The Journal of Systems and Software 84 (2011) 2265-2283

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An empirical investigation on the reusability of design patterns and software
packages

Apostolos Ampatzoglou*, Apostolos Kritikos, George Kakarontzas, loannis Stamelos

Department of Informatics, Aristotle University, Aristotle University Campus, 54124 Thessaloniki, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 22 December 2010

Received in revised form 17 June 2011
Accepted 18 June 2011

Available online 24 June 2011

Nowadays open-source software communities are thriving. Successful open-source projects are compet-
itive and the amount of source code that is freely available offers great reuse opportunities to software
developers. Thus, it is expected that several requirements can be implemented based on open source
software reuse. Additionally, design patterns, i.e. well-known solution to common design problems, are
introduced as elements of reuse. This study attempts to empirically investigate the reusability of design
patterns, classes and software packages. Thus, the results can help developers to identify the most ben-

I[()eeJ;‘iA;irﬁjttems eficial starting points for white box reuse, which is quite popular among open source communities. In
Design order to achieve this goal we conducted a case study on one hundred (100) open source projects. More
Quality specifically, we identified 27,461 classes that participate in design patterns and compared the reusability
Reusability of each of these classes with the reusability of the pattern and the package that this class belongs to. In

more than 40% of the cases investigated, design pattern based class selection, offers the most reusable
starting point for white-box reuse. However there are several cases when package based selection might
be preferable. The results suggest that each pattern has different level of reusability.

© 2011 Elsevier Inc. All rights reserved.

Empirical approach

1. Introduction Although, the Bazaar approach* in open-source development
and reuse seem to be working pretty well, the more OSS compo-
nent reuse becomes an established approach, the more its process
needs to be analyzed and eventually lean on a concrete definition.
In Ajila and Wu (2007), the authors conducted an empirical study
which suggested that an organization can have important economic
gains in terms of productivity and product quality, if it implements
0SS components reuse in a systematic way. Additionally, the need
for systematic application of OSS reuse is referenced in Morad and

The fact that open source software code reuse is being increas-
ingly adopted by software companies and individual developers
becomes apparent if we take under consideration the continuous
growth of the free libre open source software (FLOSS) commu-
nity. Reuse of OSS components in other OSS projects is intense:
the reuse of code from 1311 leading OSS projects in other OSS
projects represents 316,000 staff years and tens of billions of dollars

in development costs! and 0SS components are reused in thou-
sands of projects (e.g. log4j is used in more than 5500 projects).2
0SS software collectively represents an extremely valuable asset
with estimations of the total development cost of OSS software at
more than 387 billion dollars.? Additionally, in Li et al. (2009) the
authors report that in 2007 over half of software developers used a
part of open source projects or OSS components off the self (COTS)
in their most recent projects.

* Corresponding author.
E-mail addresses: apamp@csd.auth.gr (A. Ampatzoglou), akritiko@csd.auth.gr
(A. Kritikos), gkakaron@csd.auth.gr (G. Kakarontzas), stamelos@csd.auth.gr
(I. Stamelos).
1 http://www.blackducksoftware.com/news/releases/2009-03-30.
2 http://www.blackducksoftware.com/news/releases/2008-12-09.
3 http://www.blackducksoftware.com/news/releases/2009-04-14.

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2011.06.047

Kuflik (2005). The research of the state of the art on component
based software engineering is thoroughly described in Brown and
Wallnau (1998), Crnkovic et al. (2006), Crnkovic and Larsson (2002)
and Crnkovic et al. (in press).

In the literature software reuse appears in two major forms,
systematic and opportunistic reuse (Jansen et al., 2008; Morison
et al.,, 2000). However, the results on the most fitting practice are
controversial. Large organizations report on employing more for-
malized methods and software product lines, whereas small and
medium size companies perform more adhoc reuse (Henry and
Faller, 1995; Jansen et al., 2008; McConnell, 1996). In fact, when
reusing open source code many developers reuse code opportunis-
tically by copying and pasting classes or packages to their own
projects. In Chang and Mockus (2008) and Mockus (2007), it is sug-
gested that in FreeBSD, i.e. a well known operating system, about

4 http://[www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar/.

dx.doi.org/10.1016/j.jss.2011.06.047
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:apamp@csd.auth.gr
mailto:akritiko@csd.auth.gr
mailto:gkakaron@csd.auth.gr
mailto:stamelos@csd.auth.gr
http://www.blackducksoftware.com/news/releases/2009-03-30
http://www.blackducksoftware.com/news/releases/2008-12-09
http://www.blackducksoftware.com/news/releases/2009-04-14
http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar/
dx.doi.org/10.1016/j.jss.2011.06.047

2266 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283

43% of the classes have been reused from other projects and that
0SS reuse rates are extremely high. More specifically, 53% of the
projects have performed reuse activities in 30% of their develop-
ment process and that 49% of projects have reused more than 80%
of their code. Additionally, in Mockus (2007) it is suggested that
most reused units have gone through major or minor modifica-
tions in order to be adopted in the target project. The fact that
the reused artifacts have been modified before being adapted in
the target system suggests that white-box reuse techniques have
been employed. Although not systematic this form of reuse is very
frequent and presents its own challenges.

In this work we study and compare several reuse “chunks”,
in the context of adhoc reuse, in order to identify the prefer-
able way of selecting groups of classes from the source project,
so as to easily adjust them in the target project. The term prefer-
able suggests that the selected set of classes has such structural
characteristics that have been identified as positively correlated
to white-box reuse. An extended discussion on the selected char-
acteristics is presented in Section 2.2. This approach is one of
the first steps of creating reusable components from source code
originating from an open-source software project. The authors in
McCormack et al. (2008) compared similar systems in size which
provided the same (more or less) functionality. To overcome the
problem of closed source code unavailability, they used now open
source projects, that used to be closed source, and used their first
open source release as an approximation of the Closed Source
Software (CSS). They reported considerable differences in prop-
agation costs (i.e. probable impact of changes) favoring the OSS
projects. This is attributed to the fact that OSS projects are more
distributed and therefore the architecture is considerably more
modular. To the extent that modularity is important to software
reuse it is expected that OSS code will be more reusable. This is sup-
ported also by concrete statistics provided by Black Duck that we
mentioned earlier. However given that there is a clear incompati-
bility between the organizational structure of CSS and OSS projects
which is reflected in the software architecture with impressive dif-
ferences in the propagation costs of functionally similar systems
(Mockus, 2007), it is an open research question if the OSS code
can be reused in CSS projects without significant re-modularization
and/or re-architecting. Although, white-box reuse is considered an
inferior type of reuse than black-box reuse, the abovementioned
observation and the extent of white-box reuse in OSS, enforce the
significance of the white-box reuse research for OSS software reuse
and validates the approach taken in this work for looking at alter-
native reuse granules (classes vs. packages vs. patterns) as opposed
to using by default the package reuse granule which is the main
architectural element in OO systems.

Another state-of-the-art software technique that provides solu-
tions to common design problems is design patterns. By the
employment of design patterns, the quality of the system under
development is expected to improve while, at the same time, the
whole architecture of the system becomes more adaptable and
extensible. Design pattern reusability can be perceived in two
ways, (a) reusing the idea of a pattern and (b) reusing the source
code of a design pattern instance. Reusing the idea of patterns can
be employed in component development, when the development
team wants to use a pattern in order to solve a common design
problem through a well documented design solution, while they
develop a component from scratch. However, when reusing pattern
instances the idea is not to reuse the rationale of the pattern, but
the code that instantiates the solution. Of course, in such cases the
pattern instance has to also (at least partially) fulfill the functional
requirements of the target system. Developers are not particularly
interested in reusing code that applies a pattern more than they
are in reusing any code that fulfills their functional needs. How-
ever, it has been suggested that code reuse often entails adaptation

(Bosch, 1999; Hoélzle, 1993). In addition, recent empirical stud-
ies reveal that maintenance (including adaptive maintenance) is
improved by the identification of design patterns (Prechelt et al.,
2002; Scanniello et al., 2010), since developers recognize the roles
that the different objects play in a complex interaction. Since (a)
maintenance is improved with the identification of design patterns
and (b) reusing code often requires adaptation, as in adaptive main-
tenance, it is natural to assume that reusing unfamiliar code is also
improved with design pattern identification. But this only estab-
lishes a positive relation between design pattern identification and
code reuse at the cognitive level. Reusers have a shorter cognitive
distance to cover if design patterns are identified. Our work asks
the complementary and currently unanswered question: “Besides
comprehending, is it also easier to reuse the design pattern code at
a technical level than it is to reuse alternative granules and more
specifically packages or classes?” In this work we try to answer this
question from a purely technical standpoint by (a) statically ana-
lyzing the source code of the alternative reuse granules (i.e. design
patterns, packages and classes), (b) assessing their reusability in
accordance with a well-established reusability assessment model
(Bansiya and Davis, 2002), and (c) comparing the reuse granules’
reusability assessments. Therefore the research question that we
examine applies after a relevant class has been identified which
provides the required functionality and concerns the reuse gran-
ule so that the reusability of the selected granule is improved in
relation to the selection of the isolated class.

In Crnkovic et al. (2002) it is suggested that design patterns can
be used as pre-existing components, in cases that the functionality
of the pattern instance is relevant to the desired functionality of the
target system. In many real cases, the attempt to identify a reuse
chunk, points to a class that provides part of the desired functional-
ity. If this class participates in a design pattern in the source project,
then the reuser has three major reuse alternatives, to reuse the
class, to reuse the pattern or to reuse the package where the class
belongs to. Although, functionality is the key decider for reuse in the
first step of the process, i.e. the identification of the reusable unit,
the selection according to some quality attributes, such as reusabil-
ity, is a key decider for selecting a component among functionally
equivalent reuse candidates. In order to conduct an empirical study
in a holistic way, we compared the reusability of the classes partic-
ipating on design patterns with the reusability of the pattern itself
(i.e. the collaboration of classes that implement a design pattern)
and the reusability of the package to which the classes are included.

The rest of the paper is organized as follows. In Section 2 we
provide background information for the basic terms discussed in
this work. In Section 3 we analyze the methodology we followed
in order to be able to answer the research questions we present in
the same section. In Section 4 we provide the statistical analysis
conducted to the data we collected. In Section 5 we discuss the
results of the statistical analysis of the previous section. In Section
6 we speculate on threats to validity. Finally, in Section 7 we
conclude our work by summarizing our findings and we refer to
possible future work.

2. Background information

This section of the paper deals with presenting an overview of
the research state of the art on component based software devel-
opment, on measurements of software reusability, on component
selection strategies, and finally on design patterns.

