AN EMPIRICAL STUDY ON DESIGN PATTERN USAGE ON

Keywords:

Abstract

OPEN-SOURCE SOFTWARE

Apostolos Ampatzoglou, Kyriaki Savva, loannis Stamelos
Aristotle University of Thessaloniki, Thessaloniki, Greece
e-mails: apamp@csd.auth.gr, stamelos@csd.auth.gr

Sofia Charalampidou
Technological Educational Institute of Thessaloniki, Greece
email: sofchar@it.teithe.gr

open source software; design patterns; empirical study;

Currently, open source software communities are thriving and the number of projects that are available
through well known code repositories is rapidly increasing over the years. The amount of code that is freely
available to developers facilitates high reuse opportunities. One of the major concerns of developers when
reusing code is the quality of the code that is going to be reused. Design patterns are well known solutions
that are reported to produce substantial benefits with respect to software quality. In this paper, we
investigate the extent to which design patterns are employed in open source software. More specifically, this
study reports empirical results based on the number and type of design patterns retrieved from open source
software projects. Up to now, one hundred and eight (108) open source software projects of various
characteristics have been considered. The results of the study suggest that several patterns are more
frequently used in open source software than others, that some patterns are more applicable in some
categories than others and that program size, number of downloads, days of project activity and the number
of developers are crucial factors that influence the use of design patterns in open source software project.

1. INTRODUCTION

Open source software (OSS) development process,
which was introduced in 1998 (Feller and Fitzgerald,
2002), is a quite modern trend in software
production. Despite its short life period the open
source software community, can exhibit some
extremely successful project with great acceptance
in computer communities, such as Linux, Apache
Server and Mozilla Firefox.

The development of an open source project is
based on collaboration. A single developer, or a
group of developers, starts a project and releases a
version that is freely available, over the internet, for
use and modification. Then, the open source
community extends and maintains the project. This
type of development has both advantages and
disadvantages. One disadvantage of open source
software development is the lack of documentation
and technical support. Whereas, the main advantages
of open source software is their low cost, their
reliability and the fact that they provide their source
code to the user, in order for him to be able to

customize the software according to his special
needs (Samoladas, Stamelos, Angelis and
Oikonomou, 2004).

Furthermore, open source software provides
great reuse opportunities, in the sense that a wide
variety of code is freely available for developers. In
order for a code segment to be easily and
successfully adopted by another project it should be
understandable, easily maintainable and flexible.
Design patterns have been introduced in 1995 in
(Gamma, Helms, Johnson and Vlissides, 1995) as
common solutions to common design problems. The
main motivation when introducing patterns was to
provide a common vocabulary to developers, which
match to reusable, flexible and maintainable design
solutions. In addition to that, in (Meyer and Arnout,
2006, Arnout and Meyer, 2006), the authors describe
how object-oriented design patterns can be
transformed to reusable components.

In the literature, a great variety of studies have
attempted to assess the impact of design pattern
application on software quality. These studies,
mostly empirical ones, suggest that object oriented

mailto:apamp@csd.auth.gr
mailto:stamelos@csd.auth.gr

design patterns are not universally good or bad. A
more detailed presentation of the current state of the
art discussing the effect of design pattern application
on software quality is presented in section 2.

This paper aims at investigating the use of
object-oriented design patterns in open-source
software. More specifically we have employed an
empirical methodology, i.e. a case study, so as to
assess which patterns are more frequently applied in
open-source software, which differences appear
within software domains and which are the most
influential factors on pattern application.

In the next section of the paper, we provide a
literature review on design patterns effect on
software quality. In section 3, the methodology of
our work, i.e. research questions, case study process
and data analysis methods, is presented. In section 4,
we present the findings of our empirical study.
Additionally, section 5 provides a discussion on the
results, grouped according to the research question
they refer to. Finally, by the end of the paper we
present possible threats to validity, future work and
conclusions.

2. DESIGN PATTERNS

This section of the paper presents the findings of a
literature review on the effect of design pattern
application on software quality. Software quality is
commonly divided into internal and external quality
(Bansiya and Davis, 2002). Software internal quality
is measurable and assesses software characteristics
such as complexity, cohesion, coupling, inheritance
etc, which are not easily understandable from the
end-user or the developer. On the other hand,
external quality is not directly measured but it is
closer to the user’s and the developer’s sense. The
most well known external quality attributes, i.e.
functionality, reliability, usability, efficiency,
maintainability and portability, are described in
ISO/IEC 9126.

