Entertainment Computing 4 (2013) 131-142

journal homepage: ees.elsevier.com/entcom b4

Contents lists available at SciVerse ScienceDirect L_ —
Entertainment
Computing

Entertainment Computing

Building and mining a repository of design pattern instances: Practical and

research benefits

Apostolos Ampatzoglou, Olia Michou, loannis Stamelos

Department of Informatics, Aristotle University, Aristotle University Campus, PO Address 54124, Thessaloniki, Greece

ARTICLE INFO

ABSTRACT

Article history:

Received 10 February 2012
Revised 15 June 2012

Accepted 1 October 2012
Available online 12 October 2012

Keywords:

Software engineering
Computer games
Design patterns
Repository

Design patterns are well-known design solutions that are reported to produce substantial benefits with
respect to software quality. However, to our knowledge there are no scientific efforts on gathering infor-
mation on software projects that use design patterns. This paper introduces a web repository of design
patterns instances that have been used in open source projects. The usefulness of such a repository lies
in the provision of a base of knowledge, where developers can identify reusable components and
researchers can find a mined data set. Currently, 141 open source projects have been considered and
more than 4500 pattern instances have been found and recorded in the database of the repository. The
evaluation of the repository has been performed from an academic and a practical point of view. The
results suggest that the repository can be useful for both experienced and inexperienced users. However,
the benefits of using the repository are more significant for inexperienced users.

© 2012 International Federation for Information Processing Published by Elsevier B.V. All rights reserved.

1. Introduction

A repository is a shared database about engineered artefacts,
such as software, documents and information systems [10]. In
the field of software, several repositories of open-source projects
that can be used as means of knowledge and experience sharing
are available. Such repositories (e.g. Sourceforge, CodeHouse), pro-
vide data to the fast developing open source research area [44] and
to software engineering researchers in general. Even though such
repositories contain a great amount of information, sometimes it
is difficult to browse, due to scalability problems, data integrity
problems, etc. Reuse repositories and especially open source repos-
itories are the basic infrastructure for software reuse, due to its sig-
nificant economic impact. Nevertheless, they have introduced
difficulties in finding and locating reusable software artefacts.

Additionally, design patterns are software engineering tech-
niques that are considered to aid in software system development.
In [22], the authors attempted to identify whether there are com-
mon problems among different system designs and if common
solutions might be introduced. Moreover, a qualitative evaluation
of the proposed solutions implies that the use of design patterns
leads to adaptability and extensibility, as each design pattern sup-
ports independence of possible future changes [22]. The possibility
of creating reusable components from design patterns is discussed
in [7,26], where the authors introduced the idea of componentizing
and reusing design patterns. Furthermore, in [3], the authors inves-

E-mail addresses: apamp@csd.auth.gr (A. Ampatzoglou), stamelos@csd.auth.gr
(I. Stamelos).

tigated the possibility of selecting design pattern instances as reuse
granules, in white box reuse.

Despite the fact that during the last years the research on design
patterns appears to flourish, no repositories concerning design pat-
tern instances in software projects have been identified in the lit-
erature. In this paper we present a web repository (Percerons —
PattErn Repository and Components Extracted from OpeN Source
software) of object-oriented design pattern instances and a web
tool which is used to mine it [18]. Currently, the repository con-
tains more than 4500 pattern instances, extracted from 141 Java
open source projects. Up to this point, we have investigated and re-
corded all stable computer games identified in a well known
source code repository’. The selection of games was based on the
fact that game development is an active topic in OSS communities
[44] but game developers are more probable to write code without
prior design activities [27]. Thus, a repository that will enhance
the design process might prove useful. The benefits from such an at-
tempt are expected to assist both practitioners and academics in the
following ways:

e Practitioners
O The re-users will be given a smaller search domain than
forges, that will provide application specific components

T www.sourceforge.net

1875-9521/$ - see front matter © 2012 International Federation for Information Processing Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.entcom.2012.10.002

http://dx.doi.org/10.1016/j.entcom.2012.10.002
mailto:apamp@csd.auth.gr
mailto:stamelos@csd.auth.gr
http://dx.doi.org/10.1016/j.entcom.2012.10.002
http://www.sciencedirect.com/science/journal/18759521
http://ees.elsevier.com/entcom

132 A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142

O The components that are recorded in the database of the
repository involve design pattern participants? and therefore,
the rationale of their design is documented

O Similarly, some internal quality attributes of the extracted
components, such as coupling, cohesion and complexity,
are expected to improve compared to any other non-pattern
component [2]

e Academics

O The software engineering researchers can easily obtain data-
sets on design patterns, without having to mine vast source
code forges.

The user of Percerons is expected to have two possible motiva-
tions for accessing the search engine. (a) He/She is interested in
implementing a game requirement, but does not know where to
look. Percerons will provide a set of classes that implement the
complete or a part of the desired functionality. (b) He/She is inter-
ested in retrieving several instances of a specific design patterns
for any possible reason (education, research etc.). In order to
validate the abovementioned benefits we conducted an experi-
ment, in order to evaluate the usefulness of the repository from
the practitioner’s and researcher’s point of view. In the next sec-
tion, the research state of the art on reuse repositories is presented.
Section 3, presents an overview on game development and game
design. In Section 4, the structure of repository is presented.
Section 5 deals with the empirical validation of the repository,
from both an academic and a practical point of view. In Sections
6 and 7 discussion and threats to validity are provided. Finally,
Section 8 presents conclusions resulting from this work and pro-
posals for future research.

2. Reuse repositories

Current trends in software reuse indicate that the design and
implementation of open source repositories follow a rather holistic
approach, since not only programmers, but software managers and
users are also influenced. Repositories should support the ‘pro-
duce — manage — consume’ cycle and its stakeholders [6,15]. In
[15], a generic architecture for software repositories which
contains modules that satisfy the needs of all involved parties is
presented. Accordingly there is a production module (for compo-
nent producers), a management module (for reuse managers), a
consumption module (for component reusers or consumers) and
an infrastructure module (providing common services to the other
modules). More specifically, in case of the management module,
the repository should provide the means to manage the reuse
process at the organizational level by enabling reuse managers
to observe specific quantifiable metrics associated with the reuse
of the available components. Consequently, a set of numerous
requirements should be satisfied for the repository to be consid-
ered as successful. Dominant role play search, retrieval and the
emerging technology of semantic web that is used for component
description are discussed in [14,32,40]. Moreover, requirements
such as specification publication, user notification, version man-
agement, dependency management should also be included in
the set.

As the main challenge that a component approach will meet is
dealing with change, the substitutability of its parts can be
achieved only if components are properly specified. Faceted
classification as a representational method for classifying reusable
artefacts is an interesting approach, according to which it orga-
nizes the search space in search-related facets [17,35]. A faceted

2 As pattern participant we mean every class that plays a specific role in a design
pattern. A definition of the pattern participants is given in [25].

classification provides a vocabulary for cataloguing reusable
components and an organization mechanism for these compo-
nents. The effectiveness can be assessed through various metrics
including the well known precision (high precision means that a
high fraction of retrieved instances are relevant) and recall (high
recall means that only few relevant components are not retrieved),
search effort, user satisfaction, and ease of use [20,31,36]. The role
of the semantic technology is prominent as metadata are ideal for
component description through the facets. In literature in the do-
main of software design, quality and reuse, several approaches
have been found concerning software engineering repositories.
On the other hand none of these approaches deals explicitly with
design patterns.

