respect to the benefit of the already derived benchmarks from the ana-
lyzed systems, developers can focus on the classes close to the Max-Ruler archetype and gain insight into the
root causes of the accumulation of TD in these classes and potentially avoid non-ideal coding practices in the
future. Moreover, the non-unanimous archetypes (Rebel and Partner archetypes) can be valuable, as well. The
existence of these archetypes is the key factor that differentiates one tool from the others. If only unanimous
archetypes existed, this would mean that all tools generate the same results pointing to the same classes/files
with accrued TD principal. Through the exploration of classes/files in the vicinity of non-unanimous archetypes
development teams can gain insight into how TD tools differ on the measurement and prioritization of TD prin-
cipal. With such knowledge, developers can more confidently invest in the TD tool that best fits their perception
of when a class/file is tagged as high-TD (or low-TD).

26

Collection of available TD tools (researchers and practitioners). Last but not least, another contribution of our
work is the localization and collection of available TD assessment tools, as presented in Section 2. The list is by
no means an exhaustive one, as numerous other tools offer functionality related to the identification of code
smells, anti-patterns, rule violations, excessive metric values, etc. all of which are indicators of the existence of
TD in software. Nevertheless, the presented tools can serve as starting point both for practitioners who are
searching for a TD tool to integrate into their development process as well as researchers who are seeking an
appropriate assessor of TD principal. In both cases, the proposed methodology can assist in the critical appraisal
of the agreement or the diversity among tool findings.

6 Threats to Validity

In this section, we present and discuss potential threats to the validity of our case study, focusing on construct,
reliability, and external validity (Runeson and Host, 2008; Wohlin et al., 2000). Internal validity is not consid-
ered, since causal relations have not been studied.

Construct Validity. Concerning construct validity, it can be argued that the basis of TD cannot be formed solely
on the findings of TD assessment tools and as a result the study might inaccurately capture the actual phenome-
non. The employed tools perform static source code analysis and thus the identified liabilities are primarily re-
lated to code TD, and in certain cases might also point to design or architectural problems. But according to the
literature (Alves et al., 2016; Li et al., 2015) several other types of TD have been identified and might be present
throughout all phases of the software development lifecycle, including Test, Documentation, Build, Infrastruc-
ture TD, etc. Consequently, the extracted TD measurements and the resulting benchmark represent only a por-
tion of the system TD. However, code TD has been one of the mostly studied type of TD (Li et al., 2015) and
the target of most available tools, including the ones that have not been used in this study. Furthermore, the
steps of the proposed methodology are equally applicable to the findings regarding any type of TD and thus
benchmarks can be derived for other types of problems, provided that suitable measurement tools are available.

Another important threat to construct validity pertains to the exclusion from the study of other TD-related in-
formation, such as the specific type of the identified inefficiencies or their severity. Indeed, it might be the case
that the level of agreement among tools varies depending on type/severity of issues and we believe that this war-
rants a further study. Although TD principal is an aggregate measure encompassing all kinds of identified prob-
lems, development teams would be more assured in case different tools agree on the more severe problems or
the type of problems which they consider relevant to their software. Nevertheless, both aspects of the proposed
approach for the gquantification of the level of agreement among the tools and the extraction of representative
archetypes can be applied to any subset of the identified TD issues.

Reliability. The described methodology outlines all steps followed to carry out the inter-rater agreement and
archetypal analysis along with the provided web application that allows the extraction of benchmarks (sets of
classes close to the Max-Ruler archetype) mitigates reliability threats. One potential threat to the ability of repli-
cating this study and reaching the same results is related to the optimal number of archetypes defined in Step 1
of the proposed approach (Section 3.4.2). The selection of the appropriate number of archetypes that is able to
capture the diversity of the examined TD tools based on the inspection of the multidimensional space is, to some
extent, a subjective process, especially in the case of a three-dimensional plot. In addition, the above visualiza-
tion practice is not applicable in case the number of tools is higher than three. In these cases, the practitioner
should base his/her choice on the examination of the profile plots and most importantly, on the inspection of the
RSS plot to conclude on the appropriate number of archetypes. In our experimental setup, the investigation of
these graphical manners led us to the definition of the optimal number of eight archetypes, which is a rational
and common-sense finding, since the derived archetypes represent expected behaviors, in cases where three TD
tools with partially different rulesets are used for benchmarking purposes. Finally, the Open Science Replication
Package (TD Benchmarker source code?* and AA tool support with dataset?) are validated by the Open Science
Board. The links to these resources are provided as footnotes in this manuscript.

