The Journal of Systems and Software 86 (2013) 1945-1964

Contents lists available at SciVerse ScienceDirect ;@:,m..,,
Systems and

& Software

The Journal of Systems and Software

i

journal homepage: www.elsevier.com/locate/jss

Research state of the art on GoF design patterns: A mapping study

Apostolos Ampatzoglou®*, Sofia Charalampidou®, loannis Stamelos?

2 Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
b Department of Computer Science & Technology, Chalmers University of Technology, Gothenburg, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 27 October 2011

Received in revised form 12 March 2013
Accepted 14 March 2013

Available online 26 March 2013

Design patterns are used in software development to provide reusable and documented solutions to
common design problems. Although many studies have explored various aspects of design patterns, no
research summarizing the state of research related to design patterns existed up to now. This paper
presents the results of a mapping study of about 120 primary studies, to provide an overview of the
research efforts on Gang of Four (GoF) design patterns. The research questions of this study deal with
(a) if design pattern research can be further categorized in research subtopics, (b) which of the above
subtopics are the most active ones and (c) what is the reported effect of GoF patterns on software quality
attributes. The results suggest that design pattern research can be further categorized to research on
GoF patterns formalization, detection and application and on the effect of GoF patterns on software
quality attributes. Concerning the intensity of research activity of the abovementioned subtopics, research
on pattern detection and on the effect of GoF patterns on software quality attributes appear to be the
most active ones. Finally, the reported research to date on the effect of GoF patterns on software quality
attributes are controversial; because some studies identify one pattern’s effect as beneficial whereas
others report the same pattern’s effect as harmful.

Keywords:

Design patterns

Mapping study

Software quality attributes

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Patterns have been introduced by Christopher Alexander in the
field of architecture, where he documented reusable architectural
proposals for producing good quality designs (Alexander et al.,
1977). In the mid-90s, the idea of patterns was adopted by object-
oriented software developers. In Gamma et al. (1995), the so-called
GoF (Gang of Four, Gamma, Helms, Johnson and Vlisides), cataloged
23 design patterns aimed at meeting some commonly-recurring
object-oriented design needs.

In recent years, GoF design patterns have attracted the atten-
tion of researchers and they are now considered a respectable
part of software engineering research and practice. However, until
now, there has not been any published review that summarizes
the research state of the art in this area. Even though we focus on
GoF patterns, GoF patterns are not the only software patterns. For
example, other pattern catalogs introduce architectural patterns
(Avgeriou and Zdun, 2005; Buschmann et al., 1996), i.e., design
patterns on a higher-level of abstraction than objects (compo-
nent/subsystem interactions), game design patterns (Bjork et al.,
2003), i.e., patterns on game logic, etc. This study focuses on GoF

* Corresponding author. Tel.: +30 2310348007.
E-mail addresses: apamp@csd.auth.gr (A. Ampatzoglou),
stamelos@csd.auth.gr (I. Stamelos).

0164-1212/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.03.063

patterns although it does not suggest that GoF patterns are better
practices than other design patterns. However, the interest that GoF
patterns have attracted from both academia and industry justifies
the scope of this study. Furthermore, intheir mapping study Zhang
and Budgen (2012) note that all their available primary studies deal
with GoF patterns, which therefore supports our contention that
GoF patterns form a reasonable object of study. Additionally, it is
expected that if we widen the scope of our study to include other
types of patterns, there will be no real obvious boundary.

The goal of this paper is to summarize the existing research work
on GoF design patterns, later referenced as design patterns, through
a mapping study, which is sometimes considered as a form of a
systematic literature review. Recently, the number of systematic
literature reviews has increased in Software Engineering. At this
point, it is estimated that over 150 SLRs have been published (da
Silva et al., 2010; Kitchenham et al., 2009, 2011; Kitchenham et al.,
2010). In Section 2, we discuss related work and in Section 3 we
provide background information on software quality attributes. In
Section 4, we present an overview of the followed methodology
and define the research questions that our study will investigate.
Section 5 presents an overview of the primary studies and accumu-
lated data from the primary studies. The discussion of the paper (see
Section 6) is divided in subsections, according to the research goals,
i.e., active research subtopics and effect on quality attributes. Finally,
threats to validity and conclusions are described in Sections 7 and
8, respectively.

dx.doi.org/10.1016/j.jss.2013.03.063
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:apamp@csd.auth.gr
mailto:stamelos@csd.auth.gr
dx.doi.org/10.1016/j.jss.2013.03.063

1946 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

2. Related work

In this section, we present some previous studies which either
perform a systematic review of pattern literature or catalog the
effect of patterns on software quality attributes. Under this per-
spective, we identified three studies that are close to our work,
which however have important differences.

In (Galster and Avgeriou, 2012), Galster and Avgeriou summa-
rize the effect of software architecture patterns (SOA patterns) on
quality attributes. The authors have related more than 70 SOA pat-
terns, with quality attributes based on the pattern description on
the catalog that they have been introduced. Their results indicate a
mismatch between patterns for service-based systems and quality
attributes that are considered important for service-based systems.
The main difference of this work, with respect to our study, is the
focus on SOA patterns rather than GoF patterns.

A similar work on GoF patterns has been performed by Khomh
and Gueheneuc [P62], where the authors evaluated the effect of
all GoF patterns on software quality attributes through a survey.
The results suggested that, in constrast to common beliefs, design
patterns in practice impact negatively several quality attributes.
The difference of [P62] in comparison to this study is the use of
a different research method. [P62] is a survey whereas this paper
is a mapping study. Thus, [P62] is one of the 33 studies that have
been taken into account while investigating the effect of GoF design
patterns on software quality attributes.

In Zhang and Budgen (2012), Zhang and Budgen performed
a systematic literature review on the effectiveness of software
design patterns, on articles published until 2009. More specifically,
the research method used was a systematic literature review on
empirical studies concerning design patterns and software quality
attributes. The main difference of Zhang and Budgen (2012) with
respect to this paper is the aim of the two literature reviews. In
our study, we do not aim only on summarizing empirical evidence,
but to gather a broader dataset, concerning GoF design pattern
research. In addition to that, we do not only focus on the effect
of patterns on quality attributes, but introduce GoF design patterns
research subtopics, as well.

3. Software quality attributes

Software quality models are usually hierarchical (Dormey, 1995;
[S09126, 1992). In this paper, we use ISO/IEC 9126 as reference
model for discussing the effect of design patterns on software
quality (ISO9126, 1992). The first level of ISO 9126 describes six
quality attributes, i.e., portability, functionality, reliability, usabil-
ity, efficiency, and maintainability, which are further divided in
several sub-characteristics as shown in Fig. 1. Next, each qual-
ity sub-attribute (low-level quality attributes, such as complexity,

cohesion, etc.), can be assessed by a set of metrics that can be
used as indicators for the score of a system with respect to the
corresponding high level quality attribute.

One of the major concerns of a developer who employs a
pattern is the quality attributes of the design, after pattern applica-
tion. When using patterns, some of the software quality attributes
that will be affected are maintainability (Vokac et al., 2004),
understandability [P40] and reliability [P62]. However, assessing
the effect of patterns on software quality is an extremely diffi-
cult task. Until now, researchers have attempted to evaluate the
use of patterns with empirical, i.e. surveys, case studies, exper-
iments and analytical methods. In most real systems, patterns
interact (pattern coupling) and such interactions make the eval-
uation of the effect of patterns on quality attributes even more
difficult.

4. Mapping study methodology

To perform our mapping study, we used a well-known method-
ology for systematic literature reviews (Bereton et al., 2007;
Petticrew and Roberts, 2006). The selected methodology is consid-
ered a standard for conducting and presenting systematic reviews
in software engineering and it is applied in a wide variety of
papers (Ampatzoglou and Stamelos, 2010; Cai and Card, 2008; Dyba
and Dingsoyr, 2008; Hauge et al.,, 2010; Heckman and Williams,
2011; Kitchenham et al., 2009; Walia and Carver, 2009). Follow-
ing (Kitchenham and Charters, 2007; Kitchenham et al., 2009), the
mapping study plan consists of six definitions:

(a) Research questions definition

(b) Search process definition

(¢) Inclusion and exclusion criteria definition
(d) Quality assessment definition

(e) Data collection process definition

(f) Data analysis definition.