Firstly, in [1] a widely accessible repository of software devel-
opment artefacts (e.g. code, models and test cases) is proposed.
The repository would enable software developers and researchers
to assess software engineering tools and techniques. In [16], a
repository of FLOSS data and analyses is proposed. This repository
named OSSmole is a collaborative project which collects, shares
and stores compatible data and analyses of FLOSS development
for research purposes. It aims to mine FLOSS source code reposito-
ries and provide resulting data and summary analysis at open
source products.

ROSE is another software engineering repository based on
open source products. It is developed to aid students and educa-
tors during software engineering courses or lessons on open
source software development [29]. Another type of software engi-
neering repository is introduced in [24], where among others a
proof-of-concept prototype metric repository is described. In
[33,47], the importance of software repositories aiming at reuse
is proved as the first introduces a knowledge-based repository
scheme for storing and retrieving business components, whereas
the latter explores component classification and retrieval meth-
ods with an overriding concern for automation. In [30], the
authors introduced a benchmark repository of faulty and correct
software that would enable unification of diverse experimental
results regarding software testing techniques. Agora system
described in [42] is a software prototype that allows automatic
discovery and retrieval of software components from the web
and their characterization with introspection. The object of this
work is to create an automatically generated and indexed world-
wide database of software products classified by component
model. Agora combines introspection with Web search engines
to reduce the costs of bringing software to, and finding compo-
nents in, the software marketplace.

Finally, Maracatu [23] is another approach for retrieving soft-
ware modules from CVS repositories. The Maracatu service has
the following modules: (a) a CVS module for accessing the reposi-
tories for reusable components, (b) an Analyser module for analys-
ing the code to determine if it is suitable for indexing, (c) a
Download module for downloading (checking out) the source code,
and (d) a Search module for searching using queries. This function-
ality is provided with an Eclipse plug-in.

3. Game development

We have chosen to validate the usefulness of the proposed
repository in the domain of game development, because computer
game design is one of the most modern and fast growing trends in
computer science [37]. Additionally, it is a common sense that
games play a very important role in modern societies concerning
economy and lifestyle.

The game industry is now considered to be one of the most
powerful in the business spectrum [21,50]. The fact that computer
games currently rival television and films in both market size
and cultural impact [21] can justify why game development is

A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142 133

considered a placeholder in current lifestyle. Additionally, it is
estimated that 90% of US households have rented or purchased
at least one video game, and that young people of the country
spend an average of twenty (20) minutes per day playing video
games.

In [4], the authors suggest that the research on software engi-
neering for computer games is rapidly increasing. In the same
study it is suggested that the design phase of the development life-
cycle is an interesting research topic, which needs further investi-
gation. Additionally, [41] suggests that game communities could
benefit from reuse opportunities that derive from the activity no-
ticed in open-source games.

Until the middle of 1990s, game developers did not aim to pro-
duce reusable code since every program has been written from
scratch in assembly language [38]. Later, reusable coding has pro-
ven to be one of the most important issues in game development
because games became far more complex and their production
process more time consuming. In order to alleviate this problem,
frameworks and game engines have been created. A framework
is a collection of classes that can be widely reused and integrated
with other components [39,46]. Usually they implement mecha-
nisms that occur in many games, such as input handling, file han-
dling (texture, models, audio etc.), 3D rendering etc. Game engines
are programs that provide developers the potential to design game
levels, handle player and opposition behaviour, by using scripting
languages and powerful GUIs. As it is easily understood, if frame-
works and game engines are “well-structured”, they can be main-
tained without extreme effort and be transformed so that they can
fit as many game genres as possible. In order to achieve this expec-
tation, game developers should use software engineering tech-
niques and methodologies.

The evaluation of object-oriented design pattern application in
computer games has been investigated in [2,34]. In [2], the authors
have examined the way object-oriented design patterns can affect
the structure and the maintainability of a game by analyzing exist-
ing systems. The results suggested that patterns can reduce com-
plexity and coupling of a game, increase cohesion of the code but
as a side effect the project size, i.e. lines of code, is increased. In
addition to that in [34] there was an attempt of creating a game
that was based on patterns. The results suggested that design pat-
terns should be considered an efficient way of properly achieve
abstractions and decoupling in games.

Furthermore, a different approach for game design patterns is
presented in two papers. More specifically, the authors propose
patterns on game mechanics and not on the design of game. In
[13], the authors suggest that design patterns are proven to
support the design, analysis and comparison of games as an
alternative to the need of developing a common language, con-
cepts and terminology for games. Since games are commonly
big projects that require collaboration among staff with different
expertises, patterns should be viewed as a tool to overcome com-
munication differences in an effective and efficient way. Similarly,
in [28], the authors propose several design patterns that describe
mechanisms of augmented reality systems, which could be used
at games.

4. Repository design

The proposed design pattern repository (Percerons) is a soft-
ware engineering repository that was established so as to provide
a body of knowledge that would help developers to identify and re-
use ‘“common solutions” on “common problems”. Additionally, it
aims to help software engineer researchers by giving them instant
access to a mined data set that consists of multiple instances of de-
sign patterns.

4.1. Repository scheme and data description

Since the effectiveness of the repository depends on the ease
that the developers and researchers can satisfy their requirements
for code reuse and pattern retrieval, the design of the repository
proves to be critical. The repository consists of patterns found in
various categories of open-source software. A complete description
of a design pattern should include characteristics of its constituent
elements. The abstraction hierarchy is based on [47] where the
authors propose a classification and coding (C&C) scheme and
knowledge-based business repository. Fig. 1 shows the abstraction
hierarchy of the design pattern. Each pattern has one or more roles
where each role is assigned to one class and each class has a set of
methods and attributes.

In order to reduce the initial large set of patterns, structured
identifiers could be used. Consequently, a description of each pro-
ject should be included. The description should include the name,
version, programming language, production phase and subcatego-
ry of the software. For example, if we consider games as software
category, subcategory is the game genre (e.g. arcade games). The
above structured identifiers represent the structured information
at the pattern level. Moreover, as naming a design pattern lets soft-
ware engineers to design at a higher level of abstraction [22], a
name is also assigned to each pattern. The element role is consid-
ered a descriptor facet for the unstructured information regarding
design patterns. Role is considered as the role that a class plays at
the particular pattern and can be used for scientific purposes.
Names and roles are according to [22]. The roles assigned in each
design pattern are presented in Appendix A. Methods and attri-
butes will be used as the final selection criteria, when the user will
have to decide among design patterns that fulfill equally the other
searching criteria.

4.2. Method for storing data in the repository

The method for populating the data of the repository consists of
eight steps, as described below:

o Identify a number of projects that fulfill certain selection crite-
ria, for each category

e Perform pattern detection for every selected project. Pattern
detection has been performed with two tools [43,45]

e For every pattern identify all pattern participating classes

e Tabulate data

o Insert data on the database of the repository

e Reverse engineer the Java binary files in order to extract the
methods and the properties of the class

o Link the data of the repository to source code and method/prop-
erties information.

Source code repositories provide a great variety of software pro-
jects. From these projects we have selected those that fulfilled
some criteria, in order for our pattern extraction and storing mech-
anism to work. More specifically, due to limitation of the pattern
detection tools that we have used, the software under study must
be written in Java. Additionally, the software that is used for the
identification of all the classes that participate in a design pattern
has to use a Java .jar file. Consequently, we have only selected pro-
jects which are written in Java and provide an executable .jar file.
Additionally, concerning games, the results that have been ob-
tained were pre-processed and game engines have been excluded
from the selected set.