24 https://github.com/theoam/TDBenchmarker
25 https://doi.org/10.5281/zen0d0.3966202

27

https://github.com/theoam/TDBenchmarker
https://doi.org/10.5281/zenodo.3966202

External Validity. Regarding the external validity of the proposed approach, a potential threat to the generaliza-
tion of the results is related to the identification and retrieval of the set of classes that are close to the Max-Ruler
archetype (Step 3, Section 3.4.2), since the extracted set is certainly affected by the subjectivity and strictness of
the practitioner. To this regard, we conducted a sensitivity analysis in order to examine how the choice of the
threshold value for a-coefficient defining the neighbour classes affects the percentage of classes that belongs to
the extracted benchmark set. Moreover, this work investigates the research questions in the context of 50 open
source projects. Due to the limited number and types of the analyzed systems the conclusions regarding the ob-
served level of agreement among the tools and the number of archetypes which are sufficient to capture the
swarm of the observed points, probably cannot be generalized across other domains, programming languages or
to proprietary software. A similar threat to external validity stems from the selection of TD assessment tools in
the sense that our analysis was based on the identified violations, which in turn reflect the particular ruleset of
each tool. Therefore, the findings on the agreement of TD assessment tools cannot be generalized beyond the
employed tools.

7. Related Work

Since our first goal was to study the level of agreement among TD tools, in this section we present previous
studies that compare the techniques and results of tools that explicitly or implicitly measure TD. Our second
goal was to extract an agreement-based benchmark set of validated high-TD classes; therefore, we discuss other
approaches to build such benchmarks or extract thresholds in the broader area of software maintenance.

7.1 Comparison of Tools measuring Technical Debt

In a previous case study (Kazman et al., 2015), the authors aimed at locating the architecture debts of a proprie-
tary web portal system owned by a software outsourcing company using their own tool, Titan. The results of the
Titan tool (TitanDebts) were compared to the results of the SonarQube tool (SonarDebts) that the company was
already using. By examining the overlap between TitanDebts and SonarDebts, the authors found that 4 of the
total files (25 files) were found in the intersection of the most problematic files that Titan and SonarQube have
identified. To this regard, the authors concluded that the Titan tool (which identifies architecture debts more
effectively) and the SonarQube tool detect substantially different and complementary sets of files.

A case study in 2014 (Zazworka et al., 2014) compared four different techniques of TD evaluation (with the
associated tool to run the analysis) including code smells (tool: codevizard), automatic static analysis issues
(tool: FindBugs), grime build up and modularity violations (tool CLIO). The authors investigated whether the
set of selected techniques/tools report the same set of modules as problematic and which was the overlap among
them. The classes of 13 Hadoop releases were measured and 30 metrics were compared. The results of the study
showed that the four techniques/tools had very little overlap, pointing to different problems in different modules.

In an experimental study (Griffith et al., 2014), the authors investigated the correspondence between several
technical debt estimation approaches and external software quality models. Specifically, they evaluated (a) So-
narQubes’s, (b) CAST’s and (c) Marinescu’s method (Marinescu, 2012) of technical debt estimation against the
QMOOD quality model, which encompasses the quality attributes; reusability, flexibility, understandability,
functionality, extendibility and effectiveness. They did not find evidence for strong relationship between the TD
estimates and the quality attributes of the QMOOD model, except for one estimation method regarding only the
flexibility and effectiveness quality attributes. The authors concluded that “it is important that industry practi-
tioners, ensure that the technical debt estimate they employ accurately depicts the effects of technical debt as
viewed from their quality model”.

In a recent study (Ernst et al., 2017), the authors, being motivated by the perception that design problems are
more significant than coding errors for long-term software maintenance, aimed at investigating how three major
TD tools (CAST, NDepend, SonarQube) capture design debt. Particularly, the authors distinguished the rules
that capture design debt from a total of 466 examined rules from all three tools. Their results showed that all
three tools mainly focus on non-design debt (only 19% of the rules captured design issues). Particularly, NDe-
pend focuses the most on design rules (26% of its total rules are design-related), then follows CAST with 17%
and SonarQube with 13%.

28

Fontana et al. (2016) examined the impact of the elimination of architectural problems in four Java projects on
the quality indices of four tools (SonarQube, inFusion, Structural Analysis of Java (SA4J) and Structure101).
The results showed that the architectural refactorings in the four examined systems did not have any impact on
the SQALE index of SonarQube and as far as SA4J is concerned, its stability index was affected only in one
system. Consequently, the authors concluded that the SQALE index of SonarQube and the stability index of
SA4] are not capable of effectively capturing the notion of architectural debt.