2.1. Component based software engineering

Component based software engineering (CBSE) focuses on the
development of components in order to enable their reuse in
more systems rather than only to the original one for which they

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2267

have been implemented in the first place (i.e. development for
reuse) and the development of new systems with reusable com-
ponents (i.e. development with reuse). In Ajila and Wu (2007) the
authors suggest that reuse can occur in many levels on granular-
ity, which could be a few lines of code, methods, classes or whole
systems. Outside systems built on a certain component-based tech-
nology, component is understood as a general term and in the
literature components have been related to packages, patterns and
objects.

In Franch and Carvallo (2003), components are referred as pack-
ages; the authors make clear that these packages are essential in
commercial off-the-self software (COTS software). This realization
strengthens the position that components are very important in
the software development process and as such, measuring their
reusability can lead to faster and effective development of higher
quality software.

Additionally, in Crnkovic et al. (2002) and Szyperski (1997)
a component is described as a unit of composition that can be
deployed independently and be adapted in a different system. A
very important characteristic of a “useful” component is the decou-
pling of component interface from component implementation.
In Crnkovic et al. (2002) the authors suggest that design patterns
can be considered in CBSE with two perspectives (a) design pat-
terns can be used in CBSE design, when reusable units should
be identified as pre-existing components, and (b) develop com-
ponents based on design patterns in order to adapt the pattern
mechanism so as to increase component cohesion and decrease
component internal coupling. Design pattern size is usually smaller
than this of traditional components. However, the term “compo-
nent”, both in literature and in practice, is often used to denote any
software part and not necessarily an architectural unit. For example
in component models such as JavaBeans and Enterprise Java Beans
the component is just a class. In Component Object Model (COM)
and CORBA Component Model (CCM) a component is an object,
whereas in SOFA, PECOS and Pin it is an architectural unit (Lau and
Wang, 2005). Design patterns considering size, as a collaboration
of classes, are larger than classes/objects and smaller than architec-
tural components. Therefore they can be considered as a starting
point for the derivation of architectural components in the con-
text of white-box reuse. The fact that pattern application increases
cohesion and decreases coupling is supported by several studies
(Ampatzoglou and Chatzigeorgiou, 2007; Geuheneuc et al., 2004;
Hsuehetal.,2008; Huston, 2001; Kouskouras et al., 2008). However,
there are patterns, such as Visitor and Observer, which might intro-
duce additional coupling. On the other hand, such patterns have a
positive impact on other important quality attributes like reuntime
flexibility.

Furthermore, the term class and component are often consid-
ered synonymous or very similar in existing component models
(e.g. Java Beans and Enterprise Java Beans) (Lau and Wang, 2005).
In his seminal work however, Szyperski (Szyperski, 1997) carefully
makes the distinction between classes and components. Typically,
a component consists of one or more classes, it can be however
also implemented in a completely different technology as long as it
is an independent unit of deployment which provides its services
through a contractual interface and has explicit context dependen-
cies only. Furthermore, a component may contain several more
elements, other than classes even when it is implemented in an
Object-Oriented language, such as global variables, images, html
files and in general all artifacts that are useful for the component’s
provided services. Components therefore, are not only develop-
ment artifacts. Components (and their connectors) exist as such
during the execution of the system. Furthermore components can
be versioned independently, with the same component existing
side-by-side with other components and even with another version
of itself if this is required by the installed applications (i.e. side-by-

side versioning). Finally components can be upgraded dynamically
during the system operation. Thus, classes and components are at
different lifecycle levels, since components are deployment units,
whereas classes are development artifacts and objects are notions
of instantiation (Szyperski, 1997).

2.2. Software reusability

The selection of the group of classes as a component off-the-self
requires the evaluation of several aspects of candidate compo-
nents (Franch and Carvallo, 2003; Kontio, 2006). In Andreou and
Tziakouris (2007), Cho et al. (2001), Fahmi and Choi (2008) and
Yu et al. (2009) the authors suggest that one prominent way to
select packages is the selection according to the packages’ qual-
ity characteristics. In this study we selected to investigate several
class selection alternatives with respect to their reusability. Accord-
ing to Bansyia et al. “Software reusability reflects the presence
of object-oriented characteristics that allow a system to be reap-
plied to a new problem without significant effort” (Bansiya and
Davis, 2002). After reviewing the literature we identified sev-
eral ways to assess the reusability of a class or a system. In
Table 1, we can see an overview of structural quality attributes
that are reported to be important concerning the reusability of a
system.

In Bansiya and Davis (2002), Bansyia et al. proposes a model
(QMOOD) for calculating software reusability from low level
quality metrics, at an early design stage. More specifically,
the authors propose linear equations that can predict several
high level quality attributes. The proposed hierarchical model
is validated through an experiment with professional software
evaluators.

Additionally, in Barnard (1998) the author provides thresh-
olds on both code and styling attributes which, when surpassed,
the reusability of the system becomes more difficult. However,
the automatic application of the model, although rigorously val-
idated, is not possible because of several abstract metrics, such as
“meaningful attribute name”. In Gui and Scott (2007) the correla-
tion between component reusability and various coupling metrics
is discussed. Furthermore the authors of Andreou and Tziakouris
(2007) propose the quality evaluation of components based on ISO
9126, but the approach they suggest is qualitative and therefore
not easily automated.

In Washizaki et al. (2003), Washizaki et al. suggests that several
heuristics, such as existence of meta-information and compo-
nent observability, could prove useful in measuring the reusability
of software components. Similarly to (Barnard, 1998), using this
approach to automatically evaluate system reusability is not pos-
sible. Finally, Sandlhu et al. (2009) proposes the combination of
several metrics through a neural network, in order to assess the
reusability of object-oriented software systems. However, this
approach is not useful for the nature of our study, which needs
numerical data.

Concluding, in our study we selected to use the QMOOD model
(Bansiya and Davis, 2002) because it appears to be thoroughly
validated, it assesses software reusability from metric scores that
can be automatically calculated and it does not involve subjective
parameters. Additionally, the QMOOD model is based on well stud-
ied metrics used in many published works, in well known software
engineering journals (Counsell et al., 2006; Etzkorn et al., 2004;
Genero et al.,, 2007; Hsueh et al,, 2008; Khomh and Gueheneuc,
2008; Marcus et al., 2008; Plague et al., 2007). Additionally, the
reusability as defined and calculated in QMOOD, takes into account
structural quality characteristics such as coupling and cohesion that
are very important when applying white-box reuse. A decoupled
and highly coherent component is expected to be more maintain-
able and easier to adapt. According to QMOOD software reusability

2268 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283

Table 1
Structural quality characteristics influencing reusability.
Attribute Effect Studies
Coupling - Bansiya and Davis (2002), Barnard (1998), Gui and Scott (2007) and Sandlhu et al. (2009)
Cohesion + Bansiya and Davis (2002) and Sandlhu et al. (2009)
Messaging + Bansiya and Davis (2002)
Size + Bansiya and Davis (2002)
Inheritance - Barnard (1998) and Sandlhu et al. (2009)
Complexity - Barnard (1998) and Sandlhu et al. (2009)

is calculated as follows:
reusability = 0.25 x cohesion + 0.5 x messaging + 0.5

xsize — 0.25 x coupling (1)

At component level, we calculate reusability as the average
reusability of all classes that participate in the component.

Zf’zofreusability,of,class,i
NOC

reusability =

(2)
2.3. Design patterns

Design patterns have been introduced in software engineering
literature as elements of reuse (Gamma et al., 1995). The notion of
patterns in software development represents a collection of well-
known design solutions to common design problems. In this paper
we investigate whether selecting a group of classes that are based
on design patterns offers enhanced white-box reuse opportunities
rather than software packages and classes. Thus, we investigate if
areuser should select a group of classes that participate in a design
pattern, alter them and produce a reusable component, rather
than attempting to componentize complete software packages or
classes.

Furthermore Conway’s law suggests that “organizations which
design systems are constrained to produce designs which are copies
of the communication structures of these organizations” (Conway,
1968). Although Conway’s law was not verified at the time of its
publishing it was heavily cited for decades and recent studies from
Harvard Business School (McCormack et al., 2008) and Microsoft
research (Agape et al., 2008) confirm it. In the context of reuse this
has significant implications for selecting software packages as reuse
granules, since packages reflect the structure of a software system,
and according to Conway’s law this reflects the structure of the
organization that produced the system. Reuse however occurs at
a different organization with a different structure. Consequently
using packages as reuse granules may be inappropriate for external
reuse of software in different organizations and alternative reuse
granules should be considered.

The possibility of creating software components from design
patterns was introduced in 2006 by Meyer et al. (Arnout and Meyer,
2006; Meyer and Arnout, 2006). In Meyer and Arnout (2006) the
authors suggest that only two design patterns are not compo-
nentizable. The componentization of the Visitor and the Factory
Method patterns are thoroughly discussed in Brown and Wallnau
(1998) and Arnout and Meyer (2006), respectively. Additionally,
design pattern componentization offers faithfulness, completeness,
simplicity, usability, ease of learning, type safety and system per-
formance (Meyer and Arnout, 2006).

Furthermore, in Khomh and Gueheneuc (2008) Khom et al. dis-
cuss the effect of design pattern application in several external
qualities attributes, through a survey conducted on professional
software engineers. The results of the study imply that the employ-
ment of eleven design patterns has a positive effect on systems
reusability, whereas twelve suggest the opposite. More specifi-
cally, the patterns that are reported to be beneficial appear to be

Abstract Factory, Factory Method, Prototype, Adapter, Composite,
Proxy, Chain of Responsibility, Interpreter, Iterator, Observer and
Template Method. A possible weakness of this survey is that neutral
opinions are considered as negative and therefore marginal results
should be cautiously adopted. On the contrary, in Wydaeghe et al.
(1998) the authors underline that Bridge and Facade have a very
positive impact on system reusability; Observer, Visitor and Itera-
tor also have positive impact while Chain of Responsibility has no
noticeable effect on software reusability.

3. Methodology applied in the empirical study

The aim of this study is to compare the reusability of differ-
ent reuse granules: classes vs. patterns vs. packages.’ In order to
achieve this goal, we have conducted a case study according to the
guidelines described in Kitchenham et al. (1995). More specifically,
the suggested steps are listed below:

* Define Research Questions

e Select Projects

¢ Identify the Method of Comparison

e Minimize the Effect of Confounding Factor
e Plan the Case Study

e Monitor the Case Study Against Plan

¢ Analyze and Report the Results

The research questions of this study are defined in Section 3.1.
In Section 3.2, we describe the case study plan; we discuss the
selection of projects and the confounding factors of this research.
Furthermore, Section 3.3 deals with the description of the dataset
and the methods for comparison. As mentioned before, Section 6
presents possible threats to validity that arose from monitoring
the case study against the research plan. Finally, in Section 4 we
present the procedure and the results of the statistical analysis and
in Section 5 we discuss the results, with respect to the research
questions.