Finally, the database of the repository consisted of 141 open
source Java games. All the abovementioned software has been
investigated for occurrences of 10 design patterns and more than
4500 pattern instances have been identified and recorded. The

134 A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142

Design Pattern

1
Software

Version | [programming [Production Phase | [subcategory |

Language

Fig. 1. Abstraction hierarchy of a Design Pattern.

patterns that have been considered are Factory Method, Prototype,
Singleton, Adapter, Composite, Decorator, Observer, State, Strategy,
Template Method and Visitor. Information on design pattern
definitions and structure can be found in [22].

4.3. Retrieving data from the repository

The web page interface provides the user with several retrieve
options:

(a) Find a Component from Search Engine
(b) Find a Pattern
(c¢) Find a Project

Option (a) allows the user to provide the search engine with
three keywords, software category and subcategory, and browse
it in order to identify class names that contain any of the keywords.
If software category and software subcategory variables are not
blank, the search space is limited to projects that fulfill the afore-
mentioned criteria. Option (a) is more probable to be used by
developers who are interested in identifying a class that provides
certain functionality and simultaneously is pattern participant.

On the other hand, (b) and (c) options are more probable to be
used by researchers who might want to find pattern instances on
open source projects or to identify all the patterns that are imple-
mented in open source projects. Using Percerons is expected to in-
crease and enhance empirical studies concerning patterns and
open-source, in the sense that it provides a large mined dataset
that is easily accessible. Indicatory subjects of such research at-
tempts are patterns application frequency [5], class participant
change proneness [8,12,19] and the effect of design pattern is soft-
ware quality [2,48].

5. Empirical evaluation method

This section deals with the evaluation of the proposed reposi-
tory. In order to validate the usefulness of the Percerons project
we have conducted an experiment. The experiment evaluates the
repository from two perspectives, namely (a) research perspective
and (b) development perspective. The experiment of this study has
been conducted according to the guidelines described in [9,49].
The steps to be followed are: experiment definition, experiment
planning, experiment operation and experiment interpretation. In
the next sections, an overview of the steps followed in our formal
experiment is presented.

5.1. Experiment definition

According to [9], the experiment definition involves experiment
motivation, purpose, object, perspective, domain and scope. The moti-
vation of our research is the enhancement of the design process.
The purpose of the experiment is to evaluate Percerons from a
practitioner’s and a researcher’s perspective. Therefore, the follow-
ing research questions have arisen. The first research question

(RQ,) that the experiment attempts to answer can be described
by the following scenario: “A developer wants to find a piece of
code that implements a specific requirement. He comes up with
one or more keywords that describe the desired functionality and
according to them the repository retrieves a list of candidate sets of
classes. At which degree is the objective correctly performed?” The
research questions of this study are summarized below:

RQ1: Does the use of Percerons result in greater correctness of
an objective?

RQ>: Does the use of Percerons result in decreasing the time
needed for completing an objective?

RQ3: Does the use of Percerons acquire less effort for an
objective?

RQ4: Does the use of Percerons succeed in greater user
satisfaction?

The objects of the study are two repositories, one source code
repository where a user might identify non-pattern related sets
of classes and another repository where recommended sets of clas-
ses involve design pattern participating classes. Information on the
subjects and projects, i.e. domain and scope of the experiment, are
thoroughly discussed later in the paper.

5.2. Experiment planning

The planning phase of the experiment is considered to be cru-
cial to the overall experiment success and includes aspects such
as design, criteria and measurements [9]. Considering the above,
the experiments’ hypotheses are defined, the experiment projects
and subjects are described and the methods of comparison are
presented.

Define Hypothesis - As mentioned earlier the paper aims at the
construction and the evaluation of the design pattern repository.
More specifically, several aspects are going to be investigated,
namely (a) objective correctness, (b) objective completion time,
(c) search effort and (d) user satisfaction. The precision and the re-
call of the repository are not investigated in this study. According
to the experiment plan, eight (8) null hypotheses have been set
for every research question. In total, thirty-two (32) hypotheses
have investigated in order to explore the aforementioned research
questions. In Table 1, we provide a sample of the tested hypothe-
ses. More specifically, we present 16 hypotheses that deal with
the correctness of the objective, the time needed for completing
the objective, the search effort and user satisfaction from a devel-
oper’s point of view. Similarly, sixteen (16) additional hypotheses
have been set from a researcher’s point of view, but they are omit-
ted from the manuscript in order to improve its readability. In Ta-
ble 1, let NDRS be a result set of the search engine other than the
Percerons repository and DRS to be the result set of the search en-
gine of Percerons.

More specifically, the hypothesis Hq(1) to Ho(16) refer to the re-
search questions from a developer’s point of view, taking into con-
sideration the experience factor. More specifically, the sample has
been split, w.r.t. experience according to COCOMO81 [11]. A more
detailed description on this activity is presented later in the paper.

A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142 135

Table 1 Table 2
Research hypotheses. Experiment variables.
RQ RQ> RQ3 RQ4 Occupation Researcher/Developer
Hogr): the Hogs): the code Howy: NDRS and Hogrs): the user Experience Research in Patterns/OO development (in years)

correctness of
adapting code
retrieved from
NDRS is similar
to the
correctness of
adapting the
code retrieved
from DRS
Ho(z)l the
correctness of
adapting code

correctness of
adapting code
retrieved from
NDRS is similar
to the

correctness of
adapting code
retrieved from
NDRS is similar

adaptation time
for the set of
classes retrieved
from NDRS is
similar to the
adaptation time
for code
retrieved from
DRS

Ho(s): the code
adaptation time
for the set of

adaptation time
for the set of
classes retrieved
from NDRS is
similar to the

adaptation time
for the set of
classes retrieved
from NDRS is

DRS have been
obtained with
similar effort
from a
developer’s
point of view

HO(IO): NDRS
and DRS have
been obtained

and DRS have
been obtained
with similar
effort from a
developer with

and DRS have
been obtained
with similar
effort from a

satisfaction
from NDRS is
similar to user
satisfaction
from DRS, from
a developer’s
point of view

Ho14): the user
satisfaction
from NDRS is

retrieved from classes retrieved ~ with similar similar to user
NDRS is similar ~ from NDRS is effort from a satisfaction
to the similar to the highly from DRS, from
correctness of adaptation time experienced a highly
adapting the for code developer’s experienced
code retrieved retrieved from point of view developer’s
from DRS froma DRS from a point of view
highly highly
experienced experienced
developer’s developer’s
point of view point of view

Hos): the Ho(7): the code Ho11): NDRS Ho(1s): the user

satisfaction
from NDRS is
similar to user
satisfaction
from DRS, from

correctness of adaptation time medium a developer
adapting the for code experience with medium
code retrieved retrieved from point of view experience
from DRS froma DRS from a point of view
developer with developer with
medium medium
experience experience
point of view point of view

Ho4): the Hos): the code Ho(12): NDRS Ho(1e): the user

satisfaction
from NDRS is
similar to user
satisfaction

to the similar to the low experienced from DRS, from
correctness of adaptation time developer’s a low
adapting the for code point of view experienced

code retrieved
from DRS from a
low experienced
developer’s
point of view

retrieved from
DRS from a low
experienced
developer’s
point of view

developer’s
point of view

For example, hypothesis Hy1) is set and investigated in order to
examine the benefits of using the pattern repository, w.r.t the cor-
rectness of a development objective (RQ,), regardless of the devel-
oper’s experience. On the other hand, hypotheses Hy) and Hos)
also examines RQ; but from an experienced and an inexperienced
developer’s point of view, respectively.