The effect of design patterns on software internal
quality was investigated in (Ampatzoglou and
Chatzigeorgiou, 2007, Huston, 2001). According to
(Huston, 2001), coupling is reduced by using the
Mediator pattern, the DIT and NOC metrics are
reduced by using the Bridge pattern and finally the
project’s complexity with respect to number of
methods is reduced by using the Visitor pattern. The
results of (Ampatzoglou and Chatzigeorgiou, 2007)
suggest that coupling and complexity, with respect
to cyclomatic complexity, are reduced and cohesion
among methods is increased by applying the State

and the Bridge pattern. As a side-effect the project
size concerning the number of classes increases.
Furthermore, several studies have investigated the
effect of design patterns in external quality. Vokac
et.al and Prechelt et.al (Prechelt, Unger, Tichy,
Brossler and Votta, 2001, Vokac, Tichy, Sjeberg,
Arisholm and Aldrin, 2003) investigated the effect
of design patterns i.e. Abstract Factory, Observer,
Decorator, Composite and Visitor to software
maintainability by conducting controlled
experiments. According to the experiment, the
application of a design pattern is usually more useful
than the simpler solution. The software engineer
should select between employing a design pattern or
a simple solution according to common sense.
Furthermore, in (Hsueh, Chu and Chu, 2008), the
writers discuss how design patterns affect one
quality attribute, which is the most obvious attribute
that the pattern has effect on. The quality attribute is
selected according to the pattern’s non functional
requirements, whereas the metric is selected
according to (Bansiya and Davis, 2002).

An industrial case study is presented in
(Wendorff, 2001), where severe maintainability
problems have been caused by inappropriate pattern
application. The author classifies the reasons of
inappropriately using design patterns into two
categories (1) software developers have not realised
the rationale behind the patterns that they have
applied and (2) the patterns that have been used,
have not satisfied the project’s requirements.
Additionally, the paper underlines the need for
documenting pattern usage and that pattern removal
results in extreme cost. In (Khomh and Gueheneuc,
2008), the authors performed an analysis on
software maintenance, with professional engineers.
The empirical study concluded that design patterns
do not always have positive effect on software
quality. More specifically, it is suggested that when
patterns are used, the simplicity, the learnability and
the understandability are negatively influenced.

In (Bieman, Jain and Yang, 2001), the writers
conducted an industrial case study, in order to
investigate the correlation among code changes,
reusability, design patterns, and class size. The
results of the study suggest that the number of
changes is highly correlated to class size and that
classes that play roles in design patterns or that are
reused through inheritance are more change prone
than others. Although this study is well-structured
and validated, it refers to a specific maintainability
issue, change proneness and does not examine
maintainability aspects such as change effort and
design quality. In (Di Penta, Cerulo, Gueheneuc and

Antoniol, 2008) the authors have aimed to
investigate correlations among class change
proneness, the role that a class holds in a pattern and
the kind of change that occurs. Three open source
projects were used in order to conduct the empirical
study. The results of the paper comply with common
sense in the majority of design patterns. However,
there are cases where the obtained results differ from
the expected ones.

3. METHODOLOGY

According to (Wohlin, Runeson, Host, Ohlsson,
Regnell and Wesslen, 2000), there are three major
empirical investigation approaches, surveys, case
studies and experiments. Considering the nature and
the subject of our research we have selected to
conduct a case study. The plethora of open source
projects consist case studies as the optimum research
approach. On the contrary, surveys are not suitable
for our research because in this case we would miss
the patterns that were employed without intension by
programmers. Finally, an experiment with open-
source programmers would decrease the number of
subjects in our research.

In this section of the paper we describe the
methodology of our case study. The case study of
our research was based on the guidelines described
in (Kitchenham, Pickard and Pfleeger, 1995).
According to (Kitchenham, Pickard and Pfleeger,
1995) the steps for conducting a case study include:

(a) Define hypothesis

(b) Select projects

(c) Method of comparison selection

(d) Minimization of confounding factors

(e) Planning the case study

(f) Monitoring the case study and

(g) Analyze and report the results
The hypotheses, i.e. step (a), are defined in section
3.1. Steps (b) and (d) which deal with project
selection protocol and minimizing confounding
factors are presented in section 3.2, accompanied
with step (e). The methods used in analyzing the
data, i.e. step (c), is presented in section 3.3, step (f)
as it is described in (Kitchenham, Pickard and
Pfleeger, 1995) is discussed in section 6. Finally,
concerning step (g), we report the results on section
4 and discuss them in section 5.