3.1. Research questions

The main motivation of our study is to compare the reusability
of classes, patterns and packages. The first research question (RQp)
that the paper attempts to answer can be described by the following
scenario: “A developer wants to implement a specific requirement.
He identifies a class that provides the main functionality that he
wants to implement. This class happens to participate in a design
pattern. Which classes should be selected, modified and reused in
the final project?” In our research we investigated four alternatives
for the reuser:

1. Select only the class that he is interested in [further reference as:

Alternative A;-Class Based Selection].

5 By the term package we refer to a set of classes that is created by developers, in
order to group collaborating classes.

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2269

2. Select the pattern that the class belongs to (i.e. all collaborating
classes in the context of the pattern implementation) [further
reference as: Alternative A,-Pattern Based Selection].

3. Select the package that the class belongs to [further reference as:
Alternative A3-Package Based Selection].

4. Select all packages to which every pattern participant® belongs
to [further reference as: Alternative A4-Multi-Package Based Selec-
tion)].

For example, let us suppose that 4 classes, i.e. A, B, Cand D, par-
ticipate in one design pattern. Class A (cA) belongs to package pA,
class B (cB) belongs to package pB, class C (cC) belongs to pack-
age pC and class D (cD), belongs to package pA. For this pattern we
would investigate the scenarios of Table 2.

The four selection alternatives represent choices available to
the developer in relation to two distinct axes: (a) The developer is
aware of a pattern existing in the structure of the system connect-
ing the class he is interested in with other classes (i.e. the pattern’s
participants), or (b) the developer is not aware of such a pattern.
The developer in the first case would either choose the class or
the package in which the class belongs to, i.e. alternatives A; and
As. In the pattern awareness case the developer could choose all
four alternatives since the existence of the pattern now represents
an interesting alternative. So besides the class and the package
of the class we also examine the pattern and the “all packages
of the pattern participants” choices. In cases when two solutions
are identical, e.g. a case when a design pattern consists of classes
which are placed in one package and that package includes classes
only from that pattern; it is obvious that the reusability of the two
alternatives is equal. Thus, in such cases the alternatives cannot be
distinguished.

Additionally, another alternative would be to select all classes
that are statically dependent to the selected class. However, such
an approach might create class sets that do not clearly represent
00 structural units and such a selection would lead to a set of
classes that are completely different in size and that are not eas-
ily described. Thus, the practical benefits from such a procedure
would be limited. Furthermore, the dependencies among classes
are considered in the model. The problem with static dependencies
in large Object-Oriented systems is that they are many and they are
indistinguishable in the sense that important dependencies look
the same as unimportant ones. Also for reuse it is important to
select with one class other classes which are essential for its cor-
rect usage. In fact what we need here is the “uses” relation which
describes the “Uses Style” of the module view (Clements, 2002). In
this style classes use other classes if they need them for their oper-
ation. The authors observe that a class may use another and not
depend on it statically, e.g. the other class provides a value in a file
that the first class needs, and/or a class may have a static depen-
dency on another class that does not need for its operation. For
example a class may call on a logging service but does not need the
logging service to provide its own services. Finally, the proposed
method in this study is applicable during the coding of a software
system and concerns reuse at the implementation level. However
the selection of reuse granules is also affected by other concerns
such as independent versioning and upgrades, which are consid-
ered during other development lifecycle phases, mainly during the
architecture development.

Consequently, we preferred to limit our study in classes, pat-
terns and packages that are well defined structural OO units.
Additionally, the fact that units, which are strongly dependent to

6 As pattern participant we mean every class that plays a specific role in a design
pattern (Fahmi and Choi, 2008). A definition of the pattern participants is given in
(Harrison and Avgeriou, 2010).

other units are not preferable for reuse, will be taken into account
because the selected reusability model considers coupling metrics
in the calculation of reusability. At this point it is necessary to clar-
ify that, with the design pattern reuse statement we do not refer
to the reuse of pattern rationale, but to the reuse of pattern imple-
mentation, i.e. the classes that implement a particular pattern. RQ
is summarized as follows:

RQ;: Which structural unit is more reusable (a class, a pattern or a
package)?

Furthermore, our study attempts to answer three research ques-
tions (RQ):

RQ:: Is the selection of the most reusable set of classes correlated
to the pattern type?

RQj3: Is the selection of the most reusable set of classes correlated
to the number of the pattern’s participants?

RQy: Is the selection of the most reusable set of classes correlated
to the number of packages that are involved in the pattern?

In order to explore RQ1 the following null hypotheses have been
stated and investigated, according to the aforementioned defini-
tions of alternatives.

Hg(y): Alternative A; offers the most reusable selection of classes
Hg(z): Alternative A; offers the most reusable selection of classes
Hy3): Alternative As offers the most reusable selection of classes
Hg4): Alternative A4 offers the most reusable selection of classes

3.2. Case study plan

In Basili et al. (1986), the authors suggest that before conducting
an empirical study, the research team should prepare a thorough
study plan. In this case study the plan involved a seven (7) step
procedure:

a) choose some open source projects

b) perform pattern detection for every selected project

c) for every pattern find all the classes that participate in it

d) for every class that participates in each pattern create a pool
of available set of classes that include it, according to the four
alternatives mentioned in Section 3.1

e) for every available set of classes calculate its reusability accord-
ing to the QMOOD model mentioned in Section 2.1

f) tabulate data

g) analyze data with respect to the research questions

The subjects of this research are one hundred of the most suc-
cessful open source projects. The selected projects had to fulfill two
criteria in order to automate the execution of steps (b)-(e), due
to limitations of pattern detection tool (Tsantalis et al., 2006). The
software (a) had to be written in java and (b) provide a jar exe-
cutable file. The projects that have been investigated in our study
are presented in the web.”

In any empirical study, factors, other than the independent vari-
ables, which influence the value of the dependent variable, are
characterized as confounding factors. A possible confounding fac-
tor that is expected to affect the reusability of any set of class is
its functionality, in the sense that groups of classes that imple-
ment certain reusable functional requirements are more likely to
being reused. However, in the current scenario, we assume that

7 http:/[sweng.csd.auth.gr/apamp/material/jss_projects.doc.

http://sweng.csd.auth.gr/apamp/material/jss_projects.doc

2270 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283

Table 2
Class selection alternatives.

Class selection alternatives Reused class

A

B

C

D

Alternative A, cA
Alternative A, cA, ¢B, cC,cD
Alternative A3 pA
Alternative A4 PA, pB, pC

cB

cA, cB, cC,cD
pB

PA, pB, pC

cC

cA, ¢B, cC,cD
pC

PA, pB, pC

cD

cA, ¢B, cC,cD
pPA

PA, pB, pC

a developer has identified a class that fits the major functionality
that he wants to reuse and he desires to evaluate all possible struc-
tural units that this class belongs to, in order to find and use the
most reusable set of classes. Therefore our results take into account
reusability issues, other than the functional fitness of the selected
class, because all structural units that this class belongs to, offer the
desired functionality.

3.3. Data analysis method

The dataset that has been tabulated after step (f) of the research
plan consists of 27,461 rows, one for every pattern participant that
can be reused, and eight (8) columns. More specifically, for every
reuse candidate class the following data have been recorded:

class name

pattern name

number of classes participating in the pattern (NOFparticipants)
number of packages where the pattern is spread into (NOFpack-
ageSet)

reusability of Class Based Selection Alternative A; (R-class)
reusability of Pattern Based Selection Alternative A, (R-pattern)
reusability of Package Based Selection Alternative A3 (R-package)
reusability of Multi-Package Based Selection Alternative A4 (R-
packageSet)

In the data analysis phase we have used several statistical tests,
descriptive statistics and graphs. More specifically, concerning RQy,
we performed hypothesis testing in order to investigate Ho(1)~Ho(4)-
In order to explore RQ;-RQy4, we produced additional hypothesis
testing. In order for this goal to be feasible, we created two categor-
ical variables. The variable transformation rules have been selected
according to the histograms of Figs. 1 and 2 and the quartiles pre-
sented in Table 3.

4. Statistical analysis

One of the first steps in analyzing the dataset in a statistical
analysis requires the data reduction phase (Wohlin et al., 2000).
More specifically, one of our concerns is to eliminate all outliers
that derive from extreme reusability index values, both high and
low. In order to inspect the existence of outliers we have created
boxplots for the R-class, R-pattern, R-package and R-packageSet
variables. The boxplots are presented in Fig. 3. As it is shown in
Fig. 3, the dataset has several outliers that have been omitted from
further statistical analysis. On the completion of this process, the
dataset consisted of 23,931 rows. The final dataset of the study is
available in the web.8

The descriptive statistics on the reusability of each class selec-
tion alternative are presented in Table 4. In order to draw safer
conclusions on the differences presented in the mean reusabil-
ity values, hypotheses testing have been considered. According to

8 http://sweng.csd.auth.gr/apamp/material/metrics_jss.xls or http://sweng.
csd.auth.gr/apamp/material/metrics_jss.csv.

8.000—

6.000—

4.000

Frequency

2.000

Mean =12,62
Std. Dev. =20,633
N =27.461

1 Ll T
75 100 125

NOFparticipants

Fig. 1. Distribution of NOFparticipants variable.

10.000

8.000—

6.000

Frequency

4,000+

2.000

Mean =2,89
Std. Dev. =3,526
N =27 461

NOFpackageSet

Fig. 2. Distribution of NOFpackageSet variable.

http://sweng.csd.auth.gr/apamp/material/metrics_jss.xls
http://sweng.csd.auth.gr/apamp/material/metrics_jss.csv
http://sweng.csd.auth.gr/apamp/material/metrics_jss.csv

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2271

300

20.213

2
12,638 421243

21311
17 605 23.701

23372

200+ 17.591 23.358
23 687

10.255

1£ 256

3.140 igﬁ 38, 0 267

10258 ¥3.141
3142
9359
3 24132
3 62524,1 32 9'3599_353
16.247 23.934 a764E °°°3623 BEET22 410422409 17132
21 707 23.933 765 2._#7133
27161 o 22 407
828 1713
16.300@
I 1 1 T
Rclass Rpattern Rpackage RpackageSet

Fig. 3. Boxplots on R-class, R-pattern, R-package and R-packageSet variables.

Table 3
Variable transformation range.

Variable Range Categorical value
NOFparticipants 0-3 Low
NOFparticipants 4-6 Medium
NOFparticipants 7-15 High
NOFparticipants >16 Very high
NOFpackageSet 1 Low
NOFpackageSet 2 Medium
NOFpackageSet >3 High

Table 4

Descriptive statistics on class selection alternatives.