Experiment Subjects and Projects — In the experiment, two differ-
ent component search plans have been used, one NDRS and one
DRS. Each plan aimed at the following four objectives (two devel-
opment objectives and two research objectives):

0;: Development Objective. Identify a component that deals
with a game that implements the behaviour of weapons
0,: Development Objective. Identify a component that deals
with the attributes of hockey players. Hockey players are
divided into two main categories (goalkeepers and field play-
ers). These categories share some attributes, but simulta-
neously each category has some different attributes

Experience Categorical
Objective Correctness
Objective Time
Process

Objective Effort
Objective Satisfaction

Low, Medium or High Experience
Correctness for meeting the objective

Time required for meeting the objective
NDRS or DRS used for meeting the objective
Effort of using the repository

Satisfaction from using the repository

03: Research Objective. Identify the average number of design
pattern instances in stable board games

0,4 Research Objective. Identify ten design pattern instances
that have been added in the (k + 1) version of a game that
did not exist in the (k) version of the game

A more detailed description of the objectives is provided in
Appendix B. At this stage it is necessary to clarify that all objectives
satisfy several constraints, in order for the experiment environ-
ment to be controlled. For instance, code development has been
performed under the supervision of one author. Additionally, the
subjects have been asked to identify a piece of code that is adapted
on a pre-existing code, i.e. a main method. Thus, the subjects were
not able to deflect from the experiment scenario. The NDRS proce-
dure provided the subjects, the alternative to use any code search
engine and forge they desired. Concerning development objectives,
every subject who was not familiar to a code search engine was
randomly assigned to one of the following engines, namely (a)
Google©, (b) Merobase®©, and (c) Koders©. The selection of (b)
and (c) is based on the fact that these search engines are ranked
first when searching for software component search engine and
source code search engine, respectively in a well known web search
engine, i.e. Google. At this point it is necessary to clarify that these
engines do not provide pattern-based code. Concerning research
objectives, the forge where a subject would search for projects that
might involve pattern instances would be SourceForge©. Design
pattern recognition for NDRS subjects were conducted through a
reverse engineering tool was provided [45]. On the other hand,
the DRS procedure allowed the corresponding subject to only use
the Percerons search engines. All subjects were allowed to use
Eclipse for compiling and completing the development objectives.

The experiment has been conducted with forty (40) professional
developers and twenty (20) researchers. Each subject completed
one objective with a NDRS or with a DRS process.

Methods of comparison — On the completion of the experiment a
dataset with sixty (60) rows and eight (8) columns has been cre-
ated. The dataset which has been created after gathering both re-
searcher’s and developer’s questionnaires involve numerical,
ordinal and categorical data. The variables that have been pro-
cessed are mentioned in Table 2.

In order to test the hypotheses described in Table 1 we con-
ducted independent sample t-tests and Mann-Whitney U tests.
Independent sample t-test is a parametric test that is used to com-
pare two independent sample means, that is, the comparison of
two different methods. Mann-Whitney U test on the other hand,
is non-parametric and is used to compare two independent sample
means but in cases that the data are ordinal®. In order to explore the
hypotheses Ho1)-Hosy and Hog17)-Ho(24), sixteen (16) independent
sample t-test have been performed. Concerning the hypotheses
Ho9y~Ho(16) and Hos)-Ho(sz) sixteen (16) Mann-Whitney U tests
have been conducted.

3 Parametric tests are used when data follow normal distribution, whereas non-
parametric are used when data do not follow normal distribution.

136 A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142

Table 3
Descriptive statistics on subjects experience.

Group Count %

Researchers (process = ALL && 12 60.00
experience = HIGH)

Researchers (process = ALL && 8 40.00
experience = LOW)

Developers (process = ALL && 21 52.50
experience = HIGH)

Developers (process = ALL && 19 47.50
experience = LOW)

Researchers (process = NDRS && 6 60.00
experience = HIGH)

Researchers (process = NDRS && 4 40.00
experience = LOW)

Developers (process = NDRS && 10 52.63
experience = HIGH)

Developers (process = NDRS && 9 47.37
experience = LOW)

Researchers (process = DRS && 6 60.00
experience = HIGH)

Researchers (process = DRS && 4 40.00
experience = LOW)

Developers (process = DRS && 11 52.38
experience = HIGH)

Developers (process = DRS && 10 47.62
experience = LOW)

Researchers (process = ALL && 12 60.00
experience = HIGH)

Researchers (process = ALL && 8 40.00
experience = LOW)

Developers (process = ALL && 21 52.50
experience = HIGH)

Developers (process = ALL && 19 47.50
experience = LOW)

Researchers (process = NDRS && 6 60.00
experience = HIGH)

Researchers (process = NDRS && 4 40.00
experience = LOW)

Avg. Std.
experience dev
Researchers 1.950 1.099
Developers 2.675 1.470

More specifically, in order to execute a test that explores Hy(1)
we created a two-column view of the dataset. The first column rep-
resents the Objective Correctness variable, the second column repre-
sents the Process variable, and the third represents the Occupation
variable. The view has been created by filtering the sample in order
to isolate cases that correspond to software developers (using
Occupation variable). In the t-test the testing variable is Correctness
and the grouping variable is Process. Concerning Ho) we had to
demarcate developers with respect to their level of experience.
Consequently, we had to recode the variable Experience into a
new variable named Experience_Categorical*. Finally, we filtered
the dataset, in order to isolate the rows that correspond to experi-
enced developers and we performed a t-test. The testing variable is
Correctness and the grouping variable is Process. Similarly, we con-
ducted independent t-tests for the hypotheses Hgz)-Hoisy and
Ho17)-Ho(24)-

4 Recoding the values of the variable Experience_Categorical was based on the
categories described in [11]. However, we have chosen to create two experience
levels, rather than three, because of the size of our dataset. Thus, developers/
researchers with experience less than three years, are considered as inexperienced,
whereas developers/researchers with three years of experience and more are
considered as experienced.

Table 4
Descriptive statistics on subject performance/opinion on experiment objectives.

Group Mean/Mode® value
Objective Objective Objective User
completion Correctness completion satisfaction
time effort from tools
Total research objective 43.250 82.500 2 2
Total development 42425 88.880 4 4
objective
Researchers 45.625 89.380 2 2
(process = ALL &&
experience = HIGH)
Researchers 41.667 77.920 3 -
(process = ALL &&
experience = LOW)
Developers 32.631 92.370 - 4
(process = ALL &&
experience = HIGH)
Developers 51.286 85.710 4 4
(process = ALL &&
experience = LOW)
Researchers 57.500 91.250 - 2
(process = NDRS &&
experience = HIGH)
Researchers 48.333 66.670 - 2
(process = NDRS &&
experience = LOW)
Developers 33.888 90.000 1 4
(process = NDRS &&
experience = HIGH)
Developers 61.700 80.500 4 -
(process = NDRS &&
experience = LOW)
Researchers 33.750 87.500 2 -
(process = DRS &&
experience = HIGH)
Researchers 35.000 89.170 - -
(process = DRS &&
experience = LOW)
Developers 31.500 94.500 - 4
(process = DRS &&
experience = HIGH)
Developers 41.818 90.450 - -
(process = DRS &&
experience = LOW)
Total research objective 43.250 82.500 2 2
Total development 42.425 88.880 4 4
objective
Researchers 45.625 89.380 2 2
(process = ALL &&
experience = HIGH)
Researchers 41.667 77.920 3 -
(process = ALL &&
experience = LOW)
Developers 32.631 92.370 - 4
(process = ALL &&
experience = HIGH)
Developers 51.286 85.710 4 4

(process = ALL &&
experience = LOW)

2 The (-) symbol under the mode value, represents that at least two values are
equally ranked as mode value.

Concerning Mann-Whitney U test, the Hyg) has been tested
through the following procedure. Firstly, we created a two-column
view of the dataset. The first column represented the Effort
whereas the second column represented the Process. In
the Mann-Whitney U test the testing variable was Effort and
the grouping variable was Process. Similarly, we conducted inde-
pendent t-tests for the rest hypotheses that involved ordinal
variables.

