
A
p

A
D

a

A
R
R
A
A

K
D
D
Q
R
E

1

i
b
g
n
t
p
i
s
O
w
m
a
p
i

(
(

0
d

The Journal of Systems and Software 84 (2011) 2265– 2283

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

n empirical investigation on the reusability of design patterns and software
ackages

postolos Ampatzoglou ∗, Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos
epartment of Informatics, Aristotle University, Aristotle University Campus, 54124 Thessaloniki, Greece

 r t i c l e i n f o

rticle history:
eceived 22 December 2010
eceived in revised form 17 June 2011
ccepted 18 June 2011
vailable online 24 June 2011

eywords:
esign patterns

a b s t r a c t

Nowadays open-source software communities are thriving. Successful open-source projects are compet-
itive and the amount of source code that is freely available offers great reuse opportunities to software
developers. Thus, it is expected that several requirements can be implemented based on open source
software reuse. Additionally, design patterns, i.e. well-known solution to common design problems, are
introduced as elements of reuse. This study attempts to empirically investigate the reusability of design
patterns, classes and software packages. Thus, the results can help developers to identify the most ben-
eficial starting points for white box reuse, which is quite popular among open source communities. In
esign
uality
eusability
mpirical approach

order to achieve this goal we conducted a case study on one hundred (100) open source projects. More
specifically, we identified 27,461 classes that participate in design patterns and compared the reusability
of each of these classes with the reusability of the pattern and the package that this class belongs to. In
more than 40% of the cases investigated, design pattern based class selection, offers the most reusable
starting point for white-box reuse. However there are several cases when package based selection might

 sugg
be preferable. The results

. Introduction

The fact that open source software code reuse is being increas-
ngly adopted by software companies and individual developers
ecomes apparent if we take under consideration the continuous
rowth of the free libre open source software (FLOSS) commu-
ity. Reuse of OSS components in other OSS projects is intense:
he reuse of code from 1311 leading OSS projects in other OSS
rojects represents 316,000 staff years and tens of billions of dollars

n development costs1 and OSS components are reused in thou-
ands of projects (e.g. log4j is used in more than 5500 projects).2

SS software collectively represents an extremely valuable asset
ith estimations of the total development cost of OSS software at
ore than 387 billion dollars.3 Additionally, in Li et al. (2009) the

uthors report that in 2007 over half of software developers used a

art of open source projects or OSS components off the self (COTS)

n their most recent projects.

∗ Corresponding author.
E-mail addresses: apamp@csd.auth.gr (A. Ampatzoglou), akritiko@csd.auth.gr

A. Kritikos), gkakaron@csd.auth.gr (G. Kakarontzas), stamelos@csd.auth.gr
I. Stamelos).

1 http://www.blackducksoftware.com/news/releases/2009-03-30.
2 http://www.blackducksoftware.com/news/releases/2008-12-09.
3 http://www.blackducksoftware.com/news/releases/2009-04-14.

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.06.047
est that each pattern has different level of reusability.
© 2011 Elsevier Inc. All rights reserved.

Although, the Bazaar approach4 in open-source development
and reuse seem to be working pretty well, the more OSS compo-
nent reuse becomes an established approach, the more its process
needs to be analyzed and eventually lean on a concrete definition.
In Ajila and Wu (2007), the authors conducted an empirical study
which suggested that an organization can have important economic
gains in terms of productivity and product quality, if it implements
OSS components reuse in a systematic way. Additionally, the need
for systematic application of OSS reuse is referenced in Morad and
Kuflik (2005). The research of the state of the art on component
based software engineering is thoroughly described in Brown and
Wallnau (1998), Crnkovic et al. (2006), Crnkovic and Larsson (2002)
and Crnkovic et al. (in press).

In the literature software reuse appears in two major forms,
systematic and opportunistic reuse (Jansen et al., 2008; Morison
et al., 2000). However, the results on the most fitting practice are
controversial. Large organizations report on employing more for-
malized methods and software product lines, whereas small and
medium size companies perform more adhoc reuse (Henry and
Faller, 1995; Jansen et al., 2008; McConnell, 1996). In fact, when
reusing open source code many developers reuse code opportunis-

tically by copying and pasting classes or packages to their own
projects. In Chang and Mockus (2008) and Mockus (2007), it is sug-
gested that in FreeBSD, i.e. a well known operating system, about

4 http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar/.

dx.doi.org/10.1016/j.jss.2011.06.047
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:apamp@csd.auth.gr
mailto:akritiko@csd.auth.gr
mailto:gkakaron@csd.auth.gr
mailto:stamelos@csd.auth.gr
http://www.blackducksoftware.com/news/releases/2009-03-30
http://www.blackducksoftware.com/news/releases/2008-12-09
http://www.blackducksoftware.com/news/releases/2009-04-14
http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar/
dx.doi.org/10.1016/j.jss.2011.06.047

2 ystem

4
O
p
m
o
m
t
t
t
b
f

i
a
s
a
c
t
a
t
o
M
p
p
s
o
S
a
p
d
m
r
p
m
b
w
f
(
c
a
i
o
s
a
n
t
a

t
e
d
w
e
w
c
b
t
p
d
i
t
p
r
i
a
e

266 A. Ampatzoglou et al. / The Journal of S

3% of the classes have been reused from other projects and that
SS reuse rates are extremely high. More specifically, 53% of the
rojects have performed reuse activities in 30% of their develop-
ent process and that 49% of projects have reused more than 80%

f their code. Additionally, in Mockus (2007) it is suggested that
ost reused units have gone through major or minor modifica-

ions in order to be adopted in the target project. The fact that
he reused artifacts have been modified before being adapted in
he target system suggests that white-box reuse techniques have
een employed. Although not systematic this form of reuse is very
requent and presents its own challenges.

In this work we study and compare several reuse “chunks”,
n the context of adhoc reuse, in order to identify the prefer-
ble way of selecting groups of classes from the source project,
o as to easily adjust them in the target project. The term prefer-
ble suggests that the selected set of classes has such structural
haracteristics that have been identified as positively correlated
o white-box reuse. An extended discussion on the selected char-
cteristics is presented in Section 2.2. This approach is one of
he first steps of creating reusable components from source code
riginating from an open-source software project. The authors in
cCormack et al. (2008) compared similar systems in size which

rovided the same (more or less) functionality. To overcome the
roblem of closed source code unavailability, they used now open
ource projects, that used to be closed source, and used their first
pen source release as an approximation of the Closed Source
oftware (CSS). They reported considerable differences in prop-
gation costs (i.e. probable impact of changes) favoring the OSS
rojects. This is attributed to the fact that OSS projects are more
istributed and therefore the architecture is considerably more
odular. To the extent that modularity is important to software

euse it is expected that OSS code will be more reusable. This is sup-
orted also by concrete statistics provided by Black Duck that we
entioned earlier. However given that there is a clear incompati-

ility between the organizational structure of CSS and OSS projects
hich is reflected in the software architecture with impressive dif-

erences in the propagation costs of functionally similar systems
Mockus, 2007), it is an open research question if the OSS code
an be reused in CSS projects without significant re-modularization
nd/or re-architecting. Although, white-box reuse is considered an
nferior type of reuse than black-box reuse, the abovementioned
bservation and the extent of white-box reuse in OSS, enforce the
ignificance of the white-box reuse research for OSS software reuse
nd validates the approach taken in this work for looking at alter-
ative reuse granules (classes vs. packages vs. patterns) as opposed
o using by default the package reuse granule which is the main
rchitectural element in OO systems.

Another state-of-the-art software technique that provides solu-
ions to common design problems is design patterns. By the
mployment of design patterns, the quality of the system under
evelopment is expected to improve while, at the same time, the
hole architecture of the system becomes more adaptable and

xtensible. Design pattern reusability can be perceived in two
ays, (a) reusing the idea of a pattern and (b) reusing the source

ode of a design pattern instance. Reusing the idea of patterns can
e employed in component development, when the development
eam wants to use a pattern in order to solve a common design
roblem through a well documented design solution, while they
evelop a component from scratch. However, when reusing pattern

nstances the idea is not to reuse the rationale of the pattern, but
he code that instantiates the solution. Of course, in such cases the
attern instance has to also (at least partially) fulfill the functional

equirements of the target system. Developers are not particularly
nterested in reusing code that applies a pattern more than they
re in reusing any code that fulfills their functional needs. How-
ver, it has been suggested that code reuse often entails adaptation
s and Software 84 (2011) 2265– 2283

(Bosch, 1999; Hölzle, 1993). In addition, recent empirical stud-
ies reveal that maintenance (including adaptive maintenance) is
improved by the identification of design patterns (Prechelt et al.,
2002; Scanniello et al., 2010), since developers recognize the roles
that the different objects play in a complex interaction. Since (a)
maintenance is improved with the identification of design patterns
and (b) reusing code often requires adaptation, as in adaptive main-
tenance, it is natural to assume that reusing unfamiliar code is also
improved with design pattern identification. But this only estab-
lishes a positive relation between design pattern identification and
code reuse at the cognitive level. Reusers have a shorter cognitive
distance to cover if design patterns are identified. Our work asks
the complementary and currently unanswered question: “Besides
comprehending, is it also easier to reuse the design pattern code at
a technical level than it is to reuse alternative granules and more
specifically packages or classes?” In this work we try to answer this
question from a purely technical standpoint by (a) statically ana-
lyzing the source code of the alternative reuse granules (i.e. design
patterns, packages and classes), (b) assessing their reusability in
accordance with a well-established reusability assessment model
(Bansiya and Davis, 2002), and (c) comparing the reuse granules’
reusability assessments. Therefore the research question that we
examine applies after a relevant class has been identified which
provides the required functionality and concerns the reuse gran-
ule so that the reusability of the selected granule is improved in
relation to the selection of the isolated class.

In Crnkovic et al. (2002) it is suggested that design patterns can
be used as pre-existing components, in cases that the functionality
of the pattern instance is relevant to the desired functionality of the
target system. In many real cases, the attempt to identify a reuse
chunk, points to a class that provides part of the desired functional-
ity. If this class participates in a design pattern in the source project,
then the reuser has three major reuse alternatives, to reuse the
class, to reuse the pattern or to reuse the package where the class
belongs to. Although, functionality is the key decider for reuse in the
first step of the process, i.e. the identification of the reusable unit,
the selection according to some quality attributes, such as reusabil-
ity, is a key decider for selecting a component among functionally
equivalent reuse candidates. In order to conduct an empirical study
in a holistic way, we compared the reusability of the classes partic-
ipating on design patterns with the reusability of the pattern itself
(i.e. the collaboration of classes that implement a design pattern)
and the reusability of the package to which the classes are included.