3.1 Research Questions

In this section of the paper we state the research
questions that are investigated from our study.

RQI1: Which design pattern is more frequently
applied in open source software?

RQ2: Are there any differences in pattern
application within the software categories under
study?

RQ3: Which are the most influential factors in
pattern application?

3.2 Case Study Plan

According to [Basili, Selby and Hutchens, 1986], in
order to produce a solid methodology for an
empirical validation method, a study plan should be
thoroughly prepared. In this case study the plan
involved a five step procedure:
1. choose open source project categories
2. identify a number of projects that fulfil
certain selection criteria, for each category
3. perform pattern detection for every selected
project
4. tabulate data
5. analyze data with respect to the research
questions
In this study the OSS project categories that have
been considered are object-oriented development
tools, e-commerce applications and computer games.
The three categories have been selected for different
reasons. Firstly, the object-oriented development
tools category has been selected as a highly active
topic in open source communities (Sowe, Angelis,
Stamelos and Manolopoulos, 2007) and because the
developers of this category are expected to be aware
of design patterns, due to the nature of the software
they develop. Secondly, the computer games
category has been employed because it is also an
active topic (Sowe, Angelis, Stamelos and
Manolopoulos, 2007) and on contrary to the first
category its developers are more probable to write
code without prior design activities (McShaftrey,
2003). Finally, the e-commerce applications have
been selected as a topic with smaller activity in OSS
development communities.
From these categories we have selected projects
that fulfilled the following criteria:
1. software written in java, due to limitations of
pattern detection tool (Tsantalis, Chatzigeorgiou,
Stephanides and Halkidis, 2006)
2. software that provides binary code, due to
limitations of pattern detection tool
3. software that has been downloaded more than
100 times, in order to be considered active
4. software that has more than 20 classes, in order
not to be considered trivial

The complete list of projects that are used in the
case study is presented in the Appendix by the end
of the paper. The number of software considered in
each category was not the equal, due to the limited
number of projects that fulfilled the inclusion criteria
in the e-commerce category.

In case studies, factors, different than the
independent variables, which influence the value of
the dependent variable, are regarded as confounding
factors. Some possible confounding factors that are
expected to affect design pattern application are the
programming experience of the developers and the
educational status of the developers concerning
software engineering issues. Such data could not
have been retrieved in a case study, where the data
on the subjects are gathered through observation, but
only through a controlled experiment (Wohlin,
Runeson, Host, Ohlsson, Regnell and Wesslen,
2000). On the other hand, it is expected that in a
random developer sample of a large developers’
community, the distribution of skill and experience
are closely near to the distribution of the population.

3.3 Data Analysis Methods

The dataset that has been created after design pattern
detection involved only numerical data. But, some
techniques that were employed during data analysis
need categorical or binary variables. Thus, certain
data transformations have taken place, as presented
in Appendix B. On the completion of the pre-
processing phase each project was characterized by
57 variables:
1. sn
name
category
latest release year
days active
number of downloads
number of developers
number of versions
9. number of classes
10. number of factory method instances
11. number of prototype instances
12. number of singleton instances
13. number of creational pattern instances
14. number of adapter instances
15. number of composite instances
16. number of decorator instances
17. number of proxy instances
18. number of structural pattern instances
19. number of observer instances
20. number of state-strategy instances
21. number of template method instances

el A

22. number of visitor instances

23. number of behavioural pattern instances

24. 20 categorical variables for variables 4-23

25. 14 binary variables for variables 10-23

The analysis phase of our study has employed

techniques from statistics and clustering. These
techniques are:

e descriptive statistics
independent sample t-test
paired sample t-test
K-Means clustering
Pearson x” test

Concerning RQ!, we have employed descriptive

statistics and paired sample t-tests so as to compare
the mean number of instances for each design
pattern. In the investigation of RQ2, for similar
reasons we have used descriptive statistics and
independent sample t-tests. Finally, concerning RQ3,
we have performed Pearson x* test and K-Means
clustering. The statistical analysis and the two-step
clustering have been performed with SPSS®.

4. RESULTS

In Table 1, the mean number of design pattern
instances is presented. The data concern the whole
data set without discrimination across software
categories. In addition to that, the maximum number
of patterns that appear in one project is also
provided. Finally, the standard deviation of each
variable is presented.

