A Methodology on Extracting Reusable Software
Candidate Components from Open Source Games

Apostolos Ampatzoglou
Department of Informatics
Aristotle University
Thessaloniki, Greece
apamp@csd.auth.gr

loannis Stamelos
Department of Informatics
Aristotle University
Thessaloniki, Greece

stamelos@csd.auth.qr

ABSTRACT

Component-Based Software Engineering (CBSE) focuses on the
development of reusable components in order to enable their reuse
in more systems, rather than only to be used to the original ones
for which they have been implemented in the first place (i.e.
development for reuse) and the development of new systems with
reusable components (i.e. development with reuse). This paper
aims at introducing a methodology for the extraction of candidate
reusable software components from open source games. The
extracted components have been empirically evaluated through a
case study. Additionally, the component candidates that have been
extracted are available for reuse through a web service.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Reusable Sofiware — domain
engineering, reusable libraries, reuse models

General Terms
Measurement, Design and Experimentation

Keywords

Component selection, class dependencies, metrics, case study

1. INTRODUCTION

In most countries video games are a prevalent entertainment form,
concerning their social and economic impact. Particularly,
according to Consumer Electronics Association [4] reports, the
worldwide revenue of the game industry increased from nearly
$11 billion in 2003 to nearly $50 billion in 2007. In addition to
that, according to the same data, playing games has outperformed
many other entertainment forms, like listening to music and
watching movies.

Additionally, according to [l and 11] computer game
development lifecycle is so intense that implementation phase is
in need of techniques that will shorten the product time to market,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MindTrek 2012, October 3-5°2012, Tampere, FINLAND.
Copyright 2012 ACM 978-1-4503-1637-8/12/10...$10.00.

93

Antonios Gkortzis
Department of Information Technology
Alexander Technology Educational Institute
Thessaloniki, Greece
gkortz@it.teithe.gr

Ignatios Deligiannis
Department of Information Technology
Alexander Technology Educational Institute
Thessaloniki, Greece

ignatios@it.teithe.qr

while minimizing the effort spent for debugging and testing
activities. In [6, 7 and 9] the authors propose innovative
architectures that enhance the reusability of games and game
engines. Such architectures produce more stable and extensible
software, increase interoperability, improve robustness and
scalability, minimize coupling between modules and shorten the
architecture learning curve. Finally, in [5 and 12] reuse
opportunities in game development are examined. However, the
way of extracting software components that can be used in game
development has not been considered in the game engineering
literature. Games can be large, complex software projects and
despite their individuality there are a lot of common concepts.
Thus, techniques that can aid developers through reuse
opportunities are worth exploring.

In software engineering, software components are typically
equivalent to software packages and classes [13]. In [2] the
authors suggest that software components can be extracted on the
basis of pattern instances [8] and compared the internal quality of
patterns with packages and classes. One drawback of the above
mentioned approaches is the fact that the set of classes that are
involved either in the package or the design pattern instances are
not compileable, i.e. there are dependencies to classes out of the
package or the pattern instance. In such cases, the reuser should
modify the code of the package or the pattern instance in order to
be adopted in the target system without compile errors. Further
problems are the understanding of the game code (program
comprehension) and the cost of component adaptation. Thus, the
minimization of external dependencies of the candidate
components is expected to reduce its adaptation cost.

In this paper, we propose a methodology for automatically
identifying well-formed subsets of Java classes from open source
games, further referenced as Component Candidates. Such sets of
classes might not be ready to use as components for black box
reuse, in the sense that they are not necessarily compilable and
their functionality has not been examined. However, the extracted
component candidates are considered fitting for white-box reuse
purposes, since they are expected to exhibit minimum external
dependencies, useful functionality and reusability. At this point it
is necessary to clarify that the paper deals neither with subsystem
identification nor with feature extraction, but only with the
identification of candidate components, which should be further
examined so as to discover their provided functionality and
semantic meaning.

The main idea of the methodology is to perform a dependency
analysis on a UML class diagram and extract component
candidates based on the class structural dependencies and make
them available for reuse by others. In order to evaluate the
Candidate Components that are extracted with the proposed
methodology, we applied it to fourteen (14) games, and the
extracted components have been evaluated through a case study.
The findings of the paper have been used in order to populate the
dataset of a web repository on components for game
development'. At this point, the web repository holds about 3
million component candidates, extracted from 135 open source
java games and 16.015 java classes.