The rest of the paper is organized as follows. In Section 2 we
provide background information for the basic terms discussed in
this work. In Section 3 we analyze the methodology we followed
in order to be able to answer the research questions we present in
the same section. In Section 4 we provide the statistical analysis
conducted to the data we collected. In Section 5 we discuss the
results of the statistical analysis of the previous section. In Section
6 we speculate on threats to validity. Finally, in Section 7 we
conclude our work by summarizing our findings and we refer to
possible future work.

2. Background information

This section of the paper deals with presenting an overview of
the research state of the art on component based software devel-
opment, on measurements of software reusability, on component
selection strategies, and finally on design patterns.

2.1. Component based software engineering
Component based software engineering (CBSE) focuses on the
development of components in order to enable their reuse in
more systems rather than only to the original one for which they

ystem

h
r
p
a
i
s
n
l
o

a
c
s
t
r
q

a
d
v
p
I
c
t
b
p
m
c
t
n
s
i
t
a
w
W
o
t
p
t
c
(
H
t
d
p
fl

e
(
I
m
a
a
i
t
c
e
O
fi
p
m
d
b
s
o

A. Ampatzoglou et al. / The Journal of S

ave been implemented in the first place (i.e. development for
euse) and the development of new systems with reusable com-
onents (i.e. development with reuse). In Ajila and Wu (2007) the
uthors suggest that reuse can occur in many levels on granular-
ty, which could be a few lines of code, methods, classes or whole
ystems. Outside systems built on a certain component-based tech-
ology, component is understood as a general term and in the

iterature components have been related to packages, patterns and
bjects.

In Franch and Carvallo (2003), components are referred as pack-
ges; the authors make clear that these packages are essential in
ommercial off-the-self software (COTS software). This realization
trengthens the position that components are very important in
he software development process and as such, measuring their
eusability can lead to faster and effective development of higher
uality software.

Additionally, in Crnkovic et al. (2002) and Szyperski (1997)
 component is described as a unit of composition that can be
eployed independently and be adapted in a different system. A
ery important characteristic of a “useful” component is the decou-
ling of component interface from component implementation.

n Crnkovic et al. (2002) the authors suggest that design patterns
an be considered in CBSE with two perspectives (a) design pat-
erns can be used in CBSE design, when reusable units should
e identified as pre-existing components, and (b) develop com-
onents based on design patterns in order to adapt the pattern
echanism so as to increase component cohesion and decrease

omponent internal coupling. Design pattern size is usually smaller
han this of traditional components. However, the term “compo-
ent”, both in literature and in practice, is often used to denote any
oftware part and not necessarily an architectural unit. For example
n component models such as JavaBeans and Enterprise Java Beans
he component is just a class. In Component Object Model (COM)
nd CORBA Component Model (CCM) a component is an object,
hereas in SOFA, PECOS and Pin it is an architectural unit (Lau and
ang, 2005). Design patterns considering size, as a collaboration

f classes, are larger than classes/objects and smaller than architec-
ural components. Therefore they can be considered as a starting
oint for the derivation of architectural components in the con-
ext of white-box reuse. The fact that pattern application increases
ohesion and decreases coupling is supported by several studies
Ampatzoglou and Chatzigeorgiou, 2007; Geuheneuc et al., 2004;
sueh et al., 2008; Huston, 2001; Kouskouras et al., 2008). However,

here are patterns, such as Visitor and Observer, which might intro-
uce additional coupling. On the other hand, such patterns have a
ositive impact on other important quality attributes like reuntime
exibility.

Furthermore, the term class and component are often consid-
red synonymous or very similar in existing component models
e.g. Java Beans and Enterprise Java Beans) (Lau and Wang, 2005).
n his seminal work however, Szyperski (Szyperski, 1997) carefully

akes the distinction between classes and components. Typically,
 component consists of one or more classes, it can be however
lso implemented in a completely different technology as long as it
s an independent unit of deployment which provides its services
hrough a contractual interface and has explicit context dependen-
ies only. Furthermore, a component may contain several more
lements, other than classes even when it is implemented in an
bject-Oriented language, such as global variables, images, html
les and in general all artifacts that are useful for the component’s
rovided services. Components therefore, are not only develop-
ent artifacts. Components (and their connectors) exist as such
uring the execution of the system. Furthermore components can
e versioned independently, with the same component existing
ide-by-side with other components and even with another version
f itself if this is required by the installed applications (i.e. side-by-
s and Software 84 (2011) 2265– 2283 2267

side versioning). Finally components can be upgraded dynamically
during the system operation. Thus, classes and components are at
different lifecycle levels, since components are deployment units,
whereas classes are development artifacts and objects are notions
of instantiation (Szyperski, 1997).

2.2. Software reusability

The selection of the group of classes as a component off-the-self
requires the evaluation of several aspects of candidate compo-
nents (Franch and Carvallo, 2003; Kontio, 2006). In Andreou and
Tziakouris (2007), Cho et al. (2001), Fahmi and Choi (2008) and
Yu et al. (2009) the authors suggest that one prominent way to
select packages is the selection according to the packages’ qual-
ity characteristics. In this study we selected to investigate several
class selection alternatives with respect to their reusability. Accord-
ing to Bansyia et al. “Software reusability reflects the presence
of object-oriented characteristics that allow a system to be reap-
plied to a new problem without significant effort” (Bansiya and
Davis, 2002). After reviewing the literature we identified sev-
eral ways to assess the reusability of a class or a system. In
Table 1, we can see an overview of structural quality attributes
that are reported to be important concerning the reusability of a
system.

In Bansiya and Davis (2002), Bansyia et al. proposes a model
(QMOOD) for calculating software reusability from low level
quality metrics, at an early design stage. More specifically,
the authors propose linear equations that can predict several
high level quality attributes. The proposed hierarchical model
is validated through an experiment with professional software
evaluators.

Additionally, in Barnard (1998) the author provides thresh-
olds on both code and styling attributes which, when surpassed,
the reusability of the system becomes more difficult. However,
the automatic application of the model, although rigorously val-
idated, is not possible because of several abstract metrics, such as
“meaningful attribute name”. In Gui and Scott (2007) the correla-
tion between component reusability and various coupling metrics
is discussed. Furthermore the authors of Andreou and Tziakouris
(2007) propose the quality evaluation of components based on ISO
9126, but the approach they suggest is qualitative and therefore
not easily automated.

In Washizaki et al. (2003), Washizaki et al. suggests that several
heuristics, such as existence of meta-information and compo-
nent observability, could prove useful in measuring the reusability
of software components. Similarly to (Barnard, 1998), using this
approach to automatically evaluate system reusability is not pos-
sible. Finally, Sandlhu et al. (2009) proposes the combination of
several metrics through a neural network, in order to assess the
reusability of object-oriented software systems. However, this
approach is not useful for the nature of our study, which needs
numerical data.

Concluding, in our study we selected to use the QMOOD model
(Bansiya and Davis, 2002) because it appears to be thoroughly
validated, it assesses software reusability from metric scores that
can be automatically calculated and it does not involve subjective
parameters. Additionally, the QMOOD model is based on well stud-
ied metrics used in many published works, in well known software
engineering journals (Counsell et al., 2006; Etzkorn et al., 2004;
Genero et al., 2007; Hsueh et al., 2008; Khomh and Gueheneuc,
2008; Marcus et al., 2008; Plague et al., 2007). Additionally, the
reusability as defined and calculated in QMOOD, takes into account

structural quality characteristics such as coupling and cohesion that
are very important when applying white-box reuse. A decoupled
and highly coherent component is expected to be more maintain-
able and easier to adapt. According to QMOOD software reusability

2268 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265– 2283

Table 1
Structural quality characteristics influencing reusability.

Attribute Effect Studies

Coupling − Bansiya and Davis (2002), Barnard (1998), Gui and Scott (2007) and Sandlhu et al. (2009)
Cohesion + Bansiya and Davis (2002) and Sandlhu et al. (2009)
Messaging + Bansiya and Davis (2002)

 and D
 (1998
 (1998

i

r

r

r

2

l
p
k
w
o
r
a
p
t
c

d
o
1
p
H
r
h
g
a
o
a
u
r
g

p
2
a
n
M
(
d
s
f

c
q
s
m
r
c

1. Select only the class that he is interested in [further reference as:
Alternative A1-Class Based Selection].
Size + Bansiya
Inheritance − Barnard
Complexity − Barnard

s calculated as follows:

eusability = 0.25 × cohesion + 0.5 × messaging + 0.5

×size − 0.25 × coupling (1)

At component level, we calculate reusability as the average
eusability of all classes that participate in the component.

eusability =
∑NOC

i=1 reusability of class i

NOC
(2)

.3. Design patterns

Design patterns have been introduced in software engineering
iterature as elements of reuse (Gamma et al., 1995). The notion of
atterns in software development represents a collection of well-
nown design solutions to common design problems. In this paper
e investigate whether selecting a group of classes that are based

n design patterns offers enhanced white-box reuse opportunities
ather than software packages and classes. Thus, we investigate if

 reuser should select a group of classes that participate in a design
attern, alter them and produce a reusable component, rather
han attempting to componentize complete software packages or
lasses.

Furthermore Conway’s law suggests that “organizations which
esign systems are constrained to produce designs which are copies
f the communication structures of these organizations” (Conway,
968). Although Conway’s law was not verified at the time of its
ublishing it was heavily cited for decades and recent studies from
arvard Business School (McCormack et al., 2008) and Microsoft

esearch (Agape et al., 2008) confirm it. In the context of reuse this
as significant implications for selecting software packages as reuse
ranules, since packages reflect the structure of a software system,
nd according to Conway’s law this reflects the structure of the
rganization that produced the system. Reuse however occurs at

 different organization with a different structure. Consequently
sing packages as reuse granules may be inappropriate for external
euse of software in different organizations and alternative reuse
ranules should be considered.

The possibility of creating software components from design
atterns was introduced in 2006 by Meyer et al. (Arnout and Meyer,
006; Meyer and Arnout, 2006). In Meyer and Arnout (2006) the
uthors suggest that only two design patterns are not compo-
entizable. The componentization of the Visitor and the Factory
ethod patterns are thoroughly discussed in Brown and Wallnau

1998) and Arnout and Meyer (2006), respectively. Additionally,
esign pattern componentization offers faithfulness, completeness,
implicity, usability, ease of learning, type safety and system per-
ormance (Meyer and Arnout, 2006).