Table 1: Average Number of Pattern Instances

Maximum Mean Std. Deviation

Factory 6 0.55 1.08
Prototype 12 0.45 1.63
Singleton 55 4.83 9.35
Creational 56 5.83 10.15

Adapter 223 11.39 31.42
Composite 2 0.09 0.32
Decorator 7 0.49 1.32

Proxy 11 0.58 1.75
Structural 232 12.56 33.09
Observer 4 0.40 0.92
State 149 9.42 22.18
Template 10 1.54 2.17
Visitor 4 0.05 0.40
Behavioural 151 11.40 23.45

The results of Table 1 provide indications on the
applicability of each pattern in OSS. In order to be

able to compare the mean values of each variable in
a more claborate way, we have performed 55 paired
sample t-tests, i.e. one test for every possible pair of
design patterns. The results of a t-test between two
variables are interpreted by two numbers, the mean
difference (diff) and the t-test significance (sig). The
diff variable represents the difference of subtracting
the mean value of the second variable, from the
mean value of the first. Whereas, sig represents the
possibility, that diff is not statistically significant. In
Table 2, we present the statistically significant
differences in pattern application.

Table 2: Significant paired sample t-tests on pattern
employment difference

diff Sig

Factory — Singleton -4,29 0.00
Factory — Adapter -10,84 0.00
Factory — Composite 0,45 0.00
Factory — State -8,87 0.00
Factory — Visitor 0,50 0.00
Factory — Template -0,99 0.00
Prototype — Singleton -4,38 0.00
Prototype — Adapter -10,94 0.00
Prototype — Composite 0,36 0.02
Prototype — State -8,96 0.00
Prototype — Template -1,08 0.00
Prototype — Visitor 0,41 0.01
Singleton — Adapter -6,56 0.01
Singleton — Composite 4,74 0.00
Singleton — Decorator 4,34 0.00
Singleton — Proxy 4,25 0.00
Singleton — Observer 4,44 0.00
Singleton — State -4,58 0.01
Singleton — Template 3,30 0.00
Singleton — Visitor 4,79 0.00
Adapter — Composite 11,30 0.00
Adapter — Decorator 10,90 0.00
Adapter — Proxy 10,81 0.00
Adapter — Observer 10,99 0.00
Adapter — Template 9,85 0.00
Adapter — Visitor 11,34 0.00
Composite — Decorator -0,40 0.00
Composite — Observer -0,31 0.00
Composite — Proxy -0,49 0.00
Composite — State -9,32 0.00
Composite — Template -1,44 0.00
Decorator — State -8,93 0.00

Decorator — Template -1,05 0.00
Decorator — Visitor 0,44 0.00
Proxy — State -8,83 0.00
Proxy — Template -0,95 0.00
Proxy — Visitor 0,54 0.00
Observer — State -9,02 0.00
Observer — Template -1,14 0.00
Observer — Visitor 0,35 0.00
State — Template 7,88 0.00
State — Visitor 9,37 0.00
Template — Visitor 1,49 0.00

In Table 3, the mean numbers of instances of
each design patterns within the software categories
under study are presented. In this table, the
maximum values and the standard deviation
variables have been omitted due to space limitations.

Table 3: Average Number of Pattern Instances among
Software Categories

OO Dev Tools E — Commerce Games

Factory 0.74 0.50 0.40
Prototype 0.52 0.43 0.40
Singleton 4.05 4.14 5.65
Creational 5.31 5.07 6.46

Adapter 5.10 10.00 16.85
Composite 0.19 0.00 0.04
Decorator 0.55 0.57 0.42

Proxy 0.50 0.00 0.81
Structural 6.33 10.57 18.12
Observer 0.36 0.07 0.52
State 7.48 13.50 9.88
Template 1.95 1.00 1.35
Visitor 0.12 0.00 0.00
Behavioural 9.90 14.57 11.75

In order to statistically validate the results of the
above table, we performed 42 independent sample t-
tests, i.e. one test for each pattern for all the possible
pairs of software categories. In Table 4, we provide
the statistically significant results on comparing
pattern application between software categories. The
results are presented similarly to those of Table 2.

