AynOmel 3D: A Pattern-Based Game Framework

Olia Michou, Maria Vamvaka, Apostolos Ampatzoglou

Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece
E-mail: ampatzoglou@doai.uom.gr

Abstract

The paper presents the structure of a game framework (AynOmel 3D). More
specifically, the paper focuses on three major points, on the game framework modules, on the
accompanying software tools, and on how design patterns proved beneficial in its design. The
main idea behind the software architecture is to design a game framework completely based
on patterns and investigate the potential benefits deriving from it. The effect of design patterns

on the software is examined in respect to maintenance and flexibility.

Keywords
Design patterns, game engines, game frameworks, game development

1. Introduction

Nowadays it is a common sense that games play a very important role in
modern societies concerning economy, lifestyle and quite recently scientific research.
The game industry is now considered to be one of the most powerful in the business
spectrum [7, 13]. In [13] it is mentioned that worldwide game industry reached $33.5
billion in size in 2005, with expected growth to $58.4 billion by 2007. These numbers
combined with the fact that computer games currently rivals television and films in
both market size and cultural impact [7] can justify why game development is
considered a placeholder in current lifestyle. Additionally, it is estimated that 90% of
U.S. households have rented or purchased at least one video game, and that young
people of the country spend an average of 20 minutes per day playing video games.
Even though game development industry is considered extremely powerful
worldwide, in Greece there are extremely few paradigms of commercial games. Most
of them include minor game logic (plot) and graphical representation and in that sense
cannot be competent to foreign products.

The game development industry growth has encouraged researchers to accept
game development as a serious scientific field rather than a “not academic subject”

2

[3]. Recently, major journals and computer magazines host papers concerning game
development. Additionally, some conferences include panels dealing with game
programming methodologies or even refer exclusively to game development. The
scope of these papers varies from the academic way of teaching game programming
to analyzing complicated techniques concerning the actual methodologies of game
development. In order to strengthen related research most universities have included
game programming courses in BSc and MSc studies, and in some cases have even
established MSc diplomas concerning game development. On the other hand, in
Greece even though there are courses that describe the key functionality of a game
(like programming, artificial intelligence, graphics, databases etc), there is no specific
course dealing with assembling a game from the aforementioned parts.

Nowadays the game production timeline needs to be shrunk in order to be
able to conform to modern market demands, in the sense that games are by nature
extremely evolving software, since newer versions of a single game need to arrive in
market in an extremely short interval. In order to achieve this expectation game
industry employs game engines and game frameworks [4, 11]. Therefore, game
production is divided into two concrete stages, the development of the
engine/framework and that of the actual game using the aforementioned mechanisms
(engine, framework). Both game engines and frameworks would prove beneficial
only if they are “well-structured” so as to be easily maintained and appropriate for
different game genres.

This paper introduces a game engine and a framework that is designed
employing software engineering techniques that aim to provide flexibility and ease
future adaption. The software under study (AynOmel 3D), helps developers of 3D
virtual worlds (including game programmers) create scenes using powerful 3D
packages (like 3D studio max) through user-friendly GUI’s (software tools).
Additionally, the source code of the package is available to the developer through
libraries that can be enhanced with specific requirements. In section 2, a description
of design patterns will be presented accompanied with a literature review on how
pattern can prove beneficial in games. Section 3, will analyze the structure of the
system. Finally, conclusion and future work will be presented.

2. Design Patterns

The initial idea of patterns as problem-solution pairs was introduced in the
field of architecture, where it had been examined whether quality is an objective
attribute [1]. With the term design patterns in software engineering one refers to
identified solutions to popular programming problems. The use of such patterns
effects the architecture of the software and in most cases reduces its complexity and
increases its flexibility and reusability. Consequently, pattern application can prove
beneficial, taking into account factors like maintenance time and cost [8].

3

Using design patterns helps a programmer avoid making common errors,
solve problems and structure his code. It is supported in [12] that patterns are about
sharing experience, so that everyone can learn from others and that instead of
inventing new ideas; patterns capture what has been successful in the past.
Additionally, in [11] it is argued that experienced developers resolve challenges by
applying patterns, whether they are aware of it or not. The primary contribution of the
patterns community is to capture, document, and refine these patterns so everyone can
benefit.

Furthermore, design patterns are proven to support the design, analysis and
comparison of games [5] as an alternative to the need of developing a common
language, concepts and terminology for games. Since games are commonly big
projects that require collaboration among staff with different expertises, patterns
should be viewed as a tool to overcome communication differences in an effective
and efficient way.

Additionally, in [2] the authors have examined the way object-oriented design
patterns can affect the structure and the maintainability of a game by analyzing
existing systems. The results suggested that patterns can reduce complexity and
coupling of a game, increase cohesion of the code but on the other hand increases the
project’s size concerning lines of code. In addition to that in [10] there was an attempt
of creating a game that was based on patterns. The results suggested that design
patterns should be considered an efficient way of properly achieve abstractions and
decoupling in games.