In another study (F. A. Fontana et al., 2016), the authors compared the techniques of five tools (CAST, inFu-
sion, Sonargraph, SonarQube and Structure101) that provide some kind of Technical Debt Index (TDI). The
comparison of the tools showed that all tools except for SonarQube exploit architectural information to form
their TDIs. Moreover, two of the tools (inFusion and Structure101) do not calculate the cost for TD remediation
(TD principal) whilst they only calculate the cost of keeping the software as it is (TD interest). On the other
hand, CAST and SonarQube calculate only TD Principal and not TD interest. As far as the output measurement,
CAST and Sonargraph output cost in terms of US dollars, SonarQube in terms of time to remedy issues, while
the rest produce either abstract values or values that are not expressed in money or time.

According to the abovementioned studies that compared different TD measurement tools, the results of each
tool diverged from the results of the others. This phenomenon emphasizes our motivation to compare the TD
estimates of several TD tools and extract the high-TD modules as identified by the tools altogether. It should be
also noted that the aforementioned studies employed tools that measure TD either explicitly (generating a direct
Technical Debt Index) or implicitly (generating a general quality index). Nevertheless, we remind that, in our
study, we employed tools that explicitly output a Technical Debt Index to allow for more focused and direct
comparison of the results on TD measurement.

7.2 Benchmarks in Software Maintenance

Several studies attempt to establish benchmark datasets so that software quality assessment approaches can be
compared against them. Quite often the related research effort aims at building benchmarks to extract repre-
sentative thresholds for source code metrics or quality indices, which can then serve as baseline for comparison
with actual values of the systems under evaluation. A notable example of such benchmarks is the benchmark
repository of Software Improvement Group (SIG) against which any selected system can be compared in terms
of code quality and maintainability (Baggen et al., 2012). Below we provide an overview of studies, in which
the authors developed benchmarks and aimed at deriving thresholds for the evaluation of software quality (in
descending chronological order).

In a recent study (Mori et al., 2018), the authors defended the idea that the extraction of metric thresholds should
be tailored to each software domain. They collected a large set of 3107 Java systems across 15 domains from
GitHub?® and measured a set of 8 source code metrics with the CK Tool?’. The aforementioned metrics reflected
size, complexity and inheritance aspects of software. Then, the authors derived metric thresholds using the
method supported by TDTool (Veado et al., 2016). In particular, thresholds have been selected so as to represent
various groups (i.e. high-90% and very high-95%) of the sorted metric values. The authors found evidence that
"metric thresholds vary across domains and most domain-specific thresholds differ from generic thresholds".

Dohmen et al. (2016) built a benchmark for maintainability evolution with data from approximately 1750 indus-
trial software systems. The data was collected from the Software Analysis Warehouse (SAW), a property of the
Software Improvement Group (SIG). SAW contains the results of the software quality analyses that SIG con-
ducts. The study focused on the production source code of the projects excluding testing and auto-generated
code. The authors created a prototype of a benchmark for maintainability evolution. The benchmark was based
on a group of systems, which were close to a selected open source system, Crawljax, in terms of maintainability
and volume. The authors, first, selected the systems which had the 5% closest maintainability transitions to
Crawljax and then, with the use of Empirical Cumulative Distribution Function (ECDF) found the systems that
developed equal or worse than the compared system.

26 https://github.com/
27 hitps://github.com/mauricioaniche/ck

29

https://github.com/
https://github.com/mauricioaniche/ck

Comparison against existing systems has also been used as a method for assessing the software quality of a
commercial system, property of an international company in the logistics domain (Yamashita, 2015). The sys-
tem was analyzed in terms of size, complexity, modularity, redundancy and technical debt with the utilization of
SonarQube and NDepend. To evaluate the quality of the system, the author compared it with the quality of a set
of 1892 open source projects from GitHub of similar age and programming language. The author calculated the
metrics of each project with SonarQube and then extracted the percentile thresholds of the metrics with RTTool
(Oliveira et al., 2014a). The system's metric was considered "normal™ if its value was near the middle percen-
tiles and vice versa. The aforementioned benchmark was applied at file and at system level with aggregated val-
ues.