Table 4: Significant independent sample t-tests

Pattern diff Sig
0O Dev - Ecommerce ~ Composite 0,19 0.01
0O Dev - Ecommerce Proxy 0,50 0.02
OO Dev — Ecommerce Observer 0,29 0.05

OO Dev - Ecommerce Template 0,95 0.04
OO Dev — Games Adapter -11,75 0.05
OO Dev — Games Composite 0,15 0.05

Games — Ecommerce Proxy 0,81 0.01

Games — Ecommerce Observer 0,45 0.01

In Table 5, we present some general statistics of
the software categories under study. The numerical
variables are represented by their mean value,
whereas the categorical variables are represented by
their mode value. After validating the results
through t-tests the only statistical significant
differences have proven to be the days of activity
between games and e-commerce, the days of activity
between OO development tools and e-commerce and
the number of versions between OO development
tools and e-commerce.

Table 5: General Statistics on Software Categories

00

Development E — Commerce Games

Release Year 2009 2008/2009 2009
Days Active 524.29 107.00 801.63

Downloads 10945.48 1830.93 28694.25

Developers 1.29 1.43 2.92

Versions 5.93 3.00 5.63
Classes 108.07 243.79 171.65

data of the table correspond to the categorical
variables that are referenced in Appendix B.

Table 7: Software Profiles on Pattern Usage with
Categorical Variables of Appendix B

Cluster No [1]

S
=
—
E°N
=
—
n
o

Release year 2
Days Active 4
Downloads 3
Developers 1
Versions 2
Classes 4
Factory 2
Prototype 1
Singleton 5
Adapter 5
Composite 1
Decorator 2
Proxy 2
Observer 2
State 5
Template 3
Visitor 1

2

O = N W = N = = W= N RN =N W
— o= N W = = = = W= = WO NN~ N
— om0 = ke kNN R — NN O W W W
e e e e T e e T T S S S A e B O B NG I OS]

Category

Table 6 presents the significance values of the
correlations between the number of pattern instances
in the three pattern categories, i.e. creational,
behavioural and structural, and all the non-pattern
related variables, i.e. software category, release year,
days of activity, downloads, number of developers,
versions and size. The test that was employed for
investigating the correlation between each set of
variables is the Pearson chi-square test.

Table 6: Person x*-test Correlations

Creational Behavioural Structural

Category 0.58 0.72 0.09
Release Year 0.92 0.85 0.57
Days Active 0.00 0.00 0.00

Downloads 0.00 0.01 0.00
Developers 0.00 0.00 0.00
Versions 0.06 0.03 0.01
Classes 0.00 0.00 0.00

In order to investigate and create profiles on
pattern usage, we have created clusters with the use
of the K-Means algorithm. The five clusters that the
algorithm has created are presented in Table 7. The

5. DISCUSSION

This section of the paper discusses the results of the
statistical and clustering techniques that have been
applied the on the study’s dataset. The discussion is
organized in subsections according to the research
questions that have been introduced in the beginning
of the paper. Thus, section 5.1 discusses which
design patterns are more frequently used in open
source software development, section 5.2 discusses
the usage of each design pattern on three software
categories and section 5.3 discusses crucial factors
that influence the extent of pattern usage in open
source software.

5.1 Design Pattern Application

The results of Table 1, clearly suggest that some
patterns are more applied in open source than others.
In addition to that, Table 2 suggests that pattern
usage intensity classifies patterns in five categories
as shown in Figure 1. In addition to that, Figure 2
represents the error bars of the eleven patterns under
study.

Patterns on the top of Figure 1 are statistically
significantly employed more times in open source
software projects than those closer to the bottom of
Figure 1.

evel 1 Adapter
State
£yel z Stngleton
Bvel 7 Templiate
Froxy
Abstract Factory
&vel ¢ Pecorator
Frotoltype
Observer
wers |[S

Figure 1: Design Pattern Usage Levels

o TT T m , ,
d ddgda4d3 d d <
ﬁgjgdamgﬁgw
8 w8 Ezgegt g
*s% “Egai

Figure 2: Design Pattern Usage Error Bars

Some of the results that are presented in Figures
1 and 2 are reasonable, whereas some findings are
surprising. First of all, one would expect that the
Adapter pattern to be frequently used, because
reusing classes of others is a common practice in
open source software communities. In such cases,
adapter provides a mechanism for adopting the new
class in the existing system without modifying the
existing code. In addition to that, the Adapter’s

rationale is a kin to the basic concepts of object -
oriented programming and thus it might be
unconsciously used by the developers. Furthermore,
the State pattern would also be expected to rank
high, because its background only requires the
proper use of inheritance. Finally, more difficult to
understand patterns, according to authors’ opinion,
such as Visitor and Observer, are not often
employed by open source developers

On the contrary, although the Singleton pattern’s
structure is quite complex in its structure
(Chatzigeorgiou, 2005) and it was expected not to be
as popular, it is ranked as the 3™ most used pattern.
A possible reason for this is the limitation of the
case study subject to the Java languages, where
Singleton is implemented by a simple instantiation
mechanism. Another bizarre observation is that the
Decorator pattern is more frequently used than the
Composite pattern. The Composite pattern is the
base of the Decorator pattern and therefore it was
expected to be more frequently employed.