3. AynOmel 3D Structure

In this section, an extended description of the proposed structure of a game
engine and framework will be presented. More specifically, in section 3.1 there is a
description of the software tools. Section 3.2 deals with the modules that AynOmel
3D is decomposed to. Finally, section 3.3 concerns how object-oriented design
patterns affected the design of the software.

3.1 AynOmel 3D Tools

AynOmel 3D is a game engine that is accompanied with several tools that
help game programmers create a game without extreme programming skills.
Although the programmer does not have to be an expert in programming he must
have a quite good understanding of 3D graphics, 3D studio max, Photoshop, artificial
intelligence and game design. The tools of AynOmel 3D are:

e Actor Creator

e Actor Animation Creator

e Behaviour Creator
e Scene Creator
e Game Constructor

Actor Creator imports a moving model from package, attaches texture or
material to model, provide photorealistic rendering of actor with default light and
shading and saves actor information to a file for later use. Actor Animation Creator
imports a skeletal model from specific moving patterns, specifies animation frames,
creates animation from keyboard, saves information to a file, loads an actor and
previews animation.

Behaviour Creator loads an actor from a file, attaches a list of animations to
the actor and creates an artificial intelligence algorithm that handles the behaviour of
the actor during each phase of the game. Scene Creator imports static moving actors
from files, places animated actors into the scene, set scene start and exit points, sets
lights for the scene and saves the scene to a file. Game Constructor sorts the scenes
order, writes an event handler for every scene and finally, writes the information into
a file.

The Game Engine reads next scene from a file, places the main actor at the
start point and positions computer characters in the scene. Additionally, connects the
scene event-handler to the openGL event-handler. On every move of an object, it runs
the collision detection algorithm, and on every collision, it runs the physics engine
algorithms. When the player reaches the scene ending, the engine loads and handles
the next game scene.

3.2 Modules

Designing and programming large-scale software is a very complicated task
that requires many work-hours. Consequently, in most cases software is divided
logically into subprograms that are autonomously designed, coded and tested by
separate programmers’ groups. These subprograms are called modules. Decomposing
software to modules is an important decision that plays a vital role in the architecture
and further designing of the program.

According to [9], the game engine consists of several interconnected
components. All these components (modules) are part of a looping event handler. The
writers divide the game engine to several modules as they are presented in Figure 1,
and then analyze each part’s functionality.

In the figure below, the black arrows represent input data flow and the gray
arrows represent output data flow. The final output to users can be both sound and
image that are produced by the audio, the graphics, the 2D/3D engine and the
music/sound modules. The input received from hardware (keyboard, mouse etc) goes

5

to the controls module, the user-interface, the network and the client-control modules.
The main core of the game engine consists of the four modules seen on the right of
the figure, the main loop module, the timer, the event-handler module and the
dynamic game-data. Those modules, schedule the transformation of the input signals
to output, using the simulation component and the static game-data module.

. music ,
audio - engine main loop
H sound
3 () timer
, graphics 2D/3D-engine| simulation
d event- 2
handler Al
) w
input —» o —> controls —P user-nterfoce —» > "
physic
: -
e dynamic

3 network <4 clent-control < game-data

v v

net

. -

static
game-data

Figure 1: The game engine modules [9]

6

In AynOmel 3D the approach of module decomposition was based on the
actual development of the C++ libraries. In that sense every library represents a
logical module of the program. The logical parts of AynOmel 3D are presented in
Figure 2.

" Event handler ||

Actor handler

" " Start new
File handler Calculation

Scene "
Renderer manager “—

TIMER

" AI handler "

" Physics "
handler "

Il cotision |l
detector "

Figure 2: AynOmel 3D modules

The mechanism of the game engine is based on a timer that initiates the
drawing of the scene, the behaviour selection for computer and player characters. For
every clock interval, the engine checks if the player has triggered an event from an
input device (mouse, keyboard etc). If he has, he performs the actions mentioned in
the event-handler module. Next, the engine simulates all computer controlled actors’
behaviour through the Al-handler module. In case that there is any movement of an
actor (computer or user) the collision detection module checks whether there are any
colliding objects in the scene and if any exists, it runs the appropriate physics-handler
module’s algorithm. The scene-handler module is responsible for collecting the above
data and passing all the information needed (actor appearence, animation, scene lights
etc) for visualization to the renderer module. The renderer is a set of functions that
generates the final optical output of the scene. The renderer performs operations such
as hidden-surface removal, clipping, camera position, light calculations etc.