A flow chart that summarizes the review process is presented in
Fig. 2. The notions used in Fig. 2, are exactly the ones used in a flow
chart, i.e. the nodes represent actions (Gather Data for Each Study,
Identify Research Topics, etc.) and edges represent the transition
from one node to another (Zhang and Budgen, 2012).

4.1. Research questions

In this study, we planed to investigate several issues concerning
the research state-of-the-art on patterns. The research ques-
tions have been identified using a Goal-Question-Metrics (GQM)
approach (Basilietal., 1994). GQM defines a top down approach that

Quality
I [[[[|
Functionality Reliability Usability Efficiency Maintainability Portability
Suitability Maturity Understandability| Time Behaviour Analysability Adaptability
Accuracy Fault tolerance Learnability Resources Changeability Installability
Interoperability Recoverability Operability Utilisation Stability Co-existence
Security Attractiveness Testability Replaceability

Fig. 1. 1SO 9126 quality attributes.

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1947

Define Research Question
)Q(Exd ude Papers on the Basis of Tllle)

(Manual Search

(Exclude Papers on the Basis o'AbstracD

(Exd ude Papers on the Basis of Full TexD_

~{ Gather Datafor Each Study l

Identify Research Topics

Group Papers on Design
Pattern Formalization

Group Papers on Design
Pattern Detection

Group Papers on the Effect
of Design Pattems on
Software Quality Attributes

Group Papers on Design
Pattern Application

Group Papers on
Miscellaneous Issues of
Design Pattems

Identify Keyword for Each Topic

Present Research Topics Overview

Identify Research Method

Identify Involved Design Patterns

Identify Quality Attributes Assessed

(Presem the Effect of Design Patterns on Software Quality Attributes)

(Discuss Findings of the Review)

Fig. 2. Mapping study process—flow diagram.

aims at developing meaningful metrics. The approach introduces
three levels:

(a) Conceptual level (goal): “A goal is defined for an object for a vari-
ety of reasons, with respect to various models of quality, from
various points of view and relative to a particular environment”
(Basili et al., 1994).

(b) Operational level (question): “A set of questions is used to define
models of the object of study and then focuses on that object to char-
acterize the assessment or achievement of a specific goal” (Basili
et al.,, 1994).

(c) Quantitative level (metric): “A set of metrics, based on the mod-
els, is associated with every question in order to answer it in a
measurable way” (Basili et al., 1994).

The goal of the study is to provide researchers with a catalog
of related work and possible interesting research areas. In addition
to that, concerning practitioners the study aims to provide a quick
reference to quality attributes that are related to GoF design pat-
terns. The questions are defined in this section and the metrics are
defined in Section 4.6. Concerning the first goal of the paper, i.e.,
active research subtopics, two research questions have been stated,
whereas concerning the second goal, i.e., effect of patterns on quality
attributes, an additional research question has derived.

RQ; : Can design pattern research be further categorized according
to more specialized research subtopics?

This research question is important for providing researchers an
overview of trends and gaps in current design pattern research.

RQ, : Which are the most active research subtopics concerning design
patterns?

This research question is important to researchers. The findings
related to this question can be used by researchers as a catalog of
related work, divided by a rationale categorization. Additionally,
the results point to interesting research subtopics and to research
subtopics that are neglected up to now.

RQ3 : What pattern effects on quality attributes have been identified
to date?

This research question is interesting for both researchers and
practitioners. Researchers, who are specialized on the effect of GoF
patterns on software quality attributes, can easily identify the con-
troversial reported results on the subject and further investigate
them. Practitioners can consult the findings of our study when using
a design pattern and take into account their personal needs with
respect to relevant software quality attributes.

The names of the quality attributes that are investigated come
from ISO 9126 model. However, in several primary studies, we have
identified several quality attributes that are not presented in Fig. 1.

1948 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

Table 1

Quality attribute mapping.
Primary study quality attribute ISO-based quality attribute Studies
Change Proneness Stability P44
Reusability Adaptability P62, P93
Flexibility Maintainability P72
Modularity Maintainability P62, P93
Generality Adaptability P62
Scalability Maintainability P62
Robustness Reliability P62

The mapping between the terms of primary studies and ISO-based
terms are presented in Table 1.

For example [P44] references the change proneness quality
attribute which is the probability of a class to change. In I[SO 9126
change proneness is not defined as a quality attribute. The clos-
est ISO-based attribute is stability which is the opposite of change
proneness, i.e., the probability of a class not to change. Thus, change
proneness is mapped to stability, taking into account the negative
relationships between quality attributes while evaluating patterns.
Finally, some quality attributes of the ISO first level, e.g., usabil-
ity, are quality in use attributes, whereas patterns are expected to
affect internal and external ones'. For example, usability is exam-
ined from a developer’s perspective, i.e. how understandable and
attractive the code that uses a pattern is.

4.2. Search process

The search process of our research has been based on the process
described in (Cai and Card, 2008), where the authors selected seven
journals and seven conferences as search space. The journals have
been selected according to their impact factor (greater than 0.800),
whereas the conferences have been selected according to their
acceptance rate (about 30%). After creating the selected venue list,
we observed that our study explores the journals and conferences
of Cai and Card (2008) and investigated four additional journals,
six additional conferences, and two additional workshops that deal
with reverse engineering, maintenance, refactoring, metrics, and
generic software engineering. The journals and conferences that
have been explored are presented in Table 2, along with their
impact factor or acceptance rate.2 The topic of the journals and con-
ferences must strictly be software engineering. Thus, venues such
as IEEE Computer, Journal of the ACM, or Communication of the ACM,
although of very high quality and impact factor, were excluded.
Software architecture conferences have not been considered in the
search space because we assumed that the majority of papers pub-
lished in such venues would deal with architectural patterns and
not GoF design patterns. Concerning the time period of the search
process, the study has not defined any starting search date and
includes articles published until the end of 2010, i.e., all editions of
selected conference and all volumes of selected journals were con-
sidered in the review process. The search process was conducted by
a manual search through the portals of five digital libraries, namely
ACM, IEEE, ScienceDirect, Springer, and Wiley. The mapping among
venues and digital libraries is presented in Table 2. The only term
used in the search process was pattern, referenced in the title of the
publication. The exclusion of non-relevant articles was conducted

1 Quality in use: Type of quality that is perceived when the final product is used
in real conditions. Internal Quality: Type of quality that is perceived from a non-
executable view of the software (static). External Quality: Type of that is perceived
from running software (Kitchenham and Pfleeger, 1996).

2 The conference acceptance rates are from (http://people.engr.ncsu.edu/txie/
seconferences.htm) for the year 2010. If 2010 is not available, we take into account
the last known acceptance rate. The journals’ impact factors have been extracted
from (http://www.isiwebofknowledge.com).

manually according to the article filtering criteria defined in Section
4.3.

In Zhang and Budgen (2012) it is suggested that many papers
might include one or more studies and that one study might be
reported by one or more papers. In the field of software engineer-
ing, a common practice among researchers is to publish their early
research results in conference proceedings in order to get quicker
feedback from the research community, as a means for evolving
and maturing their work. In most of the cases the final outcome of
a study is a publication to a software engineering journal. In this
work we have grouped papers into studies and report them both.
The main criterion for merging papers into studies was the similar-
ity of research method and questions.3 The papers that have been
merged into one study are presented in Appendix C.

4.3. Article filtering phases

The papers that are selected as primary studies in the review
must be relevant to an object-oriented design pattern described in
(Gamma et al., 1995). In line with (Dyba and Dingsoyr, 2008), there
are four stages of filtering the article set to produce the primary
study data set. These stages are presented in Table 3. In line with
(Bereton et al., 2007), the search process was handled by one of the
three authors.

The article search process returned a set of studies that included
all publications that used the term pattern in their title, without
evaluating its relevance to GoF design patterns. On the completion
of this phase the article set (413 articles), went through a manual
inspection of their titles. Although the search process returned a set
of primary studies that included the term pattern in the title, there
was no article exclusion regarding its relevance to a GoF design
pattern at that stage. For example, a paper entitled Performance
of circuit-switched interconnection networks under no uniform traffic
patterns, was excluded in the second phase because the paper is
clearly unrelated to GoF design patterns.

