Information and Software Technology 54 (2012) 331-346

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A methodology to assess the impact of design patterns on software quality

Apostolos Ampatzoglou **, Georgia Frantzeskou®, loannis Stamelos

2 Department of Informatics, Aristotle University, Thessaloniki, Greece
Y Information and Communication Systems Engineering Department, University of the Aegean, Samos, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 8 June 2011

Received in revised form 24 October 2011
Accepted 29 October 2011

Available online 4 November 2011

Context: Software quality is considered to be one of the most important concerns of software production
teams. Additionally, design patterns are documented solutions to common design problems that are
expected to enhance software quality. Until now, the results on the effect of design patterns on software
quality are controversial.
Aims: This study aims to propose a methodology for comparing design patterns to alternative designs
with an analytical method. Additionally, the study illustrates the methodology by comparing three design
patterns with two alternative solutions, with respect to several quality attributes.
Method: The paper introduces a theoretical/analytical methodology to compare sets of “canonical” solu-
tions to design problems. The study is theoretical in the sense that the solutions are disconnected from
real systems, even though they stem from concrete problems. The study is analytical in the sense that the
solutions are compared based on their possible numbers of classes and on equations representing the val-
ues of the various structural quality attributes in function of these numbers of classes. The exploratory
designs have been produced by studying the literature, by investigating open-source projects and by
using design patterns. In addition to that, we have created a tool that helps practitioners in choosing
the optimal design solution, according to their special needs.
Results: The results of our research suggest that the decision of applying a design pattern is usually a
trade-off, because patterns are not universally good or bad. Patterns typically improve certain aspects
of software quality, while they might weaken some other.
Conclusions: Concluding the proposed methodology is applicable for comparing patterns and alternative
designs, and highlights existing threshold that when surpassed the design pattern is getting more or less
beneficial than the alternative design. More specifically, the identification of such thresholds can become
very useful for decision making during system design and refactoring.

© 2011 Elsevier B.V. All rights reserved.

Keywords:

Structural quality
Design patterns
Object-oriented metrics
Quality

1. Introduction using specific software design solutions, i.e. design patterns, pro-

vide easier maintainability and reusability, more understandable

Object oriented design patterns have been introduced in mid
1990s as a catalog of common solutions to common design prob-
lems, and are considered as standard of “good” software designs
[31]. The notion of patterns was firstly introduced by Alexander
et al. [2] in the field of architecture. Later the notion of patterns
has been transformed in order to fit software design by Gamma,
Helm, Johnson and Vlissides (GoF) [31]. The authors cataloged 23
design patterns, classified according to two criteria. The first, i.e.
purpose, represents the motivation of the pattern. Under this scope
patterns are divided into creational, structural and behavioral pat-
terns. The second criterion, i.e. scope, defines whether the pattern
is applied on object or class level. In [31], the authors suggest that

* Corresponding author.
E-mail addresses: apamp@csd.auth.gr (A. Ampatzoglou), gfran@aegean.gr
(G. Frantzeskou), stamelos@csd.auth.gr (I. Stamelos).

0950-5849/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.10.006

implementation and more flexible design. At this point it is neces-
sary to clarify GoF are not the first or the only design patterns in
software literature. Some other well known patterns are architec-
tural patterns, computational patterns, game design patterns, etc.
In recent years, many researchers have attempted to evaluate the
effect of GoF design patterns on software quality. Reviewing the lit-
erature on the effects of design pattern application on software
quality provides controversial results. Until now, researchers at-
tempted to investigate the outcome of design patterns with respect
to software quality through empirical methods, i.e. case studies,
surveys and experiments, but safe conclusions cannot be drawn
since the results lead to different directions. As mentioned in
[37,39,53,59,69], design patterns propose elaborate design solu-
tions to common design problems that can be implemented with
simpler solutions as well.

In this paper we propose a methodology for comparing pattern
designs. The proposed method is analytical in the sense that

http://dx.doi.org/10.1016/j.infsof.2011.10.006
mailto:apamp@csd.auth.gr
mailto:gfran@aegean.gr
mailto:stamelos@csd.auth.gr
http://dx.doi.org/10.1016/j.infsof.2011.10.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

332 A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

system comparison is not performed on specific system instances,
but on design motifs that can describe every possible instance of a
system during its extension. The methodology is generic so that it
can be applied for comparing design alternatives that describe
equivalent functionality and have specified axes of change. The
proposed method attempts to formulate several quality attributes
as functions of functionality addition on multiple, equivalent solu-
tions to a design problem. Then the functions are compared so as to
identify cut-off points during system maintenance when one solu-
tion gets better or worse than the other. In this study we illustrate
the applicability of the methodology by employing it for comparing
GoF design patterns to equivalent adhoc solutions. In the next sec-
tion, we present background information on design patterns. In
Section 3, the methodology is presented and in Section 4, three
exploratory cases are demonstrated. A discussion on the methodol-
ogy is presented in Section 5. Conclusions, threats to validity and
future work are presented by the end of the paper.

2. Related work

In this section of the paper, previous scientific research related
to design patterns is presented. More specifically, the section is
organized into paragraphs concerning indications on pattern iden-
tification according to metric scores, qualitative evaluation of
pattern employment, quantitative evaluation of pattern employ-
ment, discussion on pattern application and class change prone-
ness, results of controlled experiments on the comparison of
design pattern application versus simpler solutions with respect
to code maintainability, research on pattern formalization, system-
atic pattern selection and finally the use of metrics for measuring
design structures.

2.1. Metrics as indicators of pattern existence

Firstly, in several papers [5,32,33,53] it is implied that object
oriented software metrics can provide indications on the neces-
sity or emergence of specific design patterns. In [5], the authors
compute several metrics (number of public, private and pro-
tected attributes, number of public, private and protected opera-
tions, number of associations, aggregations and inheritance, total
number of attributes, methods and relations) so as to get indica-
tions on the existence of five structural patterns (Adapter, Proxy,
Composite, Bridge and Decorator). Empirical results on the
methodology show that software metrics are essential in order
to reduce the problem search space and therefore enhance the
proposed design pattern detection algorithm. In [53], the authors
attempt to introduce some metrics for conditional statements
and inheritance trees so as to provide indications for the neces-
sity of applying design patterns, in a low quality design, through
refactoring. The proposed methodology, apart from identifying
the need for a pattern in a specific set of classes, provides
suggestions concerning the pattern that should be applied for
solving the problem. Gueheneuc et al. [32], propose a methodol-
ogy on identifying design motif roles through the use of object-
oriented metrics. The suggested fingerprints are ranges of metric
scores that imply the existence of design motif role. The authors
have chosen to use size, cohesion and coupling metrics, while
the patterns under consideration are Abstract Factory, Adapter,
Builder, Command, Composite, Decorator, Factory Method, Itera-
tor, Observer, Prototype, Singleton, State, Strategy, Template
Method and Visitor. In [33] the authors improve their identifica-
tion process by combining a structural and a numerical
approach. This fact leads to the identification of both complete
and incomplete pattern instances, and the reduction of false po-
sitive results.

2.2. Qualitative evaluation of design patterns

Additionally, several studies attempted to qualitatively evaluate
the effects of object-oriented design patterns on software quality.
According to McNatt and Bieman [55], the authors claim that pat-
terns should be considered as structural units and therefore issues
such as cohesion and coupling between the patterns should be
examined. More specifically, the couplings between patterns are
characterized as “loose” and as “tight” and their benefits and costs
with respect to maintainability, factorability and reusability are
being examined. Although the paper introduces several coupling
types, namely intersection, composite and embedded, the way that
they are demarcated is not clear. Specifically, there is a default cou-
pling category, i.e. intersection, and any type of coupling that does
not fit any other group is classified in the default category. In [75],
the author presents an industrial case study, where inappropriate
pattern application has led to severe maintainability problems.
The reasons of inappropriately using design patterns have been
classified into two categories, i.e. (1) software developers have
not understood the rationale behind the patterns that they have
employed and (2) the patterns that have been employed have
not met project requirements. Additionally, the paper highlights
the need for documenting pattern usage and the fact that pattern
removal is extremely costly. In [42], the authors investigate the
correlation among the quality of the class and whether the class
play any roles in a design pattern instance. The results suggest that
there are several differences in quality characteristics of classes
that participate in patterns.

2.3. Quantitative evaluation of design patterns

Furthermore, regarding quantitative evaluation of design pat-
tern application, in [39], the author attempts to demonstrate the
effect of three design patterns (Mediator, Bridge and Visitor) on
metric scores of three different categories (coupling, inheritance
and size). According to the paper, there are several metric thresh-
olds that, when surpassed, the pattern application is beneficial. The
study’s methodology is solid since it is based on pattern definitions
and mathematical equations, but it deals with only one metric per
pattern. Additionally, in [38], the authors have investigated the ef-
fect of the patterns on one quality attribute, i.e. the most obvious
quality attribute that the pattern has effect on. The selection of
the quality attribute has been based on the pattern’s non func-
tional requirements, whereas the selection of the metric has been
based on [8]. The drawback of this research is that it does not take
into account possible trade-offs that pattern usage induces. For
example, when a pattern is employed, the coupling of the system
may decrease, but as a side effect the size may increase. If a quality
attribute is related to size and coupling, drawing a conclusion that
this attribute is enhanced because of the decrease in coupling is
not safe.

In [4], the authors attempt to investigate the effect of design
pattern application in game development through a case study.
The results of the case study are both qualitative and quantitative,
but the domain of the research is limited to games and therefore
results cannot be generalized. The patterns under study are Bridge
and Strategy, whereas the considered metric categories are size,
complexity, coupling and cohesion. The results of the case study
suggest that pattern application enhance cohesion, coupling and
complexity metrics, but as a side effect the size metrics increase.
In [41], Khomh et al. performed a survey with professional soft-
ware engineers. The results of the empirical study suggest that de-
sign patterns do not always impact software quality positively.
More specifically, the negatively influenced quality issues are sug-
gested to be simplicity, learnability and understandability. How-
ever, as it is referenced in the paper, marginal results (e.g.

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346 333

understandability, reusability) should be reconsidered or cau-
tiously adopted, because neutral opinions are considered as
negative.