3.3 Patterns Used

The main idea of the AynOmel 3D architecture was to create software that
would be based on the use of design patterns. In order to provide support to the
aforementioned claim two well-known metrics have been employed [Chidamber].
More specifically, it has been calculated how many classes (NOC) of the system
participate in patterns and how many lines of code (LOC) compose those classes. The
results suggest that the project is 81,1% pattern-based concerning NOC and 87,9%
LOC as shown in Tablel. In the table the number out of the parenthesis represent
absolute values, while the values in the parenthesis represent the percentage of pattern
participating lines of code and pattern participating classes.

Table 1: Metrics on pattern-based

actor handler file handler renderer TOTAL
NOC 15 (73,3%) 8 (75,0%) 14 (92,8%) 37 (87,9%)
LOC 1075 (97,5%) 680 (68,7%) 328 (96,0%) 2083 (81,1%)

The project has not been yet completed and until now has been created three
libraries. In these libraries three patterns have been applied. More specifically, it is
observed that the project has employed one instance of the State pattern, two
instances of the Strategy pattern and two instances of the Bridge pattern. For every
pattern identified in the project, there will be an analysis of the utility of one instance.

The State pattern has been used in implementing the camera positioning in
openGL. The camera in most 3D environments can be either Free or Target. The free
camera is defined only by one reference point (camera position) since the direction of
the camera is fixed. On the other hand, the target camera is defined by two points
(camera position, camera target). The application of State pattern is presented in
Figure 3.

Camera

Environment

runCamerayvoid

v

SN~

FreeCamera

runCameranoid

runCameranoid

TargetCamera

Figure 3: State pattern - Camera

8

The key idea in this pattern is to introduce an abstract class to represent the
different states of an object. It is used either when an object’s behaviour is dependant
on its state or it must change its behaviour at run-time depending on that state or
when operations include large, multipart conditional statements that are as well
dependand on the object’s state. Including the pattern in the code, the programmer
states specific behaviour and partitions behaviour for different states are localized.
Additionally, state transitions are made explicated, state objects can be shared and
finally there is elimination of the conditional statements as it is shown below:

Without state pattern:
void Environment::runCamera() {

iT (cameraType=="TARGET*) {
glutLookAt(..); // Specify target camera arguments
} else if (cameraType=="FREE’){
glutLookAt(..); // Specify free camera arguments
} else {
printf(“Not specified camera type™);
3

}

With state pattern:
void Environment::runCamera() {

cam_->runCamera();

Figure 4: State pattern — source code

The extensibility of the pattern can be proved as a new camera can be added
without major changes in the code of the Environment class. More specifically, if a
new camera (CameraA) is added, the only change in the Environment class will
appear in the constructor of the class where the programmer will have the option to
initialize an instance of a camera of type CameraA.

Additionally, the Strategy pattern has been employed in the implementation
of the functionality of lighting. The openGL renderer provides the programmer the
option to choose between executing all lighting reflection calculations of the scene
and executing only the necessary ones. In that sense, two algorithms are available for
enlightening the scene. Furthermore, the system enables the developer to select
between three distinct well-known lighting types (Spot, Directional and Positional
light). The above description is depicted in Figure 5.

- Lights
Emvironment
LightsOnavaid
AllLightsCalc LeastLightsCalc
LightsCnovoid Lights O waid
ANlSpot AllPositional ANDir ectional / ﬁ% \
i LeastSpot LeastPositional LeastDirectional
Lights Ort:void LightsOn:void LightsQn:void Lights Onvaid LightsCnvoid LightsOn-vaid

Figure 5: Strategy pattern - Lighting

The Strategy pattern is used to avoid problems of “needless” repetition of
code between classes that provide almost the same functionality, with minor changes
into one or more functions (algorithms). It is actually based not only on the
inheritance, but on the composition of the objects as well. The pattern is quite similar
to the State mentioned above as it can be easily observed. It results in defining
families of related algorithms, giving a choice of implementation and providing an
alternative to subclassing. One last benefit is the elimination of conditional statements
by encapsulating the behaviour, when it varies, in separate Strategy classes. If the
pattern had not been applied as shown in Figure 5, there would have been the need for
implementing a conditional statement similar to the one referenced in Figure 4.

Finally, the Bridge pattern has been used so as to implement the mechanism
of designing the objects and defining their appearance (texture, material). Most 3D
packages provide the potential of colouring each vertex of an object either by
applying to it a uniform color with predefined characteristics (material) or matching
each vertex with a color extracted from a bitmap file (texture). Additionally, every
object of a scene can either be a 3D Mesh (3D studio Max file, Maya file etc) or a
primitive (sphere, cube). The Bridge pattern was applied in order to describe the
above structure as shown in Figure 6.