On the completion of the abovementioned phase, the candi-
date primary study set included 215 papers. In the next phase,
one author assessed the relevance of each paper by examining its
abstract. The most common exclusion criterion at this phase proved
to be the relation of the candidate primary study to architectural
patterns or human computer interaction patterns. Next, the full
manuscripts of the 158 articles remaining were examined by all
three authors independently. In this phase, any article that had no
strict reference to at least one GoF design pattern was excluded. No
conflicts among the authors’ opinions arose. Finally, all 118 arti-
cles that successfully passed all previously mentioned phases have
been included in the review without applying further criteria. The
inclusion/exclusion criteria are explicitly listed below:

e Inclusion criteria:
o papers dealing with software design patterns
o explicit reference to one GoF design pattern
e Exclusion criteria:
o literature that was only available in the form of abstract
o literature in the form of a poster or a short paper (less than 5
pages)

4.4. Quality assessment

The quality of a systematic review is highly correlated to the
quality of the primary studies in the sense that the results and the

3 The complete list of comparisons among papers, so as to merged them into
studies is provided in the web, see http://students.csd.auth.gr/~apamp/mapping.
study.all_authors.xlIsx.

http://people.engr.ncsu.edu/txie/seconferences.htm
http://people.engr.ncsu.edu/txie/seconferences.htm
http://www.isiwebofknowledge.com/
http://students.csd.auth.gr/~apamp/mapping_study_all_authors.xlsx
http://students.csd.auth.gr/~apamp/mapping_study_all_authors.xlsx

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1949

Table 2
Publication venues.

Name # papers Impact factor/acceptance rate Digital sources
Annual Computer Software and Application Conference (COMPSAC) 13 31% IEEE
European Conference on Software Maintenance and Reengineering (CSMR) 13 30% IEEE
International Conference on Software Engineering (ICSE) 10 14% IEEE
International Conference on Software Maintenance (ICSM) 10 26% IEEE

ICSE Workshops 9 N/A IEEE

IEEE Working Conference on Reverse Engineering (WCRE) 9 25% IEEE

IEEE Transactions on Software Engineering (TSE) 8 2.265 IEEE

Journal of Systems and Software (JSS) 7 1.293 Science Direct
Information and Software Technology (IST) 6 1.527 Science Direct
International Conference on Automated Software Engineering (ASE) 6 18% IEEE/ACM
Object Oriented Programming, Systems, Languages and Applications (OOPSLA) 6 28% ACM
International Conference on Program Comprehension (ICPC) 4 27% IEEE

IEEE Metrics Symposium (METRICS) 3 29% IEEE
Symposium on Empirical Software Engineering and Measurement (ESEM) 3 29% IEEE/ACM
[EEE Software (IEEESoft) 2 1.511 IEEE
Empirical Software Engineering (ESE) 2 1.796 Springer
International Symposium on Software Reliability Engineering (ISSRE) 2 25% IEEE

ACM SIGSOFT Symposium on Foundation of Software Engineering (FSE) 1 20% ACM
Advancements in Software Engineering (AdSE) 1 1.004 Elsevier

ACM Transactions on Programming Languages and Systems (TOPLAS) 1 1.167 ACM

FSE Workshops 1 N/A ACM

Journal of Software: Evolution and Process 1 0.844 Wiley
Software Testing, Verification and Reliability (STVR) 1 0.957 Wiley

ACM Transactions on Software Engineering and Methodology (TOSEM) 0 1.694 ACM
Automated Software Engineering Journal (ASE]) 0 0.806 Springer
International Symposium in Software Testing and Analysis (ISSTA) 0 23% ACM
Requirements Engineering Journal (RE) 0 0.862 Springer
Science of Computer Programming (SCP) 0 1.306 Science Direct
Software and Systems Modeling (SoSyM) 0 1.404 Springer

conclusions of the secondary study are based on the findings of
the primary studies. Thus, in a review, it is crucial to include pri-
mary studies that are methodologically sound and that are clearly
presenting their results. In our review, we have included papers
that are published in top journals and conferences, and work-
shops that are held in conjunction with top conferences in software
engineering. Conferences and workshops have been included in
the search space, because many good software engineering papers
are presented at international conferences or workshops that usu-
ally cover more current and up-to-date research advancements;
because their review and publication period is shorter than that
for journals, without significant trade-off concerning the quality
of the articles. Hence, although we have not performed a system-
atic quality assessment for the primary studies in our review, we
believe that the quality of the selected papers is good enough for
the purpose of our study.

4.5. Data collection

During the data collection phase, we have collected a set of
variables that describe each primary study. For every study, we
extracted the following data:

[A1] Type of publication (journal, conference, workshop)

[A;] Published in (journal or conference name)

[A3] Year of publication

[A4] Keywords (the keywords have been extracted from authors’
expert judgment)

Table 3
Article inclusion—exclusion phases.
Step Remaining papers
Identify relevant studies—search digital libraries 413
Exclude studies on the basis of titles 215
Exclude studies on the basis of abstracts 158
Obtain studies and select the most relevant to design 118

patterns on the basis of full text

For the studies that deal with software quality, additional infor-
mation has been retrieved:

[Q1] Patterns investigated (name of pattern)

[Q2] Quality attributes investigated

[Q3] Software metrics used (if any)

[Q4] Research method used

All retained articles have been examined by all three authors.
Every author has completed data extraction for every primary
study separately. Then the values of each variable (obtained by
each author) have been compared to each other and its final value
has been assigned to the primary study after discussion on every
author’s opinion. If two or more authors assigned the same value
to one variable this value was assigned to the variable without fur-
ther discussion. In any other case after a debate among the authors
a value was assigned to every variable. In total, 72 conflicts have
been resolved concerning 44 primary studies.

4.6. Data analysis

The data collected for variables, type of publication (A1), published
in (Ay), year of publication (Asz), and research method used (Q4) were
used to provide descriptive statistics, mostly frequency tables, on
design pattern research. The keywords (A4) variables were used to
identify and discuss the most active research subtopics that deal
with design patterns and to aid in the description of research state
of the art on every subtopic (addressing RQ; and RQ»). Concern-
ing the discussion on the effect of each pattern on software quality
attributes (addressing RQs), variables pattern investigated (Qq), qual-
ity attributes investigated (Q,), and software metrics used (Qs) were
taken into account.

In a mapping study an important step toward drawing valu-
able conclusions is the categorization of the papers that have been
found. In this step, data from all studies are put together so as to cre-
ate adata set that can be analyzed to answer the research questions.
The data categorization plan in our study aims at accessing data
needed for answering every research question from many perspec-
tives, as shown in Table 4. The topics emerged during analysis, by

1950

Table 4

Data categorization overview.

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

RQ Basic measures Variables used
RO, Count of keywords Keywords (A4)
Count of articles per year for every research subtopic Year of publication (Asz)
Count of keywords per research subtopic Type of publication (A;)
RQ, Count of research methods used for investigating the effect of GoF patterns on Published in (A)
software quality attributes
Keywords (A4)
Research method used (Q4)
Mapping among design patterns & software quality attributes Pattern investigated (Q;)
RQ3 Count of positive and negative critiques on every pattern-quality attribute pair Quality attributes investigated (Q2)
Software metrics used (Qs)
Table 5

Primary study keywords frequency.

Keyword # papers # studies Brief description

Detection 36 30 Papers that present algorithms, tools or methods that can be used to identify GoF design pattern
instances in source or binary code.

Specification 11 10 Papers that discuss possible ways of presenting and specifying GoF design patterns.

Detection Algorithm 10 8 Papers that present algorithms that can be used to identify GoF design pattern instances in source
or binary code.

Quality 10 10 Papers that deal with the effect of GoF design patterns on software quality.

Detection Accuracy 9 9 Papers that deal with the detection accuracy of algorithms, tools or methods that can be used to
identify GoF design pattern instances in source or binary code.