The notion of balance between real and ideal software design was used in a study in 2014 (Oliveira et al.,
2014b), in which the authors described a method for deriving relative thresholds for source code metrics. The
method was based on evidence that source code metrics follow fat-tailed distributions, meaning that there is no
typical value for them (Ferreira et al., 2012). Therefore, the authors suggested that it is acceptable for some met-
rics not to follow absolute thresholds. To this regard, they proposed the concept of relative thresholds for evalu-
ating source code metrics, where a percentage of source code entities should have values lower than an upper
limit, whilst another percentage of entities is accepted to exceed upper limit due to specific requirements. The
method was evaluated by applying it on the classes of 106 Java systems and extracting thresholds for seven met-
rics.

A benchmark-oriented calculation of TD was proposed by Mayr et al. (2014). Their benchmark-based model for
calculation of Remediation Costs of software combined features from three existing TD calculation approaches;
CAST model, SQALE model and the SIG model. Measures obtained with these models were normalized in
terms of lines of code before used in the proposed model. For each metric, the authors calculated a quartile-
based distribution dividing the normalized values of the metric in four areas. Metrics with values that laid below
the lower or above the upper areas were considered non-conforming to the benchmark dataset. Ultimately, the
authors tested their model by applying it on two open source projects, the quality of which had been previously
evaluated and compared against the benchmark database. The experiment showed that the model was able to
calculate remediation costs that reflected the relative (to the benchmark database) quality of the projects.

In another study (Alves et al., 2010), a method for extracting metric thresholds from benchmark data was de-
signed. The method was applied on a benchmark of 100 C# and Java systems proprietary and open-source from
a broad range of domains. The metrics were extracted for every entity of the system (method and file level) and
were normalized with the weight of the entity. As weight of the entity, its size in terms of LOC was considered.
Then the normalized metrics were placed in percentiles, from which the thresholds derived. Their contribution
to the industry was to successfully use the thresholds derived with their methodology instead of the thresholds
based on experts’ opinion.

8. Conclusions and Future Work

The Technical Debt metaphor successfully captures, in monetary terms, the penalty that has to be paid because
of shortcuts during software development. These shortcuts are known to introduce architectural, design and code
inefficiencies in software systems and various TD tools aim at identifying them by testing the source code
against specific rulesets. However, TD tools provide different estimates of TD principal pointing to different
mitigation actions. These discrepancies make a lot of people in academia and practice skeptical about the validi-
ty of existing TD tools and hinder the further development of TD research as no ground truth for accurate TD
instances can be established.

To address these limitations in the TD community we performed an empirical study whose goal was twofold: (a)
to determine the level of agreement among three well-known TD tools and (b) build agreement-based bench-
marks of high-TD classes/files from a dataset resulting from 50 open-source projects. Inter-rater agreement has
been assessed, using Kendall’s W coefficient of concordance. To capture the diversity of the examined tools
with the aim of identifying representative class profiles we relied on archetypal analysis. Once the derived refer-
ence assessments are characterized, it is straightforward to extract sets of classes exhibiting similarity to a se-
lected profile (e.g. that of high TD levels in all employed tools) and in this way establish a basis.

30

The findings of the inter-rater agreement analysis suggest that there is a statistically significant and strong
agreement among the three TD tools on the measurement of TD at class level. However, a substantial degree of
disagreement has also been observed for the measured TD level for numerous classes. The application of the
archetypal analysis revealed that three types of reference assessments can successfully capture the spectrum of
TD measurements provided by three tools: One set of archetypes represents classes identified as high-TD mod-
ules by only one of the tools, the second profile encompasses classes for which two of the tools agree on the
measured TD level, while the final type of archetype signifies a high amount (or low amount) of TD based on
the results of all applied tools. Selecting the classes in the vicinity of the latter archetype yields an agreement-
based benchmark of classes tagged as high-TD by all tools. Such benchmarks, beyond their value as fields of
study for poor development practices that led to low quality classes, can potentially form the basis for training
more sophisticated TD identification and measurement approaches.

The goal of this study was to shed light into the level of agreement among TD tools and to establish a process
for deriving an agreement-based benchmark set of high/low TD artifacts. Any interpretation of the results con-
sidering different perspectives, such as development context, role of developers (tester, designer, analyzer, etc.)
was beyond the scope of this paper. Nevertheless, this forms a really interesting area of future work. Another
interesting line of research would be to investigate to which degree TD tools are compliant with the guidelines
of the OMG Specification on Automated Technical Debt Measure?®, accompanied by an experience report on
how to use these tools, problems that practitioners might face during their installation, configuration, and analy-
sis, as well as a guide on how the TD Benchmarker can be used.