A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142 137

Table 5
Cross tabulation for ordinal data.
Cross tabulation Pearson x>
Asymp. Sig.
NDRS DRS Total (2-sided)
Count Exp. Count Exp. Count Exp.
Count Count Count
Effort Very Easy 0 1.5 3 1.5 3 0.387
Researcher
Objective
Easy 1 1 1 1 2
Neutral 4 35 3 35 7
Hard 2 2 2 2 4
Very Hard 3 2 1 2 4
Total 10 10 10 10 20
Effort Very Easy 3 33 4 37 7 0.852
Developer
Objective
Easy 5 38 3 42 8
Neutral 2 28 4 32 6
Hard 3 33 4 37 7
Very Hard 6 57 6 63 12
Total 19 19 21 21 40
Satisfaction Very 1 05 0 0.5 1 0.090
Researcher Unsatisfied
Objective
Unsatisfied 0 0.5 1 0.5 1
Neutral 6 3.5 1 35 7
Satisfied 1 25 4 25 5
Very 2 3 4 3 6
Satisfied
Total 10 10 10 10 20
Satisfaction Very 2 14 1 16 3 0.402
Developer Unsatisfied
Objective
Unsatisfied 5 33 2 37 7
Neutral 2 38 6 42 8
Satisfied 3 38 5 42 8
Very 7 6.7 7 73 14
Satisfied
Total 19 19 21 21 40
Occupation: Developer
100.00 .

]

80.00

T

40.00

time

20.00

Fig. 2. Boxplot on developer objective completion time.

5.3. Experiment operation

According to [49], the experiment operation phase is consisted
of three steps: preparation, execution and analysis. The prepara-
tion phase of the experiment has included an interview with the
experiment participants in order to evenly distribute them among
groups w.r.t. their experience in patterns, in object-oriented pro-
gramming and research experience. In this phase the values of
the process variable was filled in the dataset.

During experiment execution, the researchers have collected
and validated data concerning all time related variables. On the

Occupation: Researcher

1

70.00

60.00

5000

time

40.00

Fig. 3. Boxplot on research objective completion time.

Oceupation: Developer

correctness
3

Fig. 4. Boxplot on developer objective correctness.

Occupation: Researcher

) 1

correctness
=

40

Fig. 5. Boxplot on research objective correctness.

completion of the experiment, the researchers corrected the an-
swers of the experiment participants (concerning correctness var-
iable) and surveyed the participants in order to extract the values
of the variables concerning satisfaction and ease of use. The guide-
lines used while evaluating objective correctness are presented in
Appendix B.

5.4. Experiment interpretation

The interpretation of the experiment results is composed of
interpretation context, extrapolation and impact [9]. The research
interpretation is presented in Section 7 along with discussion on
the study extrapolation and impact.

138 A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142

Table 6
Independent t-tests - Mann-Whitney U tests for developers.
NDRS DRS
N Mean N Mean t Sig. (2-tailed)
All Developers Time Developer Objective 19 48.526 21 36.904 1.97 0.06"
Correctness Developer Objective 19 85.000 21 92.380 —2.52 0.02"
N Mean Rank N Mean Rank w Sig. (2-tailed)
Effort Developer Objective 19 20.450 21 20.550 388.5 0.98
Satisfaction Developer Objective 19 19.470 21 21.430 370.0 0.59
N Mean N Mean t Sig. (2-tailed)
Experience = LOW Time Developer Objective 10 61.700 11 41.818 2.69 0.02""
Correctness Developer Objective 10 80.500 11 90.450 —2.28 0.04"
N Mean Rank N Mean Rank w Sig. (2-tailed)
Effort Developer Objective 10 11.750 11 10.320 113.5 0.58
Satisfaction Developer Objective 10 9.900 11 12.000 99.0 0.43
N Mean N Mean t Sig. (2-tailed)
Experience = HIGH Time Developer Objective 9 33.888 10 31.500 0.36 0.72
Correctness Developer Objective 9 90.000 10 94.000 -1.32 0.20
N Mean Rank N Mean Rank w Sig. (2-tailed)
Effort Developer Objective 9 9.330 10 10.600 84.00 0.61
Satisfaction Developer Objective 9 10.060 10 9.950 99.50 0.97

" Significant at 0.10 level.
™ Significant at 0.05 level.

6. Results

This section of the paper, reports on the results of statistically
analyzing the dataset of the experiment. The analysis phase of
our study has employed descriptive statistics, cross tabulation,
Pearson x* tests, boxplots, independent sample t-tests and
Mann-Whitney U tests. The section is divided into two sections,
one concerning statistics that describe the dataset and the subjects’
performance and another that deals with hypotheses testing.

6.1. Descriptive statistics

This section of the paper aims at presenting results that de-
scribe the characteristics of experiment subjects and the character-
istics of the two subject groups, i.e. DRS and NDRS. Such results are
presented in Table 3. Additionally, descriptive statistics on the
experiment results are reported on Table 4.

In order to further analyze the results of Table 3, we performed
two additional statistical methods, cross tabulation, for categorical
variables and boxplots for numerical variables. The cross tabula-
tion analysis, displays the joint distribution of two variables, as
well as the Pearson x? test that ensures the distribution of the re-
sults. The corresponding results on subjects’ effort and satisfaction
are shown in Table 5. Furthermore, boxplots graphically represent
measures of central tendency (mean and median) and measures of
dispersion (range, inter-quartile range, minimum and maximum).
The corresponding boxplots are depicted in Figs. 2-5.

6.2. Hypothesis testing

This section of the paper aims at presenting the results that de-
rive from the investigation of the hypotheses which are defined in
Table 1. In Table 6, we present the results on performing Mann-
Whitney U tests (categorical variables) and independent sample
t-tests (numerical variables) for the developer subjects. Whereas

Table 7
Independent t-tests - Mann-Whitney U tests for researchers.
NDRS DRS
N Mean N Mean t Sig. (2-tailed)
All Researcher Time Researcher Objective 10 52.000 10 34.500 3.59 0.02**
Correctness Researcher Objective 10 76.500 10 88.500 —2.06 0.06*
N Mean Rank N Mean Rank w Sig. (2-tailed)
Effort Researcher Objective 10 12.500 10 8.500 85.0 0.11
Satisfaction Researcher Objective 10 8.400 10 12.6000 84.0 0.09*
N Mean N Mean t Sig. (2-tailed)
Experience = LOW Time Researcher Objective 6 48.333 6 35.000 2.90 0.03**
Correctness Researcher Objective 6 66.670 6 89.170 —3.48 0.01**
N Mean Rank N Mean Rank w Sig. (2-tailed)
Effort Researcher Objective 6 7.170 6 5.830 35.00 0.51
Satisfaction Researcher Objective 6 5.580 6 7.420 33.50 0.36
N Mean N Mean t Sig. (2-tailed)
Experience = HIGH Time Researcher Objective 4 57.500 4 33.750 2.28 0.07*
Correctness Researcher Objective 4 91.250 4 87.500 0.70 0.51
N Mean Rank N Mean Rank w Sig. (2-tailed)
Effort Researcher Objective 4 5.750 4 3.250 22.00 0.05**
Satisfaction Researcher Objective 4 3.500 4 5.750 22.50 0.05**

A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142 139

in Table 7, we present the corresponding results concerning re-
searcher subjects. In both tables we marked the statistically signif-
icant differences at 0.1 and 0.05 levels.