Detection Tool 9 9 Papers that present tools that can be used to identify GoF design pattern instances in source or
binary code.

Detection Technique 8 8 Papers that present techniques that can be used to identify GoF design pattern instances in source
or binary code.

Implementation 7 6 Papers that exhibit how GoF design patterns can be implemented on various languages, or
automatically applied.

Maintainability 7 7 Papers that deal with the effect of GoF design patterns on software maintenace.

Structural 7 3 Papers that somehow deal with only one category of GoF design patterns, i.e. structural patterns

Visualization 6 5 Papers that present possible ways of visualizing GoF design patterns.

using reciprocal translation, which is a content analysis approach
(Noblitand Hare, 1988). The process of reciprocal translation is used
to express the concept of each study, in relation to the concept
of other studies. An alternative approach for classifying research
on patterns is the ACM Classification Schema (Cai and Card, 2008).
Having used this approach, most studies would have primarily been
classified in D.2.10 (Design). Secondary categorizations would clas-
sify the studies to D.2.2 (Design Tool) for design pattern detection,
D.2.3 (Coding Techniques) for pattern application, D.2.7 (Mainte-
nance) for the effect of patterns on maintainability, D.2.8 (Metrics)
for the effect of patterns on metric values and D.2.13 (Reusable
Software) for the effect of patterns on reusability.

5. Results

This section of the paper presents the results of this mapping
study, according to the three research questons. The first section
(Section 5.1) presents the research subtopics that have been iden-
tified according to our analysis. Next, an overview of the primary
studies included in the review, handling each study separately is
provided (Section 5.2). The third part (Section 5.3) provides descrip-
tive statistics, which derived from synthesizing the results of the
analysis, which will be used for discussing the effect of patterns on
software quality. The complete dataset of each study is available in
the web.4

5.1. Research subtopics & top publishers identification

The first research question of our study aims at the identifica-
tion of specialized research subtopics that can further categorize

4 http://students.csd.auth.gr/~apamp/mapping_study.html.

research on GoF design patterns. To achieve this goal, we qual-
itatively analyzed and synthesized the most common keywords
that have been extracted during the review process. An issue
with qualitative analysis of this form is that it really needs to be
performed systematically. In order to eliminate posibble inconsis-
tencies among terms used in different studies we used reciprocal
translation for the brief descriptions provided for each keyword.
The most common keywords that have been identified from all pri-
mary studies are presented in Table 5, accompanied by their brief
descriptions.

The analysis has been performed on the brief descriptions of
the keywords, where we attempted to identify similarities among
them. Keywords with similar brief descriptions have been put
together. For example, keywords Detection, Detection Algorithm,
Detection Tool, Detection Tool Accuracy and Detection Technique all
share the common aim of identifying GoF design pattern instances
from existing projects. This aim was not a part, of any other brief
description. Thus, Design Pattern Detection is identified as a GoF
Design Pattern research subtopic.

After performing the abovementioned process for all keywords,
the research state-of-the-art on design patterns has been divided
into five research subtopics, as they have been identified by our
data analysis, as follows:

e Design Pattern Formalization (from keywords Specification and
Visualization), deals with papers that attempt to create ontolo-
gies, markup languages, and so on, to describe design patterns.

e Design Patterns and Software Quality subtopic (from keywords
Quality and Maintainability), deals with papers that investigate
the effect of design pattern application on software quality.

e Design Pattern Detection (from keywords Detection, Detection
Algorithm, Detection Tool, Detection Tool Accuracy and Detec-
tion Technique), includes papers that deal with methodologies,

http://students.csd.auth.gr/~apamp/mapping_study.html

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1951

Table 6
Top Publishers of papers on design patterns.
Name # papers # studies Papers
Y. G. Guéhéneuc 11 10 P2, P33, P45, P46, P57, P58,
P59, P62, P63, P66, P90
C. Gravino 7 4 P27, P28, P29, P30,P31,
P32, P98
M. Risi 7 4 P27, P28, P29, P30,P31,
P32, P98
A. De Lucia 6 3 P27, P28, P29, P30,P31, P32
V. Deufemia 6 3 P27, P28, P29, P30,P31, P32
G. Antoniol 6 4 P4, P5, P6, P33, P45
A. Chatzigeorgiou 4 4 P3, P66, P67, P109
T.H.Ng 4 4 P78, P79, P80, P81
S. C. Cheung 4 4 P78, P79, P80, P81

algorithms, and tools that mine pattern instances from source
code and other artifacts.

e Design Pattern Application (from keyword Implementation)
subtopic involves papers that present methods for identifying
systems that need pattern application or methods and tools that
automate or assist the application of patterns.

e Miscellaneous Issues on Design Patterns, consists of studies that
cannot be classified into any other previous subtopic.

At this pointitis necessary to clarify that, some papers are linked
to keywords of two subtopics. In such cases, the article has been cat-
egorized under only one subtopic, according to authors’ judgment.
We believe that our classification schema adequately demarcates
research subtopics within the overall design pattern research state
of the art, in a more balanced way than a generic schema, e.g., ACM
Classification Schema, because it is more specialized and focuses on
pattern related characteristics that could not have been retrieved
by more generic schemas. In the remaining of the paper, we will
refer to the identified GoF patterns research subtopics as research
subtopics.

A common practice when performing a mapping study is the
identification and ranking of the researchers in the domain under
study. Table 6, summarizes the publishers with the maximum num-
ber of publications in research on the field of design patterns.

5.2. Research subtopics intensity and overview

Figs. 3-8 depict the trend of research activity for each subtopic
over the time period covered by the mapping study. In addition to
that, Table 7 presents the count of published articles within each
research subtopic and pointers to the corresponding publications.

The figures suggest that considering the overall research inten-
sity over time, the volume of research is increasing over the years.
However, there are years when the number of published papers on
design patterns has decreased with respect to the previous year.
Concerning research subtopics, research on pattern application was

14

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
—m-studies —A—papers

Fig. 3. Total research intensity over time.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

—e—studies ——-papers

Fig. 4. Research intensity over time (design pattern formalization).

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

-~ studies —d=papers

Fig. 5. Research intensity over time (design pattern detection).

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

~m-studies —h—papers

Fig. 6. Research intensity over time (design pattern application).

the most intense research subtopic until 2002 (30.23% of over-
all number of papers), but since then the research effort on this
subtopic has faded out. Research on pattern detection and pattern
formalization was limited to a small number of papers until 2005
and 2003 respectively. Then, both subtopics were subject to more
publications. However, research on pattern detection had a more
stable rate of published studies. Additionally, research on the effect

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
—m-studies —4—papers

Fig. 7. Research intensity over time (effect of design patterns on quality).

1952 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964
Table 7
Research subtopics.
Name # papers # studies Papers
Design Pattern Formalization 20(16.95%) 18(17.14%) P1, P11, P14, P15, P18, P19, P34, P35, P37, P38, P42, P64, P71, P74, P76, P85, P90,
P101, P104,P118
Design Pattern Detection 36(30.51%) 30(28.57%) P2, P4, P5, P6, P8, P10, P23, P27, P28, P29, P30,P31, P32, P36, P41, P43, P45, P51,
P54, P58, P59, P61, P65, P66, P68, P83, P88, P89, P96, P100, P102, P109, P112, P113,
P114,P117
Design Patterns and Software Quality 35(29.66%) 33(31.42%) P3, P9, P12, P13, P16, P33, P39, P40, P44, P46, P47, P48, P49, P52, P55, P56, P57,
P62, P63, P67, P72, P73, P77, P78, P79, P80, P81, P91, P92, P93, P98, P99, P110,
P111,P115
Design Pattern Application 18(15.25%) 15(14.28%) P17, P20, P22, P24, P25, P26, P50, P53, P60, P69, P70,P75, P82, P86, P94, P105,
P106, P116
Miscellaneous Issues 9(7.63%) 9(8.57%) P7, P21, P84, P87, P95, P97, P103, P107, P108

3.5

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

—=-studies —4—papers

Fig. 8. Research intensity over time (design pattern miscellaneous issues).

of patterns on software quality attributes is the most stable research
subtopic, because from 2001, there was only one year with fewer
than two publications.