Furthermore, in Khomh and Gueheneuc (2008) Khom et al. dis-
uss the effect of design pattern application in several external
ualities attributes, through a survey conducted on professional

oftware engineers. The results of the study imply that the employ-
ent of eleven design patterns has a positive effect on systems

eusability, whereas twelve suggest the opposite. More specifi-
ally, the patterns that are reported to be beneficial appear to be
avis (2002)
) and Sandlhu et al. (2009)
) and Sandlhu et al. (2009)

Abstract Factory, Factory Method, Prototype, Adapter, Composite,
Proxy, Chain of Responsibility, Interpreter, Iterator, Observer and
Template Method. A possible weakness of this survey is that neutral
opinions are considered as negative and therefore marginal results
should be cautiously adopted. On the contrary, in Wydaeghe et al.
(1998) the authors underline that Bridge and Faç ade have a very
positive impact on system reusability; Observer, Visitor and Itera-
tor also have positive impact while Chain of Responsibility has no
noticeable effect on software reusability.

3. Methodology applied in the empirical study

The aim of this study is to compare the reusability of differ-
ent reuse granules: classes vs. patterns vs. packages.5 In order to
achieve this goal, we have conducted a case study according to the
guidelines described in Kitchenham et al. (1995). More specifically,
the suggested steps are listed below:

• Define Research Questions
• Select Projects
• Identify the Method of Comparison
• Minimize the Effect of Confounding Factor
• Plan the Case Study
• Monitor the Case Study Against Plan
• Analyze and Report the Results

The research questions of this study are defined in Section 3.1.
In Section 3.2, we describe the case study plan; we discuss the
selection of projects and the confounding factors of this research.
Furthermore, Section 3.3 deals with the description of the dataset
and the methods for comparison. As mentioned before, Section 6
presents possible threats to validity that arose from monitoring
the case study against the research plan. Finally, in Section 4 we
present the procedure and the results of the statistical analysis and
in Section 5 we discuss the results, with respect to the research
questions.

3.1. Research questions

The main motivation of our study is to compare the reusability
of classes, patterns and packages. The first research question (RQ1)
that the paper attempts to answer can be described by the following
scenario: “A developer wants to implement a specific requirement.
He identifies a class that provides the main functionality that he
wants to implement. This class happens to participate in a design
pattern. Which classes should be selected, modified and reused in
the final project?” In our research we investigated four alternatives
for the reuser:
5 By the term package we refer to a set of classes that is created by developers, in
order to group collaborating classes.

ystem

2

3

4

t
c
a
w

t
a
i
p
T
t
A
f
a
o
o
a
w
o
a
d

t
a
O
c
i
w
a
i
i
t
s
r
d
t
a
d
t
d
e
l
m
s
t
s
e
a

t
A

p
(

b

d

A. Ampatzoglou et al. / The Journal of S

. Select the pattern that the class belongs to (i.e. all collaborating
classes in the context of the pattern implementation) [further
reference as: Alternative A2-Pattern Based Selection].

. Select the package that the class belongs to [further reference as:
Alternative A3-Package Based Selection].

. Select all packages to which every pattern participant6 belongs
to [further reference as: Alternative A4-Multi-Package Based Selec-
tion].

For example, let us suppose that 4 classes, i.e. A, B, C and D, par-
icipate in one design pattern. Class A (cA) belongs to package pA,
lass B (cB) belongs to package pB, class C (cC) belongs to pack-
ge pC and class D (cD), belongs to package pA. For this pattern we
ould investigate the scenarios of Table 2.

The four selection alternatives represent choices available to
he developer in relation to two distinct axes: (a) The developer is
ware of a pattern existing in the structure of the system connect-
ng the class he is interested in with other classes (i.e. the pattern’s
articipants), or (b) the developer is not aware of such a pattern.
he developer in the first case would either choose the class or
he package in which the class belongs to, i.e. alternatives A1 and
3. In the pattern awareness case the developer could choose all

our alternatives since the existence of the pattern now represents
n interesting alternative. So besides the class and the package
f the class we also examine the pattern and the “all packages
f the pattern participants” choices. In cases when two solutions
re identical, e.g. a case when a design pattern consists of classes
hich are placed in one package and that package includes classes

nly from that pattern; it is obvious that the reusability of the two
lternatives is equal. Thus, in such cases the alternatives cannot be
istinguished.

Additionally, another alternative would be to select all classes
hat are statically dependent to the selected class. However, such
n approach might create class sets that do not clearly represent
O structural units and such a selection would lead to a set of
lasses that are completely different in size and that are not eas-
ly described. Thus, the practical benefits from such a procedure

ould be limited. Furthermore, the dependencies among classes
re considered in the model. The problem with static dependencies
n large Object-Oriented systems is that they are many and they are
ndistinguishable in the sense that important dependencies look
he same as unimportant ones. Also for reuse it is important to
elect with one class other classes which are essential for its cor-
ect usage. In fact what we need here is the “uses” relation which
escribes the “Uses Style” of the module view (Clements, 2002). In
his style classes use other classes if they need them for their oper-
tion. The authors observe that a class may use another and not
epend on it statically, e.g. the other class provides a value in a file
hat the first class needs, and/or a class may have a static depen-
ency on another class that does not need for its operation. For
xample a class may call on a logging service but does not need the
ogging service to provide its own services. Finally, the proposed

ethod in this study is applicable during the coding of a software
ystem and concerns reuse at the implementation level. However
he selection of reuse granules is also affected by other concerns
uch as independent versioning and upgrades, which are consid-
red during other development lifecycle phases, mainly during the
rchitecture development.
Consequently, we preferred to limit our study in classes, pat-
erns and packages that are well defined structural OO units.
dditionally, the fact that units, which are strongly dependent to

6 As pattern participant we mean every class that plays a specific role in a design
attern (Fahmi and Choi, 2008). A definition of the pattern participants is given in
Harrison and Avgeriou, 2010).
s and Software 84 (2011) 2265– 2283 2269

other units are not preferable for reuse, will be taken into account
because the selected reusability model considers coupling metrics
in the calculation of reusability. At this point it is necessary to clar-
ify that, with the design pattern reuse statement we do not refer
to the reuse of pattern rationale, but to the reuse of pattern imple-
mentation, i.e. the classes that implement a particular pattern. RQ1
is summarized as follows:

RQ1: Which structural unit is more reusable (a class, a pattern or a
package)?

Furthermore, our study attempts to answer three research ques-
tions (RQ):

RQ2: Is the selection of the most reusable set of classes correlated
to the pattern type?

RQ3: Is the selection of the most reusable set of classes correlated
to the number of the pattern’s participants?

RQ4: Is the selection of the most reusable set of classes correlated
to the number of packages that are involved in the pattern?

In order to explore RQ1 the following null hypotheses have been
stated and investigated, according to the aforementioned defini-
tions of alternatives.

H0(1): Alternative A1 offers the most reusable selection of classes
H0(2): Alternative A2 offers the most reusable selection of classes
H0(3): Alternative A3 offers the most reusable selection of classes
H0(4): Alternative A4 offers the most reusable selection of classes

3.2. Case study plan

In Basili et al. (1986), the authors suggest that before conducting
an empirical study, the research team should prepare a thorough
study plan. In this case study the plan involved a seven (7) step
procedure:

a) choose some open source projects
) perform pattern detection for every selected project

c) for every pattern find all the classes that participate in it
) for every class that participates in each pattern create a pool

of available set of classes that include it, according to the four
alternatives mentioned in Section 3.1

e) for every available set of classes calculate its reusability accord-
ing to the QMOOD model mentioned in Section 2.1

f) tabulate data
g) analyze data with respect to the research questions

The subjects of this research are one hundred of the most suc-
cessful open source projects. The selected projects had to fulfill two
criteria in order to automate the execution of steps (b)–(e), due
to limitations of pattern detection tool (Tsantalis et al., 2006). The
software (a) had to be written in java and (b) provide a jar exe-
cutable file. The projects that have been investigated in our study
are presented in the web.7

In any empirical study, factors, other than the independent vari-
ables, which influence the value of the dependent variable, are
characterized as confounding factors. A possible confounding fac-

tor that is expected to affect the reusability of any set of class is
its functionality, in the sense that groups of classes that imple-
ment certain reusable functional requirements are more likely to
being reused. However, in the current scenario, we assume that

7 http://sweng.csd.auth.gr/apamp/material/jss projects.doc.

http://sweng.csd.auth.gr/apamp/material/jss_projects.doc

2270 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265– 2283

Table 2
Class selection alternatives.

Class selection alternatives Reused class

A B C D

Alternative A1 cA cB cC cD
cA, cB, cC,cD cA, cB, cC,cD cA, cB, cC,cD
pB pC pA
pA, pB, pC pA, pB, pC pA, pB, pC

a
t
t
m
r
c
d

3

p
c
r

•
•
•
•

•
•
•
•

d
w
I
t
i
a
s

4

a
M
t
l
b
v
F
f
d
a

t
c
i

c

Fig. 1. Distribution of NOFparticipants variable.
Alternative A2 cA, cB, cC,cD

Alternative A3 pA
Alternative A4 pA, pB, pC

 developer has identified a class that fits the major functionality
hat he wants to reuse and he desires to evaluate all possible struc-
ural units that this class belongs to, in order to find and use the

ost reusable set of classes. Therefore our results take into account
eusability issues, other than the functional fitness of the selected
lass, because all structural units that this class belongs to, offer the
esired functionality.

.3. Data analysis method

The dataset that has been tabulated after step (f) of the research
lan consists of 27,461 rows, one for every pattern participant that
an be reused, and eight (8) columns. More specifically, for every
euse candidate class the following data have been recorded:

class name
pattern name
number of classes participating in the pattern (NOFparticipants)
number of packages where the pattern is spread into (NOFpack-
ageSet)
reusability of Class Based Selection Alternative A1 (R-class)
reusability of Pattern Based Selection Alternative A2 (R-pattern)
reusability of Package Based Selection Alternative A3 (R-package)
reusability of Multi-Package Based Selection Alternative A4 (R-
packageSet)

In the data analysis phase we have used several statistical tests,
escriptive statistics and graphs. More specifically, concerning RQ1,
e performed hypothesis testing in order to investigate H0(1)–H0(4).

n order to explore RQ2–RQ4, we produced additional hypothesis
esting. In order for this goal to be feasible, we created two categor-
cal variables. The variable transformation rules have been selected
ccording to the histograms of Figs. 1 and 2 and the quartiles pre-
ented in Table 3.

. Statistical analysis

One of the first steps in analyzing the dataset in a statistical
nalysis requires the data reduction phase (Wohlin et al., 2000).
ore specifically, one of our concerns is to eliminate all outliers

hat derive from extreme reusability index values, both high and
ow. In order to inspect the existence of outliers we have created
oxplots for the R-class, R-pattern, R-package and R-packageSet
ariables. The boxplots are presented in Fig. 3. As it is shown in
ig. 3, the dataset has several outliers that have been omitted from
urther statistical analysis. On the completion of this process, the
ataset consisted of 23,931 rows. The final dataset of the study is
vailable in the web.8

The descriptive statistics on the reusability of each class selec-

ion alternative are presented in Table 4. In order to draw safer
onclusions on the differences presented in the mean reusabil-
ty values, hypotheses testing have been considered. According to

8 http://sweng.csd.auth.gr/apamp/material/metrics jss.xls or http://sweng.
sd.auth.gr/apamp/material/metrics jss.csv.