Summing up the above, open source developers
employ easy to understand patterns more than more
claborate ones. A possible reason for this is that
typically there are no detailed design activities
before programming.

5.2 Design Patterns and Software
Categories

As it is observed in Table 3, design pattern usage
within every category follows similar distribution as
in open source software development in general.
However, comparing pattern application across
software categories, the results suggest that some
patterns are more frequently applied in one category,
than another.

From Table 4, it is suggested that Composite
pattern is employed more frequently in OO
Development tools than in the other two categories.
This fact can be justified by the expectation that
developers of this category are more likely to be
aware of the pattern, which is not easily applied by
chance. In addition to that, the Adapter pattern is
more frequently employed in games than in OO
Development tools and this fact suggest that game
developers might perform more reuse activities than
other programmers. This observation is interesting
and deserves further investigation.

Furthermore, the Observer and the Proxy
patterns are less frequently applied in e-commerce
applications than games or OO Development tools.
Considering the above, and by taking into account
the fact that the Visitor and the Composite patterns

are not applied in any e-commerce application, it is
implied that e-commerce developers more often use
patterns of levels 1, 2 and 3 (see Figure I) and they
lag in the use of patterns of levels 4 and 5. This fact
suggests that e-commerce developers might use
patterns that are “easy to guess”.

5.3 Factors Influencing Design Pattern
Application

This section of the paper discusses the most
important factors that influence design pattern
application. According to Table 6, the days that a
project is active, the number of downloads, the
number of developers and the project size are the
most influential factors of pattern usage. The
number of versions also seems to be correlated to the
employment of structural patterns, but concerning
behavioural and creational patterns it seems not to
be influential. On the other hand, the software
release year and the software category do not seem
to be important.

Concerning the data of Table 7, the most
informative clusters are cluster [1] and [S], where
the profiles of an average computer game and an e-
commerce application that does not employ any
pattern are fingerprinted. The centres of the two
clusters are presented in Table 8.

Table 8: Average Game and E-Commerce Application
without any pattern profiles

Cluster No 1] [5]
Release year 2006 — 2007 after 2008
Days Active more than 2 years less than 1 year
Downloads 2,000 — 10,000 less than 2,000
Developers more than one one developer
Versions 2 —10 versions one version
Classes more than 200 21-50
Factory 1 — 4 pattern instances no pattern instance
Prototype no pattern instance no pattern instance
Singleton more than 15 pattern instances no pattern instance
Adapter more than 15 pattern instances no pattern instance
Composite no pattern instance no pattern instance
Decorator 1 — 4 pattern instances no pattern instance
Proxy 1 — 4 pattern instances no pattern instance
Observer 1 — 4 pattern instances no pattern instance
State more than 15 pattern instances no pattern instance
Template 5 — 9 pattern instances no pattern instance
Visitor no pattern instance no pattern instance
Category Game E-Commerce

6. THREATS TO VALIDITY

This section of the paper deals with presenting the
case study’s internal and external threats to validity.
Firstly, since the case study subjects have been
open-source projects, the results may not apply in
closed source software. Concerning the empirical
study internal validity, the existence of confounding
factors is analyzed in section 3.4. In addition to that,
the sample size is quite small with respect to the
total number of open source games and generalizing
the results from the sample to the population is
risky.

In addition, the dataset consisted only from Java
projects, since the tool we used was able to detect
design patterns only in binary java files. Moreover,
only one repository, namely Sourceforge, has been
mined. Additionally, the project size has been
represented through the Number of Classes (NOC)
metric, since patterns are class collections. An
alternative would be to measure physical size, in
terms of the Lines of Code (LOC) metric.

Finally, a possible threat to the validity of the
results is that the project’s team size takes into
account the absolute number of developers and not
the intensity of their activity, e.g. in terms of number
of commits.