2.4. Design patterns and change proneness

Moreover, an interesting domain concerning design patterns
and internal software quality is a possible correlation between pat-
tern employment and class change proneness [11,12,23]. In [11],
the authors conducted an industrial case study that aimed at inves-
tigating correlation among code changes, reusability, design pat-
terns, and class size. The results of the study suggest that the
number of changes is highly correlated to class size and that clas-
ses that play roles in design patterns or that are reused through
inheritance are more change prone than others. This study is
well-structured and validated, although the results refer only to a
specific maintainability issue, namely change proneness. Other
maintainability aspects such as change effort and design quality
are not considered. In addition to that, in [12] the authors replicate
the case study described above into three professional and two
open-source projects. The results of the second study do not fully
agree with those of the prior case study. The relationships between
class size, design patterns participation and change proneness are
still valid, but appear weaker. In [23] the authors have attempted
to investigate correlations among class change proneness, the role
that a class holds in a pattern and the kind of change that occurs.
The design patterns under study are Abstract Factory, Adapter,
Command, Composite, Decorator, Factory Method, Observer, Proto-
type, Singleton, State/Strategy, and Template. The empirical study
that has been employed was conducted in three open source pro-
jects. The results of the paper comply with common sense for the
majority of design patterns. However, there are cases where the
obtained results differ from the expected ones.

2.5. Controlled experiments on design patterns and maintainability

Additionally, in [59,69], controlled experiments concerning the
maintainability of systems with and without design patterns, have
been conducted. In [59] the patterns considered have been Ab-
stract Factory, Observer, Decorator, Composite and Visitor, while
the subjects of the experiment have been professional software
engineers. The results of the experiment suggest that it is usually
useful to apply a design pattern rather than the simpler solution.
The dilemma of employing a design pattern or a simple solution
is best answered by the software engineer’s common sense. The
experiment in [69] is a replication of the aforementioned experi-
ment and therefore uses the same patterns and similar subject
groups. In addition to the former experiment, the authors in-
creased experimental realism in the sense that subjects have used
a real programming environment instead of pen and paper. The re-
sults suggest that design patterns are not universally beneficial or
harmful with respect to maintenance, since each design pattern
has its own nature. In the discussion of the paper conclusions con-
cerning each design pattern are solidly presented.

2.6. Design pattern formalization

The articles that deal with pattern formalizations can be further
divided in smaller categories according to their research topic.
However, they all share the common aim of investigating, identify-
ing and specifying innovative approaches that deal with ways of
modeling and formalizing design patterns.

In [25,30,43,76] the authors deal with the visualization of archi-
tectural and design patterns with UML artifacts. These studies aid
in providing an easy way to use design patterns with several prac-
tical benefits concerning tools that help practitioners in applying

design patterns. In [16] the authors present a repository including
formal specifications of the problems that each pattern solves.
Additionally, the study suggests that patterns should be described
as reusable artifacts that include the problem to be solved and a set
of transformations that guide the designer through the application
of the proposed solution.

Furthermore, several papers deal with presenting innovative
approaches of pattern representations and specifications. In
[9,10,65] the authors use first order predicate logic in order to
specify the behavioral and structural characteristics of design pat-
terns. In [1] a component based specification of design patterns is
suggested, guided by the architectural design artifacts that are in-
volved in patterns. Moreover, in [24] the authors propose new
symbols on class and collaboration diagrams that help in pattern
representation. In [7,14] the authors provide tools that are based
on constraints and logical graphs in order to formalize design
patterns.

Additionally, [27,51,64] introduce meta-programming lan-
guages for describing the way a pattern is applied. In three articles
[28,52,79] the authors deal with enhancing the descriptions of de-
sign patterns. More specifically, they propose transformations for
pattern application and they provide documentation on pattern
usage. In [49,58,73] constructional attributes of patterns, a com-
parison of pattern visualization methods and general information
on pattern comprehension are presented. Finally, in [57] the
authors demonstrate a language for formally describing the Visitor
pattern in order to capture its essence in a reusable library.

2.7. Systematic design pattern selection

In [13] the author presents a literature review on pattern search
and pattern selection strategies. The problem of searching patterns
is defined as the effort of getting information about existing pat-
terns; whereas pattern selection is described as the problem of
deciding which pattern to choose among all available solutions.
Additionally, it is suggested that there are five approaches for
searching and selecting patterns, namely (a) pattern repositories
and pattern catalogs, (b) recommendation systems, (c) formal lan-
guages, (d) search engines and (e) other approaches.

In [26,61,70,72] the authors create online pattern repositories in
order to increase the availability of patterns. In such repositories
patterns can be retrieved through searching criteria and by manual
browsing among various patterns. Furthermore, in [34,35] several
recommendation systems are suggested in order to suggest the
appropriate pattern, according to the problem that the developer
wants to solve. In addition, several papers describe approaches that
use formal languages in order to represent design patterns and se-
lect patterns according to such a representation [3,71,77]. Selecting
patterns through search engines corresponds to searches through
keywords in engines that crawl and index pattern descriptions. Fi-
nally, there are several other approaches that cannot be classified
in any of the above categories such as [45,80].

2.8. Metrics as measurements of design structures

In literature there are many studies that are using metrics in or-
der to measure the quality of systems and data structures. Some of
these studies evaluate complete systems [8,17,19,21,22,46,47,62]
and others evaluate design structures other than design patterns
[6,40,67]. More specifically, in [6], the authors identify four coding
bad-smells,! apply an automated transformation to fix the problem
and evaluate the applied refactoring. In [67], the authors investigate
the possible gains of applying the “move method” refactoring and

1 Code that is expected to have low quality levels.

334 A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

evaluate the benefits by coupling and cohesion metrics. Similarly, in
[40] the authors perform an experiment in order to evaluate several
refactorings with coupling, cohesion, complexity and size metrics.

3. Methodology

This paper is inspired by the work of Hsueh et al. [38] and Hus-
ton [39]. Our methodology can be used to compare design patterns
and alternative design solutions of equivalent functionality, during
system extension. The method of our paper can be summarized in
the following steps:

Prerequisite: Suppose a design problem that can be treated with a
pattern.

1. Catalog alternative design solutions from literature, open-
source solutions and personal experiences.

2. Identify the major axes of change for the system

3. Extend the design in all axes. For example if two axes of
change are available, extend in the first axis by adding (n)
functionalities, and the second axis by (m) additional
functionalities.

4. Select a quality model that fit the designer’s needs, or simply
a set of metrics. Any development team is free to select
whether they want to evaluate their solutions w.r.t an exist-
ing quality model, w.r.t. a customized model, or w.r.t. just a
set of metrics that are not aggregated or composed.

5. Construct equations for quality model components or quality
metrics that are functions of functionality extension based
on the axes of change identified in step 3.

6. Compare the functions provided by step 5, in pairs and iden-
tify which alternative is preferable w.r.t. every quality attri-
bute described in 4, and under which constraints.

The main points of contribution w.r.t. the research state of the
art on pattern evaluation are:

1. Ananalytical method is applied rather than an empirical one.
The main benefit is that we do not need multiple case studies
on each pattern, because the quality of every pattern
instance can be calculated from the proposed mathematical
equations.

2. The proposed methodology is capable of assessing different
structural quality aspects and handle possible trade-offs
between quality attributes.

3. The effect of design pattern application in a wider variety of
attributes is investigated instead of a single quality attribute.

4. Certain cut-off points are identified (when possible), that
when surpassed, the pattern or the alternative design
becomes more beneficial.

5. The results of (3) and (4), can be employed in terms of goal
oriented software project management, i.e. the designer
can choose between pattern and alternative solutions w.r.t.
system requirements and according to designer’s preference
for specific quality attributes.

6. It compares pattern solutions to design solutions identified
in open-source software and not only to designs that are
derived from literature review.

The proposed methodology is based on a relatively complex
mathematical background and therefore it might be difficult to
be applied by the average designer. For this reason we created a
tool that implements all necessary steps and simulates the meth-
odology for every possible pattern instance. The tool is presented
in Section 5.

An alternative suggestion would be to work on pattern in-
stances rather than on model level. Such an approach is much eas-
ier for developers, but it has several drawbacks compared to an
analytical methodology. For example, if someone works with pat-
tern instances he will assess the quality of a specific instance and
will make a decision on the design he/she will use. However, it is
possible that new requirements will arrive and the system will
be extended. The new requirements will demand a greater number
of classes and a completely different set of metrics will be calcu-
lated. At that point another design alternative might produce bet-
ter results, compared to the original design. In this case, the
corresponding part of the system will have to be refactored to
the optimum design solution. In the case of an analytical method-
ology, that works on the model level the designs under consider-
ation can be compared for unlimited number of pattern instances
and design decisions can be drawn by taking into account future
adoptions at an early designing stage.

4. Methodology illustration

As illustrative examples of using the proposed method, we
investigate six research questions, evaluating design patterns
w.r.t. various quality aspects. The research questions are listed
below:

[RQ;]Which is the effect of employing an instance of the bridge
pattern on the maintainability of a system?

[RQ2] Which is the effect of employing an instance of the
abstract factory pattern on the maintainability of a system?
[RQs] Which is the effect of employing an instance of the bridge
pattern on the code quality of a system?

[RQ4] Which is the effect of employing an instance of the visitor
pattern on design quality of a system?

[RQs] Which is the effect of employing an instance of the bridge
pattern on design quality of a system?

[RQs] Which is the effect of employing an instance of the
abstract factory pattern on design quality of a system?

The patterns are going to be presented in their general form, i.e.
roles instead of class names, in order to show that the method can
be applied on any instance of the specified design pattern. Simi-
larly, the classes and functions of the adhoc solutions will be
named according to the corresponding methods and classes in
the pattern solution. The fact that all three examples are related
to GoF design patterns, should not be interpreted as loss of gener-
ality, i.e. the method is applicable on any other form of patterns,
e.g. architectural patterns [29].

The patterns that are going to be investigated in this study have
been selected in order to cover all pattern categories described in
[31]. The patterns are presented in their standard form. In the lit-
erature, several pattern variations have been suggested. However,
such designs have not been considered in our research, because
the count of alternative solutions, which can implement the func-
tionality of the pattern, is high and the investigation of every pos-
sible combination is impractical. Thus, we preferred to extract an
equivalent design solution from an open-source project, rather
than an additional literature solution, in order to increase the real-
ism of our approach. At this point it is necessary to clarify that the
provided analysis is based on the current alternatives designs and
the results do not aim at comparing patterns, literature solutions
and open-source solutions, but only at comparing the correspond-
ing design.

Additionally, the extension of the systems has been made
according to [56]. In [56], the authors suggest that design patterns
can be maintained in three possible manners: (a) adding a class as

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346 335

a concrete participant, (b) modifying the existing interface partici-
pants and (c) introducing a new client. In that study it is suggested
that (a) is the most common type of maintenance. Thus, in our
extension scenario we preferred to maintain our systems by adding
concrete participant classes. Selecting the axes of change from the
design pattern perspective provides a uniform axe of change selec-
tion strategy. If we had decided to select the axes of change from
the open source solution or from the literature solution, it would
not be possible to use rules for selecting the axes of change.