Concerning the differences between number of studies and
number of papers, we observe that the topic with most studies
that have been published in more than one venue is design pat-
tern detection. This is a reasonable result in the sense that design
pattern detection algorithms, tools and techniques can more easily
evolve than any other kind of research activity. Changing one step
of an algorithm, to make it work faster or more accurately, is a result
that worths publishing without changing the complete methodol-
ogy. This is not applicable to other research topics, e.g. the effect
of GoF patterns on software quality, where minor changes do not
produce publishable results.

Finally, one role for a mapping study is to establish if there are
enough primary studies in an area to justify conducting a systematic
literature review. In the case of GoF design patterns research we
believe that there is room for a systematic literature review in the
fields of design pattern detection and on the effect of GoF patterns
on software quality attributes.

Next, we provide a detailed description of the state of the art on
each subtopic, according to the categories that have been defined
in Section 5.1. The papers have been classified in the five subtopics
and then grouped in a content-based manner. For each group, a
cumulative overview of their goals is provided. A more detailed pre-
sentation of each paper is provided in the web.” For every research
subtopic, we created a list of the most frequent keywords within
this subtopic. The keywords can be the method used for the purpose
of the study, e.g. meta-programming languages, or the actual aim of
the study, e.g., visualization of patterns. Every keyword is accom-
panied by two characteristics, i.e., a list of pointers to the articles
that it has been identified and its identification frequency within
the subtopic. The keywords that are presented in the tables aim at

5 http://students.csd.auth.gr/~apamp/mapping_study.html.

providing indications on research intensity around these keywords
and not to clearly describe the primary study.

5.2.1. Design patterns formalization

The articles that deal with pattern formalizations all share the
common aim of investigating, identifying, and specifying innova-
tive approaches that deal with modeling and formalizing patterns.
In [P35, P42, and P64] the authors deal with the visualization of
design patterns with UML artifacts. These studies provide a way
to use design patterns with several practical benefits concerning
tools that help practitioners in applying design patterns. In [P19
and P85], the authors present a repository including formal speci-
fications of the problems that each pattern solves and demonstrate
a language for formally describing the Visitor pattern to capture its
essenceinareusablelibrary.In[P14,P15,and P104], the authors use
first order predicate logic to specify the behavioral and structural
characteristics of design patterns.

In [P1 and P34], a component-based specification of design pat-
terns is suggested, guided by the design artifacts that are involved
in patterns and propose new symbols on class and collaboration
diagrams that help in pattern representation. In [P11 and P18],
the authors provide tools that are based on constraints and logical
graphs to formalize design patterns. [P37, P74 and P101] introduce
meta-programming languages for describing the way a pattern is
applied. In [P38, P76, and P118], the authors deal with enhanc-
ing the descriptions of design patterns. More specifically, they
propose transformations for pattern application and they provide
documentation on pattern usage. In [P71 and P90], construc-
tional attributes of patterns, a comparison of pattern visualization
methods, and general information on pattern comprehension are
presented (Table 8).

5.2.2. Design patterns detection

During our search process, we have identified 36 articles that
deal with design pattern detection. In [P29, P31, P51, and P114]
the authors have created algorithms that identify behavioral and
structural patterns through static and dynamic analysis. In [P4, P5,
P6, and P45], the authors introduce methods for identifying struc-
tural design patterns with a multilayer approach. In [P30 and P109]
introduce methods for identifying structural design patterns with
a two phase approach and perform design pattern detection using
a similarity scoring algorithm.

In [P32] the authors perform design pattern detection with
model checking techniques. In [P27, P28, and P96] the authors
identify pattern instances by visual language parsing techniques.
In [P112 and P117] the authors present two pattern detection
tools, for the Eiffel programming language and for UML diagrams,
respectively. In [P2, P36, and P83] additional tools that discover
occurrences of patterns in their standard form are presented. The
[P8, P10, P68, and P100] provide techniques and tools that identify
design patterns in source code.

http://students.csd.auth.gr/~apamp/mapping_study.html

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

Table 8
Keywords for pattern formalization.

Keyword # papers # studies Papers

Specification 11 10 P1, P14, P15, P37, P38,
P74, P76, P85, P101,
P104,P118

Visualization 6 5 P35, P42, P64, P71, P88,
P90,

Application 4 4 P19, P38, P76, P118

Transformations 4 4 P19, P38, P76, P118

UML 4 3 P35, P42, P64, P90

Documentation 3 3 P38, P76,P118

First order predicate logic 3 2 P14, P15, P104

Meta-programming languages 3 3 P37, P74, P101

Comprehension 2 2 P71, P88

Formalization 2 2 P11,P18

Formal specification 2 2 P19, P85

Logical Graphs 2 2 P11, P18

Architectural design artifacts 1 1 P1

Class diagram 1 1 P34

Collaboration diagram 1 1 P34

Component based specification 1 1 P1

Language 1 1 P85

Repository 1 1 P19

Representation 1 1 P34

In [P58 and P59] the authors suggest a bit-vector algorithm
for pattern detection. In [P23 and P61] pattern detection algo-
rithms have been employed for reverse engineering. In [P41 and
P54] the authors aim at improving the accuracy of design pattern
identification algorithms by machine learning and formal pattern
specifications respectively. Paper [P88] investigates the parame-
ters that would improve pattern detection accuracy. Paper [P43
and P113] present several benchmark problems for pattern detec-
tion. Papers [P65, P66, P89, and P102] compar pattern detection
techniques and evaluate their accuracy (Table 9).

5.2.3. Design patterns and software quality

This section presents the research state of the art on the effect
of GoF patterns on software quality. The primary studies are
described, divided into two major categories, (1) effect on high-
level quality attributes and (2) effect on low-level quality attributes.

1953

In [P12, P13 and P16] the authors investigate testability of
Abstract Factory, State, Mediator, Observer and Visitor patterns. In
[P9, P33, P49, P73, P80, P91, P93 and P98] the authors deal with the
maintainability, modularity, reusability, changeability and adapt-
ability of every design pattern. More specifically, adaptability and
maintainability are investigated for every pattern, whereas other
quality attributes only for some of the GoF patterns.

In [P79, P99 and P110] the defect frequency arising from the
use of Abstract Factory, Observer, Template Method, Adapter and
Singleton are investigated. In [P39, P44, P56 and P63] the change
proneness, i.e. the probability of a class to change, of Command,
Composite, Decorator, Observer, Singleton, State, Factory Method,
Iterator, Adapter, Bridge and Facade are investigated. In [P3, P46,
P52, P55, P67, and P77] the authors focus on low-level quality
attributes, such as complexity, coupling, cohesion, inheritance and
size.

In [P72, P78, P79, and P81] the authors investigate the ease of
adopting new requirements to instances of Factory Method, State,
Visitor, Flyweight and Decorator patterns, i.e. pattern flexibility and
extendibility. In [P40, P57, P62, P92, and P111] the authors inves-
tigate the maintainability, the stability and the understandability
of design patterns. In [P47, P48 and P115] the understandability of
Adapter, Bridge, Composite, Template Method, State, Strategy, Vis-
itor, Bridge, Command, Observer, Proxy and Singleton patterns are
investigated (Table 10).

5.2.4. Design patterns application

This section deals with the articles that investigate design pat-
tern application. In [P50] the authors describe their experiences
with design patterns. In [P17, P60 and P116] the authors suggest
that design patterns are the key to provide abstraction in software
and for adapting software components into existing systems. In
[P20 and P75] the authors detect software anti-patterns that neces-
sitate reengineering through design pattern application.