Fig. 2. Distribution of NOFpackageSet variable.

http://sweng.csd.auth.gr/apamp/material/metrics_jss.xls
http://sweng.csd.auth.gr/apamp/material/metrics_jss.csv
http://sweng.csd.auth.gr/apamp/material/metrics_jss.csv

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265– 2283 2271

Fig. 3. Boxplots on R-class, R-pattern, R-p

Table 3
Variable transformation range.

Variable Range Categorical value

NOFparticipants 0–3 Low
NOFparticipants 4–6 Medium
NOFparticipants 7–15 High
NOFparticipants >16 Very high
NOFpackageSet 1 Low
NOFpackageSet 2 Medium
NOFpackageSet >3 High

Table 4
Descriptive statistics on class selection alternatives.

N Min Max Mean Std. Deviation

R-pattern 23,931 −2.58 41.26 5.21 3632
R-class 23,931 −7.25 18.77 4.55 4237

W
f
s
t
d
i
c
T

a
5
i
d
w

with respect to the four research questions that have been stated
R-package 23,931 −0.19 12.53 4.05 2203
R-packageSet 23,931 −0.19 11.53 3.99 2135

ohlin et al. (2000), there are two ways for selecting the best per-
orming method, among methods that have been tested on the
ame sample, i.e. paired sample t-test and Wilcoxon Signed Rank
est. In the case of our dataset, since data does not follow the normal
istribution, we had to employ a non-parametric hypothesis test-

ng technique, i.e. Wilcoxon Signed Rank test. The results on the
omparison of the four class selection alternatives are presented in
ables 5 and 6.

The results of Table 5, suggest that the reusability of the pattern
lternative is higher than the reusability of the class alternative in
9.1% of the cases, the reusability of class is higher than the pattern’s
n 37.6% and the two alternatives tie in the rest 3.3% of the cases. If a
eveloper chooses to select a design pattern as a starting point for
hite-box reuse, he gains a statistically significant change in the
ackage and R-packageSet variables.

selected granule reusability rather than if he selects to start from a
single class (Z = 34.290, sig = 0.000).

In order to investigate RQ2–RQ4, we performed the Crosstabs
procedure with the categorical variables described in Section 3.3,
i.e. variables on the number of pattern participating classes, number
of packages that participate in the pattern, pattern name and best
class selection alternative. The crosstabs procedure is often used to
record and analyze the relation between two or more categorical
variables. It displays the (multivariate) frequency distribution of
the variables in a matrix format. For simplicity in our tables we
present the frequency as a percentage and not as an absolute value.

The results of the Crosstabs are presented in Tables 6–8. The sig-
nificance level of all Pearson x2-test that derived from the Crosstabs
equals sig. = 0.00 and therefore pattern type, number of partici-
pants, number of packages are correlated to the selection of the
best practice.

Finally, in order to further explore the way that the variables of
RQ2–RQ4 influence the selection of the best class selection practice
we performed Wilcoxon Singed Rank tests in several sub-datasets.
For example, in order to investigate if the difference between
R-package and R-pattern for the Composite pattern is statistically
significant, we filtered the dataset, so as to isolate only the rows
that correspond to instances of the Composite pattern and repli-
cated the procedure of Tables 4 and 5. The results of this procedure
are presented in Appendix A.

5. Discussion

In this section of the paper we discuss the findings of our study
in the case study plan. The motivation of our research dealt with
the selection of the set of classes that are going to be reused. More
specifically, we investigated four class selection alternatives as a

2272 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265– 2283

Table 5
Wilcoxon Signed Rank tests on class selection alternatives.

N Mean rank Sum of ranks Z sig

(R-pattern)–(R-class)
Negative ranks 8939 11082.10303 99,062,919 34.290 0.000
Positive ranks 14,205 11881.09968 168,771,021
Ties 787
Total 23,931

(R-package)–(R-class)
Negative ranks 10,312 14071.60745 145,106,416 −1.871 0.061
Positive ranks 13,613 10365.70624 141,108,359
Ties 6
Total 23,931

(R-packageSet)–(R-class)
Negative ranks 10,248 13960.0523 143,062,616 0.042 0.967
Positive ranks 13,677 10466.63442 143,152,159
Ties 6
Total 23,931

(R-package)–(R-pattern)
Negative ranks 15,236 13728.85482 209,172,832 −62.233 0.000
Positive ranks 8663 8821.449613 76,420,218
Ties 32
Total 23,931

(R-packageSet)–(R-pattern)
Negative ranks 14545 13985.25775 203,415,574 −57.027 0.000
Positive ranks 9341 8764.25083 81,866,867
Ties 45
Total 23,931

(R-packageSet)–(R-package)
Negative ranks 8597 8888.882866 76,417,726 15.233 0.000
Positive ranks 10,130 9767.216387 98,941,902
Ties 5204
Total 23,931

Table 6
Crosstabs (best approach—design pattern).

Alternative A1 Alternative A2 Alternative A3 Alternative A4

(Object) Adapter-Command 38.85% 18.55% 38.48% 4.12%
Composite 20.49% 41.95% 33.17% 4.39%
Decorator 25.03% 25.35% 28.00% 21.62%
Factory Method 31.87% 18.50% 32.51% 17.12%
Observer 26.41% 6.60% 64.06% 2.93%
Prototype 26.18% 9.31% 43.76% 20.74%
Proxy 44.31% 3.92% 41.57% 10.20%
Proxy2 38.89% 0.00% 27.78% 33.33%
Singleton 36.21% 63.79% 0.00% 0.00%
State-Strategy 31.13% 15.3
Template Method 22.16% 25.4
Visitor 25.00% 75.0

Table 7
Crosstabs (best approach—NOFParticipants).

Alternative A1 Alternative A2 Alternative A3 Alternative A4

Low 36.43% 24.53% 32.25% 6.79%
Medium 27.89% 17.57% 37.98% 16.56%

s
o
A
w
n
t

T
C

High 27.53% 14.14% 39.65% 18.69%
Very high 27.05% 13.43% 36.20% 23.31%

tarting point for white-box reuse, namely (Alternative A1) “select
nly the class that implements the desired functionality”, (Alternative
2) “select all the classes that participate in the pattern that the class

hich implements the desired functionality participates in”, (Alter-
ative A3) “select all the classes that participate in the package that
he class which implements the desired functionality belongs to” and

able 8
rosstabs (Best Approach – NOFPackageSet).

Alternative A1 Alternative A2 Alternative A3 Alternative A4

Low 29.87% 24.76% 29.63% 15.75%
Medium 31.10% 15.75% 38.67% 14.47%
High 29.61% 12.35% 41.30% 16.74%
5% 39.21% 14.31%
3% 20.79% 31.61%
0% 0.00% 0.00%

(Alternative A4) “select all classes that belong to all packages that are
involved in the pattern to which the class that implements the desired
functionality participates in”.

5.1. RQ1—which is the most reusable unit?

Taking under consideration all cases, i.e. not filtering pattern
instances, design pattern size, i.e. number of classes that partic-
ipate in the design pattern, and number of packages involved in
the pattern, the results suggest that employing the pattern-based
selection approach (Alternative A2), provides statistically significant
more reusable groups of classes than the other alternatives. More
specifically, the pattern provides the best approach in about 40% of
the cases.

5.2. RQ2—does design pattern type affect reusability?

In order to investigate the remaining cases and identify rules

that help the developer decide the best selection approach, we
investigated the correlation among the best selection practise,
design pattern size, pattern type and the number of packages
that the pattern is spread into. According to our analysis, all the

ystem

a
a
t
r
s
f
i
d

1

2

w
t
b
i

t
i
d
C
s
m
s
t
p
M
r
n
o

u
c
r
s
t
o
w
S
b
w
w
m
p
m
F
a
o
b
t
s
A
c
a
i
c
a
i
c
b
s
t

A. Ampatzoglou et al. / The Journal of S

forementioned variables appeared to be correlated. By taking into
ccount the results of Table 5 and Appendix A, we were able to rank
he best selection alternatives according to design pattern type. The
esults are summarized in Table 9. The columns of the table repre-
ent design patterns. For every pattern the alternatives are ranked
rom higher to lower, with respect to their reusability. More specif-
cally, we ranked the alternatives to levels from 1 to 4. In order to
o so we performed the following steps:

. we ranked the alternatives in a descending order according to
their average reusability

. we demarcated levels in cases when the mean reusability of one
alternative is statistically significantlly higher than the reusabil-
ity of the other alternative.

For example, concerning the Adapter pattern, the alternative
ith the higher reusability metric score is A2, followed by A1. From

he results presented in Appendix A, we observe that the difference
etween class selection and pattern selection is statistically signif-

cant. Therefore, A2 and A1 belong to different reusability levels.
Table 9 suggests that a developer should select the design pat-

ern, rather than any other solution, if the class he is interested
n, participates in an Adapter, Factory Method, Prototype or State
esign pattern. On the other hand, if the class participates in a
omposite or Decorator pattern, it is suggested that the developers
hould reuse the whole package where the class belongs to. The
ajority of these results comply with the opinion of professional

oftware engineers as stated in Khomh and Gueheneuc (2008). On
he contrary, our results differ in three points, namely (a) Composite
attern reusability, (b) State pattern reusability and (c) Template
ethod pattern reusability. Although a direct comparison of our

esults to Khomh et al. is not possible, because of the different
ature of the two studies, we provide a discussion on the differences
f the results.

In Khomh and Gueheneuc (2008) the authors suggest that the
se of Composite pattern improves the reusability of a system, in
ontrast to the use of Decorator pattern, which diminishes the
eusability of the system. However, the two patterns are very
imilar in their structure and the expected result would be that
hese patterns should exhibit similar quality characteristics. From
ur study both patterns appear to have similar reusability effects,
hich was the expected conclusion. Additionally, concerning the

tate/Strategy pattern, our approach suggested that the pattern-
ased alternative appears to be the optimal class selection scenario,
hich is in contrast to the results of Khomh and Gueheneuc (2008),
here the authors suggested that both State and Strategy employ-
ent have a negative effect on software reusability. However, these

atterns are very easy to use, since they only use a polymorphism
echanism, which enhances extendibility and understandability.

inally, concerning Template Method, which according to Khomh
nd Gueheneuc (2008) has a positive effect on reusability, the result
f our empirical study suggests that the template pattern is not the
est way to select a reusable group of classes. If a developer needs
o reuse a class that participates in an instance of a Template, he
hould reuse all packages that are involved in the pattern instance.

 closer analysis of the results of our study indicates that in most
ases the Template pattern instances, that have been identified,
re spread into different packages, and that the classes that partic-
pate in it present high coupling, to other classes. The classes that
omprise the Template Method pattern create the skeleton of an
lgorithm. Thus, in order for the algorithm to access all data that it
s interested in, these classes have to be highly coupled with other

lasses. This fact suggests that Template might not be properly used
y open-source developers, since proper application of the pattern
uggests that the algorithm uses local class data. As a conclusion,
he results on the Template Method pattern should be cautiously
s and Software 84 (2011) 2265– 2283 2273

adopted. In addition, Template pattern reusability probably needs
further investigation.