7. CONCLUSIONS

This study empirically investigates the usage of
object oriented design patterns in open source
software development. For this reason the authors
have explored 108 open source software from three
categories, i.e. object oriented development tools, e-
commerce application and computer games.

The results of the study confirm that “easy to
use” design patterns, such as Adapter, State and
Singleton are more frequently applied in open
source. More elaborate patterns such as Visitor and
Observer are more frequently employed by object-
oriented development tool programmers, most
probably due to their better understanding and
knowledge on software engineering issues.
Concerning the factors that influence pattern
application, the size and activity of the project, i.e.
duration, downloads, the team size have proved to
be the more important ones. On the contrary, the
number of versions does not seem to influence
pattern activity. Finally, the frequent application of
the Adapter pattern in computer games might
indicate higher reuse levels in this type of software
applications. We intend to further investigate this

issue to understand better reuse opportunities in
game development.

As future work we are about to create a web
repository on the findings of the design pattern
detection process, so as to enhance design pattern
reuse opportunities. In addition to that, we are going
to explore projects written in other programming
languages, such as C++. Finally, more software
categories and open source projects are going to be
investigated.

REFERENCES

Ampatzoglou A., Chatzigeorgiou A., 2007 In Information
and Software Technology, “Evaluation of object-
oriented design patterns in game development”,
Elsevier.

Arnout K., Meyer B., 2006 In Innovations in Systems and
Software Technology, “Pattern componentization: the
factory example”, Springer.

Bansiya J., Davis C., 2002, In IEEE Transaction on
Software Engineering, “A Hierarchical Model for
Object-Oriented Design Quality Assessment”, IEEE
Computer Society.

Basili V.R., Selby R.W., Hutchens D.H, 1986, In IEEE
Transactions on Software Engineering,
“Experimentation in Software Engineering”, IEEE
Computer Society

Bieman J.M., Jain D., Yang H.J., 2001, In ICSM 2001,
17th International Conference on Software
Maintenance, "OO design patterns, design structure,
and program changes: an industrial case study", IEEE
Computer Society

Chatzigeorgiou A., 2005, “Object-Oriented Design: UML,
Principles, Patterns and Heuristics”, Kleidarithmos,
Athens, 1* edition.

Di Penta M., Cerulo L., Gueheneuc Y. G., Antoniol G., In
ICSM 2008, 24th International Conference on
Software Maintenance, “An Empirical Study of
Relationships between Design Pattern Roles and Class
Change Proneness”, IEEE Computer Society

Feller J., Fitzgerald B, 2002, “Understanding open source
software development”, Addison-Wesley Longman,
Boston, MA, 1% edition

Gamma E, Helms R, Johnson R, Vlissides J, 1995,
“Design Patterns: Elements of Reusable Object-
Oriented Software”, Addison-Wesley Professional,
Reading, MA, 1* edition.

Hsueh N.L., Chu P.H., Chu W., 2008, In Journal of
Systems and Software, “A quantitative approach for
evaluating the quality of design patterns”, Elsevier.

Huston B., 2001, In Journal of Systems and Software,
“The effects of design pattern application on metric
scores”, Elsevier.

Khomh F., Gueheneuc Y.G., 2008, In CSMR 2008, 12th
European Conference on Sofiware Maintenance and

Reengineering, “Do design patterns impact software
quality positively?”, IEEE Computer Society

Kitchenham B., Pickard L., Pfleeger S.L., 1995, In IEEE
Software, “Case Studies for Method and Tool
Evaluation”.

McShaffry M., 2003, “Game Coding Complete”,
Paraglyph Press, Arizona.

Meyer B., Amout K., 2006, In I[EEE Computer,
“Componentization: The Visitor Example”, IEEE
Computer Society

Prechelt L., Unger B., Tichy W. F., Brossler P., Votta L.
G., 2001, In IEEE Transactions on Sofiware
Engineering, “A controlled experiment in
maintenance comparing design patterns to simpler
solutions”, IEEE Computer Society.