7. Discussion

In this section we discuss the findings of our work with respect
to the research questions stated in Section 5.1. More specifically,
Section 7.1 deals with the effect of using a pattern repository on
the correctness of research and development objectives. In Sec-
tion 7.2 we discuss the effect of using a pattern repository on
objective completion time. Finally, Section 7.3 deals with the effect
of using the pattern repository on objective effort and user
satisfaction.

7.1. Effect of pattern repository on objective correctness

From Tables 6 and 7, we observe that when developers or
researchers use Percerons, they tend to achieve higher objective
correctness than those who are using other search engines.

More specifically, the results of our study suggested that devel-
opers that use the repository, produce code with fewer defects, in a
statistically significant rate, than developers who are attempting to
identify code without having prior knowledge of its structure.
Additionally, the use of the repository appears to have a weaker ef-
fect on experienced developers who understand code structure
easier. This is depicted in Table 6, where it is suggested that expe-
rienced developers reduce their error rates by 4.2%, whereas inex-
perienced developers who are using Percerons produced about
12.5% less errors when using the repository. This result is intui-
tively correct since inexperienced developers need more guidance
than more experienced developers, who are familiar with identify-
ing and adapting code written by other programmers.

On the other hand, researchers do not seem to be statistically
significantly affected by the use of the repository w.r.t. objective
correctness. Inexperienced researchers appear to produce better
results when using Percerons and this enhancement is statistically
significant. On the other hand, experienced researchers appeared
marginal worse results when they used the repository, but this is
not statistically significant.

7.2. Effect of pattern repository on objective completion time

Concerning objective completion time, both researchers and
practitioners appear to complete the required objective quicker
when they are using Percerons rather than mining forges. The gain
in development objectives completion time is about 25% for both
experienced and inexperienced researchers. On the other hand
the gain for experienced developers is about 4%, whereas the gain
for inexperienced developers is 32%. However, all differences in
mean objective completion time, minor or major, are statistically
significant, except from the difference concerning the experienced
users. This may occur because an experienced developer has a bet-
ter understanding on the source code structure. Thus, the benefit
that he/she can gain from the use of the design pattern repository
is not important.

7.3. Effect of pattern repository on objectives effort/ user satisfaction

Both developers and researchers that used Percerons suggested
that they needed less effort to complete the objectives that they
have been assigned, than those who were using other repositories.
Similarly, Percerons users evaluated their effort at a lower rate
than the NDRS users. However, the above results were not statisti-
cally significant, with the exception of the experienced researchers

who proved/seemed statistically significantly satisfied and re-
garded that they needed statistically significant less effort with
the use of Percerons.

8. Threats to validity

In this section of the paper we discuss the threats to validity of
our paper. In any empirical study there are two kind of threat,
namely threats to internal validity and threats to external validity.
Threats to internal validity deal with problems that occur during
the operation of the study and slightly alter the results. In this
study we identified two internal threats to validity. Firstly, the
use of a tool in order to identify design pattern instances from open
source code may lead to some false-positive results. Additionally,
some variables such as effort, correctness and satisfaction are not
objective. Thus, the assessment of these features may introduce
internal threats to the validity of our study. Performing the empir-
ical method on different subjects may provide different results.
Similarly, evaluating the correctness of objective by different eval-
uators might alter the results as well. However, we believe that the
subject group consists of developers and researchers that can ade-
quately assess their effort and satisfaction and that evaluators are
experienced enough to objectively mark the objectives that they
received.

Threats to external validity correspond to possible problems
when someone attempts to generalize the results outside the scope
of the study. In our study, the results cannot be generalized to all
23 GoOF patterns, but only to the 11 that we have examined. Addi-
tionally, the results cannot be straightforwardly valid for reuse of
closed source software, for games written in programming lan-
guages other than Java and for open-source domains, other than
games.

9. Conclusions

In this paper we introduce and validate a design pattern repos-
itory, populated by pattern instance mined from open source
games. Up to this point we have registered more than 4500 pattern
instances with more than 20,000 pattern participating classes. It is
believed that the repository can be helpful for both practitioners
and academics, since it provide a mined dataset for code reuse
and research. In order to evaluate the usefulness of the repository
we conducted an experiment with researchers and practitioners
with varying experience on design patterns.

The results of the experiment suggest that inexperienced devel-
opers are more likely to benefit from using the repository. More
specifically, inexperienced developers needed statistically signifi-
cantly less time in order to complete the required objectives and
completed them with fewer errors than inexperienced developers
who were trying to reuse code from search engines. The main rea-
son for that is that a design pattern based repository holds informa-
tion on the rationale of the reuse candidates. This fact provides
information on how the classes communicate and on how client
on this subsystem can be added. This extra information appears
to be very important to inexperienced developers who might have
problems in understanding the structure of code. At this point it is
necessary to clarify that inexperienced developers are expected to
use Percerons motivated by trying to find a code portion that imple-
ments a certain requirement. The designer although inexperienced
and probably not aware of the benefits of patterns, will gain several
benefits from using pattern-based components.

On the other hand, more experienced developers have not been
majorly effected w.r.t. to objective correctness, because they can
manually retrieve such information from source code. However,
in cases when the aforementioned information is available the

140 A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142

time needed for completing the objectives, is statistically de-
creased. Concerning researchers, the most important findings con-
cerned objective execution time. More specifically, both
experienced and inexperienced researchers achieved better scores
in completing the objectives quicker when using the pattern based
repository. Additionally, the user satisfaction of experience
researchers that used the repository has been found to be signifi-
cantly higher from the user satisfaction of researchers that were
not given a mined dataset in order to perform the objectives.

Appendix A

A.1. Design pattern roles

Design pattern Roles

Strategy-State Strategy/State
Concrete Strategies/States (referenced as
subclasses)
Adapter Client
Adaptee/Receiver
Adapter/Concrete Command
Composite Client
Component
Composite
Leaf
Decorator Component
Decorator
Concrete Component/Decorator
Factory Product
Method Creator
Concrete Product/Creator
Observer Observer
Subject
Concrete Subject/Observer
Prototype Prototype
Concrete Prototype
Client
Proxy Proxy
Subject
Real Subject
Singleton Singleton
Template Abstract Class
Method Concrete Class
Visitor Visitor
Element
Concrete Visitor/Element
Appendix B

B.1. Description and evaluation of objectives

0;: Development Objective. Identify a component that deals with a
game that implements the behaviour of weapons.

During this objective the subjects have been asked to identify a
component that will handle weapons in a first person shooter
game. In order to fasten the time needed to complete the task,
we have omitted any activities related to graphics. The final out-
come of the end system will be to print what weapon is in use.
In order to test the fit of the component we provided the subjects
with a main function that should be used.

Weapon w = new Shotgun();
w.reloadNow();

w.fire();

w = new Laser();
w.reloadNow();

w.fire();

The output of the execution of the scenario should be:

A shoutgun has been reloaded
You fire with a shotgun

A laser has been reloaded
You fire with a laser weapon

Evaluation guidelines

Retrieve some of the classes Weapon, Shotgun and Laser
Correct the identified classes in order to fit the main function
Add functionality or missing classes

Produce a code that compiles without errors

Provide the expected final output

0,: Development Objective. Identify a component that deals with
the attributes of hockey players. Hockey players are divided into two
main categories (goalkeepers and field players). These categories share
some attributes, but simultaneously each category has some different
attributes.

During this objective the subjects have been asked to identify a
component that will handle players’ attributes for a hockey game.
The final outcome of the end system will be to print the attributes
of all players of a team. In order to test the fit of the component
we provided the subjects with a main function that should be
used.