In applying our approach, in the case of existing system classes
that are reused or included in the pattern instance, we assume that
their effect on quality will be uniform across all design solutions.
This assumption is considered a threat to validity and is discussed
in Section 6. In addition to that, we have chosen to present separate
examples for every pattern, and not a system that includes more
patterns, because of the undefined effects of pattern coupling
[55]. The method of comparison is the solution of inequalities that
arise from subtracting the mathematical formula calculating one
metric score for one solution, from the corresponding formula for
another solution and compare it to zero. In order to solve the afore-
mentioned inequalities, we have used Wolfram Mathematica©®
that uses the Reduce algorithm [74] to solve inequalities.

At this point it is necessary to clarify that the selected quality
models or the selected set of metrics are indicative. Thus, a soft-
ware team that applies the method can select any metric suite that
they believe better fits their needs. The fact that in each research
question a different set of metrics will be used is based on the fact
there is no uniform set of metrics that deals with maintainability
(RQq, RQy), structural quality (RQs) and design quality (RQ4, RQs,
RQs). In the next sections, we will thoroughly present our method
for the first research question. The results of applying our method
in order to explore the rest of research questions are presented in a
corresponding technical report,? in order to improve the readability
of the paper.

4.1. Bridge design pattern

In this section we investigate the maintainability of systems
that use the Bridge design pattern. Bridge is a structural pattern
that it is used “when the designer wants to decouple an abstrac-
tion from its implementation so that the two can vary indepen-
dently” [31]. Section 4.2 presents the structure of any Bridge
pattern instance and two alternative designs. Section 4.3 discusses
the metric suite that is used for assessing the structural quality of
each design and Section 4.4 presents the results of applying our
method for comparing the maintainability of the bridge pattern
to the maintainability of the adhoc designs.

4.2. Design solutions

The literature alternative to the bridge pattern is retrieved from
[39,66], where the authors used it for similar reasons. The use of a
deeper inheritance tree has been preferred so as to eliminate the
“cascaded if” statements that appear in the former design (see
Fig. 1). The open source solution design employs a cascaded if
statement for representing the dynamic behavior of the system.
This solution uses the minimum possible number of classes and
is considered to be the simplest design that an analyst could use.
The class diagram of the design is depicted in Fig. 2. The bridge de-
sign pattern, as described in [31], prefers object composition over
class inheritance, so the depth of inheritance tree decreases and

2 AUTH/SWENG/TR-2011-10-01, available at http://sweng.csd.auth.gr/~apamp/
material/TR-2011-10-01.pdf.

the design conforms to the open-closed design principle [50]. The
class diagram for the bridge pattern solution is presented in Fig. 3.
According to [56] the major axes of change in the pattern solution
are: adding refined abstractions, adding concrete implementers,
adding clients and adding methods and attributes to any class of
the pattern. Since the most frequent change in a design pattern is
the addition of subclasses [56], we have chosen to extend the system
in the first two axes, i.e. add new refined abstractions and add new
concrete implementers. More specifically, we suppose that the sys-
tem under consideration has (n) refined abstractions and (m) concrete
implementers. In the open source solution, the system has (n) refined
abstractions and each doOperation method has (m) cascaded if state-
ments. In the literature solution, similarly to the pattern solution the
system has (n) refined abstractions and (m) concrete implementers.
The third level of the hierarchy has (n * m) classes that represent
every possible combination of abstractions and implementers. The
source code of all solutions can be found in the web (http://
sweng.csd.auth.gr/~apamp/material/patterns_code.rar).

4.3. Metric suite for assessing maintainability

For the purpose of our study we need to predict maintainability
from code and design measurements. Therefore, we need to choose
code/design metrics and a model to calculate maintainability from
them. In [60] the authors present the results of a systematic review
that deals with the metrics that can be used as predictors for soft-
ware maintainability. In addition to that, the authors have ranked
the studies that they have identified and suggested that the work
of vanKoten and Gray [68] and Zhou and Leung [78] were the most
solid ones [60].

In [68,78], the authors suggest that there are ten object-
oriented metrics (see Table 1) that can be used as maintainability
predictors. These metrics have been validated with several data-
sets and techniques such as Bayesian networks, regression trees
and regression models, but each dataset indicated different metrics
as the more influential with respect to maintainability. Thus, it was
not possible for us to safely employ a regression model that would
estimate the maintainability of a system. Consequently, we have
investigated the effect of design patterns on the ten maintainabil-
ity predictors and draw several conclusions assuming that all
predictors are equally weighted.

According to [36,48] all metrics defined in Table 1 are
inversely proportional to maintainability. Thus, the solution with
the higher count of lower metric values is considered more
maintainable.

4.4. Results

By taking into account the two major axes of change described
in Section 4.2 and the metric definitions described in Section 4.3
we produced equations of metric scores as functions of functional-
ity addition.

4.4.1. Literature solution

Concerning depth of inheritance, the Client and Abstraction
class DIT = 0. For the (n) RefinedAbstractions DIT = 1. For the (nm)
RefinedAbstractionNConcreteEmployeeM, DIT = 2.

n+2nm

Dlodeets) =+ om -2

For the Abstraction class NOC = n. For each of the (n) classes
that RefinedAbstractions, NOC=m. For all the other classes,
NOC=0.

n+nm

NOCyridgge(ss) = n+m+nm+2

http://reference.wolfram.com/mathematica/ref/Reduce.html
http://reference.wolfram.com/mathematica/ref/Reduce.html

336 A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

Client -abs m
+setAbstraction() =
+Abstraction()
+printAlk) |eris
+getAltri()
+gotAtr2()
+doOperation()
RefinedAbstraction2 RefinedAbstraction1
+RefinedAbstraction2() [+RefinedAbstractiont()
+getAltr2() | “getAltr2()
+d |*do0peration()
+getAltr() | +getAttr()
N
RefinedAbstraction2 Concretelmplementord RefinedAbstraction2Concretelmplementor2 RefinedAbstractiond Concretelmplementori RefinedAbstractioni Concretelmplementor2
2C 1)) 1 10)
*gethttri() ‘ *getatirt() getitri() : *getattri()
+doOperation() [*doOperation() +doOperation() +doOperation()
Concretelmplomentor2
Concretelm) entor -att : int
-att :int sl [*Concreteimplementor2()
+dcOperation2() -5al
s ..,mmmm'm:;mm“ sal +doOperation1() |
+doOperation2()
Fig. 1. Class diagram of literature solution.
isus :':!'-Jm‘.hl. Staeh < Edix Ve] 5 = ¥ ' Abstraction
+setAbstraction() ! . 4_ [attrt : string
+printAll() Hattr2 : int
#attr4 @ int
#attr5 : int
+Abstraction()
+getAttri()
+getAttr2()
+getAttr3()
+doOperation()
RefinedAbstraction RefinedAbstraction2
+RefinedAbstraction1() +RefinedAbstraction2()}
+getAttrd() +getAttr()
+doOperation() +doOperation()

Fig. 2. Class diagram of open source solution.

The Client class sends four messages to the Abstraction class
(MPC = 4). The (n) RefinedAbstraction classes send one message
(MPC = 1). The (nm) RefinedAbstractionNConcreteEmployeeM send
two messages to a Concretelmplementor class and one to the
Abstraction class (MPC = 3). For all the other classes MPC = 0.

4+3nm+n

MPCortzetss = 3 nm 42

The Client class invokes two local methods and four remote
methods (RFC=6). The Abstraction class has five local methods
(RFC = 5). The (n) classes that represent Refined Abstractions have
four local methods and call one remote method (RFC = 5). The (nm)
RefinedAbstractionNConcreteEmployeeM classes have three local
methods and invoke three remote methods (RFC = 6). The (m) clas-
ses that represent Concretelmplementors have (n + 1) local meth-
ods (RFC=n+1).

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346 337

Client ' o Abstraction

pmat Implementation
+setAbstraction() i abg -altr1 : string v ! Implementation()
+prntAll) 2="*Abstraction() 17 |+getAtir2()
+getAttri() +doOperationAbstr2()
sgetAttr2() +doOperationAbstr1()
+doOperation)
+getAtr3()
+sellmplementation()
RefinedAbstraction2 C 2 Conc
+RefinedAbstraction2() 'MT“ﬁ'ﬁT"' Cattr : int att - int
+gelAltr3()_ etAlr3() acton(+Concretelmplementor2() +Concretelmplementori()
+doOperation() i : +getAttr2() +getAttr2()
+doOperation()
+doOperationAbstr2() +doOperationAbstr2()
+doOperationAbstr1() +doOperationAbstri()
Fig. 3. Class diagram of bridge design pattern.
Table 1
Maintainability predictors.
Metric Description
DIT Depth of the inheritence tree (=inheritence level number of the class, 0 for the root class). Range of value [0,+c0)
NOC Number of children (=number of direct sub-classes that the class has). Range of value [0,+c0)
MPC Message-passing couple (=number of send statements defined in the class). Range of value [0,+c0)
RFC Response for a class (=total number of local methods and the number of methods called by local methods in the class). Range of value [0,+c0)

LCOM Lack of cohesion of methods (=number of disjoint sets of local methods, i.e. number of sets of local methods that do not interact with each other, in the class).

Range of value [0,+c0)

DAC Data abstraction coupling (=number of abstract data types defined in the class). Range of value [0,+c0)
WMPC Weighted method per class (=sum of McCabe’s cyclomatic complexity [54] of all local methods in the class). Range of value [0,+00)
NOM Number of methods (=number of local methods in the class). Range of value [0,+c0)

SIZE1 Lines of code (=number of semicolons in the class). Range of value [0,+c0)

SIZE2 Number of properties (=total number of attributes and the number of local methods in the class). Range of value [0,+c0)

11+5n+7nm+m
n+m+nm-+2

For the Client class, LCOM =0 — 1 = 0. For the Abstraction class,
LCOM =9 — 1 = 8. For the (n) RefinedAbstraction classes LCOM is
not defined. For the (nm) classes that represent the combinations
between types of RefinedAbstractions and types Concretelmple-
menters, LCOM = 2 — 1 = 1. For the (m) classes that represent Con-
cretelmplementors, LCOM = 0.