2. METHODOLOGY

The proposed methodology aims at extracting the most easily
reusable sets of classes from a Java open source project, using
path-based strong components algorithms. The methodology is
applied to every class of the system and produces a set of
candidate components. The prerequisite for applying the
methodology is the creation of a graph that depicts the
dependencies among classes of a system. The graph is created by
a tool that has been created by the authors. In the graph each node
represents a class and each edge a relationship between the
classes. The direction of the arrow suggests which class is in need
of the other, in order to compile. An example of such a graph,
created from an existing open source game, namely Scotland
Yard?, is presented in Figure 1. The outcome of the methodology
will be the suggestion of sets of classes that are as independent as
possible and provide significant functionality to the rest of the
system.

gamePlax\Game

i1t|‘|18n

v
game.Abst:gctPlaVef gamesTransport ’
~ game.TableDialog

gameMapLabel

v : \, gameyaetective
game.Te;ﬁoam‘ === 4

gavﬁMove

gathe Link
game‘gugitive A

¥
game.PreviousMoves

gar\g.Node
Figure 1. Dependency Graph of Scotland Yard OSS Game
Next, for every class the following steps are performed:

Create a data structure where Candidate Components
are stored. The structure is a dynamical two dimensional
array. The number of rows defines the maximum
number of classes that can be included in a Candidate
Component. The number of columns represents the
count of possible Candidate Components that can be
used for any component size. Create the first

step 1.

! http://www.percerons.com, Patterns and Components Repository
Extracted from Open Source Software.

2 http://sourceforge.net/projects/scotland-yard/

94

Component Candidate, of size 1, for one class of the
system.

step 2. Identify the classes that the participants in the

Candidate Components are connected to.

Place the dependencies in a list sorted by their number
of external dependencies in a descending order.

step 3.

For every dependency in the list create an updated
Component Candidate and place it in the corresponding
position in the data structures.

step 4.

stepS. Return to step 2, for every Component Candidate
created in the previous step, according to the order that
they have been added in the data structure. The process
stops if the maximum number of components is reached

or if there are no external dependencies.

An example of how the methodology is applied is presented
below. Suppose the system of Figure 2 and the dependency graph
of Figure 3.

A wndar Ed. sl B
A 1>
A1l A2 Cc
A21
o>

o

Figure 2. Methodology Demonstration

A —»B
Ak
A1 A2
|
f |
v v
D A2 —— G

Figure 3. Methodology Demonstration Dependency Graph

Lets suppose that the starting class is A. The first step creates a
Candidate Component of size 1 that contains only the starting
class.

Table 1. Candidate Components (1* pass) —
Starting Class A

Size 1 A
Size 2

Since class A has only one dependency (class B), in second pass
there will be only one Candidate Component with size 2, that
consists of classes A and B.

Table 2. Candidate Components (2" pass) —
Starting Class A

A
AB

Size 1
Size 2

Classes A and B do not have any other dependencies. Thus, the
process of creating Candidate Components that start from class A,
is completed.

In order to have a better understanding on the steps executed in
every algorithm pass, we present an example on how algorithm
works if starting class is Al. Similarly to the previous case, pass
1, creates only one Component Candidate that contains only the
starting class, i.e. Al.

Table 3. Candidate Components (1% pass) —
Starting Class A1

Size 1 Al

Class Al has two dependencies A and D. Using these two classes
the algorithm will create two Candidate Components with size
two. First Candidate Component Al,D will be created because
class D has less external dependencies than class A.

Table 4. Candidate Components (2" pass) —
Starting Class A1

Size 1
Size 2

Al

Al,D AAl

The candidate component extraction algorithm is recursive and
traverses the dependency graph in a depth first manner. Thus, in
3" pass the starting node will be Al,D. This Candidate
Component has one external dependency, i.e. class A. Thus, the
first size 3 component that will be created is A,Al,D.

Table 5. Candidate Components (3™ pass) —

Starting Class Al
Size 1 Al
Size 2 Al,D AAl
Size 3 A,A1D

Candidate Component A,A1,D has one external dependency, class
B, and will create an additional Component Candidate of size 4 as
shown in Table 6.

Table 6. Candidate Components (4™ pass) —

Starting Class A1
Size 1 Al
Size 2 Al,D AAl
Size 3 A,A1,D
Size 4 A,ALB,D

Candidate Component A,A1,B,D has no external dependencies
and the algorithm will backtrack to a smaller size Candidate
Component that has not been checked, i.e. components of size 2,
A,Al. The corresponding component candidate has two external
dependencies, classes B and D. The new Candidate Components
of size 3 are A,A1,B and A,A1,D, with the former component not
to be added in the list, since it already exists. Thus the list after
pass 5 is presented in Table 7.