10

Style

coloadelvoid

Texture Material Materialdire Object

Colomtodelvaid Coloodelvoid +CalorMadelvoid

Mesh Primitive PrimitiveWire
Obijectdds TextureObjectdds Cube Sphere WireCube WireSphere

Dtawdodetvoid| | +Drawbtodatvoig | | Drawhodelvoid | | Drawhlodelvoid | | Drawbtodelvoid | | +Crawodelvaid

Figure 6: Bridge pattern — 3D modeling

The Bridge pattern is in contrast to the extensive use of inheritance, as this
approach is not flexible enough. Consequently, it is employed in case you want to
hide the implementation of an abstraction from clients, when changes should have no
impact on clients or finally just to avoid a permanent binding between an abstraction
and its implementation. So, when using the Bridge pattern, implementation and
interface are decoupled, the extensibility is improved and implementation details are
hidden from clients.

If the pattern has not been applied as described in Figure 6 the mechanism
would have been implemented as in Figure 7, which is less extendable. More
specifically, if later a demand for a loader of different 3D package appears (e.g. Maya
loader for openGL) the Style class and the client that uses the instance of the Object
class will remain the same. On the contrary, since the classes of Figure 7 are tightly
coupled, the addition of that new class would further increase the already high
complexity of the system.

11

Object

! DN AN

Object3ds TextureOhjectids Cube Sphere WireSphere WireCube

drawModelvoid drawhodelvoid | | drawModelvoid | | drawModelvoid | | drawModelvoid

drawtodelvoid

— [| |

Texture Material MaterialWire

colorodelvoid colorodelvoid coloraodelvaid

Figure 7: 3D modeling no pattern implementation

4. Future Work

In order to investigate the complete spectrum of the effectiveness of patterns
in game development, research need to be done on extracting instances of patterns in
real games. Furthermore, it might prove useful to identify patterns that are more
suitable for game design than others. Moreover, research could be performed in
guantitatively evaluating the average benefits (employing well-known metrics) of
every pattern in several games.

Additionally, it would be of great interest to further examine whether in
large-scale industry games modules tend to be similar or vary according to the game
genre. Finally, it is planned to complete the AynOmel 3D framework and examine its
maintainability.

12

5. Conclusions

This paper aimed at investigating the structure of a game engine. The main
subtargets of the research was to introduce a module decomposition for the project, to
introduce some basic tools that could accompany a game engine and finally examine
the use of object-oriented design paterns in the developemnt of a game framework.

The paper approached the subject of design pattern application from two
different perspectives, an empirical where a game framework was implementing
using design patterns and a second one, more theoretical, where a qualitative analysis
took place investigating how design patterns effect the maintainability of the
aforementioned system. The results suggested that patterns are benefitial in game
developement in the sense that “well-structured” game engines and frameworks can
help developers create games with less cost and effort.

6. References

[1] Alexander C., Ishikawa S., Silverstein M.(1997), A Pattern Language
— Town, Buildings, Construction, Oxford University Press, New York

[2] Ampatzoglou A., Chatzigeorgiou A., Evaluation of object-oriented
design patterns in game development, Information and Software Technology,
to be published

[3] Argent L., Depper B, Fajardo R., Gjertson S. (2006) Building a game
development program, IEEE Computer, Vol. 39, No. 6, pp. 52-60

[4] Bishop L., Eberly D., Whitted T., Finch M., Santz M. (1998),
Designing a PC game engine, IEEE Computer Graphics and Applications, 46-
53

[5] Bjork S., Lundgren S., Holopainen J. (2003), Game Design Patterns,
Proceedings of Digital Games Research Conference 2003, Utrecht, The
Netherlands

[6] Chidamber S.R., Kemerer C.F. (1994), A Metrics Suite for Object
Oriented Design, IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-493

[7] Fullerton T. (2006), Play-centric Games Education, IEEE Computer,
vol. 39, No. 6, pp. 36-42

[8] Gamma E., Helms R., Johnson R., Vlissides J. (1995), Design
Patterns: Elements of reusable Object-Oriented software, Addison-Wesley
Professional, Reading, MA

[9] Masuch M., Rueger M. (2005), Challenges in Collaboration Game
Design Developing Learning Environments for Creating Games, Proceedings

13

of the 3rd International Conference on Creating, Connecting and Collaborating
through Computing (C5°05), pp 67-74, Kyoto, Japan

[10] Nguyen D., Wong S.B. (2002), Design patterns for games,
Proceedings of the 33" SIGCSE Technical Symposium

[11] Rucker R. (2003), Software engineering and computer games, Addison
Wesley, Essex, United Kingdom

[12] Schmidt D.C. (1995), Experience Using Design Patterns to Develop
Reusable Objects-Oriented Communication Software ACM Special Issue on
Object Oriented Experiences, vol 38. No 10

[13] Zyda M.s (2006), Educating the Next Generation of Game Developers,
IEEE Computer, Vol. 39, No. 6,pp. 30-34