Team t = new Team();

Player p = new Player(); PlayerAttributes pa = new
GoalkeaperAttributes ();
pa.createRandomPlayerAttributes();
p.setAttributes(pa);

p = new Player(); PlayerAttributes pa = new Field-
PlayerAttributes ();

pa. createRandomPlayerAttributes();
p.setAttributes(pa);

for (int i=0; i<t.playerSize();i++) {
System.out.println(¢ ‘Player average attributes: ’’
+ t.get(i).getTotalAttributesAverage());

}

The output of the execution of the scenario should be:

Player Average Attributes: 78.5 as goalkeeper
Player Average Attributes: 55.5 as field player

Evaluation guidelines

Retrieve some of the classes Player, GoalkeaperAttributes,
FieldPlayerAttributes, Team and PlayerAttributes

Correct the identified classes in order to fit the main function
Add functionality or missing classes

Produce a code that compiles without errors

Provide the expected final output

O3: Research Objective. Identify the average number of design
pattern instances in stable board games.

A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142 141

Objective 1

Game Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of
name Adapter Composite Singleton State/ Decorator Factory Observer Prototype Proxy/ Template
instances instances instances Strategy instances method instances instances Proxy2 method
instances instances instances instances
JAVARISK2 14 0 2 3 0 2 1 0 0 0
JSETTLERS 7 0 8 0 1 2 0 1 1
JOSE 31 0 17 25 1 2 3 26 0 23
JSOKO 4 0 3 8 1 0 0 1 0 2
JSUDOKU 5 0 3 18 0 2 1 1 0 0
VER
0.3.1
AVG 12.20 0.00 5.40 12.40 0.40 1.40 1.40 5.60 0.20 5.20
The subjects have to fill a table like the one below:
Evaluation guidelines
Identify five stable board games
Retrieve and count the patterns instances for each board game
Calculate the average number of patterns instances
Document the results in the given table
04: Research Objective. Identify ten design pattern instances that
have been added in the (k + 1) version of a game that did not exist
in the (k) version of the game.
The subjects have to fill a table like the one below:
Evaluation guidelines
Game name JSUDOKU
Game version (n—1) 0.3.1
Game version (n) 1.0.45 Objective 2
Id Pattern Class-1 Class-2 Method-1
name
1 ADAPTER com.eriksilkensen.sudoku. com.eriksilkensen.sudoku. public void saveGame(java.io.File) throws
SudokuControl SudokuView java.io.lOException;
2 ADAPTER com.eriksilkensen.sudoku. com.eriksilkensen.sudoku. public com.eriksilkensen.sudoku.Board
BoardInventoryHelper InventoryBoardFactory createBoard(com.eriksilkensen.sudoku.
BoardDifficulties)
3 SINGLETON com.eriksilkensen.sudoku. private static javax.swing.Imagelcon faceAahlcon;
BoardDifficulties
4 OBSERVER com.eriksilkensen. com.eriksilkensen.net.Client protected void setUpNetworking() throws
util.Observer com.eriksilkensen.net.NotConnectedException;
5 OBSERVER com.eriksilkensen.sudoku. com.eriksilkensen.util.Observer public void setArg(java.lang.Object);
NetworkDialog
6 OBSERVER com.eriksilkensen.util. com.eriksilkensen.sudoku.SudokuModel public void gameWon();
Observer
7 STATE- com.eriksilkensen.sudoku. com.eriksilkensen.sudoku.BoardFactory public void supplylnventory(int);
STRATEGY BoardInventoryHelper
8 STATE- com.eriksilkensen.sudoku. com.eriksilkensen.sudoku.SolvingStrategy public void changeStrategy(com.eriksilkensen.sudoku.
STRATEGY Solver SolvingStrategy);
9 STATE- com.eriksilkensen.sudoku. com.eriksilkensen.sudoku.BoardFactory public void notifyObservers();
STRATEGY SudokuModel
10 TEMPLATE com.eriksilkensen.sudoku. public com.eriksilkensen.sudoku.Board leaveClues(int,

GeneratingBoardFactory

com.eriksilkensen.sudoku.Board);

Identify games with multiple versions

Retrieve and document all pattern instances of version (k)
Retrieve and document all pattern instances of version (k + 1)
Identify differences in the two documents

Document the additional patterns in the given table

References

[1] RT. Alexander, .M. Bieman, R.B. France, A software engineering research
repository, Special Interest Group on Software Engineering Lecture Notes
(SIGSOFT’04 Lecture Notes), Association of Computing Machinery 29 (5) (2004)
1-4.

[2] A. Ampatzoglou, A. Chatzigeorgiou, Evaluation of object-oriented design
patterns in game development, Information and Software Technology 49 (5)
(2007) 445-454.

[3] A. Ampatzoglou, A. Kritikos, G. Kakarontzas, I. Stamelos, An empirical
investigation on the reusability of design patterns and software packages,
Journal of Systems and Software 84 (2011) 2265-2283.

[4] A. Ampatzoglou, I. Stamelos, Software engineering research for computer
games: a systematic review, Information and Software Technology 52 (9)
(2010) 888-901.

[5] A. Ampatzoglou, S. Charalampidou, K. Savva, . Stamelos, An empirical study on
design pattern employment in open-source software, in: Proceedings of the
5th International Conference on Evaluation of Novel Approaches in Software
Engineering (ENASE ‘10), 22-24 July 2010, Athens, Greece, 2010, pp. 275-284.

[6] H. Apperly, Configuration Management and Component Libraries in
Component-Based Software Engineering: Putting the Pieces Together,
Addison-Wesley Longman Publishing, 2001. pp. 513-526.

142 A. Ampatzoglou et al./Entertainment Computing 4 (2013) 131-142

[7] K. Arnout, B. Meyer, Pattern componentization: the factory example,
Innovations in Systems and Software Engineering 2 (2) (2006) 65-79.

[8] L. Aversano, G. Canfora, L. Cerulo, C. D. Grosso and M. Di Penta, An empirical
study on the evolution of design patterns, in: Foundations of Software
Engineering (FSE’ 07), 3-7 September 2007, Dubrovnik, Croatia, Association
of Computing Machinery, 2007, pp. 385-394, .

[9] V.R. Basili, RW. Selby, D.H. Hutchens, Experimentation in software
engineering, IEEE Transaction on Software Engineering 12 (7) (1996) 733-743.

[10] P. A. Bernstein, U. Dayal, An overview of repository technology, in: Proceedings
of the 20th Conference on Very Large Data Bases (VLDB'94), September 1994,
Santiago, Chile, Association of Computing Machinery, 1994, 12-15, pp. 705-
713.

[11] S. Bibi, I. Stamelos, L. Angelis, Bayesian belief networks as a software
productivity estimation tool, in: 1st Balkan Conference in Informatics,
Thessaloniki, Greece, November 2003.

[12] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, R. T. Alexander, Design patterns
and change proneness: an examination of five evolving systems, in:
Proceedings of the 9th International Symposium on Software Metrics
(METRICS'03), 03-05 September 2003, Sydney, Australia, IEEE Computer
Society, 2003, pp. 40-49.

[13] S. Bjork, J. Holopainen, Patterns in Game Design, Game Development Series,
Charles River Media, 2004.

[14] W. Brown, Large-Scale Component-Based Development, Prentice Hall, 2000.

[15] V. Burégio, E. Almeida, D. Ludrédio, S. Meira, A reuse repository system: from
specification to deployment, in: Proceedings of the 10th International
Conference on Software Reuse (ICSR'2008), 25-29 May 2008, Springer,
Beijing, China, 2008, pp. 88-99.