In [P22 and P86] focus their investigation to design patterns for
Java. In [P94 and P105] propose innovative design patterns that
might be a composition of other patterns. In [P69 and P70] the
authors deal with generative design patterns (GDP), and try to
address the major problems when using GDP. In [P24, P25, P26,

Table 9
Keywords for pattern detection.
Keyword # papers # studies Papers
Detection 36 30 P2, P4, P5, P6, P8, P10, P23, P27, P28, P29, P30,P31, P32, P36, P41, P43, P45, P51, P54, P58,
P59, P61, P65, P66, P68, P83, P88, P89, P96, P100, P102, P109, P112, P113, P114, P117
Detection Algorithm 10 8 P23, P29,P31, P41, P42, P58, P59, P61, P109, P114
Detection Accuracy 9 9 P41, P42, P43, P65, P66, P88, P89, P102, P113
Detection Tool 9 9 P2, P8, P10, P36, P68, P83, P100, P112, P117
Detection Technique 8 8 P8, P10, P65, P66, P68, P89, P100, P102
Structural 7 3 P4, P5, P6, P29, P30,P31, P114
Source Code 4 4 P8, P10, P68, P100
Behavioral 3 2 P29,P31, P114
Dynamic Analysis 3 2 P29,P31,P114
Multilayer Approach 3 1 P4, P5, P6
Pattern Standard Form 3 3 P2, P36, P83
Static Analysis 3 2 P29,P31,P114
Benchmark 2 2 P43,P113
Bit-vector 2 1 P58, P59
Formal Specifications 2 2 P41, P42
Language Parsing Techniques 2 1 P27, P28
Machine Learning 2 2 P41, P42
Reverse Engineering 2 2 P23, P61
Annotation 1 1 P96
Eiffel 1 1 P112
Model Checking 1 1 P32
Pattern Variant Form 1 1 P83
Similarity Scoring 1 1 P109
UML 1 1 P117

1954 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

Table 10 Table 12
Keywords for pattern effect on quality. Keywords for miscellaneous issues on patterns.

Keyword # papers # studies Papers Keyword # papers # studies Papers

Quality 10 10 P16, P47, P49, P63, P73, Documentation 2 2 P97, P107
P77, P78, P79, P91, P98 HTML 2 2 P97, P107

Maintainability 7 7 P3, P57, P62, P67, P80, P92, Run-time Behavior 2 2 P21, P87
P111 Client Program 1 1 P84

Design Coupling 5 5 P3, P46, P52, P55, P67 Framework 1 1 P108

Stability 5 5 P39, P56, P72, P92, P110 Pattern Application Density 1 1 P95

Understandability 5 5 P57,P62,P92,P111, P115 Pattern Categorization 1 1 P103

Changeability 4 3 P9, P33, P44, P110 Testing Framework 1 1 P108

Code Complexity 3 3 P3, P46, P55

Defect Frequency 3 3 P79, P99, P110

Flexibility 3 3 P39,P72,P78 5.3. GoF patterns and software quality attributes

Inheritance 3 3 P46, P55, P67

Modularity 3 3 P49, P62, P93 . i . . .

Reusability 3 3 P49, P62, P93 This section, presents results for further investigating the pri-

Change Proneness 2 2 P56, P63 mary studies that deal with the effect of GoF design patterns on

Code Cohesion 2 2 P3, P67 software quality attributes.

[C)z‘:ﬁrilzﬁtation g 3 5311)1]);; In Table 12, only the studies that deal with the effect of patterns

Extendibility 2 5 P3, P81 on quality attributes are considered (in total 33 primary studies).

Refactoring 2 2 P77, P81 Comparing our retrieved primary study dataset on the effect of

Testability 2 1 P12, P13 patterns on software quality attributes with the one of Zhang and

Generality 1 1 P62 Budgen (2012) we observe that we have identified and studied 17

Open-Close principle 1 1 P80 dditi 1 Th dditi 1 h b identified

Pattern Coupling 1 1 P73 additional papers. These additional papers have been identifie

Polymorphism 1 1 P52 because the searching period of our review included one addi-

Robustness 1 1 P62 tional year of research, because our work did not only focus on

Scaftl’i“ty 1 1 P% empirical studies. However, some papers that have been reported

Usability 1 1 P . . .

Work experience 1 ; P81 from Zhang and Budgen (2012) are not reported in this mapping

P53 and P82] the authors propose a methodology for automatically
constructing the transformations described in design patterns. In
[P106] the authors’ method suggests pattern-based architecting for
documenting design decisions in real-time (Table 11).

5.2.5. Miscellaneous issues on design patterns

Concerning research on generic issues on GoF patterns, nine (9)
studies have been identified. In [P97 and P107] the authors use
Javadoc to produce HTML documentation for design patterns. In
[P7,P84,P103, and P108] the use authors discuss the use of patterns
in the development of a testing framework, software migration
issues concerning patterns and other generic issues on GoF design
patterns. In [P21, P87, and P95] refer to patterns’ past, present and
future, they investigate run-time behavior of several patterns and
propose metrics for measuring design pattern usage intensity.

Table 11

Keywords for pattern application.
Keyword # papers # studies Papers
Implementation 7 6 P17, P22, P60, P69, P70,

P82, P86

Transformation 5 3 P24, P25, P26, P53, P82
Automated Method 4 2 P24, P25, P26, P53
Abstraction 2 2 P17, P60
Anti-patterns 2 2 P20, P75
Generative Patterns 2 2 P69, P70
Java 2 2 P22, P86
Pattern Composition 2 2 P94, P105
Reengineering 2 2 P20, P75
Component Adaptation 1 1 P116
Documentation 1 1 P106
Pattern-Based Architecting 1 1 P106
Practical Experience 1 1 P50
Programming Language 1 1 P113
Real-time 1 1 P106

study because of the narrower searching space, in the sense that we
only searched within specific journal and conference proceedings.
The table summarizes how many and which studies employ which
research method (as described in Glass et al. (2002)) to evaluate
the effect of pattern application on software quality attributes. It is
observed that the dominant empirical methodology (Wohlin et al.,
2000) is experiment, followed by case studies. These results are in
accordance with similar findings reported in (Glass et al., 2002;
Hofer and Tichy, 2007; Zhang and Budgen, 2012) (Table 13).

Finally, Table 14 presents the reported effect of design patterns
on software quality attributes and software metrics. Table 14 is pre-
sented similarly to a force resolution map as described in (Galster
and Avgeriou, 2012; Souza et al., 2002). The metrics that are pre-
sented in the paper are discussed in detail in Appendix B.

In Table 14, the (+) symbol suggests that the pattern has a pos-
itive effect on the corresponding quality attribute whereas the ()
symbol suggests that the pattern has a negative effect. Finally, the
study on which the selection of each symbol is based on is refer-
enced in the brackets next to the symbol. (+) does not necessarily
imply higher metric scores, but better metric scores. For example, a
(+) in Complexity means lower complexity levels whereas a (+) in
a polymorphism metric, means a system with more polymorphic
behavior. (+) and (—) symbols provide guidance to researchers and
practitioners, but they are by no means a strict evaluation.

The evaluation of each pattern with regard to quality attributes
has been conducted according to the evaluation provided in the pri-
mary studies. Additionally, blank cells in Table 14 suggest that the
corresponding pair of (quality attribute, pattern) has not been inves-
tigated by any study. In Table 14 we only present studies that clearly
present results and discussion on the effect of a specific pattern, on
a specific quality attribute. Primary studies that present more gen-
eral conclusions have been presented in Section 5.2.3, but are not
reported in Table 14.

6. Discussion

In this section we discuss the findings of our review with respect
to the research questions specified in Section4.1.In Sections 6.1 and
6.2, we summarize the current state of the art concerning design

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1955
Table 13
Research methods for studies on patterns and software quality.
Name Brief description # papers # studies Papers
Experiment A set of subjects is asked to perform a task in a 12(34.29%) 12(36.36%) P40, P49, P57, P72, P78, P79, P80, P81, P91, P92,
highly controlled environment. The results are P98, P111
derived from observing the subjects during the
experiment, from inspecting the task outcome or
from questioning the subjects at the end of the
procedure.
Case Study A project, an activity or an assignment is 11(31.43%) 10(30.30%) P3, P9, P16, P33, P44, P46, P56, P63, P67, P99, P110

monitored with respect to the methodology
under study. Results are directly derived from
project measurements.

Conceptual analysis is a technique that treats
concepts as classes of objects, events, properties,
or relationships. The technique involves precisely
defining the meaning of a given concept by
identifying and specifying the conditions under
which any entity or phenomenon is classified
under the concept in question.

A descriptive research paper typically describes a
system, tool or method.