N Min Max Mean Std. Deviation
R-pattern 23,931 -2.58 41.26 5.21 3632
R-class 23,931 -7.25 18.77 4.55 4237
R-package 23,931 -0.19 12.53 4.05 2203
R-packageSet 23,931 -0.19 11.53 3.99 2135

Wohlin et al. (2000), there are two ways for selecting the best per-
forming method, among methods that have been tested on the
same sample, i.e. paired sample t-test and Wilcoxon Signed Rank
test. In the case of our dataset, since data does not follow the normal
distribution, we had to employ a non-parametric hypothesis test-
ing technique, i.e. Wilcoxon Signed Rank test. The results on the
comparison of the four class selection alternatives are presented in
Tables 5 and 6.

The results of Table 5, suggest that the reusability of the pattern
alternative is higher than the reusability of the class alternative in
59.1% of the cases, the reusability of class is higher than the pattern’s
in 37.6% and the two alternatives tie in the rest 3.3% of the cases. Ifa
developer chooses to select a design pattern as a starting point for
white-box reuse, he gains a statistically significant change in the

selected granule reusability rather than if he selects to start from a
single class (Z=34.290, sig=0.000).

In order to investigate RQ,-RQy4, we performed the Crosstabs
procedure with the categorical variables described in Section 3.3,
i.e.variables on the number of pattern participating classes, number
of packages that participate in the pattern, pattern name and best
class selection alternative. The crosstabs procedure is often used to
record and analyze the relation between two or more categorical
variables. It displays the (multivariate) frequency distribution of
the variables in a matrix format. For simplicity in our tables we
present the frequency as a percentage and not as an absolute value.

The results of the Crosstabs are presented in Tables 6-8. The sig-
nificance level of all Pearson x2-test that derived from the Crosstabs
equals sig.=0.00 and therefore pattern type, number of partici-
pants, number of packages are correlated to the selection of the
best practice.

Finally, in order to further explore the way that the variables of
RQ,-RQy influence the selection of the best class selection practice
we performed Wilcoxon Singed Rank tests in several sub-datasets.
For example, in order to investigate if the difference between
R-package and R-pattern for the Composite pattern is statistically
significant, we filtered the dataset, so as to isolate only the rows
that correspond to instances of the Composite pattern and repli-
cated the procedure of Tables 4 and 5. The results of this procedure
are presented in Appendix A.

5. Discussion

In this section of the paper we discuss the findings of our study
with respect to the four research questions that have been stated
in the case study plan. The motivation of our research dealt with
the selection of the set of classes that are going to be reused. More
specifically, we investigated four class selection alternatives as a

2272 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283
Table 5
Wilcoxon Signed Rank tests on class selection alternatives.
N Mean rank Sum of ranks Z sig
(R-pattern)-(R-class)
Negative ranks 8939 11082.10303 99,062,919 34.290 0.000
Positive ranks 14,205 11881.09968 168,771,021
Ties 787
Total 23,931
(R-package)-(R-class)
Negative ranks 10,312 14071.60745 145,106,416 -1.871 0.061
Positive ranks 13,613 10365.70624 141,108,359
Ties 6
Total 23,931
(R-packageSet)-(R-class)
Negative ranks 10,248 13960.0523 143,062,616 0.042 0.967
Positive ranks 13,677 10466.63442 143,152,159
Ties 6
Total 23,931
(R-package)-(R-pattern)
Negative ranks 15,236 13728.85482 209,172,832 —62.233 0.000
Positive ranks 8663 8821.449613 76,420,218
Ties 32
Total 23,931
(R-packageSet)-(R-pattern)
Negative ranks 14545 13985.25775 203,415,574 -57.027 0.000
Positive ranks 9341 8764.25083 81,866,867
Ties 45
Total 23,931
(R-packageSet)-(R-package)
Negative ranks 8597 8888.882866 76,417,726 15.233 0.000
Positive ranks 10,130 9767.216387 98,941,902
Ties 5204
Total 23,931
Table 6

Crosstabs (best approach—design pattern).

Alternative A,

Alternative A,

Alternative A3

Alternative A4

(Object) Adapter-Command 38.85% 18.55% 38.48% 4.12%
Composite 20.49% 41.95% 33.17% 4.39%
Decorator 25.03% 25.35% 28.00% 21.62%
Factory Method 31.87% 18.50% 32.51% 17.12%
Observer 26.41% 6.60% 64.06% 2.93%
Prototype 26.18% 9.31% 43.76% 20.74%
Proxy 44.31% 3.92% 41.57% 10.20%
Proxy2 38.89% 0.00% 27.78% 33.33%
Singleton 36.21% 63.79% 0.00% 0.00%
State-Strategy 31.13% 15.35% 39.21% 14.31%
Template Method 22.16% 25.43% 20.79% 31.61%
Visitor 25.00% 75.00% 0.00% 0.00%
Table 7 (Alternative A4) “select all classes that belong to all packages that are

Crosstabs (best approach—NOFParticipants).

Alternative A; Alternative A, Alternative A3 Alternative A4

Low 36.43% 24.53% 32.25% 6.79%
Medium 27.89% 17.57% 37.98% 16.56%
High 27.53% 14.14% 39.65% 18.69%
Very high 27.05% 13.43% 36.20% 23.31%

starting point for white-box reuse, namely (Alternative A;) “select
only the class that implements the desired functionality”, (Alternative
A,) “select all the classes that participate in the pattern that the class
which implements the desired functionality participates in”, (Alter-
native As) “select all the classes that participate in the package that
the class which implements the desired functionality belongs to” and

Table 8
Crosstabs (Best Approach - NOFPackageSet).

Alternative A; Alternative A, Alternative A3 Alternative A4

Low 29.87% 24.76% 29.63% 15.75%
Medium 31.10% 15.75% 38.67% 14.47%
High 29.61% 12.35% 41.30% 16.74%

involved in the pattern to which the class that implements the desired
functionality participates in”.

5.1. RQ;—which is the most reusable unit?

Taking under consideration all cases, i.e. not filtering pattern
instances, design pattern size, i.e. number of classes that partic-
ipate in the design pattern, and number of packages involved in
the pattern, the results suggest that employing the pattern-based
selection approach (Alternative Ay), provides statistically significant
more reusable groups of classes than the other alternatives. More
specifically, the pattern provides the best approach in about 40% of
the cases.

5.2. RQ,—does design pattern type affect reusability?

In order to investigate the remaining cases and identify rules
that help the developer decide the best selection approach, we
investigated the correlation among the best selection practise,
design pattern size, pattern type and the number of packages
that the pattern is spread into. According to our analysis, all the

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2273

aforementioned variables appeared to be correlated. By taking into
account the results of Table 5 and Appendix A, we were able to rank
the best selection alternatives according to design pattern type. The
results are summarized in Table 9. The columns of the table repre-
sent design patterns. For every pattern the alternatives are ranked
from higher to lower, with respect to their reusability. More specif-
ically, we ranked the alternatives to levels from 1 to 4. In order to
do so we performed the following steps:

1. we ranked the alternatives in a descending order according to
their average reusability

2. we demarcated levels in cases when the mean reusability of one
alternative is statistically significantlly higher than the reusabil-
ity of the other alternative.

For example, concerning the Adapter pattern, the alternative
with the higher reusability metric score is A2, followed by A1. From
the results presented in Appendix A, we observe that the difference
between class selection and pattern selection is statistically signif-
icant. Therefore, A2 and A1 belong to different reusability levels.

Table 9 suggests that a developer should select the design pat-
tern, rather than any other solution, if the class he is interested
in, participates in an Adapter, Factory Method, Prototype or State
design pattern. On the other hand, if the class participates in a
Composite or Decorator pattern, it is suggested that the developers
should reuse the whole package where the class belongs to. The
majority of these results comply with the opinion of professional
software engineers as stated in Khomh and Gueheneuc (2008). On
the contrary, our results differ in three points, namely (a) Composite
pattern reusability, (b) State pattern reusability and (c) Template
Method pattern reusability. Although a direct comparison of our
results to Khomh et al. is not possible, because of the different
nature of the two studies, we provide a discussion on the differences
of the results.

In Khomh and Gueheneuc (2008) the authors suggest that the
use of Composite pattern improves the reusability of a system, in
contrast to the use of Decorator pattern, which diminishes the
reusability of the system. However, the two patterns are very
similar in their structure and the expected result would be that
these patterns should exhibit similar quality characteristics. From
our study both patterns appear to have similar reusability effects,
which was the expected conclusion. Additionally, concerning the
State/Strategy pattern, our approach suggested that the pattern-
based alternative appears to be the optimal class selection scenario,
which is in contrast to the results of Khomh and Gueheneuc (2008),
where the authors suggested that both State and Strategy employ-
ment have a negative effect on software reusability. However, these
patterns are very easy to use, since they only use a polymorphism
mechanism, which enhances extendibility and understandability.
Finally, concerning Template Method, which according to Khomh
and Gueheneuc (2008) has a positive effect on reusability, the result
of our empirical study suggests that the template pattern is not the
best way to select a reusable group of classes. If a developer needs
to reuse a class that participates in an instance of a Template, he
should reuse all packages that are involved in the pattern instance.
A closer analysis of the results of our study indicates that in most
cases the Template pattern instances, that have been identified,
are spread into different packages, and that the classes that partic-
ipate in it present high coupling, to other classes. The classes that
comprise the Template Method pattern create the skeleton of an
algorithm. Thus, in order for the algorithm to access all data that it
is interested in, these classes have to be highly coupled with other
classes. This fact suggests that Template might not be properly used
by open-source developers, since proper application of the pattern
suggests that the algorithm uses local class data. As a conclusion,
the results on the Template Method pattern should be cautiously

adopted. In addition, Template pattern reusability probably needs
further investigation.

5.3. RQs3 and RQ4—does number of pattern participants or the
number of packages that are involved in the pattern affect
reusability?

Similarly, in order to present the correlations among the best
class selection alternative, the design pattern’s size and the num-
ber of packages involved in the pattern, we used the results of
Tables 7-8 and Appendix A. Thus, we were able to rank the best
selection alternatives according to design pattern size and distri-
bution of pattern among packages. The results are summarized in
Table 10. The columns of the table represent NOFparticipants and
NOFpackageSet categories. For every category the alternatives are
ranked from higher to lower, with respect to their reusability. The
results of this procedure were not very helpful in identifying rules
for selecting the optimal class selection scenario, since they are
similar for all variable values.

5.4. Illustrative example

As an example, in Fig. 4 we present a part of the
org.jfree.chart.block package of the jFreeChart project. This pack-
age employs five State/Strategy instances. From these patterns, two
involve only classes from the aforementioned package, whereas the
rest three pattern instances are spread into two packages.

According to our work, if a class is identified to participate in
a State/Strategy pattern, the reuser should investigate the number
of packages that are involved in the pattern. If the pattern is com-
pletely instantiated in the same package, then the pattern is the
most reusable unit, but this result is marginal (35.9% patterns vs.
35.5% package). However, if the state pattern is spread in more than
one package, the pattern is the more reusable unit. The reusability
of each class selection alternative, for each pattern is presented in
Table 11.