Table 7. Candidate Components (5™ pass) —

Starting Class Al
Size 1 Al
Size 2 Al1,D AAl
Size 3 A,A1,D AAL,B

Size 4 A/AL,B,D

From Table 7 and Figure 3 we can observe that there is no distinct
path beginning from class Al. Thus, the algorithm has identified
six Candidate Components for a reuser that wants to reuse class
Al, as shown in Table 8.

Table 8. Final Candidate Components — Starting Class Al

Component External Component
Candidate Dependencies Size
Al 2 1
Al A 2 2
Al1,D 1 2
Al,A,D 1 3
Al,A, B 1 3
Al,A B, D 0 4

After applying the method for all classes of Figure 2, the final set
of Candidate Components is created and presented in Table 9.

Table 9. Final Candidate Components — All Classes

Size 1 A Al A2 A21 B C
Size 2 AB A1,D AAL AA2 A2,A21 A21,C
Size 3 AALD AALB AA2B AA2,A21 AA21,C A2,A21,C
Size 4 AALBD AA2A21,B AA2A21,C AA21,BC

Size5 AA2A21B.C

AC

AB,C

95

3. CASE STUDY

In this section we evaluate the components that are retrieved with
the selected methodology. The validation method is a case study.
Case studies are fitting evaluation methods when a large dataset is
available and when the environment that the method is applied is
not controlled. The case study organization is similar to [2] where
the authors performed a case study to evaluate the reusability of
design patterns.

3.1 Case Study Plan

The aim of this case study is to investigate the quality
characteristics of the software components retrieved by applying
the proposed methodology, against components that are retrieved
based on software packages. The steps that have been followed
during case study execution are the following:

Define research questions

Build the dataset

Identify the method of comparison
Execute case study

Analyze and report the results

3.2 Define Research Questions

The research question of the paper can be described by the
following scenario: “A developer wants to implement a specific
requirement. He identifies a class that provides the main
functionality that he wants to implement, through keyword search.
Such keywords may be domain entity names (e.g. detective) and
player actions (e.g. ShortestDistance). Which classes should be
selected, modified and reused in the final project?” In our research
we investigated three alternatives for the reuser:

e Select a component based on the proposed methodology
[Alternative Al — Candidate Component].

o Select the package that the class belongs to [Alternative A2 -
Package].

e Select all packages to which any class of the proposed
component of Alternative Al belongs to [Alternative A3 -
PackageSet].

3.3 Build the Dataset

In our case study we performed the proposed methodology on
fourteen (14) open source games written in java. The projects
have been randomly mined from an open-source repository and
are therefore of different quality levels, in order for our results not
to be affected by the quality of the subjects. After applying the
methodology in all classes of the projects (2.803 classes), 577.319
component candidates have been proposed. In order to evaluate
the component candidates we created a twelve column dataset, for
each of the component candidates. The list of columns is
described below:

Size of Alternative Al

External Dependencies of Alternative Al
Functionality of Alternative Al
Reusability of Alternative Al

Size of Alternative A2

External Dependencies of Alternative A2
Functionality of Alternative A2
Reusability of Alternative A2

Size of Alternative A3

External Dependencies of Alternative A3
Functionality of Alternative A3
Reusability of Alternative A3

3.4 Identify the Method Comparison

In order to compare the three alternatives, we selected several
structural quality metrics, which have been used for assessing
size, independency (Efferent Coupling), functionality (Afferent
Coupling) and reusability of the components retrieved by each
class selection alternative. The selected metrics are described in
Table 10. We have preferred not to discuss the nature of the
measurements in more detail. The interested user can access their
definitions in the primary studies in which metrics have been
defined. The three alternatives have been compared based on
descriptive statistics, frequencies and charts.

Table 10. Metrics Used in Evaluation

Attribute Metric Definition
Size Number of Counts the number of classes
Classes that are involved in the
(NOC) component
Dependencies Fan Out Counts the number of classes
(FO) outside the component that
are essential for the
component to compile [10]
Functionality Weighted Ratio of the number of classes
Fan In (WFIl) outside the components that
use at least one class inside
the component, to the total
number of classes outside the
component [10]
Reusability Reusability Equation that calculates the

ease for a set of classes to be

(R)

96

transferred to another system.
Uses size, coupling, cohesion
and messaging metrics [3].