A literature review gathers data from already
published studies synthesize them and draws
colnclusions from them.

A set of subjects is asked to fill-in questionnaires
either directly, or via internet. The results are
derived from the valid answers to the
questionnaire.

Conceptual Analysis/
Mathematical

Descriptive

Literature Review

Survey

7(20.00%) 6(18.18%) P12, P13, P39, P52, P55, P93, P115
3(8.57%) 3(9.09%) P47, P48, P77

1(2.86%) 1(3.03%) P73

1(2.86%) 1(3.03%) P62

patterns research. In Section 6.3, we discuss the findings of the
review on the effect of patterns on high and low-level software
quality attributes.

6.1. Research subtopics identification

The first part of analyzing existing literature with respect to
research subtopics on design patterns was the introduction of a
new research classification schema, which would be more fitting
to design pattern research than more generic ones. Our results,
pointed out five main subtopics on design pattern research, namely
(a) design pattern formalization, (b) design pattern detection, (c) effect
of design patterns on software quality, (d) design pattern application,
and (e) miscellaneous.

6.2. Research subtopics activity

The results of Table 7 suggest that the most popular subtopics of
design pattern research is design pattern detection and the inves-
tigation of the effect of patterns on software quality, followed by
techniques for formulating design patterns.

Furthermore, concerning the studies that assess the effect of
design pattern application on software quality, we have found
out that 66.4% employ an empirical research method (Table 13).
In (Glass et al., 2002; Hoéfer and Tichy, 2007), it is reported that
in general software engineering research, i.e., not only design
pattern research, the fraction of studies that employ empirical vali-
dation methods is between 20% and 30%. Although the amount of
empirical research in design patterns is higher than the average
empirical research in software engineering, we believe that design
patternresearch is in need of more empirical studies that use large-
scale and realistic problems, use practitioners instead of students,
use more subjects, more projects, etc. Also, maybe more diverse
research methods should be applied. For example, only one survey
has been conducted so far so there might be a need for more sur-
veys. Additionally, the plethora of open-source projects, which are
mainly the subjects of case studies, leaves much space for improve-
ment both in terms of size and in the control of the case studies’
environment.

6.3. Effect of design patterns on quality attributes

According to the results of our study (Table 14), the most com-
monly investigated quality attributes appear to be maintainability,
understandability, and reusability. More specifically, most patterns,
i.e., 18 out of 23, have been reported to have a positive effect
on software maintainability. Concerning reusability, the results
are controversial, because some patterns appear to provide more
reusable design than others. Additionally, the understandability of
design patterns seems to be the most elusive quality aspect because
six patterns, i.e., Visitor, Composite, Decorator, Proxy, Observer, and
Abstract Factory, are referenced as easily understood in some stud-
ies and as hard to understand in others. This fact can be explained by
the findings of Ampatzoglou et al. (2012) where the authors identi-
fied the number of design pattern participating classes as a decider
of the quality of the final design. In Ampatzoglou et al. (2012), the
authors identified eleven (11) specific design pattern sizes that can
be used as cut-off® points while comparing the understandability of
the visitor pattern with alternative designs. Thus, if one case study
selected a visitor instance with pattern size below one of the afore-
mentioned cut-off points and another one a visitor instance higher
than the same cut-off point, the evaluation of the two instances
would be different. However, it is out of scope of this manuscript to
discuss details on the structural characteristics of each pattern and
attempt to explain its effect on every quality attribute. The inter-
ested reader can access such information on the primary studies
that are mapped to the pair (pattern—quality attribute) he/she is
interested in.

Additionally, in most cases, design patterns are about trade-
offs and it is impossible to assess the effect of patterns on
software quality in a generic way without knowing the context

6 As cut-off point in (Ampatzoglou et al., 2012) the authors characterize a specific
number of classes, where the metric score for a specific quality attribute, in a pattern-
based version of a system, equals the metric score for a specific quality attribute,
in a non-pattern-based version of the same system. If the number of classes in one
system is higher than the cut-off point the one solution is better than other, if the
number of classes in one system is lower than the cut-off point the other solution is
better.

Table 14
Effect of design patterns on quality attributes.
Attribute Abstract Factory Builder Factory Method Prototype Singleton Adapter Composite Decorator Facade Flyweight Bridge Proxy
Usability
Understandability — [P0O40] +[P062] — [P062] +[P062] +[P062] — [P062] +[P062] +[P111] +[P062] — [P062] +[P062] +[P115]
— [P062] —[P111] — [P062] — [P062]
—[P111] +[P092]
Maintainability +[P062] +[P062] +[P062] +[P062] — [P062] +[P062] +[P062] +[P062] +[P062] — [P062] +[P003] +[P067]
+[P093] +[P093] +[P093] +[P093] — [P093] +[P093] +[P093] +[P072] +[P093] — [P093] +[P062] +[P093]
+[P092] — [P093] — [P062]
+[P093]
+[P111]
Stability +[P110] — [P044] +[P039] — [P062] — [P092] +[P039] — [P062] +[P039] — [P044]
— [P062] — [P044]
Reliability — [P062] — [P062] — [P062]
Portability
Adaptability +[P062] +[P093] +[P062] +[P062] — [P062] +[P062] +[P062] — [P062] +[P093] — [P062] — [P062] +[P062]
+[P093] — [P062] +[P093] +[P093] — [P093] +[P093] +[P093] — [P093] — [P062] — [P093] — [P093] +[P093]
Metrics
Complexity (WMC, AC) +[P046] +[P003]
Cohesion (H, LCOM) +[P003] — [P067]
Coupling (CF, Ce, CBO) +[P046) +[P003] — [PO67]
Size (LOC, NOC) — [P0O03] —[P115]
— [P115]
Polymorphism (NOP) +[P052] +[P052]
Inheritance (DIT, NOCC, A, NMI) +[P055] — [PO67]
Attribute Command Interpreter Iterator Mediator Memento Observer State Template Strategy Visitor Chain of
method responsibility
Usability
Understandability — [P062] +[P062] +[P062] +[P062] — [P062] +[P111] +[P062] — [P062] +[P062] +[P062] +[P062]
— [P062] — [PO51]
— [P092] — [P058]
—[P111]
Maintainability +[P062] +[P062] +[P062] +[P062] — [P062] +[P062] +[P003] +[P062] +[P062] +[P058] +[P062]
+[P093] +[P093] +[P093] +[P093] — [P093] +[P093] +[P062] +[P093] +[P093] +[P062] +[P093]
— [P093] +[P072]
+[P092]
+[P093]
— [PO51]
—[P111]
Stability +[P044] — [P110] — [P044] +[P110] — [P044]
Testability —[P013] —[P013] - [P013]
Portability
Adaptability +[P093] — [P093] +[P062] — [P062] — [P062] +[P062] — [P062] +[P062] +[P093] — [P062] +[P062]
— [P062] +[P093] — [P093] — [P093] +[P093] — [P093] +[P093] — [P062] — [P093] +[P093]
Metrics
Complexity (WMC, AC) +[P003] +[P055]
— [P0O03] — [P046]
Cohesion (H, LCOM) +[P003]
Coupling (CF, Ce, CBO) +[P052] +[P052] +[P003] +[P046]
+[P055] +[P046]
Size (LOC, NOC) — [P115] — [P115] — [P003]
Polymorphism (NOP) +[P052] +[P052] +[P052]
Inheritance (DIT, NOCC, A, NMI) +[P046]

9561

P96 1-SH61 (£10Z) 98 24pm3fos pup swaisAS fo jpuinof 3y, / v 32 nojSozipdwry y

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1957

(flexibility, requirements, etc.). Most pattern catalogs describe
how to introduce flexibility, but as a side-effect, they introduce
more complexity. This is preferable in cases when extra flexi-
bility is required. If a design pattern leads to more complexity
to enhance system flexibility, without really needing it, software
quality would deteriorate. Usually, the application of one pattern
enhances some quality attributes and simultaneously other qual-
ity attributes diminish. For example, the Abstract Factory pattern is
reported to be beneficial to maintainability, because new product
types can be added without altering the existing code.However, the
application of the Abstract Factory also decreases the understand-
ability of the design. The designer should consider which quality
attribute is more important to him/her and decide if he/she will
apply the pattern.