The results that are suggested from Table 11 and from the empir-
ical data of our dataset are intuitively valid. If a developer wants to
reuse the functionality of the Arrangement hierarchy he will proba-
bly need to use all the classes of Block, AbstractBlock and BlockFrame
hierarchies, which is almost the whole package. On the contrary, if
the reuser is interested in the functionality of BlockFrame hierar-
chy, or the EntityBlockParams hierarchy, only a small portion of the
package is needed, because these classes are almost self-sufficient.
Similarly, if a reuser is interested in the functionality of the Block
hierarchy, AbstractBlock and BlockFrame hierarchies are needed but
Arrangement hierarchy is optional. In the case that Arrangement is
needed the optimal selection strategy should be the package set.

The above scenario and discussion, comply with the empiri-
cal data of our research. Thus, a reuser could select the optimal
reusability unit according to the results of our study without per-
forming extensive dependency analysis. This fact suggests that an
inexperienced developer/re-user, who could be mislead by his intu-
ition, can be guided from the results of this study and make the
optimal decision on class selection strategies.

5.5. Practical consideration

This section deals with the practical benefits that derive from
this work. Firstly, we present an approach of how practitioners can
use our results. The approach is summarized in the next steps:

e Let usassume that a reuser identifies a piece of code that provides
some kind of desired functionality.

¢ The reuser examines if the class/classes that he is interested in,
are involved in a design pattern.

2274

Table 9
Best class selection alternative rankings.

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283

Componentization alternatives ranking

Level-1 A2 A3 A3 A2 A2 A2 A2 A4 A3 A2 A4 A4
Al Al A4 Al
A2 A2
A3 A3
Level-2 Al A4 A4 A3 A3 Al A3 Al A4 A3
A3 A4 A2
A4
Level-3 A3 A2 A2 A4 Al Al A2
A4 A3
Level-4 A4 Al Al Al Al
Adapter Composite Decorator Factory Observer Prototype Proxy Proxy2 Singleton State Template Visitor
Table 10
Best class selection alternative ranking.
Componentization alternatives ranking
Level-1 A2 A2 A2 A2 A2 A2 A2
Level-2 A3 A4 A3 A4 A3 A3 A4
A4 A4 A4 A4
Al
Level-3 Al A3 Al A3 Al A3
Level-4 Al Al Al
0-3 classes 4-6 classes 7-15 classes >15 classes 1 package 2 packages >2 packages
= i =
Sariaizable Senalzable interface
BlockCantain 2 | BlockFram
e = 7i i
B i) g U J N
g interface /
Block o
S
—5—-\-)—1— s LineBorde \

intertace

interface

BlockResu

BlockParam

RectangleConstra

|

Cloneabie|

ColorBloc

Seriaiizable|

LabelBlock

Seriaiizable]

ull

Sevalizable

T

Fig. 4. Class diagram from jFreeChart.org.jfree.chart.block package.

¢ If they are not, according to our results, the reuser should pick
the package that the class/classes belong to and reuse it/them.
e If the class/classes participate in the pattern:

- The reuser identifies, pattern type, pattern size (number of pat-
tern participants) and the number of packages that the pattern is
spread into.

- The reuser searches the complete results of our study, and iden-
tifies the most profitable reuse granule (class/pattern/package/
package set).

The above steps can be implemented in software engineering
recommendation tool (Robillard et al., 2010) that would (a) identify
automatically the pattern participation of an interesting class and
(b) use the results of this study to recommend the most appropri-
ate reuse granule to the developer relieving him from the manual
inspection of the results. The development of such a tool is in
progress and its effectiveness will be validated in the authors’ future
research.

6. Threats to validity

This section of the paper deals with presenting the case study’s
internal and external threats to validity. To begin with, since the
case study subjects are open-source projects, the results may not
apply in black-box reuse scenarios where the reuser has no access
to the source code. Concerning the empirical study internal valid-
ity, the existence of confounding factors is analyzed in Section 3.2.
Additionally, the dataset consisted of only Java projects, since the
tool we used was able to detect design patterns only in binary java
files form. Moreover, only one repository, namely Sourceforge, has
been mined. However, the size of the dataset and the statistical sig-
nificance of the results, suggest that concerning white-box reuse of
open-source java code, the results are quite safe.

Furthermore, even though the size of our dataset is sufficient,
the results on ten design patterns cannot be generalized to the
rest of the 23 design patterns that are described in Gamma et al.
(1995). Additionally, neither the results nor the method of the
paper can be safely applied in design patterns of other pattern cat-

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2275

Table 11
Reusability example (from jFreeChart.org.jfree.chart.block).

State/strategy Context Subclasses

R-pattern

R-package R-packageSet NOFparticipants NOFpackageSet

BorderArrangement
CenterArrangement
ColumnArrangement 3.4
FlowArrangement
GridArrangement
BlockBorder
LineBorder
BlockBorder
LineBorder
BlockBorder
BlockContainer
BlockFrame
BlockParams
BlockResults
ColorBlock
EmptyBlock
LabelBlock
LineBorder
LegendGraphic
LegendItemBlock
Title

BlockParams 5.6

Arrangement BlockContainer

BlockFrame AbstractBlock 54

BlockFrame LegendTitle 5.4

Block BorderArrangement 5.3

EntityBlockParams LegendTitle

4.0 4.0 7 1

4.0 4.0 4 1

4.0 53 4 2

4.0 53 14 2

4.0 53 3 2

egories, such as architectural patterns and game design patterns.
The results and conclusions of our research depend strongly on
the selection of the QMOOD model (Bansiya and Davis, 2002). It is
possible that selecting a different reusability model might provide
slightly altered results. The employed reusability model is solidly
validated and widely used in the area of software engineering.
Thus, the results on the ten design patterns that have been inves-
tigated can be considered safe. Additionally, our method cannot be
employed in cases when the reuse candidates are not providing
similar functionality, because the QMOOD definition of reusability
does not take into account functionality which is the key decider
in calculating reusability of a component. However, this threat had
no negative effect in our study since the alternative reuse granules
provide similar functionality.

Moreover, the practical considerations presented in Section 5.5
have not been evaluated with professional or open-source devel-
opers. Therefore, the effectiveness and the easiness to use of the
proposed methodology need to be evaluated in order to safely
assess the applicability of the method.

Finally, the results of this study are interpreted from a design
pattern based perspective. One might suggest that cases when a
package based selection is preferable than the pattern based selec-
tion might occur because of some characteristics of the package.
However, the packages that are investigated in our research are so
heterogeneous with respect to their size, source project, domain,
etc., that their distribution among design patterns does not bias
these results.

7. Conclusions—future work

CBSE is a promising technique for enhancing the software devel-
opment process. In component based (CB) systems the components
are explicitly specified, either as component interfaces, or inter-
faces/abstract classes when using OO languages. In CB systems the
easiest way of reuse, is to reuse components, i.e. the classes that
implement a particular interface. In open-source software some
systems are CB, but not all, and in such cases, both classes that might
build a component and components themselves, are being reused.
In our study we investigated a scenario where a desired require-
ment is implemented as a design pattern. The research question
that this work explores is which classes should be used as a start-
ing point for white-box reuse, in order for the reusability of the

selected classes to be optimized. Thus, we investigated which is
the most reusable unit, a class a pattern or a package?

In order to achieve this goal we performed a multi-project case
study on about 23,000 classes that could be reused as pattern-
based components. For each case, we investigated four alternatives,
namely, (a) reuse the class, (b) reuse the pattern that the class
belongs to, (c) reuse the package that the class is included in and (d)
reuse all packages that include at least one class which participates
in the pattern. The results of the study suggest that in most of the
cases the alternative to reuse the design pattern offers the optimal
selection option. However, there are cases where the package alter-
native leads to a more reusable set of classes. These scenarios are
thoroughly discussed in this paper and are compared to previous
work results.

As future work, we plan to replicate our case study on projects
written in various object-oriented programming languages and
employ different reusability models. Additionally, the aforemen-
tioned procedure is intended to investigate all 23 GoF design
patterns (Gamma et al., 1995). However, this process will be a diffi-
cult task because of the lack of pattern detection tools. Additionally,
future research plans include the replication of the study by taking
into account domain specific characteristics, which could influence
the structural quality of software packages.

Finally, we plan to empirically validate the practical consider-
ations described in Section 5.5, by an experiment. In that study
we will ask professional developers to reuse pieces of code that
are based on design patterns and pieces of code that are not. This
way we will evaluate the correctness and the needed time for
component adaptation, in both cases, and compare the results.
Additionally, we will ask the developers to evaluate the usefulness
of the results of this study by assessing a recommendation tool that
would assist them selecting the best reuse granule based on quality
characteristics.

Acknowledgements

This work s partially funded by the European Commission in the
context of the OPEN-SME ‘Open-Source Software Reuse Services
for SMEs’ project, under the grant agreement no. FP7-SME-2008-
2/243768. The authors would like to acknowledge many valuable
suggestions made by the anonymous reviewers with regard to the
discussion on game requirements, game project management and
game maintenance.

2276 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283
Appendix A.

Wilcoxon Signed Rank Test results.

Variable Value Solution comparison N Sum of ranks Z Sig.
Negative Ranks 1502 2265208.50
(R-pattern)-(R-class) Pf)smve Ranks 1664 2748152.50 4694 0.000
Ties 10
Total 3176
Negative Ranks 1670 3184930.00
(R-package)-(R-class) Pf)smve Ranks 1506 1860146.00 _12.817 0.000
Ties 0
Total 3176
Negative Ranks 1670 3184930.00
(R-packageSet)~(R-class) ?;’;‘“"e Ranks (1)506 1860146.00 ~12.817 0.000
Patt (Object) Total 3176
attern Adapter-Command Negative Ranks 2285 4117865.00
(R-package)-(R-pattern) P951t1ve Ranks 891 927211.00 —30.869 0.000
Ties 0
Total 3176
Negative Ranks 2285 4117865.00
(R-packageSet)-(R-pattern) ?ﬁ:smve Ranks 391 927211.00 —30.869 0.000
Total 3176
Negative Ranks 632 359277.00
Positive Ranks 467 245173.00
(R-packageSet)-(R-package) Ties 2077 —5.426 0.000
Total 3176
Negative Ranks 49 6220.00
(R-pattern)-(R-class) Pf)smve Ranks 156 14895.00 5111 0.000
Ties 0
Total 205
Negative Ranks 64 9408.00
(R-package)~(R-class) Pantlve Ranks 141 11707.00 1354 0476
Ties 0
Total 205
Negative Ranks 66 9445.00
(R-packageSet)-(R-class) P951t1ve Ranks 139 11670.00 1311 0.190
Ties 0
P Composite Total 205
attern P Negative Ranks 104 14852.00
(R-package)-(R-pattern) Pf)smve Ranks 101 6263.00 —5.091 0.000
Ties 0
Total 205
Negative Ranks 104 12656.00
(R-packageSet)-(R-pattern) Ez)essmve Ranks (1)0] 8459.00 —2.488 0.013
Total 205
Negative Ranks 137 13863.00
(R-packageSet)-(R-package) ?;SSIUVG Ranks (6)8 7252.00 —-3.919 0.000
Total 205
Negative Ranks 686 508931.50
Positive Ranks 894 740058.50
(R-pattern)-(R-class) . 6.371 0.000
Ties 2
Total 1582
Negative Ranks 530 525371.50
(R-package)~(R-class) P951t1ve Ranks 1050 723618.50 5465 0.000
Ties 2
Total 1582
Negative Ranks 538 530771.50
(R-packageSet)-(R-class) ??:Sltlve Ranks ;042 718218.50 5.167 0.000
P D Total 1582
attern ecorator Negative Ranks 753 691612.00
(R-package)-(R-pattern) PQSltlve Ranks 825 554219.00 ~3795 0.000
Ties 4
Total 1582
Negative Ranks 752 690357.00
(R-packageSet)-(R-pattern) ?ﬁ:“ve Ranks 226 555474.00 —3.725 0.000
Total 1582
Negative Ranks 748p 558397.00
(R-packageSet)-(R-package) ??:vae Ranks 613673?? 437769.00 —-3.940 0.000