[16] M. Conclin, J. Howison, K. Crowston, Collaboration using OSSmole: a repository
of FLOSS data and analyses, in: International Workshop on Mining Software
Repositories (MSR'05), St. Louis, Missouri, 17 May, 2005, Association of
Computing Machinery, 2005, pp. 1-5.

[17] E. Damiani, M.G. Fugini, C. Bellettini, Corrigenda: a hierarchy-aware approach
to faceted classification of object-oriented components, Transactions on
Software Engineering and Methodology 8 (3) (1999) 425-472.

[18] Percerons Component Search Engine, Available from:
www.percerons.com>, 2011.

[19] M. Di Penta, L. Cerulo, Y. G. Gueheneuc, G. Antoniol, An empirical study of the
relationships between design pattern roles and class change proneness, in:
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM’08), 28 September — 04 October 2008, Beijing, China, IEEE, 2008, pp.
217-226.

[20] W.B. Frakes, T.P. Pole, An empirical study of representational methods for
reusable software components, Transactions on Software Engineering 20 (8)
(1994) 617-630.

[21] T. Fullerton, Play-centric games education, IEEE Computer 39 (6) (2006) 36—
42.

[22] E. Gamma, R. Helms, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, Reading,
MA, 1995.

[23] V. Garcia, D. Lucrédio, F. Durdo, E. Santos, E. de Almeida, R. de Mattos Fortes, S.
de Lemos Meira, From specification to experimentation: a software
component search engine architecture, in: Proceedings of the 9th
International Symposium on Component-Based Software Engineering
(CBSE’06), June 29 - July 1 2006, Vasteras, Sweden, Springer, 2006, pp. 82-97.

[24] W. Harrison, A flexible method for maintaining software metrics data: a
universal metrics repository, The Journal of Systems and Software 72 (2)
(2004) 225-234.

[25] N.B.Harrison, P. Avgeriou, How do architecture patterns and tactics interact? A
model and annotation, Journal of Systems and Software 83 (10) (2010) 1735-
1758.

[26] B. Meyer, K. Arnout, Componentization: the visitor example, Computer, IEEE
Computer Society 39 (7) (2006) 23-30.

[27] M. McShaffry, Game Coding Complete, Paraglyph Press, Arizona, USA, 2003.

[28] A. McWilliams, T. Reicher, G. Klinker, B. Bruegge, Design Patterns for
Augmented Reality Systems, in: Proceedings of the 2004 International

<http://

Workshop Exploring the Design and Engineering of Mixed Reality Systems
(MIXER’ 04), 13 January 2004, Funchal, Madeira, 2004, pp. 1-8.

[29] A. Meneely, L. Williams, E. F. Gehringer, Rose: a repository of education-
friendly open-source projects, in: Proceedings of the 13th Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE ‘08), 30
June - 02 July 2008, Madrid, Spain, Association of Computing Machinery, 2008,
pp. 7-11.

[30] J. Miller, M. Roper, M. Wood, A. Brooks, Towards a benchmark for the
evaluation of software testing techniques, Information and Software
Technology 37 (1) (1995) 5-13.

[31] R. Mili, A. Mili, RT. Mittermeir, Storing and retrieving components: a
refinement based system, Transactions on Software Engineering 23 (7)
(1997) 445-460.

[32] A. Mili, R. Mili, R. Mittermeir, A survey of software reuse libraries, Annals of
Software Engineering 5 (1998) 349-414.

[33] H. Mili, E. Ah-Ki, R. Godin-Hamid Mcheick, An experiment in software
component retrieval, Information and Software Technology 45 (10) (2003)
633-649.

[34] D. Z. Nguyen, S. B. Wong, Design Patterns for Games, in: Special Interest Group
on Computer Science Education (SIGCSE'02), 27 February - 2 March 2002,
Cincinnati, Kentucky, Association of Computing Machinery, 2002, pp. 126-
130.

[35] R. Prieto-Diaz, Implementing faceted classification for software reuse,
Communications 34 (5) (1991) 89-97.

[36] R. Prieto-Diaz, P. Freeman, Classifying software for reusability, Software 4 (1)
(1987) 6-16.

[37] T. M. Rhyne, P. Doenges, B. Hibbard, H. Pfister, N. Robins, The impact of
Computer Games on scientific & information visualization: if you can’t beat
them, join them, in: 11th Visualization Conference, 8-13 October 2000, Salt
Lake City, Utah, USA, IEEE Computer Society, 2000, pp. 519-521.

[38] A.Rollings, D. Morris, Game Architecture and Design, New Riders, Indianapolis,

[39] R. Rucker, Software Engineering and Computer Games, Addison Wesley, Essex,
United Kingdom, 2003.

[40] J. Sametinger, Software Engineering with Reusable Components, Springer-
Verlag, 1997.

[41] W. Scacchi, Free and open source development practices in the game
community, Software Magazine 21 (1) (2004) 59-66.

[42] R. Seacord, S. Hissam, K. Wallnau, Agora: a search engine for software
Components, Internet Computing 2 (6) (1998) 62-70.

[43] N. Shi, R. Olson, Reverse engineering of design patterns from java source code,
in: 21st International Conference on Automated Software Engineering,
September 2006, Tokyo, Japan, IEEE/ACM, 2006.

[44] S. K. Sowe, L. Angelis, 1. Stamelos, Y. Manolopoulos, Using repository of
repositories (RoRs) to study the growth of F/OSS projects: a meta-analysis
research approach, in: Open Source Software Conference, 11-14 June 2007,
Limerick, Ireland, Springer, 2007, pp. 11-14.

[45] N. Tsantalis, A. Chatzigeorgiou, G. Stefanidis, S.T. Halkidis, Design patterns
detection using similarity scoring, IEEE Transactions on Software Engineering
32 (11) (2006) 896-909.

[46] L. Valente, A. Conci, Guff: A game development tool, in: XVIII Brazilian
Symposium on Computer Graphics and Image Processing (SIBGRAPI' 05), 9-12
October 2005, Natal, Brazil, 2005, pp. 1-10.

[47] P.Vitharana, F. Zahedi, H. Jain, Knowledge-based repository scheme for storing
and retrieving business components: a theoretical design and an empirical
analysis, Transaction on Software Engineering 29 (7) (2003) 649-664.

[48] M. Vokac, Defect frequency and design patterns: an empirical study of
industrial code, IEEE Transactions on Software Engineering 30 (12) (2004)
904-917.

[49] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslen,
Experimentation in Software Engineering, Kluwer Academic Publishers,
Boston/Dordrecht/London, 2000.

[50] M. Zyda, Educating the next generation of game developers, IEEE Computer 39
(6) (2006) 30-34.

http://www.percerons.com
http://www.percerons.com

	Building and mining a repository of design pattern instances: Practical and research benefits
	1 Introduction
	2 Reuse repositories
	3 Game development
	4 Repository design
	4.1 Repository scheme and data description
	4.2 Method for storing data in the repository
	4.3 Retrieving data from the repository

	5 Empirical evaluation method
	5.1 Experiment definition
	5.2 Experiment planning
	5.3 Experiment operation
	5.4 Experiment interpretation

	6 Results
	6.1 Descriptive statistics
	6.2 Hypothesis testing

	7 Discussion
	7.1 Effect of pattern repository on objective correctness
	7.2 Effect of pattern repository on objective completion time
	7.3 Effect of pattern repository on objectives effort/ user satisfaction

	8 Threats to validity
	9 Conclusions
	Appendix A
	A.1 Design pattern roles

	Appendix B
	B.1 Description and evaluation of objectives

	References