We also acknowledge that the nature of the examined rules by each tool might be a decisive factor for the TD
principal estimates per class/file. Drilling down to the level of individual rule violations which are detected by
each tool, can shed light into the cause of their agreement or discrepancy. We plan to conduct such a study to
investigate the similarity among the examined rules by mapping the rules adopted by each tool to the rules em-
ployed by the other tools.

Acknowledgement

This research is funded by the University of Macedonia Research Committee as part of the “Principal Research
2019” funding program.

References

Alves, N.S.R., Mendes, T.S., de Mendonga, M.G., Spinola, R.O., Shull, F., Seaman, C., 2016. Identification and
management of technical debt: A systematic mapping study. Inf. Softw. Technol. 70, 100-121.
https://doi.org/10.1016/j.infsof.2015.10.008

Alves, T.L., Ypma, C., Visser, J., 2010. Deriving metric thresholds from benchmark data, in: 2010 IEEE Inter-
national Conference on Software Maintenance. Presented at the 2010 IEEE International Conference
on Software Maintenance, pp. 1-10. https://doi.org/10.1109/ICSM.2010.5609747

Arvedahl, S., 2018. Introducing Debtgrep, a Tool for Fighting Technical Debt in Base Station Software, in: Pro-
ceedings of the 2018 International Conference on Technical Debt, TechDebt 18. ACM, New York,
NY, USA, pp. 51-52. https://doi.org/10.1145/3194164.3194183

Baggen, R., Correia, J.P., Schill, K., Visser, J., 2012. Standardized code quality benchmarking for improving
software maintainability. Softw. Qual. J. 20, 287-307. https://doi.org/10.1007/s11219-011-9144-9

Baldassari, B., 2013. SQUORE: a new approach to software project assessment.

Campbell, G.A., Papapetrou, P.P., 2013. SonarQube in Action, 1st ed. Manning Publications Co., Greenwich,

CT, USA.
Canhasi, E., Kononenko, 1., 2014. Weighted archetypal analysis of the multi-element graph for query-focused
multi-document summarization. Expert Syst. Appl. 41, 535-543.

https://doi.org/10.1016/j.eswa.2013.07.079
Chan, B.H.P., Mitchell, D.A., Cram, L.E., 2003. Archetypal analysis of galaxy spectra. Mon. Not. R. Astron.
Soc. 338, 790-795. https://doi.org/10.1046/j.1365-8711.2003.06099.x

28 https://www.omg.org/spec/ATDM/About-ATDM

31

https://www.omg.org/spec/ATDM/About-ATDM

Chopra, K., Sachdeva, M., 2015. EVALUATION OF SOFTWARE METRICS FOR SOFTWARE PROJECTS.
Int. J. Comput. Technol. 14, 5845-5853. https://doi.org/10.24297/ijct.v14i6.1915

Cohen, J., 1968. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit.
Psychol. Bull. 70, 213-220. https://doi.org/10.1037/h0026256

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37-46.
https://doi.org/10.1177/001316446002000104

Conejero, J.M., Rodriguez-Echeverria, R., Hernandez, J., Clemente, P.J., Ortiz-Caraballo, C., Jurado, E.,
Sanchez-Figueroa, F., 2018. Early evaluation of technical debt impact on maintainability. J. Syst.
Softw. 142, 92-114. https://doi.org/10.1016/j.jss.2018.04.035

Cunningham, W., 1992. The WyCash Portfolio Management System, in: Addendum to the Proceedings on Ob-
ject-Oriented Programming Systems, Languages, and Applications (Addendum), OOPSLA °92. ACM,
New York, NY, USA, pp. 29-30. https://doi.org/10.1145/157709.157715

Curtis, B., Sappidi, J., Szynkarski, A., 2012. Estimating the Principal of an Application’s Technical Debt. IEEE
Softw. 29, 34-42. https://doi.org/10.1109/MS.2012.156

Cutler, A, Breiman, L., 1994. Archetypal Analysis. Technometrics 36, 338-347.
https://doi.org/10.1080/00401706.1994.10485840

DeMarco, T., 1986. Controlling Software Projects: Management, Measurement, and Estimates, 1 edition. ed.
Prentice Hall, Englewood Cliffs, N.J.