Total 1582

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2277
Appendix A (Continued)
Variable Value Solution comparison N Sum of ranks Z Sig.
Negative Ranks 450 226613.50
(R-pattern)-(R-class) Ppsﬁlve Ranks 623 349587.50 6.056 0.000
Ties 19
Total 1092
Negative Ranks 481 296662.00
(R-package)—(R-class) Pf)51t1ve Ranks 611 300116.00 0166 0.868
Ties 0
Total 1092
Negative Ranks 494 302476.00
(R-packageSet)-(R-class) %oessltlve Ranks 398 294302.00 -0.392 0.695
Total 1092
Pattern Factory Method Negative Ranks 620 399931.00
(R-package)-(R-pattern) _??:vae Ranks ‘3169 193574.00 —9.939 0.000
Total 1092
Negative Ranks 617 403775.00
Positive Rank 472 189730.
(R-packageSet)-(R-pattern) T?;Sltwe anks 3 89730.00 —10.310 0.000
Total 1092
Negative Ranks 490 242293.50
(R-packageSet)-(R-package) p951tlve Ranks 383 13920750 —-6.917 0.000
Ties 219
Total 1092
Negative Ranks 110 21995.00
(R-pattern)—(R-class) metnve Ranks 299 61850.00 8330 0.000
Ties 0
Total 409
Negative Ranks 167 36979.00
(R-package)-(R-class) P.Osmve Ranks 242 46866.00 2.067 0.039
Ties 0
Total 409
Negative Ranks 172 39348.00
(R-packageSet)-(R-class) _??:Sltlve Ranks 337 44497.00 1.076 0.282
P ob Total 409
attern server Negative Ranks 346 77556.00
Positive Rank 4 .
(R-package)-(R-pattern) T?;Sltwe anks ig 659.00 —15.474 0.000
Total 409
Negative Ranks 350 79279.00
(R-packageSet)-(R-pattern) E?:vae Ranks 25 2936.00 —16.206 0.000
Total 409
Negative Ranks 337 70171.00
(R-packageSet)-(R-package) ?ioessltlve Ranks 28 12044.00 —12.340 0.000
Total 409
Negative Ranks 1380 2674240.50
(R-pattern)~(R-class) Positive Ranks 2827 6177287.50 22232 0.000
Ties 2
Total 4209
Negative Ranks 1890 4603737.00
(R-package)~(R-class) Eioessltlve Ranks 5319 4256208.00 _2204 0028
Total 4209
Negative Ranks 1810 4317824.00
(R-packageSet)-(R-class) Eio':sltwe Ranks (2)399 4>42121.00 1422 0.155
Patt Prototype Total 4209
attern yP Negative Ranks 2954 7242394.00
(R-package)-(R-pattern) E?:vae Ranks 8255 1617551.00 —35.672 0.000
Total 4209
Negative Ranks 2749 6647665.00
(R-packageSet)-(R-pattern) ?ioessltlve Ranks 8460 2212280.00 —28.129 0.000
Total 4209
Negative Ranks 1322 1949920.00
(R-packageSet)-(R-package) Positive Ranks 2512 5401775.00 25.181 0.000

2278

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283

Appendix A (Continued)
Variable Value Solution comparison N Sum of ranks Z Sig.
Ties 375
Total 4209
Negative Ranks 123 15238.00
(R-pattern)(R-class) PQSltlve Ranks 128 16388.00 0.499 0617
Ties 4
Total 255
Negative Ranks 191 28217.00
(R-package)-(R-class) Positive Ranks 64 4423.00 ~10091 0,000
Ties 0
Total 255
Negative Ranks 191 28217.00
(R-packageSet)-(R-class) Positive Ranks 64 4423.00 ~10.091 0.000
Ties 0
Patt Prox Total 255
attern y Negative Ranks 207 29736.00
(R-package)—(R-pattern) Pgsmve Ranks 48 2904.00 -11.380 0.000
Ties 0
Total 255
Negative Ranks 207 29736.00
(R-packageSet)-(R-pattern) %c;ssltlve Ranks 38 2904.00 -11.380 0.000
Total 255
Negative Ranks 41 3371.00
Positive Ranks 84 4504.00
(R-packageSet)—(R-package) Ties 130 1.405 0.160
Total 255
Negative Ranks 30 784.00
(R-pattern)—(R-class) Positive Ranks 24 701.00 ~0357 0721
Ties 0
Total 54
Negative Ranks 25 872.00
(R-package)—(R-class) ?f)smve Ranks 29 613.00 -1.115 0.265
ies 0
Total 54
Negative Ranks 25 881.00
(R-packageSet)—(R-class) Pgsmve Ranks 29 604.00 -1.193 0.233
Ties 0
P Proxy2 Total 54
attern y Negative Ranks 33 903.00
(R-package)-(R-pattern) Pgsmve Ranks 21 >82.00 -1.384 0.166
Ties 0
Total 54
Negative Ranks 33 903.00
(R-packageSet)-(R-pattern) Essltlve Ranks (le >82.00 -1.384 0.166
Total 54
Negative Ranks 9 315.00
(R-packageSet)—(R-package) Pgsmve Ranks 30 465.00 1.053 0.292
Ties 15
Total 54
Negative Ranks 0 0.00
(R-pattern)—(R-class) Positive Ranks 0 0.00 0.000 1.000
pattern class Ties 729 . .
Total 729
Negative Ranks 260 100551.00
(R-package)-(R-class) Pgsmve Ranks 465 162624.00 5502 0.000
Ties 4
Total 729
Negative Ranks 260 100551.00
(R-packageSet)-(R-class) Ppsmve Ranks 465 162624.00 5.502 0.000
Ties 4
P Sinelet Total 729
attern ingieton Negative Ranks 260 100551.00
(R-package)-(R-pattern) P951tlve Ranks 465 162624.00 5502 0.000
Ties 4
Total 729
Negative Ranks 260 100551.00
(R-packageSet)-(R-pattern) PQvae Ranks 465 162624.00 5.502 0.000
Ties 4
Total 729
Negative Ranks 0 0.00
Positive Ranks 0 0.00
(R-packageSet)-(R-package) Ties 729 0.000 1.000
Total 729

Ties

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2279
Appendix A (Continued)
Variable Value Solution comparison N Sum of ranks Z Sig.
Negative Ranks 3813 18400427.00
Positive Ranks 6138 31115749.00
(R-pattern)-(R-class) . 22.185 0.000
Ties 0
Total 9951
Negative Ranks 4361 25106938.00
(R-package)-(R-class) Pf)smve Ranks 5590 24409238.00 1217 0223
Ties 0
Total 9951
Negative Ranks 4368 25068241.00
(R-packageSet)—(R-class) P951t1ve Ranks 5583 24447935.00 _1.082 0279
Ties 0
Total 9951
Pattern State—Strategy Negative Ranks 6653 37510401.00
(R-package)-(R-pattern) ??:vae Ranks 3298 12005775.00 —44.999 0.000
Total 9951
Negative Ranks 6475 37133474.00
(R-packageSet)-(R-pattern) Eﬁzssmve Ranks (3)476 12382702.00 —43.183 0.000
Total 9951
Negative Ranks 4105 18506109.00
(R-pack Set)~(R-pack) Positive Ranks 4727 20500419.00 4161 0.000
packageSe package Ties 1119 . .
Total 9951
Negative Ranks 795 890807.00
Positive Ranks 1449 1628083.00
(R-pattern)-(R-class) . 12.009 0.000
Ties 21
Total 2265
Negative Ranks 672 900456.50
(R-package)~(R-class) P951t1ve Ranks 1593 1665788.50 12293 0.000
Ties 0
Total 2265
Negative Ranks 653 848396.50
(R-packageSet)-(R-class) ??:Sltlve Ranks 3612 1717848.50 13.966 0.000
Total 2265
Pattern Template Method Negative Ranks 1021 1149341.00
(R-package)-(R-pattern) PQSltlve Ranks 1227 1378535.00 3723 0.000
Ties 17
Total 2265
Negative Ranks 713 977395.00
Positive Ranks 1522 1521335.00
(R-packageSet)-(R-pattern) . 8.914 0.000
Ties 30
Total 2265
Negative Ranks 772 575696.50
Positive Ranks 1128 1230253.50
(R-packageSet)-(R-package) Ties 365 13.685 0.000
Total 2265
Negative Ranks 1 4.00
Positive Ranks 3 6.00
(R-pattern)-(R-class) Ties 0 0365 0.715
Total 4
Negative Ranks 1 4.00
(R-package)-(R-class) P9Slt1ve Ranks 3 6.00 0365 0.715
Ties 0
Total 4
Negative Ranks 1 4.00
(R-packageSet)-(R-class) p951t1ve Ranks 3 6.00 0365 0.715
Ties 0
Patt Visi Total 4
attern isitor Negative Ranks 0 0.00
Positive Ranks 4 10.00
(R-package)-(R-pattern) . 2.000 0.046
Ties 0
Total 4
Negative Ranks 0 0.00
(R-packageSet)-(R-pattern) P951t1ve Ranks 4 10.00 2.000 0.046
Ties 0
Total 4
Negative Ranks 4 10.00
(R-packageSet)-(R-package) Positive Ranks 8 0.00 2.000 0.046
4