5.3. RQ3 and RQ4—does number of pattern participants or the
number of packages that are involved in the pattern affect
reusability?

Similarly, in order to present the correlations among the best
class selection alternative, the design pattern’s size and the num-
ber of packages involved in the pattern, we used the results of
Tables 7–8 and Appendix A. Thus, we were able to rank the best
selection alternatives according to design pattern size and distri-
bution of pattern among packages. The results are summarized in
Table 10. The columns of the table represent NOFparticipants and
NOFpackageSet categories. For every category the alternatives are
ranked from higher to lower, with respect to their reusability. The
results of this procedure were not very helpful in identifying rules
for selecting the optimal class selection scenario, since they are
similar for all variable values.

5.4. Illustrative example

As an example, in Fig. 4 we present a part of the
org.jfree.chart.block package of the jFreeChart project. This pack-
age employs five State/Strategy instances. From these patterns, two
involve only classes from the aforementioned package, whereas the
rest three pattern instances are spread into two packages.

According to our work, if a class is identified to participate in
a State/Strategy pattern, the reuser should investigate the number
of packages that are involved in the pattern. If the pattern is com-
pletely instantiated in the same package, then the pattern is the
most reusable unit, but this result is marginal (35.9% patterns vs.
35.5% package). However, if the state pattern is spread in more than
one package, the pattern is the more reusable unit. The reusability
of each class selection alternative, for each pattern is presented in
Table 11.

The results that are suggested from Table 11 and from the empir-
ical data of our dataset are intuitively valid. If a developer wants to
reuse the functionality of the Arrangement hierarchy he will proba-
bly need to use all the classes of Block, AbstractBlock and BlockFrame
hierarchies, which is almost the whole package. On the contrary, if
the reuser is interested in the functionality of BlockFrame hierar-
chy, or the EntityBlockParams hierarchy, only a small portion of the
package is needed, because these classes are almost self-sufficient.
Similarly, if a reuser is interested in the functionality of the Block
hierarchy, AbstractBlock and BlockFrame hierarchies are needed but
Arrangement hierarchy is optional. In the case that Arrangement is
needed the optimal selection strategy should be the package set.

The above scenario and discussion, comply with the empiri-
cal data of our research. Thus, a reuser could select the optimal
reusability unit according to the results of our study without per-
forming extensive dependency analysis. This fact suggests that an
inexperienced developer/re-user, who could be mislead by his intu-
ition, can be guided from the results of this study and make the
optimal decision on class selection strategies.

5.5. Practical consideration

This section deals with the practical benefits that derive from
this work. Firstly, we present an approach of how practitioners can
use our results. The approach is summarized in the next steps:
• Let us assume that a reuser identifies a piece of code that provides
some kind of desired functionality.

• The reuser examines if the class/classes that he is interested in,
are involved in a design pattern.

2274 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265– 2283

Table 9
Best class selection alternative rankings.

Componentization alternatives ranking
Level-1 A2 A3 A3 A2 A2 A2 A2

A1
A4
A1
A2
A3

A3
A4

A2 A4 A4
A1
A2
A3

Level-2 A1 A4 A4 A3 A3 A1
A3
A4

A3
A4

A1
A2

A4 A3

Level-3 A3 A2 A2 A4 A1
A4

A1
A3

A2

Level-4 A4 A1 A1 A1 A1
Adapter Composite Decorator Factory Observer Prototype Proxy Proxy2 Singleton State Template Visitor

Table 10
Best class selection alternative ranking.

Componentization alternatives ranking
Level-1 A2 A2 A2 A2 A2 A2 A2
Level-2 A3

A4
A4 A3

A4
A4 A3

A4
A3
A4
A1

A4

Level-3 A1 A3 A1 A3 A1 A3
Level-4 A1 A1 A1

0–3 classes 4–6 classes 7–15 classes >15 classes 1 package 2 packages >2 packages

eChar

•

•

-

-

r
a
(
a
i
p
r

Fig. 4. Class diagram from jFre

If they are not, according to our results, the reuser should pick
the package that the class/classes belong to and reuse it/them.
If the class/classes participate in the pattern:

The reuser identifies, pattern type, pattern size (number of pat-
tern participants) and the number of packages that the pattern is
spread into.

 The reuser searches the complete results of our study, and iden-
tifies the most profitable reuse granule (class/pattern/package/
package set).

The above steps can be implemented in software engineering
ecommendation tool (Robillard et al., 2010) that would (a) identify
utomatically the pattern participation of an interesting class and
b) use the results of this study to recommend the most appropri-

te reuse granule to the developer relieving him from the manual
nspection of the results. The development of such a tool is in
rogress and its effectiveness will be validated in the authors’ future
esearch.
t.org.jfree.chart.block package.

6. Threats to validity

This section of the paper deals with presenting the case study’s
internal and external threats to validity. To begin with, since the
case study subjects are open-source projects, the results may not
apply in black-box reuse scenarios where the reuser has no access
to the source code. Concerning the empirical study internal valid-
ity, the existence of confounding factors is analyzed in Section 3.2.
Additionally, the dataset consisted of only Java projects, since the
tool we used was able to detect design patterns only in binary java
files form. Moreover, only one repository, namely Sourceforge, has
been mined. However, the size of the dataset and the statistical sig-
nificance of the results, suggest that concerning white-box reuse of
open-source java code, the results are quite safe.

Furthermore, even though the size of our dataset is sufficient,

the results on ten design patterns cannot be generalized to the
rest of the 23 design patterns that are described in Gamma et al.
(1995). Additionally, neither the results nor the method of the
paper can be safely applied in design patterns of other pattern cat-

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265– 2283 2275

Table 11
Reusability example (from jFreeChart.org.jfree.chart.block).

State/strategy Context Subclasses R-pattern R-package R-packageSet NOFparticipants NOFpackageSet

Arrangement BlockContainer

BorderArrangement

3.4 4.0 4.0 7 1
CenterArrangement
ColumnArrangement
FlowArrangement
GridArrangement

BlockFrame AbstractBlock
BlockBorder

5.4 4.0 4.0 4 1LineBorder

BlockFrame LegendTitle
BlockBorder

5.4 4.0 5.3 4 2LineBorder

Block BorderArrangement

BlockBorder

5.3 4.0 5.3 14 2

BlockContainer
BlockFrame
BlockParams
BlockResults
ColorBlock
EmptyBlock
LabelBlock
LineBorder
LegendGraphic

e
T
t
p
s
v
T
t
e
s
d
i
n
p

h
o
p
a

p
p
t
H
h
e
t

7

o
a
f
e
i
s
b
I
m
t
i

LegendItemBlock
Title

EntityBlockParams LegendTitle BlockParams 5.6

gories, such as architectural patterns and game design patterns.
he results and conclusions of our research depend strongly on
he selection of the QMOOD model (Bansiya and Davis, 2002). It is
ossible that selecting a different reusability model might provide
lightly altered results. The employed reusability model is solidly
alidated and widely used in the area of software engineering.
hus, the results on the ten design patterns that have been inves-
igated can be considered safe. Additionally, our method cannot be
mployed in cases when the reuse candidates are not providing
imilar functionality, because the QMOOD definition of reusability
oes not take into account functionality which is the key decider

n calculating reusability of a component. However, this threat had
o negative effect in our study since the alternative reuse granules
rovide similar functionality.

Moreover, the practical considerations presented in Section 5.5
ave not been evaluated with professional or open-source devel-
pers. Therefore, the effectiveness and the easiness to use of the
roposed methodology need to be evaluated in order to safely
ssess the applicability of the method.

Finally, the results of this study are interpreted from a design
attern based perspective. One might suggest that cases when a
ackage based selection is preferable than the pattern based selec-
ion might occur because of some characteristics of the package.
owever, the packages that are investigated in our research are so
eterogeneous with respect to their size, source project, domain,
tc., that their distribution among design patterns does not bias
hese results.

. Conclusions—future work

CBSE is a promising technique for enhancing the software devel-
pment process. In component based (CB) systems the components
re explicitly specified, either as component interfaces, or inter-
aces/abstract classes when using OO languages. In CB systems the
asiest way of reuse, is to reuse components, i.e. the classes that
mplement a particular interface. In open-source software some
ystems are CB, but not all, and in such cases, both classes that might
uild a component and components themselves, are being reused.
n our study we investigated a scenario where a desired require-
ent is implemented as a design pattern. The research question

hat this work explores is which classes should be used as a start-
ng point for white-box reuse, in order for the reusability of the
4.0 5.3 3 2

selected classes to be optimized. Thus, we investigated which is
the most reusable unit, a class a pattern or a package?

In order to achieve this goal we performed a multi-project case
study on about 23,000 classes that could be reused as pattern-
based components. For each case, we investigated four alternatives,
namely, (a) reuse the class, (b) reuse the pattern that the class
belongs to, (c) reuse the package that the class is included in and (d)
reuse all packages that include at least one class which participates
in the pattern. The results of the study suggest that in most of the
cases the alternative to reuse the design pattern offers the optimal
selection option. However, there are cases where the package alter-
native leads to a more reusable set of classes. These scenarios are
thoroughly discussed in this paper and are compared to previous
work results.

As future work, we plan to replicate our case study on projects
written in various object-oriented programming languages and
employ different reusability models. Additionally, the aforemen-
tioned procedure is intended to investigate all 23 GoF design
patterns (Gamma et al., 1995). However, this process will be a diffi-
cult task because of the lack of pattern detection tools. Additionally,
future research plans include the replication of the study by taking
into account domain specific characteristics, which could influence
the structural quality of software packages.

Finally, we plan to empirically validate the practical consider-
ations described in Section 5.5, by an experiment. In that study
we will ask professional developers to reuse pieces of code that
are based on design patterns and pieces of code that are not. This
way we will evaluate the correctness and the needed time for
component adaptation, in both cases, and compare the results.
Additionally, we will ask the developers to evaluate the usefulness
of the results of this study by assessing a recommendation tool that
would assist them selecting the best reuse granule based on quality
characteristics.