Doéhmen, T., Bruntink, M., Ceolin, D., Visser, J., 2016. Towards a Benchmark for the Maintainability Evolution
of Industrial Software Systems, in: 2016 Joint Conference of the International Workshop on Software
Measurement and the International Conference on Software Process and Product Measurement
(IWSM-MENSURA). Presented at the 2016 Joint Conference of the International Workshop on Soft-
ware Measurement and the International Conference on Software Process and Product Measurement
(IWSM-MENSURA), pp. 11-21. https://doi.org/10.1109/IWSM-Mensura.2016.014

Elze Tobias, Pasquale Louis R., Shen Lucy Q., Chen Teresa C., Wiggs Janey L., Bex Peter J., 2015. Patterns of
functional vision loss in glaucoma determined with archetypal analysis. J. R. Soc. Interface 12,
20141118. https://doi.org/10.1098/rsif.2014.1118

Ernst, N.A., Bellomo, S., Ozkaya, 1., Nord, R.L., 2017. What to Fix? Distinguishing between Design and Non-
design Rules in Automated Tools, in: 2017 IEEE International Conference on Software Architecture
(ICSA). Presented at the 2017 IEEE International Conference on Software Architecture (ICSA), pp.
165-168. https://doi.org/10.1109/ICSA.2017.25

Eugster, M.J.A., 2012. Performance Profiles based on Archetypal Athletes. Int. J. Perform. Anal. Sport 12, 166—
187. https://doi.org/10.1080/24748668.2012.11868592

Fernandez-Sanchez, C., Humanes, H., Garbajosa, J., Diaz, J., 2017. An Open Tool for Assisting in Technical
Debt Management, in: 2017 43rd Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA). Presented at the 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 400-403. https://doi.org/10.1109/SEAA.2017.60

Ferreira, K.A.M., Bigonha, M.A.S., Bigonha, R.S., Mendes, L.F.O., Almeida, H.C., 2012. Identifying thresholds
for object-oriented software metrics. J. Syst. Softw., Special issue with selected papers from the 23rd
Brazilian Symposium on Software Engineering 85, 244-257. https://doi.org/10.1016/j.jss.2011.05.044

Fleiss, J.L., 1971. Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378-382.
https://doi.org/10.1037/h0031619

Foganholi, L.B., Garcia, R.E., Eler, D.M., Correia, R.C.M., Junior, C.0., 2015. Supporting Technical Debt
Cataloging with TD-Tracker Tool. Adv Soft Eng 2015, 4:4-4:4. https://doi.org/10.1155/2015/898514

Fontana, Francesca Arcelli, Roveda, R., Vittori, S., Metelli, A., Saldarini, S., Mazzei, F., 2016. On Evaluating
the Impact of the Refactoring of Architectural Problems on Software Quality, in: Proceedings of the
Scientific Workshop Proceedings of XP2016, XP 16 Workshops. ACM, New York, NY, USA, pp.
21:1-21:8. https://doi.org/10.1145/2962695.2962716

Fontana, F. A., Roveda, R., Zanoni, M., 2016. Technical Debt Indexes Provided by Tools: A Preliminary Dis-
cussion, in: 2016 IEEE 8th International Workshop on Managing Technical Debt (MTD). Presented at
the 2016 IEEE 8th International Workshop on Managing Technical Debt (MTD), pp. 28-31.
https://doi.org/10.1109/MTD.2016.11

Griffith, 1., Reimanis, D., lzurieta, C., Codabux, Z., Deo, A., Williams, B., 2014. The Correspondence Between
Software Quality Models and Technical Debt Estimation Approaches, in: 2014 Sixth International
Workshop on Managing Technical Debt. Presented at the 2014 Sixth International Workshop on Man-
aging Technical Debt, pp. 19-26. https://doi.org/10.1109/MTD.2014.13

32

Gwet, K.L., 2014. Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of
Agreement Among Raters, 4 edition. ed. Advanced Analytics, LLC, Gaithersburg, MD.

Holvitie, J., Leppanen, V., 2013. DebtFlag: Technical Debt Management with a Development Environment In-
tegrated Tool, in: Proceedings of the 4th International Workshop on Managing Technical Debt, MTD
’13. IEEE Press, Piscataway, NJ, USA, pp. 20-27.

Izurieta, C., Vetro, A., Zazworka, N., Cai, Y., Seaman, C., Shull, F., 2012. Organizing the technical debt land-
scape, in: 2012 Third International Workshop on Managing Technical Debt (MTD). Presented at the
2012 Third International Workshop on Managing Technical Debt (MTD), pp. 23-26.
https://doi.org/10.1109/MTD.2012.6225995

Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., Fedak, V., Shapochka, A., 2015. A Case Study in
Locating the Architectural Roots of Technical Debt, in: 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering. Presented at the 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, pp. 179-188. https://doi.org/10.1109/ICSE.2015.146

Kendall, M.G., 1948. Rank correlation methods, Rank correlation methods. Griffin, Oxford, England.