3.5 Results

In Table 11 we present the descriptive statistics for the case study
sample. As it is observed, the fourteen games considered had an
average size of about 340 classes. The average component size
that was extracted with Alternative Al is almost 20 classes that
have an average reusability index of about 5.4, the proposed set of
classes is used by about 34% of the remaining classes of the
system and in order to compile they need an average of 18 classes.
Alternative A2 created component candidates of about 68 classes
that have an average reusability index near 3.1. The proposed set
of classes is used by about 8% of the remaining classes and in
order to compile they need an average of about 20 classes.
Finally, concerning Alternative A3, the proposed set of classes
(about 165 classes) have an average reusability of about 3.6, they
are used by 24.8% of the remaining classes of the system and in
order to compile they need about 19 classes.

Table 11. Descriptive Statistics

N min max mean std. dev.
Project Size (NOC) 576803 13.000 590.000 340.520 179.880
Alternative A1 (NOC) 576803 1.000 40.000 20.310 11.190
Alternative A2 (NOC) 576803 1.000 323.000 68.300 99.654
Alternative A3 (NOC) 576803 1.000 576.000 166.540 127.843
Alternative Al (R) 576803 -16.460 177.794 5.476 4.426
Alternative A2 (R) 576803 - 1.937 35.162 3.090 2.590
Alternative A3 (R) 576803 - 1.937 35.162 3.672 1.700
Alternative Al (FO) 576803 0.000 119.000 18.370 20.667
Alternative A2 (FO) 576803 0.000 108.000 20.210 23.251
Alternative A3 (FO) 576803 0.000 250.000 19.040 25.586
Alternative A1 (WFI) 576802 0.000 1.000 0.376 0.172
Alternative A2 (WFI) 543514 0.000 0.500 0.083 0.100
Alternative A3 (WFI) 540218 0.000 0.857 0.248 0.195

The results of Table 11 provide an outline on the structural quality
characteristics of the class selection alternatives. However, so as
to investigate if the above results are uniform among all possible
candidate component sizes, we had to split the dataset and
perform further analysis.

In Figures 4 to 7 we present line charts that represent the average
number of classes, fan out, weighted fan in and reusability, for the
components created with the three component selection
alternatives. The x-axis represents the size of components,
whereas the y-axis of the graphs represents the value of the metric
score.

250.00
200.00
150.00
100.00

4

N - ————

0.00 4
12345678 910111213141516171819202122232425262728293031323334353637383940

~+Alternative A1 [NOC) -a-Alternative A2 (NOC) Alternative A3 (NOC)

Figure 4. Size of Component Candidate

25.00
2000 /= +n = ==
15.00
10.00
5.00
0.00

1234567 8910111213141516171819202122232425262728293031323334353637383940

—+—Alternative A1 (FO) -m-Alternative A2 (FO) ——Alternative A3 (FO)

Figure 5. Fan Out of Component Candidate

0.5000
0.4500
0.4000
0.3500
0.2000
0.2500
0.2000
0.1500
0.1000
0.0500
0.0000

12345678 910111213141516171819202122232425262728293031323334353637383940

——Alternative A1 (WFI) —=-Alternative A2 (WFI) - Alternative A3 (WFI)

Figure 6. Fan In of Component Candidate

7.0000
6.0000
5.0000
4.0000
3.0000
2.0000
1.0000
0.0000

12345678 910111213141516171819202122232425262728293031323334353637383940

—+—Alternative Al (R) -m-Alternative A2 (R) —+—Alternative A3 (R)

Figure 7. Reusability of Component Candidate

In Table 12 we present the percentage of cases when each class
selection alternative is the optimum selection strategy, w.r.t fan
out, weighted fan in and reusability. A graphical representation of
the same information taking in account the size of the component
retrieved by Alternative Al is presented in Figures 8 to 10. In the
line charts the x-axis represents the size of components, whereas
the y-axis of the graphs represents the count.

Table 12. Optimum selection Alternative

FanOut FanlIn Reusability
Alternative Al 37.8% 69.2% 64.2%
Alternative A2 13.7% 0.6% 15.3%
Alternative A3 30.3% 29.1% 13.7%
Tie 18.1% 1.1% 6.7%

The results suggest that in the majority of cases, Alternative Al
indicates the optimum set of classes that should be reused w.r.t all
metrics considered.