RFCbridge(lss) =

nm+ 8

LCOMbridge(lss) = m

For the Client class (DAC = 1). For the (nm) classes that repre-
sent the combinations between types of RefinedAbstractions and
types of Concretelmplementors (DAC =1).

1+nm

DAGpriggeqiss) = n+m+nm+2

For any method that does not involve any for, if, case, while, etc.,
statements CCmethod = 1. For methods that employ only one for
statement CCmethod = 2. Any method that employs one cascaded
if statement with m alternatives CCmethod = m. For the Client
class, CC = 3. For the Abstraction class, CC = 5. For the (n) classes
that represent RefinedAbstractions, CC=4. For the (nm) classes
that represent the combinations between types of RefinedAbstrac-
tions and types of Concretelmplementors, CC=3. For the (m)
classes that represent Concretelmplementors, CC=n + 1.

8+4n+4nm+m

WMPCoriageqss) = = +m+nm+2

The Client class holds two public methods; Abstraction holds 5,
the (n) classes that represent the types of RefinedAbstraction hold
4, the (nm) classes which represent all the combinations between

types of RefinedAbstractions and types of Concretelmplementors,
hold three and finally the (m) classes that represent the types of
Concretelmplementors hold (n + 1).

7+4n+4nm+m
n+m+nm+2

For the Client class, SIZE1=10. For the Abstraction class,
SIZE1 =7. For the (n) classes that represent RefinedAbstraction,
SIZE1 = 4. For the (nm) classes that represent the combinations
between types of RefinedAbstractions and types of Concretelmple-
mentors, SIZE1 = 5. For the (m) classes that represent Concretelm-
plementors, SIZE1 =n + 3.

NOMbridge(lss) =

17 +4n +6nm +3m
n+m+nm+2

For the Client class, SIZE2 =3. For the Abstraction class,
SIZE2 = 6. For the (n) classes that represent RefinedAbstractions,
SIZE2 = 4. For the (nm) classes that represent the combinations
between types of RefinedAbstractions and types of Concretelmple-
mentors, SIZE2 = 4. For the (m) classes that represent Concrete-
Implenters, SIZE2 =n + 2.

SIZE1 bridge(lss) =

9+4n+5nm+2m
n+m+nm-+2

SIZEzbridge(lss) =

4.4.2. Open source solution
For classes Client, Abstraction DIT = 0. For the n classes that rep-

resent RefinedAbstractions DIT = 1.
n
DITbrigge(oss) = ni2

For the Abstraction class NOC =n. For all the other classes,
NOC =0.

338 A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

n

NOCyrigge(oss) =)

The Client class sends four messages to the Abstraction class
(MPC = 4). For the Abstraction class MPC = 0. The (n) RefinedAb-
stractions send one message to the Abstraction class (MPC = 1).

n+4

MPCbridge(OSS) = m

The Client class invokes two local methods and four remote
methods (RFC = 6). The Abstraction class has five local methods
(RFC=5). The (n) RefinedAbstractions have three local methods
and call one remote method (RFC = 4).

11+4n
n+2

RFCbridge(OSS) =

For the Client class, LCOM =0 — 1 = 0. For the Abstraction class,
LCOM =8 — 2 =6. For the (n) RefinedAbstractions LCOM is not
defined.

LCOMypyigge(oss) = 3
For the Client class, DAC = 1. For all the other classes, DAC = 0.

1

DACbridge(OSS) = m

For any method that does not involve any for, if, case, while, etc.,
statements CCmethod = 1. For methods that employ only one for
statement CCmethod =2. For the Client class, CCClient =3. For
the Abstraction class, CCAbstraction = m + 4. For the n RefinedAb-

stractions, CCRefinedAbstraction =m + 2.
2n+nm+m-+7
WMPCyrigge(oss) = N Y

The Client class holds two public methods; Administrator holds
five and the (n) RefinedAbstractions hold 3.
7+ 3n
n+2

For the Client class, SIZE1=10. For the Abstraction class,
SIZE1 = 14 + m. For the (n) RefinedAbstractions, SIZE1 =4 + m.

NOMbridge(OSS) =

24+ m+4n-+nm
n+2

For the Client class, SIZE2=3. For the Abstraction class,
SIZE2 = 9. For the (n) RefinedAbstractions, SIZE2 = 3.

12+3n
n+2

SIZE1 bridge(0SS) =

SIZE2prigge(oss) =

4.4.3. Design pattern solution

For classes Client, Abstraction and Implementor DIT = 0. For the
n RefinedAbstractions and for the m Concretelmplementors
DIT=1.

n+m

DITbridge(dPS) = m

For the Abstraction class NOC=n. For the Implementor,
NOC=m.

n+m

NOCoridgeps) = 1013

The Client class sends four messages to the Abstraction class
(MPC = 4). The Abstraction class sends one message to the Imple-
mentor class (MPC = 1). For the Implementor class, MPC = 0. The
(n) RefinedAbstractions send one message to the Abstraction class
and one to the Implementor class (MPC = 2). The (m) Concretelm-
plementors send one message to the Implementor class (MPC = 1).

5+2n+m

MPCpriage(aps) = n+m+3

The Client class invokes two local methods and four remote
methods (RFC=6). The Abstraction class has six local methods
and one remote method (RFC = 7). The Implementor class has five
local methods (RFC = 5). The (n) RefinedAbstractions have three lo-
cal methods and call two remote methods (RFC = 5). The (m) Con-
cretelmplementors have five local methods and call one remote
method (RFC = 6).

18 +5n + 6m
n+m+3
For the Client class, LCOM =0 — 1 = 0. For the Abstraction class,
LCOM =13 — 2 = 11. For the (n) RefinedAbstraction and the Imple-
mentor class, LCOM is not defined. For the (m) Concretelmplemen-
tors LCOM = 0.

RFCbridge(dps) =

11
m+2

For the Client class, DAC = 1. For the Abstraction class, DAC = 1.
For all the other classes, DAC = 0.

2
n+m+3

LCOMbridge(dps) =

DACbridge(dps) =

For any method that does not involve any for, if, case, while, etc.,
statements CCmethod = 1. For methods that employ only one for
statement CCmethod =2. For the Client class, CCClient =3. For
the Abstraction class, CCAbstraction = 6. For the Implementor class,
CCImplementer = m + 2. For the n RefinedAbstractions, CCRefined-
Abstraction = 3. For the m Concretelmplementors, CCConcretelm-
plementer = m + 2.

11 +3m+3n+ m?
n+m+3
The Client class holds two public methods; Abstraction holds 6,

Implementor holds (n +2), the (n) RefinedAbstractions hold three
and the (m) Concretelmplementors hold (n + 2).

WM PCbridge(dps) =

4n+10+nm+2m
n+m+3

NOMbridge(dps) =

For the Client class, SIZE1=10. For the Abstraction class,
SIZE1 =9. For the Implementor class, SIZE1 =m+ 2. For the (n)
RefinedAbstractions, SIZE1 = 3. For the (m) Concretelmplementors,
SIZE1 =m + 4.

21 +m+3n+m(m+4)
n+m+3

SIZElbridge(dPS) =

For the Client class, SIZE2 =3. For the Abstraction class,
SIZE2 = 8. For the Implementor class, SIZE2 =m + 2. For the (n)
RefinedAbstractions, SIZE2 = 3. For the (m) Concretelmplementors,
SIZE2 =m + 3.

13+ m+3n+m(m+3)
n+m-+3

SIZE2piidge(dps) =

In Table 2, we summarize the metrics scores for each solution,
whereas in Table 3, we summarize the identified cut-off points
where a design solution is getting better than another. The cut-
off points are calculated by subtracting the function of solution
S2 from the function of solution S1. The extracted formula is com-
pared to zero, in (n) and (m) ranges that the value of the function is
less than zero S2 has a higher metric score than S1.

5. Discussion

This section discusses our analytical methodology and the
findings of our work concerning the research questions stated in

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346 339

Table 2
Maintainability predictor scores for bridge design pattern and design alternatives.
Metric LSS 0SS DPS
n+2nm A n+m
DIT n+m-+nm+2 n+2 n+m+3
n4nm _n_ n+m
NoC n+m-+nm+2 n+2 n+m+3
MPC 4+3nm+n n+4 5+2n+m
n+m-+nm+2 n+2 n+m+3
RFC 11+5n+7nm+m 11+4n 18+5n+6m
n+m+nm-+2 n+2 n+m+3
LCOM _nm+8 3 11
m-+nm-+2 m+2
DAC 1+nm _1_ 2
n+m-+nm+2 n+2 n+m+3
WMPC 8+4n+dnm+m 2n-+nm-+m+7 11+3m+3n+m?
n+m+nm+2 n+2 Tontm+3
NOM 7+4ntdnmim 7+3n 4n+104nm+2m
n+m-nm-+2 n+2 n+m+3
SIZE1 17+4n+6nm+3m 244+m+i4ninm 21+m+3n+m(m+4)
n+m-+nm+2 n+2 n+m+3
SIZE2 9+4n+5nm+2m 12+3n 13+m+3n+m(m+3)
n+m-+nm-+2 n+2 n+m+3

Table 3
Maintainability cut-off points.