Samoladas 1., Stamelos I, Angelis L., Oikonomou A,
2004, In Communications of the ACM, “Open source
software development should strive for even greater
code maintainability”, Association of Computing
Machinery

Sowe S.K., Angelis L., Stamelos I., Manolopoulos Y.,
2007, In OSS 2007, Open Source Software
Conference, “Using Repository of Repositories
(RoRs) to Study the Growth of F/OSS Projects: A
Meta-Analysis Research Approach”, Springer

Tsantalis N., Chatzigeorgiou V, Stephanides G., Halkidis
S. T., 2006. In IEEE Transaction on Software
Engineering, "Design Pattern Detection using
Similarity Scoring", IEEE Computer Society

Vokac M., Tichy W., Sjeberg D.I.K., Arisholm E., Aldrin
M., 2003. In Empirical Software Engineering, “A
Controlled Experiment Comparing the Maintainability
of Programs Designed with and without Design
Patterns - A Replication in a Real Programming
Environment”, Springer.

Wendorff P, 2001. In CSMR 2001, 5th European
Conference on Software Maintenance and
Reengineering, “Assessment of Design Patterns during
Software Reengineering: Lessons Learned from a
Large Commercial Project”, IEEE Computer Society.

Wohlin C., Runeson P., Host M., Ohlsson M.C., Regnell
B., Wesslen A., 2000, “Experimentation in Software
Engineering”, Kluwer Academic Publishers, Boston/
Dordrecht/ London, 1% edition.

APPENDIX - A

Project Name

Modus Risk

Jupe Summer Project gone crazy!
webMethods jasper BI FreeRails

JUndo Runtime Rescue! Max

OVal Hunt for Gold

Morph JFlag

rMock Tourist Camping Tycoon
jfw PokerApp

Eclipse Metrics xUNO ME

Java Accumulators and Variants JSkat

transmorph

Fast UML

VESJFileChooser

Code 2 UML

iGesture

Java Bean Library

Cotta: A better file system
Java Utilities

jCart

Jfun

UBIQLIPSE

Open Blackboard System
JoSQL (SQL for Java Objects)
Memories of Mordor

Java Object Mapping Project
UCDetector

JsonMarshaller

Luigi Open Search Engine
AODYV Simulator

im4java

JOpt Simple

Salto Persistence Mechanism
Ajax JSP Tag Library

ftp4j

GreenP UML

BeanForm

JCommons

SAP-JCO Support

XConf

JRegistry

Perola

JDots

jMagazzino

Broadleaf Commerce
JadaSite

Artabro ERP/TPV
StoreManager

AgEx

Intrannuity iBilling Client
Jataka CRM

NEOSMAS RentaCar
ShopDB

Arcus - Rubik's Cube Simulator
JSettlers2 - Java Settlers of Catan

Truco! o algo...
Jokers

DaCoinch

JGames
TrickTakingGame
JMhing

JiBi's Hold'Em

Dr. Scenario

Stigma - The Game
Arabian Flights
Motherload Unlimited
Jippy Snake

JMario

MazeRunner

JMaze

YATI

jLodeRunner
XSwing Plus
Scorched Earth 2000
Piano Sheet Music Teacher
BlacKNight Chess
The Java VGA-Planets Client
Three-dimensional Go Game
SuperSnake
Gomoku

Marauroa

Clippers
CarDriving2D
miniTraff

The Tao of Soccer
faceCart

FreeCol

FreeLords

Panzer Combat II
Domination
Colossus

opaals tools

tXtFL

TGame2

XHSI

CarDriving
Tunneling2java
Shop - 123JavaShop

Dioscuri - modular emulator

APPENDIX - B

Categorical Variables Thresholds
For variable (3)

0 — Object oriented development tool

1 — E commerce application
2 — Computer game

For variable (4)

1 — Released before 2005

2 — Released between 2006 - 2007
3 — Released after 2008

For variable (5)

1 — Active for less than 100 days
2 — Active for less than 1 year

3 — Active for less than 2 years
4 — Active for more than 2 years

For variable (6)

1 — Less than 1.000 downloads

2 — Less than 2.000 downloads

3 — Less than 10.000 downloads
4 — More than 10.000 downloads

For variable (8)

1 — Only one version

2 — Between 2 — 10 versions
3 — More than 10 versions

For variable (9)

1—21to 50 classes

2—- 5110 100 classes
3—101 to 200 classes

4 — More than 201 classes

For variables (10-22)

1 — No pattern instances

2 — 1 to 4 pattern instances

3 — 5 to 9 pattern instances

4— 10 to 14 patterns instances

5 — More than 15 pattern instances

Binary Variables Thresholds

For variable (7)
0 — Only one developer
1 — More than one developers

For variables (10-22)
1 — The project does not have any pattern instance
2 — The project has at least one pattern instance