.30.0

60.0

200

12345678 910111213141516171819202122232425262728293031323334353637383940
—=Al -=A2 A3 —tie

Figure 8. Optimum Selection Alternative Frequencies
(Fan Out)

12345678 910111213141516171819202122232425262728293031323334353637383940

—-Al --A2 A3 b

Figure 9. Optimum Selection Alternative Frequencies (Fan In)

97

12345678 910111213141516171819202122232425262728293031323334353637383940

—-Al -=-A2 A3 ——tie

Figure 10. Optimum Selection Alternative Frequencies
(Reusability)

From the above figures we can observe that there are class set size
thresholds, where the proposed methodology retrieves the
optimum candidate components. Concerning FO, the proposed
methodology presents optimum results for components size less
than twenty nine (29) classes. Additionally, concerning FI and R,
the proposed methodology is the optimum solution for
components size more than three (3) classes. Thus, if the size of
the selected set of classes is between 3 and 29, the reuser should
prefer Alternative Alfor selecting the set of classes to be reused

4. PRACTICAL CONSIDERATIONS

In order for the results of this study to be available and easily
applied to practice we have registered the extracted components in
an existing component web repository. The search engines of the
repository enable the user to search for a specified component,
and filter the result set retrieved w.r.t. component size, external
dependencies, functionality and reusability. Some screenshots of
the repository are presented in Figures 11 and 12.

Next we will provide an illustrative example on how the results
can be used. Let a developer of a Risk game who wants to
implement the features related to the functionalities of Countries.
The developer uses the search engine of Percerons and sorts the
results w.r.t. size and external dependencies. The metric scores for
the selected component (Number of Classes: 6, External
Dependencies: 0, Functionality: 22, Reusability: 8.8283) are
better than the corresponding package, ie.
net.yura.domination.engine.core (Number of Classes: 7,
External Dependencies: 2, Functionality: 7, Reusability: 9.56).
Suppose that one developer wants to setup a Risk game with two
human players and one computer player, with their initial regional
settings.

The extracted component provides functional requirements such
as country and continent manipulation, i.e. defines boundary
regions, region capitals, military resources, and mission control.
The component is neither involved in the game mechanics of a
Risk game nor with the graphical representation of the world.
Thus, the reuser can use it with his own game mechanics, such as
offensive and defensive rules, and GUI. Additionally, the
component updates automatically the statistics that are related to
each player and the game world. The source code of a sample
component execution scenario is presented in Figure 13. The class
diagram of the proposed component is presented in Figure 14.

5. CONCLUSIONS

This paper introduces a methodology that can be used for
extracting candidate software components from open source
games. The component extraction method is based on class
dependencies, in order to minimize the number of external
dependencies of the candidate component. The methodology has
been evaluated by comparing 577.319 candidate components with
corresponding software packages. In the majority of the cases, the
components extracted with the proposed methodology seem to
provide minimum external dependencies, maximum functionality
and maximum reusability. In order for the extracted components
to be helpful for software developers, they have been recorded in

an online web repository, which makes them available, through a
web search interface.

ACKNOWLEDGMENTS

This research work is co-founded by the European Social
Fund and National Resources, ESPA 2007-2013, EDULLL,
“Archimedes III” program.

6. REFERENCES

[11 A. Ampatzoglou, I. Stamelos, “Software engineering
research for computer games: A systematic review”,
Information and Sofiware Technology, Elsevier, 52 (9), pp.
888-901 (2010)

[2] A. Ampatzoglou, A. Kritikos, G. Kakarontzas and I
Stamelos, “An Empirical Investigation on the Reusability of
Design Patterns and Software Packages”, Journal of Systems
and Software, Elsevier, December 2011, volume 84, pp.
2265-2283.

[3] J. Bansiya, C. Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment”, Transaction on
Software Engineering, IEEE Computer Society, 28 (1), pp. 4-
17,2002.

[4] Consumer Electronics Association, “Digital America”,
published electronically at http://www.ce.org.

[5] H. Cho and J.S. Yang, “Architecture patterns for mobile
games product lines”, Proceedings of the 2008 International
Conference on Advanced Communication Technology
(ICACT’08), IEEE Computer Society, pp. 118-122, Phoenix
Park, Korea, 17 — 20 February 2008.