Acknowledgements

This work is partially funded by the European Commission in the
context of the OPEN-SME ‘Open-Source Software Reuse Services
for SMEs’ project, under the grant agreement no. FP7-SME-2008-

2/243768. The authors would like to acknowledge many valuable
suggestions made by the anonymous reviewers with regard to the
discussion on game requirements, game project management and
game maintenance.

2 ystems and Software 84 (2011) 2265– 2283

A

N Sum of ranks Z Sig.

Negative Ranks 1502 2265208.50

4.694 0.000
Positive Ranks 1664 2748152.50
Ties 10
Total 3176
Negative Ranks 1670 3184930.00

−12.817 0.000
Positive Ranks 1506 1860146.00
Ties 0
Total 3176
Negative Ranks 1670 3184930.00

−12.817 0.000
Positive Ranks 1506 1860146.00
Ties 0
Total 3176
Negative Ranks 2285 4117865.00

−30.869 0.000
Positive Ranks 891 927211.00
Ties 0
Total 3176
Negative Ranks 2285 4117865.00

−30.869 0.000
Positive Ranks 891 927211.00
Ties 0
Total 3176
Negative Ranks 632 359277.00

−5.426 0.000
Positive Ranks 467 245173.00
Ties 2077
Total 3176
Negative Ranks 49 6220.00

5.111 0.000
Positive Ranks 156 14895.00
Ties 0
Total 205
Negative Ranks 64 9408.00

1.354 0.176
Positive Ranks 141 11707.00
Ties 0
Total 205
Negative Ranks 66 9445.00

1.311 0.190
Positive Ranks 139 11670.00
Ties 0
Total 205
Negative Ranks 104 14852.00

−5.091 0.000
Positive Ranks 101 6263.00
Ties 0
Total 205
Negative Ranks 104 12656.00

−2.488 0.013
Positive Ranks 101 8459.00
Ties 0
Total 205
Negative Ranks 137 13863.00

−3.919 0.000
Positive Ranks 68 7252.00
Ties 0
Total 205
Negative Ranks 686 508931.50

6.371 0.000
Positive Ranks 894 740058.50
Ties 2
Total 1582
Negative Ranks 530 525371.50

5.465 0.000
Positive Ranks 1050 723618.50
Ties 2
Total 1582
Negative Ranks 538 530771.50

5.167 0.000
Positive Ranks 1042 718218.50
Ties 2
Total 1582
Negative Ranks 753 691612.00

−3.795 0.000
Positive Ranks 825 554219.00
Ties 4
Total 1582
Negative Ranks 752 690357.00

−3.725 0.000
Positive Ranks 826 555474.00
Ties 4
276 A. Ampatzoglou et al. / The Journal of S

ppendix A.

Wilcoxon Signed Rank Test results.

Variable Value Solution comparison

Pattern
(Object)
Adapter-Command

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Composite

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Decorator

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)
Total 1582

(R-packageSet)–(R-package)

Negative Ranks 748p 558397.00

−3.940 0.000
Positive Ranks 663q 437769.00
Ties 171r
Total 1582

ystems and Software 84 (2011) 2265– 2283 2277

A

N Sum of ranks Z Sig.

Negative Ranks 450 226613.50

6.056 0.000
Positive Ranks 623 349587.50
Ties 19
Total 1092
Negative Ranks 481 296662.00

0.166 0.868
Positive Ranks 611 300116.00
Ties 0
Total 1092
Negative Ranks 494 302476.00

−0.392 0.695
Positive Ranks 598 294302.00
Ties 0
Total 1092
Negative Ranks 620 399931.00

−9.939 0.000
Positive Ranks 469 193574.00
Ties 3
Total 1092
Negative Ranks 617 403775.00

−10.310 0.000
Positive Ranks 472 189730.00
Ties 3
Total 1092
Negative Ranks 490 242293.50

−6.917 0.000
Positive Ranks 383 139207.50
Ties 219
Total 1092
Negative Ranks 110 21995.00

8.330 0.000
Positive Ranks 299 61850.00
Ties 0
Total 409
Negative Ranks 167 36979.00

2.067 0.039
Positive Ranks 242 46866.00
Ties 0
Total 409
Negative Ranks 172 39348.00

1.076 0.282
Positive Ranks 237 44497.00
Ties 0
Total 409
Negative Ranks 346 77556.00

−15.474 0.000
Positive Ranks 59 4659.00
Ties 4
Total 409
Negative Ranks 350 79279.00

−16.206 0.000
Positive Ranks 55 2936.00
Ties 4
Total 409
Negative Ranks 337 70171.00

−12.340 0.000
Positive Ranks 68 12044.00
Ties 4
Total 409
Negative Ranks 1380 2674240.50

22.232 0.000
Positive Ranks 2827 6177287.50
Ties 2
Total 4209
Negative Ranks 1890 4603737.00

−2.204 0.028
Positive Ranks 2319 4256208.00
Ties 0
Total 4209
Negative Ranks 1810 4317824.00

1.422 0.155
Positive Ranks 2399 4542121.00
Ties 0
Total 4209
Negative Ranks 2954 7242394.00

−35.672 0.000
Positive Ranks 1255 1617551.00
Ties 0
Total 4209
Negative Ranks 2749 6647665.00
A. Ampatzoglou et al. / The Journal of S

ppendix A (Continued)

Variable Value Solution comparison

Pattern Factory Method

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Observer

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Prototype

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)
(R-packageSet)–(R-pattern) −28.129 0.000
Positive Ranks 1460 2212280.00
Ties 0
Total 4209

(R-packageSet)–(R-package)

Negative Ranks 1322 1949920.00

25.181 0.000
Positive Ranks 2512 5401775.00

2 ystems and Software 84 (2011) 2265– 2283

A

N Sum of ranks Z Sig.

Ties 375
Total 4209
Negative Ranks 123 15238.00

0.499 0.617
Positive Ranks 128 16388.00
Ties 4
Total 255
Negative Ranks 191 28217.00

−10.091 0.000
Positive Ranks 64 4423.00
Ties 0
Total 255
Negative Ranks 191 28217.00

−10.091 0.000
Positive Ranks 64 4423.00
Ties 0
Total 255
Negative Ranks 207 29736.00

−11.380 0.000
Positive Ranks 48 2904.00
Ties 0
Total 255
Negative Ranks 207 29736.00

−11.380 0.000
Positive Ranks 48 2904.00
Ties 0
Total 255
Negative Ranks 41 3371.00

1.405 0.160
Positive Ranks 84 4504.00
Ties 130
Total 255
Negative Ranks 30 784.00

−0.357 0.721
Positive Ranks 24 701.00
Ties 0
Total 54
Negative Ranks 25 872.00

−1.115 0.265
Positive Ranks 29 613.00
Ties 0
Total 54
Negative Ranks 25 881.00

−1.193 0.233
Positive Ranks 29 604.00
Ties 0
Total 54
Negative Ranks 33 903.00

−1.384 0.166
Positive Ranks 21 582.00
Ties 0
Total 54
Negative Ranks 33 903.00

−1.384 0.166
Positive Ranks 21 582.00
Ties 0
Total 54
Negative Ranks 9 315.00

1.053 0.292
Positive Ranks 30 465.00
Ties 15
Total 54
Negative Ranks 0 0.00

0.000 1.000
Positive Ranks 0 0.00
Ties 729
Total 729
Negative Ranks 260 100551.00

5.502 0.000
Positive Ranks 465 162624.00
Ties 4
Total 729
Negative Ranks 260 100551.00

5.502 0.000
Positive Ranks 465 162624.00
Ties 4
Total 729
Negative Ranks 260 100551.00

5.502 0.000
Positive Ranks 465 162624.00
Ties 4
Total 729
Negative Ranks 260 100551.00

5.502 0.000
Positive Ranks 465 162624.00
Ties 4
278 A. Ampatzoglou et al. / The Journal of S

ppendix A (Continued)

Variable Value Solution comparison

Pattern Proxy

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Proxy2

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Singleton

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)
Total 729

(R-packageSet)–(R-package)

Negative Ranks 0 0.00

0.000 1.000
Positive Ranks 0 0.00
Ties 729
Total 729

ystems and Software 84 (2011) 2265– 2283 2279

A

N Sum of ranks Z Sig.

Negative Ranks 3813 18400427.00

22.185 0.000
Positive Ranks 6138 31115749.00
Ties 0
Total 9951
Negative Ranks 4361 25106938.00

−1.217 0.223
Positive Ranks 5590 24409238.00
Ties 0
Total 9951
Negative Ranks 4368 25068241.00

−1.082 0.279
Positive Ranks 5583 24447935.00
Ties 0
Total 9951
Negative Ranks 6653 37510401.00

−44.999 0.000
Positive Ranks 3298 12005775.00
Ties 0
Total 9951
Negative Ranks 6475 37133474.00

−43.183 0.000
Positive Ranks 3476 12382702.00
Ties 0
Total 9951
Negative Ranks 4105 18506109.00

4.161 0.000
Positive Ranks 4727 20500419.00
Ties 1119
Total 9951
Negative Ranks 795 890807.00

12.009 0.000
Positive Ranks 1449 1628083.00
Ties 21
Total 2265
Negative Ranks 672 900456.50

12.293 0.000
Positive Ranks 1593 1665788.50
Ties 0
Total 2265
Negative Ranks 653 848396.50

13.966 0.000
Positive Ranks 1612 1717848.50
Ties 0
Total 2265
Negative Ranks 1021 1149341.00

3.723 0.000
Positive Ranks 1227 1378535.00
Ties 17
Total 2265
Negative Ranks 713 977395.00

8.914 0.000
Positive Ranks 1522 1521335.00
Ties 30
Total 2265
Negative Ranks 772 575696.50

13.685 0.000
Positive Ranks 1128 1230253.50
Ties 365
Total 2265
Negative Ranks 1 4.00

0.365 0.715
Positive Ranks 3 6.00
Ties 0
Total 4
Negative Ranks 1 4.00

0.365 0.715
Positive Ranks 3 6.00
Ties 0
Total 4
Negative Ranks 1 4.00

0.365 0.715
Positive Ranks 3 6.00
Ties 0
Total 4
Negative Ranks 0 0.00

2.000 0.046
Positive Ranks 4 10.00
Ties 0
Total 4
Negative Ranks 0 0.00

2.000 0.046
Positive Ranks 4 10.00
Ties 0
A. Ampatzoglou et al. / The Journal of S

ppendix A (Continued)

Variable Value Solution comparison

Pattern State—Strategy

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Template Method

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Pattern Visitor

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)
Total 4

(R-packageSet)–(R-package)

Negative Ranks 4 10.00

2.000 0.046
Positive Ranks 0 0.00
Ties 0
Total 4

2 ystems and Software 84 (2011) 2265– 2283

A

N Sum of ranks Z Sig.