DITpps < DITggs < DIT;ss
DIToss < DITpps < DIT;ss
NOCgss < NOCyss < NOCpps
NOCgss < NOCpps < NOCjss

vn > 3,vm <}
(n=2,Yvm > 2) || (Vn>3,Vm<})
vn=2,Vvm>m
vn=2,vm<m

NOCpps < NOCpss < NOCyss vn >3,vm<j

NOCpss < NOCpps < NOCyss vn>3,Vm<5&&m<m

NOCoss < NOCiss < NOCpps vn >3, vn>m,
m=vnZ-—n+1+n-1

MPCpps < MPCpss < MPCisg vn >2,Vvm>1m?+2n-2)

MPCoss < MPCpps < MPCyss
RFCoss < RFCpps < RFCiss

vn >2,vm<in?+2n-2)
(n=4VYm <6)||(vn = 5,Vm > 2)

RFCoss < RFCiss < RFCpps
LCOM;ss < LCOMpps < LCOMoss
LCOMpps < LCOMss < LCOMgss

DACoss < DACpps < DACyss
DACpps < DACqss < DAC;ss

(Vn=3Vm=2)||(n=4,Vm >7)
vn = 2,Vm>m,
vn =2, Vm>my

=30+3n) | V3 [27n2426n+3
M= + 2V
vn=2,vm>n+1
vn>=2,Vvm>n+l1

WMPC;ss < WMPCopss vn,m > 2
WMPCopss > WMPCpps (n=2,2<m<12)||(Vn = 3, my <m<my)
WMPCgss < WMPCpps (n=2,vm > 14)||(vn > 3,
m<my)||(Vn > 3, m>m;)
WMPC; ss < WMPCpps 12 cut-off points

—n2+3n+4 _ \/n*4+6n°+13n24+8n+12
mi =" 2

_ n2+3n+4 , V/n*+6n3+13n2+8n+12
my="—3"+ 2

(vn=3,Vvm = 2)|[(n=2,m=2)
n=2,vm >3

vnm > 2

vn =2 m>m

vn=2 m<m

4 cut-off points

m; = n1+32n—17 + \/rm
n=2,vm =2

vn>=3,vm =2

vn = 2,Vm>m

vn = 2,vm>=m

3 cut-off points

V34/3n2+16n+32
my = A4-n_ RN EAVE ke A

(2+n) (2+n)

NOMoss < NOMyss < NOMpps
NOM;ss < NOMoss < NOMpps
SIZE1,ss < SIZE1pss
SIZE10ss < SIZE1pps
SIZE10ss < SIZE1pps
SIZE1 s < SIZE1pps

SIZE2, 55 < SIZE20ss
SIZE2ss > SIZE20ss
SIZE2ss < SIZE2pps
SIZE20ss > SIZE2pps
SIZE2,ss > SIZE2pps

Section 4. The results that are presented in this paper can be used
in various ways. First of all, the mathematical formulas that have
been extracted can be used for goal driven decision making. Our
study suggests that if a designer is about to apply a pattern, he/
she should firstly estimate the number of classes that his system
will probably use, then should select the quality attributes that
he is most interested in and then select the most fitting design
according to the thresholds described in the paper, i.e. he can opt
for the design pattern solution or a personalized solution.

In order for the results of the research to have more practical ef-
fects and help practitioners that struggle with close deadlines, we
have created a decision support tool, called DesignPAD (DESIGN
Pattern ADvisor) that aids the developer to choose between the de-

sign pattern and the personalized design solution. At this point, the
tool provides assistance on decisions concerning the employment
of three patterns (Bridge, Factory and Visitor) and several quality
attributes. The input of the tool is the pattern under consideration,
the estimated system size (either a single number or a range of val-
ues) and the goals of the design team with respect to quality attri-
butes. The system based on the results of the study, suggests the
most fitting design according to the development team needs.
Thus, the tool simulates all the steps of the proposed methodology,
for the three patterns and the six alternative designs. Conse-
quently, the developer does not have to deal with complicated
mathematical formulas or inequality solving. The tool is available
on the web>. Screenshots of the tool can be found in Figs. 4-6. In
Fig. 4, we see the main screen of the tool where the user can select
the pattern he/she wants to investigate. In Fig. 5, the form from
where the user selects the metrics he/she is interested in and defines
the (n) and (m) for the system is presented. Finally, Fig. 6 depicts the
way the results are presented. The first table displays the average
metric score for each alternative in the given range of (n) and (m).
The second table counts how many times each design alternative
produces “best”, “medium” and “worse” results.

The results of applying the proposed methodology on three GoF
design patterns, are in accordance to the results of the controlled
experiments in [59,69], where the authors suggested that patterns
are not universally good or bad. Furthermore, an additional factor,
i.e. pattern size, other than developers’ prior experience with pat-
terns has been highlighted. The results suggested that certain pat-
tern instances (w.r.t. pattern size) cannot produce the best
solutions concerning several quality attributes independently of
the prior knowledge and expertise of the developer. Thus, even if
a pattern fits a certain design problem, the size of the pattern
should be taken into account, before applying the pattern.

Concerning the applicability of the methodology to the rest of
the design patterns, we believe that the proposed method can be
applied to the majority of the rest design patterns. One limitation
of the method is the existence of alternative design solutions to de-
sign patterns. If the design pattern under consideration has not
been linked to any design alternative, the method cannot be ap-
plied because there is no set of designs to compare. Another limi-
tation is the existence of axes of change other than “add methods
and attributes to any class that participates in the pattern”. For this
reason the method cannot be applied to patterns that do not in-
volve class hierarchies and client classes, e.g. Singleton. Further-
more, our method might not produce distinguishing results for
patterns that can be extended only by adding pattern clients, e.g.
Adapter and to patterns that do not seem to have significant effects
on software structural quality, e.g. Facade.

Additionally, the method can be applied to any set of metrics or
qualitative quality models. Similarly, the method can be applied to
any kind of pattern or microstructure, other than the GoF, under
the constraint that the pattern produces some kind of code that
can be quantitively evaluated. For example, the application of the
method is feasible on architectural patterns. In [44], the authors
evaluate the use of the Registry pattern, i.e. an architectural pat-
tern, by comparing it to a simple OO implementation and with
an AOP implementation. Since all design alternatives share some
common metric scores, our method can be used in order to formu-
late the metric scores during all systems’ extension.

5.1. Design patterns and maintainability

From the results of Table 2 and AUTH/SWENG/TR-2011-10-01,
it is clear that there is no universal answer to the question “Does

3 http://sweng.csd.auth.gr/~apamp/material/DesignPAD_v2.0.rar.

http://sweng.csd.auth.gr/

340

a design pattern produce more maintainable code than a simpler

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

7 DesignPAD B

DEsign Pattern ADvisor

The DesignPAD application is a desicion support tool that aims
athelping a developer to choase between the application of a
design paltemn and a simpler design solution, according to his

special needs.

Bridge
Abstract Factovy
Implementation Visitor

r
+Oy)

Fig. 4. DePAD - main screen.

! DesignPAD - Mertics Selection

Pattern Under Study: Bridge Select the type of calculations:

" Specific System

Refined Abstractions
[¥ Depth of Inheritance Tree (DIT) Concrete Implementors

¥ Number of Children (NOC)
I~ Reponse for Class (RFC)

Select the metrics that you are interested in:

¥ Message Parsing Coupling (MPC) (¢ Estimated System
[~ “Weighted Method per Class [WHMPC)
. Refined Abstractions
¥ Lack of Cohesion of Methods [LCOM) b
from 3 o8

[~ Data Abstraction Coupling (DAC)
¥ Mumber of Methods (NOM) Caoncrete Implementors
™ Lines of Code [SIZET)

[~ Number of Properties (SIZE2)

from I2 to

Select quality attributes that you are interested in:

[~ Flexibility

¥ Understandability
[~ Functionality
v Extendibility

[~ Effectiveness

Next >> << Back

Fig. 5. DePAD - input form.

solution?” According to the above results there are several factors important quality attributes.

that the designer has to consider, such as pattern size and the most

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

| DesignPAD - Results

341

Average Metric Scores

LSS PPS

DPS

DIT

NOC

MPC
LCOM
NOM
Reussbility

1,465
0,803
2243
1,068
3579
21693
14591
0,275

Understandakility
Estendibility

Frequencies of Ranking

0718
0718
1.282
3,000
34
5,370
-3.481
0,603

0,768
0,768
1.561

1.722
5,034
9,200
-B.278
0,765

LSS

FPS

DPS

Worse Medium Bast Worse

Medium

Best Worse Medium

DIT

NOC

MPC
LCOM
NOM
Reussbility

33
33
40

42
42

Understanda)

Estendibility

o o o o o o

33
27
40
42
i]

42
42
i]

o o o o o o o

Fig. 6. DePAD - results form.

In this section, we describe five scenarios, we present the
results of the DesignPAD tool and we discuss the results. The
scenarios are summarized in Table 4. The scenarios have been
created randomly and the five imaginary case studies aim at the
demonstration of the methodology. The results of applying our
methodology on the aforementioned scenarios are presented in
Table 5. As mentioned in the methodology, a solution is considered
better than the other two if achieves minimum values for the
majority of the predictor metrics.

From the results of the Table 5 we observe that in three cases
the pattern solution provides a more maintainable design, but
there are cases, e.g. scenario [a] and [b], where the pattern is not
the optimal solution.

Concluding, the results are in accordance with the controlled
experiments in [59,69], where the authors suggest that there is
no general answer about the effect of patterns on maintainability.
Moreover, our results agree with [38] concerning the decoupling
that Abstract Factory offers and additionally highlights the thresh-
olds that concern cohesion and message passing metrics. Further-
more, concerning the Bridge pattern, the results on inheritance
metrics that are described in [39] cannot be directly compared to
those of our study, because in [39] the author has extended the
system w.r.t. only one axis of change. However, both studies agree
that there are certain cut off points w.r.t. inheritance metrics. Fi-
nally, our study has identified further thresholds concerning eight
additional metrics than [39].

5.2. Design patterns and structural quality

This section of the paper discusses the findings of our study
concerning RQs, i.e. the effect of the bridge design pattern on
structural quality of a system [19,20]. The results of this case
study are presented in AUTH/SWENG/TR-2011-10-01. A graphical
overview of the results is presented in Figs. 7 and 8. Each graph
depicts three scatter plots in a 3D space. For each scatter plot, the
x-axis represents the n values, the z-axis the m values, whereas
the y-axis represents the corresponding metric score. Each scatter
plot represents one design solution. The range of the n and m
variables has been set to be [2,40], considering that hierarchies
of more than 40 subclasses have low probability to appear in real
projects. The results concerning the CF [15] variable are shown in
Fig. 7. Additionally, results on the LCOM metric are presented in
Fig. 8.

The mathematical statements that are presented in AUTH/
SWENG/TR-2011-10-01 can be used for comparing specific in-
stances of designs but they cannot answer questions such as,
“Which design produces higher cohesion between methods?” For
this reason a set of paired sample t-tests has been performed over
the abovementioned dataset. The paired-sample t-test will suggest
whether the mean value of the metric scores of one design is sta-
tistically significantly higher or lower than another’s. Table 6, pre-
sents the mean values of each metric score for all three design
solutions. In addition to that, Table 7 presents the statistical signif-

342 A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

Table 4
Case study scenarios.

Scenario Candidate Pattern size Metrics under
Id pattern (n,m) consideration
[a] Bridge (3,5) All predictors
[b] Bridge (3,5) SIZE1, RFC, DIT, DAC, LCOM
[c] Bridge (9,9) SIZE1, WMPC, NOC, DAC,
LCOM
[d] Abstract (2,6) All predictors
Factory?®
[e] Abstract (7,2) NOM, SIZE2, RFC
Factory

2 From the definition of AbstractFactory it becomes clear that the system has two
major axes of change, i.e. new types of concrete Products and new types of actions.
In the case of the pattern (n) represents the number of concrete products (Con-
creteProduct1, ConcreteProduct2,....) and (m) represents the subcategories of each
ConcreteProduct (ConcreteProduct11, ConcreteProduct12,...). In the literature
solution [63] (m) corresponds to the number of doAction methods and (n) is rep-
resented by the cascaded if statement within each doAction method. Concerning
the open source solution, (n) represents the number of concrete products and (m)
represents the number of doAction methods. For more details see AUTH/SWENG/
TR-2011-10-01.

icance between the differences in the mean metric scores of the
simpler solutions and the design patterns.