Total

2280 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283

Appendix A (Continued)
Variable Value Solution comparison N Sum of ranks Z Sig.
Negative Ranks 2983 9164047.50
Positive Ranks 3501 11860322.50
(R-pattern)-(R-class) Ties 781 8.944 0.000
Total 7265
Negative Ranks 3545 15157998.50
(R-package)~(R-class) P951t1ve Ranks 3716 11206692.50 ~11.060.000
Ties 4
Total 7265
Negative Ranks 3543 15124213.50
(R-packageSet)-(R-class) %O:Sltlve Ranks ‘3‘718 1124047750 —10.870.000
Nurtr.lb'er ?f cla.sste; | Total 7265
gz;ﬂ’a ing in the 0-3 classes Negative Ranks 4589 19213349.00
(R-package)-(R-pattern) Pgsmve Ranks 2664 7093282.00 ~33.98.000
Ties 12
Total 7265
Negative Ranks 4592 19161279.00
(R-packageSet)-(R-pattern) p.OSItWe Ranks 2661 7145352.00 —33.690.000
Ties 12
Total 7265
Negative Ranks 1559 2253036.50
(R-pach Set)~(R-pack) Positive Ranks 1479 2363204.50 1140 0254
packageSe package Ties 4227 . .
Total 7265
Negative Ranks 1924 4566435.50
Positive Ranks 3215 8640794.50
(R-pattern)-(R-class) - 19.153 0.000
Ties 6
Total 5145
(R-package)-(R-class) Negative Ranks 2145 6341547.50
Positive Ranks 2998 6886248.50
- 2.558 0.011
Ties 2
Total 5145
Negative Ranks 2124 6213732.50
(R-packageSet)-(R-class) _ll’_ioessltlve Ranks ;019 7014063.50 3.758 0.000
gzttecr;’a g mnthe —bclasses Negative Ranks 3266 9492957.00
(R-package)-(R-pattern) P951t1ve Ranks 1867 3683454.00 —27.358.000
Ties 12
Total 5145
Negative Ranks 3074 9175048.00
(R-packageSet)-(R-pattern) P951t1ve Ranks 2053 3970580.00 —24.55D.000
Ties 18
Total 5145
Negative Ranks 2238 4881580.00
Positive Ranks 2381 5788310.00
(R-packageSet)-(R-package) Ties 526 5.002 0.000
Total 5145
Negative Ranks 2339 6942098.00
(R-pattern)-(R-class) PF)SI'EIVE Ranks 3992 13101848.00 21.177 0.000
Ties 0
Total 6331
Negative Ranks 2620 9456430.00
(R-package)~(R-class) Pgsmve Ranks 3711 10587516.00 3889 0.000
Ties 0
Total 6331
Negative Ranks 2577 9319996.00
(R-packageSet)-(R-class) _ll’_;)essltlve Ranks (3)754 10723950.00 4.827 0.000
Number of classes Total 6331
gzg;‘lf"‘“"g in the 7-15 classes Negative Ranks 4113 14302829.00
(R-package)-(R-pattern) _l;?essltwe Ranks ;210 5690497.00 —29.66H.000
Total 6331
Negative Ranks 3909 13835576.00
(R-packageSet)-(R-pattern) P951t1ve Ranks 2407 6113510.00 —26.648.000
Ties 15
Total 6331
Negative Ranks 2990 8723665.50
(R-packageSet)-(R-package) %oessltlve Ranks 5237 896271250 0.903 0.367

Total 6331

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2281
Appendix A (Continued)
Variable Value Solution comparison N Sum of ranks z Sig.
Negative Ranks 1693 4550844.00
Positive Ranks 3497 8919801.00
(R-pattern)—(R-class)) 20.236 0.000
Ties 0
Total 5190
Negative Ranks 2002 6435015.00
Positive Ranks 3188 7035630.00
(R-package)-(R-class)) 2.782 0.005
Ties 0
Total 5190
Negative Ranks 2004 6286977.00
(R-packageSet)—(R-class) ?g:sltlve Ranks 3186 7183668.00 4153 0.000
N “’:_‘b,er ‘t’_f da_sste; | Total 5190
gzale?: ne e >15 classes Negative Ranks 3268 10445233.00
(R-package)-(R-pattern) ?i:;s;tlve Ranks (1)922 3025412.00 —34.368 0.000
Total 5190
Negative Ranks 2970 9818659.00
(R-packageSet)—(R-pattern) ?;)essltlve Ranks 3220 3651986.00 —28.563 0.000
Total 5190
Negative Ranks 1810 4388884.00
Positive Ranks 3313 8736242.00
(R-packageSet)-(R-package)) 20.533 0.000
Ties 67
Total 5190
Negative Ranks 3019 11467741.00
(R-pattern)-(R-class) Positive Ranks 4632 17804985.00 16.400 0.000
patte class Ties 783 . .
Total 8434
Negative Ranks 3366 16186830.00
(R-package)-(R-class) ?f)smve Ranks 5062 19332976.00 7042 0.000
ies 6
Total 8434
Negative Ranks 3366 16186780.00
(R-packageSet)—(R-class) E?es;tlve Ranks 2062 19333026.00 7.043 0.000
gzttecnfa g mnthe package Negative Ranks 4364 21389478.00
(R-package)-(R-pattern) Pgsntlve Ranks 4038 13911525.00 _16.816 0,000
Ties 32
Total 8434
Negative Ranks 4351 21332824.00
Positive Ranks 4038 13859031.00
(R-packageSet)-(R-pattern)) 16.846 0.000
Ties 45
Total 8434
Negative Ranks 3058 8928257.50
Positive Ranks 2944 9086745.50
(R-packageSet)-(R-package) Ties 2432 0.590 0.555
Total 8434
Negative Ranks 3189 11766131.50
(R-pattern)-(R-class) ggsmve Ranks 4919 21107754.50 22160 0.000
ies 4
Total 8112
Negative Ranks 3705 17275300.00
(R-package)-(R-class) P951t1ve Ranks 4407 15631028.00 _3.898 0.000
Ties 0
Total 8112
Negative Ranks 3633 16654314.50
(R-packageSet)—(R-class) ?;)essltlve Ranks 3479 1625201350 —0.954 0.340
Number of packages Total 8112
gz ;cr‘rﬁ"““"g in the 2 packages Negative Ranks 5676 25613506.00
(R-package)—(R-pattern) Pf)smve Ranks 2436 7292822.00 43.4280.000
Ties 0
Total 8112
Negative Ranks 5318 24360603.00
(R-packageSet)-(R-pattern) ?;)es;tlve Ranks 3794 8545725.00 —37.488 0.000
Total 8112
Negative Ranks 2541 6850500.00
Positive Ranks 3288 10141035.00
(R-packageSet)-(R-package) Ties 2283 12.805 0.000
Total 8112

2282 A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283

Appendix A (Continued)
Variable Value Solution comparison N Sum of ranks z Sig.
Negative Ranks 2731 9899817.50
(R-pattern)—(R-class) Pf)smve Ranks 4654 17372987.50 20394 0.000
Ties 0
Total 7385
Negative Ranks 3241 14835608.00
(R-package)(R-class) PQSltlve Ranks 4144 12437197.00 6545 0.000
Ties 0
Total 7385
Negative Ranks 3249 14748619.00
(R-packageSet)-(R-class) ?;)essmve Ranks 3136 12524186.00 —6.070 0.000
Number of packages Total 7385
g:ggl:a““g in the >2 package Negative Ranks 5196 22104667.00
(R-package)-(R-pattern) ?ioessltlve Ranks 3189 >168138.00 —46.2190.000
Total 7385
Negative Ranks 4876 21561870.00
(R-packageSet)—(R-pattern) E?:vae Ranks 3509 >710935.00 —43.256 0.000
Total 7385
Negative Ranks 2998 10488056.00
Positive Ranks 3898 13292800.00
(R-packageSet)-(R-package) Ties 489 8.482 0.000
Total 7385
References Etzkorn, LH., Gholston, S.E., Fortune,].L., Stein, C.E., Utley, D., Farrington, P.A.,

Ajila, S.A., Wu, D., 2007. Empirical study of the effects of open source adoption on
software development economics. Journal of Systems and Software 80 (Septem-
ber (9)), 1517-1529, Elsevier.

Ampatzoglou, A., Chatzigeorgiou, A., 2007. Evaluation of object-oriented design pat-
terns in game development. Information and Software Technology 49 (May (5)),
445-454, Elsevier.

Andreou, A., Tziakouris, M., 2007. A quality framework for developing and evalu-
ating original software components. Information and Software Technology 49
(February (2)), 122-141, Elsevier.

Arnout, K., Meyer, B., 2006. Pattern componentization: the factory example. Inno-
vations in Systems and Software Engineering 2 (2), 65-79, Springer.

Basili, V.R., Selby, RW., Hutchens, D.H., 1986. Experimentation in software engi-
neering, transactions on software engineering. IEEE Computer Society 12 (7),
733-743, July.

Bansiya, J., Davis, C., 2002. A hierarchical model for object-oriented design quality
assessment. Transaction on Software Engineering, IEEE Computer Society 28 (1),
4-17.

Barnard, J., 1998. A new reusability metric for object-oriented software. Software
Quality Journal 7 (March (1)), 35-50, Springer.

Bosch, J., 1999. Superimposition: a component adaptation technique. Information &
Software Technology 41 (5), 257-273.

Brown, A., Wallnau, K., 1998. The current state of CBSE, software. IEEE Computer
Society 15 (September/October (5)), 37-46.

Chang, H.F., Mockus, A., 2008. Evaluation of source code copy detection methods
on FreeBSD. In: 2008 International Working Conference on Mining Software
Repositories (MSR'08), Association of Computing Machinery, Leipzig, Germany,
May 10-11, pp. 61-66.

Cho, E.S., Kim, M.S., Kim, S.D., 2001. Component metrics to measure component
quality. In: Proceedings of the 8th Asia-Pasific Software Engineering Conference
(APSEC’ 01) , IEEE Computer Society, Seoul, South Korea, December 4-7, pp.
419-426.

Clements, P. “Documenting Software Architectures: Views and Beyond”. Addison-
Wesley Professional, 2nd ed., October 2002.

Conway, M.E., 1968. How do committees invent? Datamation Magazine 14 (April
(5)), 28-31.

Counsell, S., Swift, S., Crampton,]., 2006. The interpretation and utility of three
cohesion metrics for object-oriented design. Transactions on Software Engi-
neering and Methodology, Association of Computing Machinery 15 (April (2)),
123-149.

Crnkovic, I., Chaudron, M., Larsson, S., 2006. Component-based development process
and component lifecycle. In: Proceedings of the 2006 International Conference
on Software Engineering Advances (ICSEA’ 06) , IEEE Computer Society, Tahiti,
French Polynesia, 29 October-03 November 2006, pp. 44-53.

Crnkovic, 1., Larsson, M., 2002. Challenges of component-based development. Journal
of Systems and Software 61 (April (3)), 201-212, Elsevier.