Negative Ranks 2983 9164047.50

8.944 0.000
Positive Ranks 3501 11860322.50
Ties 781
Total 7265

)

Negative Ranks 3545 15157998.50

−11.0600.000
Positive Ranks 3716 11206692.50
Ties 4
Total 7265

ass)

Negative Ranks 3543 15124213.50

−10.8710.000
Positive Ranks 3718 11240477.50
Ties 4
Total 7265

rn)

Negative Ranks 4589 19213349.00

−33.9820.000
Positive Ranks 2664 7093282.00
Ties 12
Total 7265

ttern)

Negative Ranks 4592 19161279.00

−33.6900.000
Positive Ranks 2661 7145352.00
Ties 12
Total 7265

ckage)

Negative Ranks 1559 2253036.50

1.140 0.254
Positive Ranks 1479 2363204.50
Ties 4227
Total 7265
Negative Ranks 1924 4566435.50

19.153 0.000
Positive Ranks 3215 8640794.50
Ties 6
Total 5145

) Negative Ranks 2145 6341547.50

2.558 0.011
Positive Ranks 2998 6886248.50
Ties 2
Total 5145

ass)

Negative Ranks 2124 6213732.50

3.758 0.000
Positive Ranks 3019 7014063.50
Ties 2
Total 5145

rn)

Negative Ranks 3266 9492957.00

−27.3580.000
Positive Ranks 1867 3683454.00
Ties 12
Total 5145

ttern)

Negative Ranks 3074 9175048.00

−24.5520.000
Positive Ranks 2053 3970580.00
Ties 18
Total 5145

ckage)

Negative Ranks 2238 4881580.00

5.002 0.000
Positive Ranks 2381 5788310.00
Ties 526
Total 5145
Negative Ranks 2339 6942098.00

21.177 0.000
Positive Ranks 3992 13101848.00
Ties 0
Total 6331

)

Negative Ranks 2620 9456430.00

3.889 0.000
Positive Ranks 3711 10587516.00
Ties 0
Total 6331

ass)

Negative Ranks 2577 9319996.00

4.827 0.000
Positive Ranks 3754 10723950.00
Ties 0
Total 6331

rn)

Negative Ranks 4113 14302829.00

−29.6650.000
Positive Ranks 2210 5690497.00
Ties 8
Total 6331

ttern)

Negative Ranks 3909 13835576.00

−26.6430.000
Positive Ranks 2407 6113510.00
Ties 15
280 A. Ampatzoglou et al. / The Journal of S

ppendix A (Continued)

Variable Value Solution comparison

Number of classes
participating in the
pattern

0–3 classes

(R-pattern)–(R-class)

(R-package)–(R-class

(R-packageSet)–(R-cl

(R-package)–(R-patte

(R-packageSet)–(R-pa

(R-packageSet)–(R-pa

Number of classes
participating in the
pattern

4–6 classes

(R-pattern)–(R-class)

(R-package)–(R-class

(R-packageSet)–(R-cl

(R-package)–(R-patte

(R-packageSet)–(R-pa

(R-packageSet)–(R-pa

Number of classes
participating in the
pattern

7–15 classes

(R-pattern)–(R-class)

(R-package)–(R-class

(R-packageSet)–(R-cl

(R-package)–(R-patte

(R-packageSet)–(R-pa
Total 6331

(R-packageSet)–(R-package)

Negative Ranks 2990 8723665.50

0.903 0.367
Positive Ranks 2957 8962712.50
Ties 384
Total 6331

ystems and Software 84 (2011) 2265– 2283 2281

A

N Sum of ranks Z Sig.

Negative Ranks 1693 4550844.00

20.236 0.000
Positive Ranks 3497 8919801.00
Ties 0
Total 5190
Negative Ranks 2002 6435015.00

2.782 0.005
Positive Ranks 3188 7035630.00
Ties 0
Total 5190
Negative Ranks 2004 6286977.00

4.153 0.000
Positive Ranks 3186 7183668.00
Ties 0
Total 5190
Negative Ranks 3268 10445233.00

−34.368 0.000
Positive Ranks 1922 3025412.00
Ties 0
Total 5190
Negative Ranks 2970 9818659.00

−28.563 0.000
Positive Ranks 2220 3651986.00
Ties 0
Total 5190
Negative Ranks 1810 4388884.00

20.533 0.000
Positive Ranks 3313 8736242.00
Ties 67
Total 5190
Negative Ranks 3019 11467741.00

16.400 0.000
Positive Ranks 4632 17804985.00
Ties 783
Total 8434
Negative Ranks 3366 16186830.00

7.042 0.000
Positive Ranks 5062 19332976.00
Ties 6
Total 8434
Negative Ranks 3366 16186780.00

7.043 0.000
Positive Ranks 5062 19333026.00
Ties 6
Total 8434
Negative Ranks 4364 21389478.00

−16.816 0.000
Positive Ranks 4038 13911525.00
Ties 32
Total 8434
Negative Ranks 4351 21332824.00

16.846 0.000
Positive Ranks 4038 13859031.00
Ties 45
Total 8434
Negative Ranks 3058 8928257.50

0.590 0.555
Positive Ranks 2944 9086745.50
Ties 2432
Total 8434
Negative Ranks 3189 11766131.50

22.160 0.000
Positive Ranks 4919 21107754.50
Ties 4
Total 8112
Negative Ranks 3705 17275300.00

−3.898 0.000
Positive Ranks 4407 15631028.00
Ties 0
Total 8112
Negative Ranks 3633 16654314.50

−0.954 0.340
Positive Ranks 4479 16252013.50
Ties 0
Total 8112
Negative Ranks 5676 25613506.00

−43.428 0.000
Positive Ranks 2436 7292822.00
Ties 0
Total 8112
Negative Ranks 5318 24360603.00

−37.488 0.000
Positive Ranks 2794 8545725.00
Ties 0
A. Ampatzoglou et al. / The Journal of S

ppendix A (Continued)

Variable Value Solution comparison

Number of classes
participating in the
pattern

>15 classes

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Number of packages
participating in the
pattern

1 package

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

Number of packages
participating in the
pattern

2 packages

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)
Total 8112

(R-packageSet)–(R-package)

Negative Ranks 2541 6850500.00

12.805 0.000
Positive Ranks 3288 10141035.00
Ties 2283
Total 8112

2 ystems and Software 84 (2011) 2265– 2283

A

N Sum of ranks Z Sig.

Negative Ranks 2731 9899817.50

20.394 0.000
Positive Ranks 4654 17372987.50
Ties 0
Total 7385
Negative Ranks 3241 14835608.00

−6.545 0.000
Positive Ranks 4144 12437197.00
Ties 0
Total 7385
Negative Ranks 3249 14748619.00

−6.070 0.000
Positive Ranks 4136 12524186.00
Ties 0
Total 7385
Negative Ranks 5196 22104667.00

−46.219 0.000
Positive Ranks 2189 5168138.00
Ties 0
Total 7385
Negative Ranks 4876 21561870.00

−43.256 0.000
Positive Ranks 2509 5710935.00
Ties 0
Total 7385
Negative Ranks 2998 10488056.00
Positive Ranks 3898 13292800.00

R

A

A

A

A

B

B

B

B

B

C

C

C

C

C

C

C

C

C

(ICSE’06) , Association of Computing Machinery, Shanghai, China, May 20–28,
pp. 201–209.

Kouskouras, K., Chatzigeorgiou, A., Stephanides, G., 2008. Facilitating software
extension with design patterns and Aspect-Oriented Programming. Journal of
282 A. Ampatzoglou et al. / The Journal of S

ppendix A (Continued)

Variable Value Solution comparison

Number of packages
participating in the
pattern

>2 package

(R-pattern)–(R-class)

(R-package)–(R-class)

(R-packageSet)–(R-class)

(R-package)–(R-pattern)

(R-packageSet)–(R-pattern)

(R-packageSet)–(R-package)

eferences

jila, S.A., Wu, D., 2007. Empirical study of the effects of open source adoption on
software development economics. Journal of Systems and Software 80 (Septem-
ber (9)), 1517–1529, Elsevier.

mpatzoglou, A., Chatzigeorgiou, A., 2007. Evaluation of object-oriented design pat-
terns in game development. Information and Software Technology 49 (May (5)),
445–454, Elsevier.

ndreou, A., Tziakouris, M., 2007. A quality framework for developing and evalu-
ating original software components. Information and Software Technology 49
(February (2)), 122–141, Elsevier.

rnout, K., Meyer, B., 2006. Pattern componentization: the factory example. Inno-
vations in Systems and Software Engineering 2 (2), 65–79, Springer.

asili, V.R., Selby, R.W., Hutchens, D.H., 1986. Experimentation in software engi-
neering, transactions on software engineering. IEEE Computer Society 12 (7),
733–743, July.

ansiya, J., Davis, C., 2002. A hierarchical model for object-oriented design quality
assessment. Transaction on Software Engineering, IEEE Computer Society 28 (1),
4–17.

arnard, J., 1998. A new reusability metric for object-oriented software. Software
Quality Journal 7 (March (1)), 35–50, Springer.

osch, J., 1999. Superimposition: a component adaptation technique. Information &
Software Technology 41 (5), 257–273.

rown, A., Wallnau, K., 1998. The current state of CBSE, software. IEEE Computer
Society 15 (September/October (5)), 37–46.

hang, H.F., Mockus, A., 2008. Evaluation of source code copy detection methods
on FreeBSD. In: 2008 International Working Conference on Mining Software
Repositories (MSR’08), Association of Computing Machinery , Leipzig, Germany,
May 10–11, pp. 61–66.

ho, E.S., Kim, M.S., Kim, S.D., 2001. Component metrics to measure component
quality. In: Proceedings of the 8th Asia-Pasific Software Engineering Conference
(APSEC’ 01) , IEEE Computer Society, Seoul, South Korea, December 4–7, pp.
419–426.

lements, P. “Documenting Software Architectures: Views and Beyond”. Addison-
Wesley Professional, 2nd ed., October 2002.

onway, M.E., 1968. How do committees invent? Datamation Magazine 14 (April
(5)), 28–31.

ounsell, S., Swift, S., Crampton, J., 2006. The interpretation and utility of three
cohesion metrics for object-oriented design. Transactions on Software Engi-
neering and Methodology, Association of Computing Machinery 15 (April (2)),
123–149.

rnkovic, I., Chaudron, M., Larsson, S., 2006. Component-based development process
and component lifecycle. In: Proceedings of the 2006 International Conference
on Software Engineering Advances (ICSEA’ 06) , IEEE Computer Society, Tahiti,
French Polynesia, 29 October–03 November 2006, pp. 44–53.

rnkovic, I., Larsson, M., 2002. Challenges of component-based development. Journal
of Systems and Software 61 (April (3)), 201–212, Elsevier.

rnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V. “A Classification
Framework for Software Component Models,” Transactions on Software Engi-
neering, IEEE Computer Society, in press, http://doi.ieeecomputersociety.

org/10.1109/TSE.2010.83.

rnkovic, I., Hnich, B., Johnson, T., Kiziltan, Z., 2002. Specification, implementation,
and deployment of components. Communications, Association of Computing
Machinery 45 (October (10)), 35–40.
8.482 0.000Ties 489
Total 7385

Etzkorn, L.H., Gholston, S.E., Fortune, J.L., Stein, C.E., Utley, D., Farrington, P.A.,
Cox, G.W., 2004. A comparison of cohesion metrics for object-oriented
systems. Information and Software Technology 46 (August (10)), 677–
687.