As it is observed in Table 7, all significance values equal to
0.000. This fact suggests that the ranking of designs with respect
to each metric, as provided in Table 6 is statistically significant.
Thus, according to coupling and cohesion, the pattern solution is
more probable to produce better results. Concerning complexity,
the literature solution provides the best results, closely followed
by the pattern solution. With respect to inheritance and size, the
open source design alternative is suggested as the best possible
solution. Additionally, it is observed that the pattern design is
ranked either first or second among the three designs; moreover
in two out of three cases, where it lags compared to another design,
it is quite close to the best value.

5.3. Design patterns and design quality

In AUTH/SWENG/TR-2011-10-01 we present several inequali-
ties that suggest which of the three designs under study (i.e. Ab-
stract Factory, Visitor and Bridge) is more beneficial w.r.t. each
quality attribute. In this section we attempt to interpret and dis-
cuss why this design is better, and what this fact may imply. Con-
cerning size (DSC metric), in two out of three patterns the
literature simple solution produces the smallest design, with re-
spect to number of classes. This happens because in these designs,
several responsibilities are merged in one class, rather than decom-
posing them to several classes. Of course, such decisions have sev-
eral trade-offs concerning cohesion and complexity attributes.

0,15 4

0,10 4

Fig. 7. Graphical representation of the CF scores of the three designs.

Similarly, the low number of classes that is employed in LSS has
effect on hierarchies (NOH metric) and abstraction (ANA metric) of
the design. On the contrary, we observe that DPS always offers the
system the highest amount of hierarchies, which is expected to
lead to enhanced extendibility. The encapsulation attribute (DAM
metric) is equal in every design since all solutions follow the basic
rule of object-oriented programming which suggests that every
attribute of a class should be declared as private or protected.

With respect to the cohesion (CAM metric) of the systems, we
observe that LSS are more prone to lack of cohesion, since they
never produce a “best” design in this field. On the contrary, profes-
sional programmers and design patterns seem to spread the func-
tionality of the system among the classes, which leads to better
responsibility assignment and thus better cohesion among classes.

Similarly, concerning coupling (DCC metric and MOA metric)
LSS appear to lag. The limited use of inheritance in LSS design leads
to an increase in the ratio of the use of stronger associations, such
as aggregation or composition. Considering PPS and DPS, the re-
sults appear divided, with some cut-off points where one solution
becomes better than the other.

Additionally, we would expect that DPS would produce “best”
results concerning inheritance for the majority of the patterns,
but it is observed that the results are divided. A possible explana-
tion is that patterns make extensive use of pure virtual methods,
consequently they do not inherit many methods from their
super-classes but they override them. However, when a designer
chooses to employ an Abstract Factory rather than the simple solu-
tion the higher possible gain from inheritance use is benefited.

Table 5

Case study results.
Metric [a] [b] [c] [d] [e]

LSS 0SS DPS LSS 0SS DPS LSS 0SS DPS LSS 0SS DPS LSS 0SS DPS

DIT 1320 0600 0727 1320 0600 0727 - - - 0000 0750 1391 - - -
NOC 0720 0600 0727 - - - 0878 0818 0800 0000 0750 0870 - - -
RFC 5440 4600 5727 5440 4600 5727 - - - 3500 3125 1913 11.00 9500 2654
MPC 2080 1400 1455 - - - - - - 1000 1000 0478 - - -
LCOM 1045 3000 1571 1045 3000 1571 1094 3000 2200 1000 1000 0000 - - -
WMPC 3400 6600 5455 - - - 3780 5000 3733 7500 2750 1652 - - -
DAC 0640 0200 0182 0640 0200 0182 0683 0091 0133 0500 0125 0087 - - -
NOM 3360 3200 4273 - - - - - - 2500 2125 1435 7500 7250 2000
SIZE1 5360 11.20 6818 5360 11.20 6818 5463 8182 4600 8500 5375 4130 - - -
SIZE2 4240 4200 6091 - - - - - - 3000 2250 1522 8000 7500 2077
#of MINs 3 6 1 2 2 1 1 0 4 2 0 8 0 0 3

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346 343

0.40 4

030 -
x

M O lcoml

lcom2

020+ : - * lcom3

0104

20

% 40 0
m n

Fig. 8. Graphical representation of the LCOM scores of the three designs.

Table 6

Design solution metric mean value.
Metric 0SS LSS DPS
CF 0.158 0.078 0.038
WMPC 7.102 1.002 1.013
LCOM 0.350 0.309 0.098
DIT 1.872 2.781 1.920
NOC 23.000 485.00 45.000

Table 7

Object-oriented metrics considered.
Pair Mean difference Sig
CFoss—CFaps 0.0120 0.000
CFiss~CFaps 0.0040 0.000
CFoss—CFiss 0.0080 0.000
DIToss=DITqps —0.0483 0.000
DITjss~DITqps 0.8608 0.000
DIT,ss-DIT}ss ~0.9091 0.000
LCOM,5s-LCOMgps 0.2516 0.000
LCOMss~LCOMps 0.2111 0.000
LCOMss-LCOMss 0.0405 0.000
NOCoss—NOCps —22.0000 0.000
NOCi5s—NOCps 440.0000 0.000
NOC,ss—-NOCyss —462.0000 0.000
WMPCo55-WMPCyps 6.0886 0.000
WMPC,5s~WMPCgps —0.0107 0.000
WMPC,ss—WMPCigq 6.0933 0.000

Furthermore, concerning polymorphism (NOP metric) the LSS
design produces the worst results due to the lack of inheritance.
This fact obliged the developers to implement the dynamic behav-
ior that is suggested by the requirements, through “cascaded if”
and “switch” statements which increase the complexity of the
systems.

Finally, professional programmers seem to use the lowest
amount of methods (CIS metric), which leads to a small interface
size and low complexity (NOM metric). On the contrary, design
patterns and LSS employ larger class interfaces, which enhance
messaging between classes, but as a side effect the complexity of
the design increases.

Next, we describe six design scenarios, we present the results of
the DesignPAD tool and we discuss them. The scenarios are sum-
marized in Table 8. The scenarios have been created randomly
and the six imaginary case studies aim at the demonstration of

Table 8
Case study scenarios.

Scenario Candidate Pattern size Attribute under

Id pattern (n,m) consideration

[a] Bridge (3,5) All Attributes

[b] Bridge (5,2) Flexibility
Extendibility

[c] Visitor® (9,9) Understandablity
Extendibility
Flexibility

[d] Visitor (5,8) Effectiveness
Reusability
Functionality

le] Abstract Factory (2,6) All Attributes

[f] Abstract Factory (7,2) Understandablity

Extendibility
Flexibility

@ Similarly to the other examples Visitor pattern has two major axes of change,
i.e. new visitors and new concrete elements. In the case of the pattern and of the
open-source solution (n) represents the number of concrete elements and (m)
represents the number of concrete visitors. In the literature solution [18] (m) cor-
responds to the number of visitorCall methods and (n) represents the number of
concrete elements. For more details see AUTH/SWENG/TR-2011-10-01.

the methodology. The results of applying our methodology on
the aforementioned scenarios are presented in Table 9. A solution
is considered better than the other two if it achieves maximum val-
ues for the majority of the design quality attributes.

From the results of Table 9 we observe that in two cases, i.e. [b]
and [e] the pattern solution provides the design of best quality.
Additionally, in cases [a] and [c], the pattern also leads the ranking
of the designs, but this result is marginal. In case [f] all solutions
are considered of equal quality. Finally, in scenario [d] we observe
that the LSS solution produces a marginally better result than the
other designs. In the cases when all solutions produce an equal
count of best attributes, or one solution is marginally better than
the others, the developer should consider the trade-offs that every
solution offers.

Concluding, the results are in accordance with the controlled
experiments in [59,69], where the authors suggest that patterns
are not universally good or bad. However, we observe that the
use of a pattern is most commonly producing the more extendible
design. This means that design pattern solutions should be pre-
ferred for systems that are intended to be heavily reused and/or
maintained. This is definitely an advantage of design patterns. On
the other hand, in every case considered the pattern has never
been suggested to be the most understandable solution. The results
on other design attributes are divided.

6. Threats to validity

This section of the paper discusses possible threats to the valid-
ity of the paper. Firstly, even though the analytical method em-
ployed in the metric comparison ensures the accuracy of the
procedure, the results on three design patterns cannot be general-
ized to the rest of the 23 design patterns that are described in [31],
or any other type of design pattern. Another threat to the validity
of the study is the fact that we have considered only two adhoc
solutions. We have tried to adopt alternative solutions that have
already been proposed and studied and that represent reasonable
design decisions; however, there may be room for further alterna-
tive solutions to be examined. Thus, the results cannot be general-
ized to any other alternative design solution. Additionally, the
study has not investigated possible interactions between patterns
as mentioned in [55]. It is expected that each pattern coupling type
demands different manipulation. Furthermore, the results of the
case studies cannot be generalized to pattern variations. In such

344 A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

Table 9
Case study results.
Attribute Solution [a] [b] [c] [d] [e] [f]
Reusability LSS 14.097 - - 29.162 4357 -
0SS 4135 - - 5.120 5.098 -
DPS 7.535 - - 10.610 12.036 -
Flexibility LSS 0.567 0.636 0.521 - 0.000 0.000
0SS 0.500 0.429 0.364 - 1.063 0.389
DPS 0.568 0.700 0.560 - 0.568 0.370
Understandability LSS -9.524 - —34.901 - —2.357 —1.056
0SS —2.687 - —-4.615 - —3.786 —3.630
DPS —5.154 - -9.401 - —8.346 —8.969
Functionality LSS 6.643 - - 13.323 2.005 -
0SS 2.176 - - 2.582 2.851 -
DPS 3.993 - - 5.335 5.937 -
Extendibility LSS 0.311 0.484 0.076 - —0.250 —0.250
0SS 0.550 0.607 0.659 - 0.875 0.444
DPS 0.661 0.805 0.807 - 0.984 0.847
Effectiveness LSS 0.737 - 0.676 0.300 -
0SS 0.680 - 0.714 0.800 -
DPS 0.755 - - 0.779 1.066 -
OF BEST ATTRIBUTES LSS 2 0 1 2 1 1
0SS 1 0 0 1 1
DPS 3 2 2 1 4 1

cases, the pattern implementation will usually not exactly follow
the diagram in the GoF book. Hence, the metric calculations will
change. Thus the cut-off points extracted from our analysis are
accurate only for patterns in their standard form. Moreover, the
assumption that using already existing classes in pattern instances
produces uniform effects on the quality of all design alternatives,
needs to be investigated. Finally, the user of the method should
also keep in mind the limitations of the set of metrics and/or qual-
ity models that he/she has used to associate design solutions to
quality characteristics.