Kosti, M.V., Feldt, R., Angelis, L., 2016. Archetypal personalities of software engineers and their work prefer-
ences: a new perspective for empirical studies. Empir. Softw. Eng. 21, 1509-1532.
https://doi.org/10.1007/s10664-015-9395-3

Li, S., Wang, P., Louviere, J., Carson, R., 2003. ARCHETYPAL ANALYSIS: A NEW WAY TO SEGMENT
MARKETS BASED ON EXTREME INDIVIDUALS 6.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt and its management. J. Syst.
Softw. 101, 193-220. https://doi.org/10.1016/j.jss.2014.12.027

Marinescu, R., 2012. Assessing technical debt by identifying design flaws in software systems. IBM J. Res.
Dev. 56, 9:1-9:13. https://doi.org/10.1147/JRD.2012.2204512

Martini, A., Bosch, J., 2016. An Empirically Developed Method to Aid Decisions on Architectural Technical
Debt Refactoring: AnaConDebt, in: 2016 IEEE/ACM 38th International Conference on Software Engi-
neering Companion (ICSE-C). Presented at the 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C), pp. 31-40.

Mayr, A., Plosch, R., Kérner, C., 2014. A Benchmarking-Based Model for Technical Debt Calculation, in: 2014
14th International Conference on Quality Software. Presented at the 2014 14th International Confer-
ence on Quality Software, pp. 305-314. https://doi.org/10.1109/QS1C.2014.35

Mendes, T.S., Gomes, F.G.S., Gongalves, D.P., Mendong¢a, M.G., Novais, R.L., Spinola, R.O., 2019.
VisminerTD: a tool for automatic identification and interactive monitoring of the evolution of technical
debt items. J. Braz. Comput. Soc. 25, 2. https://doi.org/10.1186/s13173-018-0083-1

Mittas, N., Angelis, L., 2020. Data-driven benchmarking in software development effort estimation: The few
define the bulk. J. Softw. Evol. Process n/a, e2258. https://doi.org/10.1002/smr.2258

Mittas, N., Karpenisi, V., Angelis, L., 2014. Benchmarking Effort Estimation Models Using Archetypal Analy-
sis, in: Proceedings of the 10th International Conference on Predictive Models in Software Engineer-
ing, PROMISE ’14. ACM, New York, NY, USA, pp. 62-71. https://doi.org/10.1145/2639490.2639502

Moliner, J., Epifanio, 1., 2019. Robust multivariate and functional archetypal analysis with application to finan-
cial time series analysis. Phys. Stat. Mech. Its Appl. 519, 195-208.
https://doi.org/10.1016/j.physa.2018.12.036

Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E., Cirilo, E., Jamshidi, P., Kastner, C., 2018. Evaluat-
ing Domain-Specific Metric Thresholds: An Empirical Study, in: 2018 IEEE/ACM International Con-
ference on Technical Debt (TechDebt). Presented at the 2018 IEEE/ACM International Conference on
Technical Debt (TechDebt), pp. 41-50.

Nayebi, M., Cai, Y., Kazman, R., Ruhe, G., Feng, Q., Carlson, C., Chew, F., 2019. A Longitudinal Study of
Identifying and Paying Down Architecture Debt, in: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). Presented at the 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pp. 171-180. https://doi.org/10.1109/ICSE-SEIP.2019.00026

Nugroho, A., Visser, J., Kuipers, T., 2011. An empirical model of technical debt and interest, in: Proceedings of
the 2nd Workshop on Managing Technical Debt, MTD ’11. Association for Computing Machinery,
Waikiki, Honolulu, HI, USA, pp. 1-8. https://doi.org/10.1145/1985362.1985364

Oliveira, P., Lima, F.P., Valente, M.T., Serebrenik, A., 2014a. RTTool: A Tool for Extracting Relative Thresh-
olds for Source Code Metrics, in: 2014 IEEE International Conference on Software Maintenance and
Evolution. pp. 629-632. https://doi.org/10.1109/ICSME.2014.112

33

Oliveira, P., Valente, M.T., Lima, F.P., 2014b. Extracting relative thresholds for source code metrics, in: 2014
Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE). Presented at the 2014 Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 254-263.
https://doi.org/10.1109/CSMR-WCRE.2014.6747177

Pearson, C.S., 2015. Awakening the Heroes Within: Twelve Archetypes to Help Us Find Ourselves and Trans-
form Our World, First Edition, First Pinting edition. ed. HarperOne, San Francisco.