Fahmi, S.A., Choi, H.J., 2008. Life cycles for component based software develop-
ment. In: Proceedings of the 8th Conference on Computer and Information
Technology , IEEE Computer Society, Sydney, Australia, July 8–11, pp. 637–
642.

Franch, X., Carvallo, J.P., 2003. Using quality models in software package selection.
Software, IEEE Computer Society 20 (January/February (1)), 34–41.

Gamma, E., Helms, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading, MA.

Genero, M., Manso, E., Visaggio, A., Canfora, G., Mario Piattini, 2007. Build-
ing measure-based prediction models for UML class diagram maintainability.
Empirical Software Engineering 12 (October (5)), 517–549, Springer.

Geuheneuc, Y.G., Sahraoui, H., Zaidi, F., 2004. Fingerprinting Design Patterns. In:
Proceedings of the 11th Working Conference on Reverse Engineering , Delft,
The Netherlands, November 08–12, pp. 172–181.

Gui, G., Scott, P.D., 2007. Ranking reusability of software components using cou-
pling metrics. Journal of Systems and Software 80 (September (9)), 1450–1459,
Elsevier.

Harrison, N.B., Avgeriou, P., 2010. How do architecture patterns and tactics interact?
A model and annotation. Journal of Systems and Software 83 (October (10)),
1735–1758, Elsevier.

Hsueh, N.L., Chu, P.H., Chu, W., 2008. A quantitative approach for evaluating the
quality of design patterns. Journal of Systems and Software 81 (August (8)),
1430–1439, Elsevier.

Henry, E., Faller, B., 1995. Large-scale industrial reuse to reduce cost and cycle time.
Software, IEEE Computer Society 12 (September (5)), 47–53.

Hölzle, U., 1993. Integrating Independently-Developed Components in Object-
Oriented Languages. In: Proceedings of the 7th European Conference on
Object-Oriented Programming , LNCS 707 Springer, pp. 36–56.

Huston, B., 2001. The effects of design pattern application on metric scores. Journal
of Systems and Software 58 (September (3)), 261–269, Elsevier.

Jansen, S., Brinkkemper, S., Hununk, I., Demir, C., 2008. Pragmatic and opportunistic
reuse in innovative start-up companies. Software, IEEE Computer Society 25
(November/December (6)), 2–9.

Khomh, F., Gueheneuc, Y.G., 2008. Do design patterns impact software quality
positively. In: Proceedings of the 12th European Conference on Software Main-
tenance and Reengineering , IEEE Computer Society, Athens, Greece, April 01–04,
pp. 274–278.

Kitchenham, B., Pickard, L., Pfleeger, S.L., 1995. Case studies for method
and tool evaluation. Software, IEEE Computer Society 12 (July (4)),
52–62.

Kontio, J., 2006. A case study in applying a systematic method for COTS selection.
In: Proceedings of the 28th International Conference on Software Engineering
Systems and Software 81 (October (10)), 1725–1737, Elsevier.
Lau, K.K., Wang, Z., 2005. A taxonomy of software component models. In: Proceed-

ings of the 31st EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO-SEAA) , IEEE, pp. 88–95.

http://doi.ieeecomputersociety.org/10.1109/TSE.2010.83
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.83

ystem

L

M

M

M

M

M

M

M

A

P

P

R

S

S

S

A. Ampatzoglou et al. / The Journal of S

i, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Torchiano, M., Morisio, M., 2009. Devel-
opment with off-the self components: 10 facts. Software, IEEE Computer Society
26 (March/April (2)), 807–887.

arcus, A., Poshyvanyk, D., Ferenc, R., 2008. Using the conceptual cohesion of classes
for fault prediction in Object-Oriented Systems. Transaction on Software Engi-
neering, IEEE Computer Society 34 (March/April (2)), 287–300.

eyer, B., Arnout, K., 2006. Componentization: the visitor example. Computer, IEEE
Computer Society 39 (July (7)), 23–30.

cConnell, S., 1996. Rapid Development: Taming Wild Software Schedules.
Microsoft Press, Redmond, Washington, USA.

cCormack, A.D., Rusnak, J., Baldwin, C.Y., 2008. Exploring the Duality between
Product and Organizational Architectures: A Test of the Mirroring Hypothesis.
In: Working Paper 08-039, Harvard Business School.

ockus, A., 2007. Large-scale code reuse in open-source software. In: 1st
International Workshop on Emerging Trends in FLOSS Research and Devel-
opment (FLOSS’07) , IEEE Computer Society, Minesota, USA, May 20–26, pp.
7–12.

orad, S., Kuflik, T., 2005. Conventional and open source software reuse at
orbotech—an industrial experience. In: International Conference on Software
Science, Technology, and Engineering (SwSTE’05) , IEEE Computer Society, Hare-
lip, Israel, February 22–23, pp. 110–117.

orison, M., Tully, C., Ezra, M., 2000. Diversity in reuse processes. Software, IEEE
Computer Society 17 (July/August (4)), 56–63.

gape, N., Murphy, B., Basili, V., 2008. The influence of organizational struc-
ture on software quality: an empirical case study. In: Proceedings of
the 30th international conference on Software engineering (ICSE ‘08) ,
Association of Computing Machinery, Leipzig, Germany, May 10–18, pp.
521–530.

lague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S., 2007. Empirical validation
of three software metrics suites to predict fault-proneness of object-oriented
classes developed using highly iterative or agile software development pro-
cesses. Transactions on Software Engineering 33 (June (6)), 402–419, IEEE
Computer Society.

rechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.F., 2002. Two controlled
experiments assessing the usefulness of design pattern documentation in pro-
gram maintenance. IEEE Transactions on Software Engineering 28 (June (6)),
595–606.

obillard, M., Walker, R., Zimmermann, T., 2010. Recommendation systems for soft-
ware engineering. IEEE Software 27 (July/August (4)), 80–86.

andlhu, P.S., Kaur, H., Singh, A., 2009. Modeling reusability of object-oriented soft-
ware systems. World Academy of Sciences Engineering and Technology 56
(August), 162–165, Academic Science Research.

canniello, G., Gravino, C., Risi, M., Tortora, G., 2010. A controlled experiment
for assessing the contribution of design pattern documentation on software

maintenance. In: Proceedings of the 2010 ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM ‘10),
ACM.

zyperski, C., 1997. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley International, Massachusetts, USA.
s and Software 84 (2011) 2265– 2283 2283

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T., 2006. Design pat-
tern detection using similarity scoring. Transaction of Software Engineering 32
(November (11)), 896–909, IEEE Computer Society.

Washizaki, H., Yamamoto, H., Fukazawa, Y., 2003. A metric suite for measuring
reusability of software components. In: Proceedings of the 9th International
Software Metrics Symposium (METRICS’03) , IEEE Computer Society, Sydney,
Australia, September 03–05, pp. 211–223.

Wydaeghe, B., Verschaeve, K., Michiels, B., Damme, B.V., Arckens, E., Jonckers, V.,
1998. Building an OMT-editor using design patterns: An experience report.
In: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS’98) , IEEE Computer Society, Santa Barbara, California August 3–7, pp.
20–33.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A., 2000.
Experimentation in Software Engineering, 1st ed. Kluwer Academic Publishers,
Boston/Dordrecht/London.

Yu, L., Chen, K., Ramaswamy, S., 2009. Multiple-parameter coupling metrics for lay-
ered component based software. Software Quality Journal 17 (March (1)), 5–24,
Springer.

Ampatzoglou Apostolos is a PhD candidate in the Department of Informatics,
Aristotle University of Thessaloniki, Greece and a laboratory associate at the Techno-
logical Education Institute of Thessaloniki, Greece. He holds a BS in Informatics from
Technological Education Institute of Thessaloniki and an MSc in Computer Science
from the University of Macedonia. His research interests include design patterns,
software metrics and computer games.

Kritikos Apostolos is a PhD candidate in the Department of Informatics, Aristotle
University of Thessaloniki, Greece and a laboratory associate at the Technological
Education Institute of Serres, Greece. He holds a BS in Informatics from Aristotle
University of Thessaloniki and an MSc in Information Systems from Aristotle Uni-
versity of Thessaloniki. His research interests include software reuse and software
architecture.

Kakarontzas George is a PhD candidate in the Department of Informatics, Aristotle
University of Thessaloniki, Greece and a lecturer at the Technological Education
Institute of Larissa, Greece. He holds a BS in Informatics from the Athens University
of Economics and Business and an MSc in Object-Oriented Software Technology
from the University of Brighton. His research interests include component-based
software engineering and grid computing.

Dr. Ioannis Stamelos is an Associate Professor at the Department of Informatics of
the Aristotle University of Thessaloniki, where he carries out research and teaching
in the area of software engineering. He holds a diploma of Electrical Engineering
(1983) and a PhD in Computer Science by the Aristotle University of Thessaloniki
(1988). His current research interests are focused on open source software engineer-

ing, software project management and software education. He has published more
than 100 articles in international journals and conferences. He is/was the scien-
tific coordinator or principal investigator for his University in over 20 research and
development projects in Information & Communication Technologies with funding
from national and international organizations.

	An empirical investigation on the reusability of design patterns and software packages
	1 Introduction
	2 Background information
	2.1 Component based software engineering
	2.2 Software reusability
	2.3 Design patterns

	3 Methodology applied in the empirical study
	3.1 Research questions
	3.2 Case study plan
	3.3 Data analysis method

	4 Statistical analysis
	5 Discussion
	5.1 RQ1—which is the most reusable unit?
	5.2 RQ2—does design pattern type affect reusability?
	5.3 RQ3 and RQ4—does number of pattern participants or the number of packages that are involved in the pattern affect reus...
	5.4 Illustrative example
	5.5 Practical consideration

	6 Threats to validity
	7 Conclusions—future work
	Acknowledgements
	References
	References