[6] E. Folmer, “Component Based Game Development — A
Solution to Escalating Costs and Expanding Deadlines”, 10th
International Symposium on Component Based Software
Engineering (CBSE’ 07), Springer-Verlag, pp. 66-73,
Medford, MA, USA, 9 — 11 July 2007

[71 M. Furini, “An architecture to easily produce adventure and
movie games for the mobile scenario”, Computers in
Entertainment, Association for Computing Machinery, 6(2),
pp. 1-16, July 2008

[8] E. Gamma, R. Helms, R. Johnson, J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley Professional, Reading, MA, 1995

[97 W.P. Lee, LJ.Liu, J.A.Chiou, “A Component-Based
Framework to Rapidly Prototype Online Chess Games for
Home Entertainment”, Proceedings of the International
Conference on Systems, Man and Cybermetrics (SMC’06),
IEEE Computer Society, pp. 4011 — 4016, Taipei, Taiwan, 8-
11 October 2006

[I0O]JR. C. Martin, “Agile Software Development:
Principles,Patterns and Practices”, Prentice Hall, Upper
Saddle River, NJ, 2003

[11] M. McShaffry, “Game Coding Complete”, Paraglyph Press,
Arizona, USA, 2003

[12] E.B. Passos, J. Weslley, E. Walter G. Clua, A. Montenegro
and L. Murta, “Smart composition of game objects using
dependency injection”, Computers in Entertainment,
Association for Computing Machinery, 7(4), October 2009

[13] C. Szyperski, “Component Software: Beyond Object-

Oriented Programming”, Addison-Wesley International,
Massachusetts, USA, 1997.

Component Based Development

Use one of our search engines to identify components and design pattern instances

Percerons

seize powerful tools such as patterns and meitrics

Open Source Software Quality

easy to identify and adopt

Aboutus

I

‘ Search a Component H Pattern Instances H Project Pattern Instances ‘

This search engine assists practitioners and researchers to identify sets of dlasses that implement several characteristics that are described

in the fallowing form.

Search Type: Dependency Based Search
Keyword1:
(AND) Keyword2:
(AND) Keyword3:
Software Category: (all categories)
Software Subcategory: (all subcategories)

Maximum number of external

dependencies: °

Minimum functionality: 5
Minimum reusability: 2
Sort by: external dependencies. size

® Quick Search (Searches only for class names)
© Detailed Search (Searches into class methods and attributas)

Search

Figure 11. Web Repository Search Screen

== Percerons

= easy to identify and adopt

> seize powerful tools such as patterns and metrics

Open Source Software Quality Aboutus

Search Results Site Navigation

Retrieved 200 components! (max component number=200) Home

Search for an Open Source
Software Hame: IceHockeyManager ver.0.3 "

Root: org.icehockeymanager.ihm.game.player. PlayerAttribute Component

Number of Classes: 2

External Dependencies: 0 Assess Open Source Software
Functionality: 16 Quality

Reusability: 3.6994

Licence: GPL FAQ

Software Name: TaoSoccer ver.1.5.4

Root: soccer.common. Player About us

Number of Classes: 3

External Dependencies: 0

Functionality: 38 .
Reusability: 7.2574 Success Stories

Licence: GPL

Software Name: IceHockeyManager ver.0.3

Root: org.icehockeymanager.ihm.game. player. FlayerInfo
Number of Classes: 3 Entertainment Computing and is
External Dependencies: 0

Functionality: 32 currently under review.
Reusability: 5.0577

A research paper that uses
Percerons has been submitted to

A research paper that uses

Licence: GPL
Software Name: IceHockeyManager ver.0.3 Recoaras fas keen suamkiedilo,
Root: org.icehockeymanager.ihm.game. injuries.PlayerTnjury Gomes and Software Engineering

Number of Classes: 3 Workshop and is currentiy under
External Dependencies: 0 -

Figure 12. Web Repository Search Screen

public class RiskExecutionScenario {

public static void main(String[] args) {
Continent europe = new Continent("1", "Europe", 10, 1);
Country france = new Country(l, "1", "France", europe, 0, 0);
Country spain = new Country(2, "2", "Spain", europe, 15, 15);
Continent asia = new Continent ("2", "Asia", 15, 2);
Country india = new Country(3, "3", "India", asia, 50, 50);
Country china = new Country (4, "4", "China", asia, 40, 100);
Continent africa = new Continent("2", "Africa", 100, 0);
Country egypt = new Country(5, "5", "Egypt", africa, 100, 10);
Country algeria = new Country(6, "6", "Algeria", africa, 100, 50);