Pinheiro, J., Bates, D., 2000. Mixed-Effects Models in S and S-PLUS, Statistics and Computing. Springer-
Verlag, New York.

Porzio, G.C., Ragozini, G., Vistocco, D., 2008. On the use of archetypes as benchmarks. Appl. Stoch. Models
Bus. Ind. 24, 419-437. https://doi.org/10.1002/asmb.727

Runeson, P., Host, M., 2008. Guidelines for conducting and reporting case study research in software engineer-
ing. Empir. Softw. Eng. 14, 131. https://doi.org/10.1007/s10664-008-9102-8

Sadowski, C., Gogh, J. van, Jaspan, C., S6derberg, E., Winter, C., 2015. Tricorder: Building a Program Analysis
Ecosystem, in: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. Pre-
sented at the 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, pp. 598—
608. https://doi.org/10.1109/ICSE.2015.76

Salkind, N.J. (Ed.), 2010. Encyclopedia of Research Design, 1 edition. ed. SAGE Publications, Inc, Thousand
Oaks, Calif.

Schmidt, R.C., 1997. Managing Delphi Surveys Using Nonparametric Statistical Techniques*. Decis. Sci. 28,
763-774. https://doi.org/10.1111/j.1540-5915.1997.th01330.x

Scott, W.A., 1955. Reliability of Content Analysis: The Case of Nominal Scale Coding. Public Opin. Q. 19,
321-325.

Seiler, C., Wohlrabe, K., 2013. Archetypal scientists. J. Informetr. 7, 345-356.
https://doi.org/10.1016/j.j0i.2012.11.013

Solingen, R. van, Basili, V., Caldiera, G., Rombach, H.D., 2002. Goal Question Metric (GQM) Approach, in:
Encyclopedia of Software Engineering. American Cancer Society.
https://doi.org/10.1002/0471028959.50f142

Thegersen, J.C., Marup, M., Damkier, S., Molin, S., Jelsbak, L., 2013. Archetypal analysis of diverse Pseudo-
monas aeruginosatranscriptomes reveals adaptation in cystic fibrosis airways. BMC Bioinformatics 14,
279. https://doi.org/10.1186/1471-2105-14-279

Tornhill, A., 2018. Assessing Technical Debt in Automated Tests with CodeScene, in: 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). Presented at the
2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (IC-
STW), pp. 122-125. https://doi.org/10.1109/ICSTW.2018.00039

Tsanousa, A., Laskaris, N., Angelis, L., 2015. A novel single-trial methodology for studying brain response var-
iability based on archetypal analysis. Expert Syst. Appl. 42, 8454-8462.
https://doi.org/10.1016/j.eswa.2015.06.058

Veado, L., Vale, G., Fernandes, E., Figueiredo, E., 2016. TDTool: Threshold Derivation Tool, in: Proceedings
of the 20th International Conference on Evaluation and Assessment in Software Engineering, EASE
’16. ACM, New York, NY, USA, pp. 24:1-24:5. https://doi.org/10.1145/2915970.2916014

Watson, P.F., Petrie, A., 2010. Method agreement analysis: A review of correct methodology. Theriogenology
73, 1167-1179. https://doi.org/10.1016/j.theriogenology.2010.01.003

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000. Experimentation in Software
Engineering: An Introduction, International Series in Software Engineering. Springer US.

Xiao, L., Cai, Y., Kazman, R., 2014a. Titan: a toolset that connects software architecture with quality analysis,
in: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2014. Association for Computing Machinery, Hong Kong, China, pp. 763-766.
https://doi.org/10.1145/2635868.2661677

Xiao, L., Cai, Y., Kazman, R., 2014b. Design rule spaces: a new form of architecture insight, in: Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014. Association for Computing
Machinery, Hyderabad, India, pp. 967-977. https://doi.org/10.1145/2568225.2568241

Yamashita, A., 2015. Experiences from performing software quality evaluations via combining benchmark-
based metrics analysis, software visualization, and expert assessment, in: 2015 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). Presented at the 2015 IEEE International

34

Conference on Software Maintenance and Evolution (ICSME), pp. 421-428.
https://doi.org/10.1109/ICSM.2015.7332493

Zazworka, N., Vetro’, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F., 2014. Comparing four ap-
proaches for technical debt identification. Softw. Qual. J. 22, 403—426. https://doi.org/10.1007/s11219-
013-9200-8

Zuur, A., leno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in
Ecology with R, Statistics for Biology and Health. Springer-Verlag, New York.
https://doi.org/10.1007/978-0-387-87458-6

35