7. Future work

Thus, future work includes a replication of the research with a
wider variety of patterns and design alternatives. Additionally,
we plan to replicate the methodology by using a quality model that
uses code metrics and extends the systems with more ways as de-
scribed in [56]. Moreover, future work plans also involve the con-
version of the DesignPAD tool into an Eclipse plug-in that will
automatically receive size information from an already imple-
mented pattern or alternative solution and confirm the correctness
of the design solution, or suggest the best solution, with respect to
specific design quality attributes. Furthermore we plan to expand
our tool so as to support additional design patterns. Finally, we
plan to investigate the possibility of employing the method of this
study in design patterns that have not been referenced to be imple-
mented with alternative solutions or others that aim at imple-
menting a functional requirement.

8. Conclusions

Concluding, this paper suggested a methodology for exploring
designs where design patterns have been implemented, through
the mathematical formulation of the relation between design pat-
tern characteristics and well known metrics, and the identification
of thresholds for which one design becomes more preferable than
another. This approach can assist goal oriented decision making,
since it is expected that every design problem demands a specific
solution, according to its special needs with respect to quality
and its expected size. Our methodology has been used for compar-

ing the quality of systems with and without patterns during their
maintenance. Thus, three examples that employ design patterns
have been developed, accompanied by alternative designs that
solve the same problem. All systems have been extended with re-
spect to their most common axes of change and eleven metric
scores have been calculated as functions of extended functionality.

The results of the analysis have identified eight cut-off points
concerning the Bridge pattern, three cut-off points concerning Ab-
stract Factory and 29 cut-off points concerning Visitor. In addition
to that, a tool that calculates the metric scores has been developed.
The tool has been used so as to investigate several random scenar-
ios that suggested that in most cases the pattern solution provides
the most extendible design. However, this conclusion cannot be
generalized for all patterns, quality attributes or pattern sizes.
Thus, multi-criteria decision analysis is necessary, which will
weight the importance of each quality attribute according to the
designer’s experience and provide a non-biased suggestion on
the most fitting design decision.

References

[1] P.S.C. Alencar, D.D. Cowan, J. Dong, C.J.P. de Lucena, A pattern-based approach
to structural design composition, 23rd International Computer Software and
Applications Conference (COMPSAC'99), IEEE, Phoenix, Arizona, 25-26 October
1999, pp. 160-165.

[2] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language - Town, Buildings,
Construction, Oxford University Press, New York, 1977.

[3] H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, N. Jussien, Instantiating and
detecting design patterns: putting bits and pieces together, International
Conference on Automated Software Engineering (ASE' 01), ACM, 26-29
November 2001, San Diego, USA, pp. 166-173.

[4] A. Ampatzoglou, A. Chatigeorgiou, “Evaluation of object-oriented design

patterns in game development”, Information and Software Technology,

Elsevier, 49 (5), pp. 445-454, 2007.

G. Antoniol, R. Fiutem, L. Cristoforetti, Using metrics toidentify design patterns

in object-oriented software, IEEE Proceedings of the 5th International

Symposium on Software Metrics (METRICS 1998), IEEE Computer Society,

20-21 March 1998, Maryland, USA, pp. 23-34.

F. Arcelli, S. Spinelli, Impact of refactoring on quality code evaluation,

Proceeding of the 4th workshop on Refactoring tools (WRT ‘11), ACM, 21-28

May 2011, Honolulu, Hawaii.

E.LAA. Baniassad, G.C. Murphy, C. Schwanninger, Design pattern rationale

graphs: linking design to source, Proceedings of the 25th International

Conference on Software Engineering, IEEE, Portland, Oregon, 03-10 May

2003, pp. 352-362.

[8] J. Bansiya, C. Davis, A hierarchical model for object-oriented design quality
assessment, IEEE Transaction on Software Engineering 28 (1) (2002) 4-17.

[5

[6

[7

A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346 345

[9] L Bayley, H. Zhu, Formal specification of the variants and behavioural features
of design patterns, Journal of Systems and Software 83 (2) (2010) 209-221.

[10] I Bayley, H. Zhu, Specifying behavioural features of design patterns in first
order logic, Proceedings of the 32nd Annual IEEE International Computer
Software and Applications Conference (COMPSAC ‘08), IEEE, Turku, Finland, 28
July-01 August 2008, pp. 203-210.

[11] J.M. Bieman, G. Straw, H. Wang, P.W. Munger, R.T. Alexander, Design patterns
and change proneness: an examination of five evolving systems, IEEE
Proceedings of the 9th International Software Metrics Symposium (METRICS
2003), IEEE Computer Society, 3-5 September 2003, Sydney, Australia, pp.40-
49.

[12] J.M. Bieman, D. Jain, HJ. Yang, OO design patterns, design structure, and
program changes: an industrial case study, IEEE Proceedings of the 17th
International Conference on Software Maintenance (ICSM 2001), 7-9
November 2001, Florence, Italy, pp. 580-589.

[13] A. Birukou, A survey of existing approaches for pattern search and selection,
Proceedings of the 2010 European Conference on Pattern Languages of
Patterns (EuroPLoP’ 10), ACM, 7-11 July 2010, Bavaria, Germany.

[14] A. Blewitt, A. Bundy, I. Stark, Automatic verification of design patterns in Java,
Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, ACM, Long Beach, CA, 07-11 November 2005, pp. 224-
232.

[15] F. Brito e Abreu, The MOOD metrics set, Proceedings of the 9th European
Conference on Object-Oriented Programming (ECOOP '95) - Workshop
Metrics, August. 1995.

[16] G.E. Boussaidi, H. Mili, A model driven framework for representing and
applying design patterns, 31st Annual International Computer Software and
Applications Conference (COMPSAC'07), IEEE, Beijing, China, 24-27 July 2007,
pp 97-100.

[17] M. Cartwright, M. Sheppard, An empirical investigation of an object-oriented
software system, IEEE Transaction on Software Engineering 26 (8) (2000) 786-
796.

[18] A. Chatzigeorgiou, Object-Oriented Design: UML, Principles, Patterns and
Heuristics, Klidarithmos, Greece, 2005.

[19] S.R. Chidamber, C.F. Kemmerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering 20 (6) (1994) 476-493.

[20] S.R. Chidamber, D.P. Darcy, C.F. Kemmerer, Managerial use of metrics for
object oriented software: an exploratory analysis, IEEE Transactions on
Software Engineering 24 (1) (1998) 629-639.

[21] M. Dagpinar, J.H. Jahnke, Predicting maintainability with object-oriented
metrics - an empirical comparison, IEEE Proceedings of the 10th Working
Conference on Reverse Engineering (WCRE'03), 13-17 November 2003,
Victoria, Canada, pp. 155-164.

[22] D.P. Darcy, C.F. Kemmerer, S.A. Slaughter, J.E. Tomayko, The structural
complexity of software: an experimental test, IEEE Transactions on Software
Engineering 31 (11) (2005) 982-994.

[23] M. Di Penta, L. Cerulo, Y.G. Gueheneuc, G. Antoniol, An empirical study of
relationships between design pattern roles and class change proneness, IEEE
Proceedings of the 24th International Conference on Software Maintenance
(ICSM 2008), 28 September-4 October 2008, Beijing, China, pp. 217-226.

[24] J. Dong, Adding pattern related information in structural and behavioural
diagrams, Information and Software Technology 46 (5) (2004) 293-300.

[25] J. Dong, S. Yang, K. Zhang, Visualizing design patterns in their applications and
compositions, IEEE Transactions on Software Engineering 33 (7) (2007) 433-
453,

[26]]. Deng, E. Kemp, E.G. Todd, Managing Ul pattern collections, Proceedings of
the 6th ACM SIGCHI New Zealand Chapter’s International Conference on
Computer-Human Interaction: Making CHI Natural (CHINZ ‘05), ACM,
Auckland, New Zealand, pp. 31-38.

[27] A.H. Eden, A. Yehudai,]. Gil, Precise specification on automatic application of
design patterns, Proceedings of the 12th International Conference on
Automated Software Engineering, ACM, Lake Tahoe, CA, 02-05 November
1997, pp. 143.

[28] E. Eide, A. Reid, J. Regehr,]. Lepreau, Static and dynamic structure in design
patterns, Proceedings of the 24th International Conference on Software
Engineering (ICSE'02), IEEE, Orlando, Florida, 19-25 May 2002, pp. 208-218.

[29] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley
Professional, 2002.

[30] R.B. France, D.K. Kim, S. Ghosh, E. Song, A UML-based pattern specification
technique, IEEE Transactions on Software Engineering 30 (3) (2004) 193-206.

[31] E. Gamma, R. Helms, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, Reading,
MA, 1995.

[32] Y. G. Gueheneuc, H. Saharaoui, F. Zaidi, Fingerprinting design patterns, IEEE
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE
2004), 8-12 November 2004, Delft, Netherlands, pp. 172-181.

[33] Y.G. Gueheneuc,].Y. Guyomar’h, H. Saharaoui, Improving design pattern
identification: a new approach and an exploratory study, Software Quality
Journal 18 (1) (2010) 145-174.

[34] P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro,].L. Ferreira, C. Bento, Using
CBR for automation of software design patterns, 6th European Conference on
Advances in Case-Based Reasoning, Springer, Aberdeen, Scotland, pp. 534-548.

[35] G. Shu-Hang, L. Yu-Qing,]. Mao-Zhong, G. Jing, L. Hong-Juan, A requirement
analysis pattern selection method for e-business project situation, IEEE
International Conference on E-Business Engineering (ICEBE'07), IEEE, 24-26
October 2007, pp. 347-350.

[36] B. Henderson-Sellers, L. Constantine, I. Graham, Coupling, cohesion: towards a
valid metrics suite for object-oriented analysis and design, Object-Oriented
Systems 3 (3) (2002) 143-158.