Card cardl = new Card("Infantry", india);
Card card2 = new Card("Cannon", france);
Card card3 = new Card("Cavalry", spain);

;

Card card4 = new Card("Infantry", china)
) ;

;

Card card5 = new Card("Infantry", egypt

Card card6 = new Card("Cavalry", algeria);

Player player = new Player(l, "angor", 1, "playerladdress");
player.addArmies (5);
player.setCapital (france);

Mission mission = new Mission(player, 6, 1, europe, asia, africa, "Conquer the world!");

Player player2 = new Player(l, "apostolos", 2, "player2address");

player2.addArmies (5);

player2.setCapital (china) ;

Mission mission2 = new Mission(player2, 6, 1, europe, asia, africa, "Conquer the world!");

Player player3 = new Player (0, "bot", 3, "player3address");

player3.addArmies (3);

player3.setCapital (algeria);

Mission mission3 = new Mission(player3, 6, 2, europe, asia, africa, "Conquer the world!");

}

Figure 13. Country Component Execution Scenario

99

|:seriatversionUID : long = 1L
+statistics : int]
+Statistic()

+endGoStatistics(a : int, b : int, ¢ : int, d : int) : void
+addReinforcements(a int) : void

+addKill) : void

+addCasualty() : void

+addAtiack() : void

+addAttacked() : vokt

+addRetreat(): void

+addCountriesWon() : void

[+addCountriesLost() : void

+get(a : int) : int

cumentStatistic

Player
-serialVersionUID : long = 1L
+PLAYER _HUMAN
+PLAYER_Al_CRAP 3
+PLAYER Al EASY :int=1
+PLAYER_Al_HARD :int=2
-name : String

-color : int

-extraArmies ! int
|-cardsOwned : Vector

risk

country

-territoriesOwned : Vector

-piayersEliminated : Vector

-capital : Country

-mission : Mission

-type : int

-address : String

-Statistics : Vector

[#cumentStatistic : Statistic

-autoendgo : boolean

-autodefend : boolean

[+Playerit : int, n : String, ¢ : int, a : String)
[+rename(na : String): void

+0String() : String

+nextTurn() : void

[+getStatistics(a : int) : int []
+getNoArmies() : int

l+addArmies(n : int) : void

+lose ExtraAmmy(n : int) : void

+give Card(card : Card) : void
l+getCards(): Vector

|+takeCard(): Card

|+tradelnCards(card1 : Card, card2 : Card, card3 : Card) : void
l+getNoTermitoriesOwned() : int
+newCountry{newCountry : Country) : void
+lostCountry{lessCountry : Country) : void
+addPlayersEliminated(p : Player) : void
+setAutoEndGo(b : boolean) : void
[+getAutoEndGo() : boolean
+setAutoDefend(b : boolean) : void
+getAutoDefend() : boolean

player

Card
-serialVersionUID : long = 1L

+CANNON : String = “Cannon®

[#WILDCARD : String = wildcard”

name : Sting
1 +Country(p : int, id : String, n : String, ¢ : Continent, a : int, b : int) -country : Country
+10String() : String [+Card(n : String, t : Country)
+isNeighbours(t : Country) : boolean [+t0String() : String
+addNeighbour(t : Country) : void
+addArmy() : void
+addArmies(n : int) : void
[+removeArmies(lessArmies : int): void
+looseArmy() : void
continent
1
Continent
-serialVersionUID : long = 1L
- i
l-amyValue : int
|terrtories Contained : Vector = new Vector()
+Continent(id : String, n : String, noa :int, ¢ : int)
+toString() : String
+isOwned(p : Player) : boolean
+getOwner(): Player
+addTerritoriesContained(t : Country) : void
+equals(o : Object) : boolean
cont feolz [1 con3 | !
Mission
-serialVersionUID : long = 1L
|-player : Player
|-noofcountries : int
jes : int
l-con1 : Continent
-con2 : Continent
|-con3 : Continent

|-discription : String

Figure 14. Continent Component Class Diagram

[+Mission(p : Player, noc : int, noa : int, ¢1 : Continent, c2 : Continent, c3 : Continent, d : String)
+getContinent1(): Continent

+getContinent2(): Continent

+getContinent3() : Continent

+toString() : String

+setContinenti(a : Continent) : vold

+setContinent2(a : Continent) : void

+setContinent3{a : Continent) : void

100