Crnkovic, I, Sentilles, S., Vulgarakis, A., Chaudron, M.R.\V. “A Classification
Framework for Software Component Models,” Transactions on Software Engi-
neering, IEEE Computer Society, in press, http://doi.ieeecomputersociety.
org/10.1109/TSE.2010.83.

Crnkovic, 1., Hnich, B., Johnson, T., Kiziltan, Z., 2002. Specification, implementation,
and deployment of components. Communications, Association of Computing
Machinery 45 (October (10)), 35-40.

Cox, G.W. 2004. A comparison of cohesion metrics for object-oriented
systems. Information and Software Technology 46 (August (10)), 677-
687.

Fahmi, S.A., Choi, H.J., 2008. Life cycles for component based software develop-
ment. In: Proceedings of the 8th Conference on Computer and Information
Technology , IEEE Computer Society, Sydney, Australia, July 8-11, pp. 637-
642.

Franch, X., Carvallo, J.P., 2003. Using quality models in software package selection.
Software, IEEE Computer Society 20 (January/February (1)), 34-41.

Gamma, E., Helms, R, Johnson, R, Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading, MA.

Genero, M., Manso, E., Visaggio, A., Canfora, G., Mario Piattini, 2007. Build-
ing measure-based prediction models for UML class diagram maintainability.
Empirical Software Engineering 12 (October (5)), 517-549, Springer.

Geuheneuc, Y.G., Sahraoui, H., Zaidi, F., 2004. Fingerprinting Design Patterns. In:
Proceedings of the 11th Working Conference on Reverse Engineering , Delft,
The Netherlands, November 08-12, pp. 172-181.

Gui, G., Scott, P.D., 2007. Ranking reusability of software components using cou-
pling metrics. Journal of Systems and Software 80 (September (9)), 1450-1459,
Elsevier.

Harrison, N.B., Avgeriou, P.,2010. How do architecture patterns and tactics interact?
A model and annotation. Journal of Systems and Software 83 (October (10)),
1735-1758, Elsevier.

Hsueh, N.L,, Chu, P.H., Chu, W., 2008. A quantitative approach for evaluating the
quality of design patterns. Journal of Systems and Software 81 (August (8)),
1430-1439, Elsevier.

Henry, E., Faller, B., 1995. Large-scale industrial reuse to reduce cost and cycle time.
Software, IEEE Computer Society 12 (September (5)), 47-53.

Holzle, U., 1993. Integrating Independently-Developed Components in Object-
Oriented Languages. In: Proceedings of the 7th European Conference on
Object-Oriented Programming , LNCS 707 Springer, pp. 36-56.

Huston, B., 2001. The effects of design pattern application on metric scores. Journal
of Systems and Software 58 (September (3)), 261-269, Elsevier.

Jansen, S., Brinkkemper, S., Hununk, 1., Demir, C., 2008. Pragmatic and opportunistic
reuse in innovative start-up companies. Software, IEEE Computer Society 25
(November/December (6)), 2-9.

Khombh, F., Gueheneuc, Y.G., 2008. Do design patterns impact software quality
positively. In: Proceedings of the 12th European Conference on Software Main-
tenance and Reengineering, IEEE Computer Society, Athens, Greece, April 01-04,
pp. 274-278.

Kitchenham, B., Pickard, L. Pfleeger, S.L, 1995. Case studies for method
and tool evaluation. Software, IEEE Computer Society 12 (July (4)),
52-62.

Kontio, J., 2006. A case study in applying a systematic method for COTS selection.
In: Proceedings of the 28th International Conference on Software Engineering
(ICSE'06) , Association of Computing Machinery, Shanghai, China, May 20-28,
pp- 201-209.

Kouskouras, K., Chatzigeorgiou, A., Stephanides, G., 2008. Facilitating software
extension with design patterns and Aspect-Oriented Programming. Journal of
Systems and Software 81 (October (10)), 1725-1737, Elsevier.

Lau, KK., Wang, Z., 2005. A taxonomy of software component models. In: Proceed-
ings of the 31st EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO-SEAA), IEEE, pp. 88-95.

http://doi.ieeecomputersociety.org/10.1109/TSE.2010.83
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.83

A. Ampatzoglou et al. / The Journal of Systems and Software 84 (2011) 2265-2283 2283

Li,]J., Conradi, R,, Slyngstad, O.P.N., Bunse, C., Torchiano, M., Morisio, M., 2009. Devel-
opment with off-the self components: 10 facts. Software, IEEE Computer Society
26 (March/April (2)), 807-887.

Marcus, A., Poshyvanyk, D., Ferenc, R., 2008. Using the conceptual cohesion of classes
for fault prediction in Object-Oriented Systems. Transaction on Software Engi-
neering, IEEE Computer Society 34 (March/April (2)), 287-300.

Meyer, B., Arnout, K., 2006. Componentization: the visitor example. Computer, [EEE
Computer Society 39 (July (7)), 23-30.

McConnell, S., 1996. Rapid Development: Taming Wild Software Schedules.
Microsoft Press, Redmond, Washington, USA.

McCormack, A.D., Rusnak, J., Baldwin, C.Y., 2008. Exploring the Duality between
Product and Organizational Architectures: A Test of the Mirroring Hypothesis.
In: Working Paper 08-039, Harvard Business School.

Mockus, A., 2007. Large-scale code reuse in open-source software. In: 1st
International Workshop on Emerging Trends in FLOSS Research and Devel-
opment (FLOSS’07) , IEEE Computer Society, Minesota, USA, May 20-26, pp.
7-12.

Morad, S., Kuflik, T., 2005. Conventional and open source software reuse at
orbotech—an industrial experience. In: International Conference on Software
Science, Technology, and Engineering (SWSTE’'05), [IEEE Computer Society, Hare-
lip, Israel, February 22-23, pp. 110-117.

Morison, M., Tully, C., Ezra, M., 2000. Diversity in reuse processes. Software, IEEE
Computer Society 17 (July/August (4)), 56-63.

Agape, N., Murphy, B., Basili, V., 2008. The influence of organizational struc-
ture on software quality: an empirical case study. In: Proceedings of
the 30th international conference on Software engineering (ICSE ‘08) ,
Association of Computing Machinery, Leipzig, Germany, May 10-18, pp.
521-530.

Plague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S., 2007. Empirical validation
of three software metrics suites to predict fault-proneness of object-oriented
classes developed using highly iterative or agile software development pro-
cesses. Transactions on Software Engineering 33 (June (6)), 402-419, IEEE
Computer Society.

Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.F., 2002. Two controlled
experiments assessing the usefulness of design pattern documentation in pro-
gram maintenance. IEEE Transactions on Software Engineering 28 (June (6)),
595-606.

Robillard, M., Walker, R., Zimmermann, T., 2010. Recommendation systems for soft-
ware engineering. I[EEE Software 27 (July/August (4)), 80-86.

Sandlhu, P.S., Kaur, H., Singh, A., 2009. Modeling reusability of object-oriented soft-
ware systems. World Academy of Sciences Engineering and Technology 56
(August), 162-165, Academic Science Research.

Scanniello, G., Gravino, C., Risi, M., Tortora, G., 2010. A controlled experiment
for assessing the contribution of design pattern documentation on software
maintenance. In: Proceedings of the 2010 ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM ‘10),
ACM.

Szyperski, C., 1997. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley International, Massachusetts, USA.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T., 2006. Design pat-
tern detection using similarity scoring. Transaction of Software Engineering 32
(November (11)), 896-909, IEEE Computer Society.

Washizaki, H., Yamamoto, H., Fukazawa, Y., 2003. A metric suite for measuring
reusability of software components. In: Proceedings of the 9th International
Software Metrics Symposium (METRICS'03) , [EEE Computer Society, Sydney,
Australia, September 03-05, pp. 211-223.

Wydaeghe, B., Verschaeve, K., Michiels, B.,, Damme, B.V., Arckens, E., Jonckers, V.,
1998. Building an OMT-editor using design patterns: An experience report.
In: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS'98) , IEEE Computer Society, Santa Barbara, California August 3-7, pp.
20-33.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A., 2000.
Experimentation in Software Engineering, 1st ed. Kluwer Academic Publishers,
Boston/Dordrecht/London.

Yu, L., Chen, K., Ramaswamy, S., 2009. Multiple-parameter coupling metrics for lay-
ered component based software. Software Quality Journal 17 (March (1)), 5-24,
Springer.

Ampatzoglou Apostolos is a PhD candidate in the Department of Informatics,
Aristotle University of Thessaloniki, Greece and a laboratory associate at the Techno-
logical Education Institute of Thessaloniki, Greece. He holds a BS in Informatics from
Technological Education Institute of Thessaloniki and an MSc in Computer Science
from the University of Macedonia. His research interests include design patterns,
software metrics and computer games.

Kritikos Apostolos is a PhD candidate in the Department of Informatics, Aristotle
University of Thessaloniki, Greece and a laboratory associate at the Technological
Education Institute of Serres, Greece. He holds a BS in Informatics from Aristotle
University of Thessaloniki and an MSc in Information Systems from Aristotle Uni-
versity of Thessaloniki. His research interests include software reuse and software
architecture.

Kakarontzas George is a PhD candidate in the Department of Informatics, Aristotle
University of Thessaloniki, Greece and a lecturer at the Technological Education
Institute of Larissa, Greece. He holds a BS in Informatics from the Athens University
of Economics and Business and an MSc in Object-Oriented Software Technology
from the University of Brighton. His research interests include component-based
software engineering and grid computing.

Dr. Ioannis Stamelos is an Associate Professor at the Department of Informatics of
the Aristotle University of Thessaloniki, where he carries out research and teaching
in the area of software engineering. He holds a diploma of Electrical Engineering
(1983) and a PhD in Computer Science by the Aristotle University of Thessaloniki
(1988). His current research interests are focused on open source software engineer-
ing, software project management and software education. He has published more
than 100 articles in international journals and conferences. He is/was the scien-
tific coordinator or principal investigator for his University in over 20 research and
development projects in Information & Communication Technologies with funding
from national and international organizations.

	An empirical investigation on the reusability of design patterns and software packages
	1 Introduction
	2 Background information
	2.1 Component based software engineering
	2.2 Software reusability
	2.3 Design patterns

	3 Methodology applied in the empirical study
	3.1 Research questions
	3.2 Case study plan
	3.3 Data analysis method

	4 Statistical analysis
	5 Discussion
	5.1 RQ1—which is the most reusable unit?
	5.2 RQ2—does design pattern type affect reusability?
	5.3 RQ3 and RQ4—does number of pattern participants or the number of packages that are involved in the pattern affect reus...
	5.4 Illustrative example
	5.5 Practical consideration

	6 Threats to validity
	7 Conclusions—future work
	Acknowledgements
	References
	References