[37] N.L. Hsueh, J.Y. Kuo, C.C. Lin, Object-oriented design: a goal driven and pattern
based approach, Software and Systems Modeling 8 (1) (2009) 67-84.

[38] N.L. Hsueh, P.H. Chu, W. Chu, A quantitative approach for evaluating the
quality of design patterns, Journal of Systems and Software 81 (8) (2008)
1430-1439.

[39] B. Huston, The effects of design pattern application on metric scores, Journal of
Systems and Software 58 (2001) 261-269.

[40] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, A quantitative evaluation of
maintainability enhancement by refactoring, International Conference on
Software Maintenance (ICSM'02), 3-6 Octomber 2002, Montreal, Canada, pp.
576-585.

[41] F. Khomh, Y.G. Gueheneuc, Do design patterns impact software quality
positively?, IEEE Proceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMR 2008), 1-4 April 2008, Athens, Greece,
pp.274-278.

[42] F. Khomh, Y.G. Gueheneuc, G. Antoniol, Playing roles in design patterns: an
empirical descriptive and analytic study, IEEE Proceedings of the 25th
International Conference on Software Maintenance (ICSM 2009), 20-26
September 2009, Edmonton, Alberta, Canada, pp.83-92.

[43] D.K. Kim, R. France, S. Ghosh, E. Song, A role-based metamodeling approach to
specifying design patterns, Proceedings of the 27th Annual International
Conference on Computer Software and Applications, IEEE, Dallas, Texas, 03-06
November 2003, pp. 452.

[44] K. Kouskouras, A. Chatzigeorgiou, G. Stephanides, Facilitating software
extension with design patterns and Aspect-Oriented Programming, Journal
of Systems and Software 81 (10) (2008) 1725-1737.

[45] D.C. Kung, H. Bhambhani, R. Shah, G. Pancholi, An expert system for suggesting
design patterns: a methodology and a prototype, Series in Engineering and
Computer Science: Software Engineering with Computational Intelligence,
Kluwer International, 2003.

[46] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice, Springer-Verlag,
Berlin, Germany, 2006.

[47] W.Li, S. Henry, Object-oriented metrics that predict maintainability, Journal of
Systems and Software 23 (2) (1993) 111-122.

[48] M. Lorenz, J. Kidd, Object-Oriented Software Metrics, Prentice Hall, New Jersey,
USA, 2004.

[49] J.K.H. Mak, C.S.T. Choy, D.P.K. Lun, Precise modeling of design patterns in UML,
Proceedings of the 26th International Conference on Software Engineering
(ICSE’04), IEEE, Edinburgh, Scotland, 23-28 May 2004, pp. 252-261.

[50] R.C. Martin, Agile Software Development: Principles, Patterns and Practices,
Prentice Hall, Upper Saddle River, NJ, 2003.

[51] T. Mens, T. Tourwe, A declarative evolution framework for object-oriented
design patterns, Proceedings of the IEEE International Conference on Software
Maintenance (ICSM'01), IEEE, Florence, Italy, 07-09 November 2003, pp. 570.

[52] T. Mikkonen, Formalizing design patterns, Proceedings of the 20th
International Conference on Software Engineering (ICSE'98), IEEE, Kyoto,
Japan, 19-25 April 1998, pp. 115-124.

[53] T. Muraki, M. Saeki, Metrics for applying GOF design patterns in refactoring
processes, ACM Proceedings of the 4th International Workshop on Principles
of Software Evolution (IWPSE’ 2001), 10-11 September 2001, Vienna, Austria,
pp. 27-36.

[54] T. McCabe, A complexity measure, IEEE Transactions on Software Engineering
2 (4) (1976) 308-320.

[55] W. McNatt, J. Bieman, Coupling of design patterns: common practices and
their benefits, IEEE Proceedings of the 25th Annual International Computer
Software and Applications Conference (COMPSAC 2001), 8-12 October 2001,
Chicago, USA, pp. 574-579.

[56] T.H. Ng, S.C. Cheung, W.K. Chan, Y.T. Yu, Do maintainers utilize deployed
design patterns effectively?, IEEE Proceedings of the 29th International
Conference on Software Engineering, IEEE Computer Society, 20-26 May
2007, Washington, USA, pp.168-177.

[57] B.C.d.S. Oliveira, M. Wang,]. Gibbons, The visitor pattern as a reusable,
generic, type-safe component, Proceedings of the 23rd ACM SIGPLAN
Conference on Object-oriented Programming Systems Languages and
Applications (OOPSLA 2008), ACM, Nashville, Tennessee, 19-23 October
2008, pp. 439-456.

[58] N. Pettersson, Measuring precision for static and dynamic design pattern
recognition as a function of coverage, Proceedings of the third international
workshop on Dynamic analysis (ICSE'05), IEEE, St. Louis, Missouri, 17 May
2005, pp. 1-7.

[59] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, L.G. Votta, A controlled experiment
in maintenance comparing design patterns to simpler solutions, IEEE
Transactions on Software Engineering 27 (12) (2001) 1134-1144.

[60] M. Riaz, E. Mendes, E. Tempero, A systematic review on software
maintainability prediction and metrics, 3rd International Symposium on
Empirical Software Engineering and Measurement (ESEM’'09), 15-16
Octomber 2009, Lake Buena Vista, Florida, USA, pp. 367-377.

[61] L. Rising, The Pattern Almanac, Addison-Wesley Longman Publishing, 2000.

[62] L. Samoladas, I. Stamelos, L. Angelis, A. Oikonomou, Open source software
development should strive for even greater code maintainability,
Communications ACM 47 (10) (2004) 83-87.

[63] A. Shalloway, J.R. Trott, Design Patterns Explained: A New Perspective on
Object-oriented Design, Addison-Wesley Professional, Reading, MA, 2005.

346 A. Ampatzoglou et al./Information and Software Technology 54 (2012) 331-346

[64] N.Soundarajan,].O. Hallstrom, Responsibilities and rewards: specifying design
patterns, Proceedings of the 26th International Conference on Software
Engineering (ICSE’04), IEEE, Edinburgh, UK, 23-28 May 2004, pp. 666-675.

[65] T. Taibi, D.C.L. Ngo, Formal specification of design pattern combination using
BPSL, Information and Software Technology 45 (3) (2003) 157-170.

[66] N. Tsantalis, A. Chatzigeorgiou, G. Stephanidis, I. Deligiannis, Probabilistic
evaluation of object-oriented systems, IEEE Proceedings of the 10th
International Symposium on Software Metrics (METRICS'04), 11-17
September 2004, Chicago, Illinois, USA, pp. 26-33.

[67] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring
opportunities, Transactions on Software Engineering 35 (3) (2009) 347-367.

[68] A. Van Koten, A.R. Gray, An application of bayesian network for predicting
object-oriented software maintainability, Information and Software
Technology 48 (1) (2006) 59-67.

[69] M. Vokac, W. Tichy, D.LK. Sjgberg, E. Arisholm, M. Aldrin, A controlled
experiment comparing the maintainability of programs designed with and
without design patterns - a replication in a real programming environment,
Empirical Software Engineering 9 (2003) 149-195.

[70] M. Weiss, A. Birukou, Building a pattern repository: benefitting from the open,
lightweight, and participative nature of wikis, International Symposium on
Wikis (WikiSym), ACM, 21-23 October 2007, Montreal, Canada.

[71] M. Weiss, H. Mouratidis, Selecting security patterns that fulfill security
requirements, 16th International Conference on Requirements Engineering
(RE’08), IEEE, 8-12 September 2008, Barcelona, Spain, pp 169-172.

[72] L. Welicki,].M.C. Lovelle, LJ. Aguilar, Patterns meta-specification and
cataloging: towards a more dynamic patterns life cycle, International
Workshop on Software Patterns, IEEE, 23-27 July 2007, Beijing, China.

[73] T. Winn, P. Calder, Is this a pattern?, IEEE Software 19 (1) (2002) 59-66

[74] Wolfram Mathematica, Reduce-Wolfram Mathematica 7 Documentation.
<http://reference.wolfram.com/mathematica/ref/Reduce.html> 2010.

[75] P. Wendorff, Assessment of design patterns during software reengineering:
lessons learned from a large professional project, IEEE Proceedings of the 5th
European Conference on Software Maintenance and Reengineering (CSMR
2001), 14-16 March 2001, Lisbon, Portugal, pp.77-84.

[76] U. Zdun, P. Alexiou, C. Hentrich, S. Dustdar, Architecting as decision making
with patterns and primitives, Proceedings of the 3rd International Workshop
on Sharing and Reusing Architectural Knowledge (ICSE'08), IEEE, Leipzig,
Germany, 10-18 May 2008, pp. 11-18.

[77] U. Zdun, Systematic pattern selection using pattern language grammars and
design space analysis, Software: Practice & Experience 37 (9) (2007) 983-
1016.

[78] Y. Zhou, H. Leung, Predicting object-oriented software maintainability using
multivariate adaptive regression splines, Journal of Systems and Software 80
(2007) 1349-1361.

[79] M. Ziane, A transformational viewpoint on design patterns, Proceedings of the
15th IEEE International Conference on Automated Software Engineering, ACM,
Grenoble, France, 11-15 September 2000, pp. 273.

[80] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann, Combining pattern
languages and reusable architectural decision models into a comprehensive
and comprehensible design method, Proceedings of the 7th Working IEEE/IFIP
Conference on Software Architecture (WICSA 2008), IEEE, 18-22 February
2008, Vancouver, Canada.

http://reference.wolfram.com/mathematica/ref/Reduce.html

	A methodology to assess the impact of design patterns on software quality
	1 Introduction
	2 Related work
	2.1 Metrics as indicators of pattern existence
	2.2 Qualitative evaluation of design patterns
	2.3 Quantitative evaluation of design patterns
	2.4 Design patterns and change proneness
	2.5 Controlled experiments on design patterns and maintainability
	2.6 Design pattern formalization
	2.7 Systematic design pattern selection
	2.8 Metrics as measurements of design structures

	3 Methodology
	4 Methodology illustration
	4.1 Bridge design pattern
	4.2 Design solutions
	4.3 Metric suite for assessing maintainability
	4.4 Results
	4.4.1 Literature solution
	4.4.2 Open source solution
	4.4.3 Design pattern solution

	5 Discussion
	5.1 Design patterns and maintainability
	5.2 Design patterns and structural quality
	5.3 Design patterns and design quality

	6 Threats to validity
	7 Future work
	8 Conclusions
	References