Additionally, although design patterns are about design, most
existing studies consider the implementation of the solutions of
design patterns in source code for practical reasons. Furthermore,
implementation of a design pattern can vary across primary studies.
Thus, we believe that these variants themselves could be respon-
sible for any difference observed in the effect of pattern usage on
low-level and high-level quality attributes.

As the current state of the art stands, evaluation of design pat-
terns has been performed through code metrics in only six studies.
In the rest of the cases, the evaluation has been performed by expert
opinion. Although evaluating patterns through metrics is not nec-
essarily superior than evaluating according to expert judgment,
assessing the effect of patterns through code and design metrics
is a field that needs further investigation and is expected to grow
in the next years. This fact is explained by the findings of Zhang
et al.,, where it is suggested that the majority of empirical stud-
ies that investigate design patterns are conducted by controlled
experiments (Zhang and Budgen, 2012). Additionally, pattern cou-
pling is clearly mentioned in only two studies, although in real
systems pattern occurrences interact. Thus, evaluating isolated pat-
tern instances may be risky or just an approach of the real effect of
the pattern on real systems.

According to the results of the study, we suggest that future
research might focus on areas such as pattern understandability,
pattern reusability, and reusability of patterns that are used at
the component or subsystem levels. Additionally, we believe that
interesting future work might deal with identifying variables that
would formulate the abovementioned trade-offs and be used in
decision making tools that would evaluate pattern application ben-
efits and drawbacks. Such tools would help practitioners during
system design in deciding whether to use a pattern or not. Further-
more, we propose future research efforts to deal with the effect of
patterns on quality attributes such as usability, modularity, gener-
ality, scalability, and robustness, which have not been thoroughly
investigated yet. Moreover, we claim that interesting future work
would be the evaluation of design patterns at the design level rather
than on an implementation level, that is only considered at this
point. Finally, studies that will investigate real systems with pattern
instances that interact appear to be of great interest.

7. Threats to validity

In this section, we discuss possible threats to the validity of our
study. Threats to validity are divided into four major categories,
namely (a) construct validity threats, (b) internal validity threats,
(c) external validity threats and (d) threats to conclusions validity.

7.1. Construct threats to validity

Construct threats to validity deal with problems that might
arise during research design. In a literature review, such threats

are related to the identification of primary studies. Concerning our
search process, any study that does not mention the word “pat-
tern” in the title of the article has been excluded from the primary
studies set. So, a number of articles that deal with design patterns
might have been omitted. However, we believe that papers that
deal with design patterns would most probably explicitly state it
in their titles. Additionally, not performing a global search on an
indexing system such as SCOPUS, EI COMPENDIX, or Web of Science,
means that papers in less popular journals and conferences may
have been omitted from the study. However, we believe that includ-
ing in the review only top journals, conference, and workshops,
raise the quality standards of the primary studies and therefore the
quality of the results of our systematic review. This is in line with
past published surveys similar to our work. We have chosen not to
include PLoP conferences in the searched venues, because the stud-
ies published in PLoP are usually about introducing new patterns
and not discussing the GoF patterns. The acceptance rate of PLoP
conferences could not be retrieved to validate if it fits the selection
criteria for conferences.

7.2. Internal threats to validity

Internal threats to validity deal with problems that arise dur-
ing data extraction. Concerning the results on the impact of design
patterns on software quality, we identify three limitations. Firstly,
although we tried to map every quality attribute that was identi-
fied in a primary study to the ISO 9126 quality model, there might
be the case of a misplaced study, because sometimes researchers
have different understandings of quality attributes and use the
same term for different attributes or different terms for the same
quality attribute. However, it was not possible to locate a single
quality model that references all quality attributes that are used
in the primary studies. Additionally, using a quality model and
merging quality attributes in larger categories has been preferred
over presenting the quality attributes as described in the primary
studies, because primary studies have used different names for sim-
ilar or same quality attributes and this fact leads to loss of data
synthesis and categorization opportunities. Secondly, design pat-
terns are blue prints that leave variants implementation options
to the developers. Considering that implementation plays impor-
tant role with respect to quality attributes, there might be possible
deviations from the metrics calculated in the primary studies that
we reference. However, the majority of primary studies investi-
gated the standard pattern implementations (Gamma et al., 1995),
consequently the results of the study deal with the standard
pattern forms and cannot be generalized to pattern variations
or implementation different from the original implementation
(Gamma et al., 1995). Finally, the extracted data concerning the
keywords, quality attributes and research methods of primary stud-
ies have been identified through expert judgment and therefore
they are no strict characterizations of the papers. However, the
way that conflicts have been resolved limits the possibilities of
errors.

7.3. External threats to validity

External threats to validity deal with problems, in generalizing
the obtained results from the sample to the population. The conclu-
sions that have been drawn are design pattern type specific. Thus,
results on one pattern for which a lot of data are available can-
not be generazlized to other design patterns for which we do not
have enough data. In addition to this, results from primary studies
which are mainly concerned with maintenance tasks results cannot
be generalized to development tasks.

1958 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

7.4. Threats to conclusions validity

Threats to conclusions validity are factors that can lead to incor-
rect conclusions, either by identifying incorrect relationship, or by
missing existing relationships. In the case of our study, such factors
are related to identification of primary studies, i.e., missing studies
that should have been included in the review, and incorrect data
extraction. Both these threats are discussed in detail in the previ-
ous paragraphs. An additional threat to validity is that we measure
research intensity with the number of studies and not with the
volume of research or information they provide. However, such an
attempt would introduce subjective criteria into the analysis of the
results. For this reason, we preferred to use an objective (directly
measurable) criterion for characterizing the intensity of research.
Finally, having not merged multiple papers under one study, might
have slightly altered our results. However, we believe that in the
common case, major journals and conferences, such as the ones we
have used as a searching space rarely publish papers that are not
based on innovative ideas and studies.

8. Conclusions

This paper aims at summarizing the research state of the art
on GoF design patterns, emphasizing on studies that deal with
the effect of pattern application on quality attributes. The main
research questions that the mapping study answers are: (a) if
design pattern research can be further categorized in research
subtopics, (b) which of the above subtopics are the most active and
(c) what is the reported effect of GoF patterns on software quality
attribute.

The research efforts on GoF design patterns have been classi-
fied according a classification schema, which has been extracted
according to our search result, into five subtopics: (a) papers on
pattern formalizations, i.e. papers that attempt to provide formal
descriptions of design patterns, (b) papers on pattern detection,
i.e. papers that propose algorithms/tools/techniques for identify-
ing design pattern instances, (c) papers on pattern application, i.e.
papers that discuss how design patterns can be applied and imple-
mented, (d) papers on the effect of patterns on software quality, i.e.
papers that evaluate the effect of GoF patterns on software quality
attributes, and (e) miscellaneous papers, i.e. papers that cannot be
placed in any other subtopic.

The most active research subtopics are design pattern detection,
and the impact of GoF patterns on software quality attributes. The
main bulk of publications that evaluate the effect of patterns on
software quality consist of empirical studies that appear to inves-
tigate both low-level and high-level software quality attributes.
Until now, the research efforts produce controversial results and
practitioners must employ judgment to select the most fitting
design. Additionally, the results confirm that patterns are about
trade-offs. Design patterns enhance one quality attribute in the
expense of another. Consequently, design patterns cannot be char-
acterized as universally “good” or “bad”, but the quality attributes
that are important for the specific application must be examined
as well.

The abovementioned indications suggest that in the near future,
researchers might attempt to narrow these gaps by employing
research approaches other than empirical methods, to investigate
the effect of pattern application on software quality attributes, e.g.,
by analytical methods as in [2,P52, and P55]. However, we believe
that research on both design patterns and software engineering
in general are still in need of empirical studies. Furthermore, this
mapping study pointed out several gaps in the research state of
the art concerning the effect of patterns on software quality, as
summarized below:

e Design pattern understandability
e Design pattern reusability

e Design pattern modularity

e Design pattern robustness

e Design pattern coupling

Acknowledgements

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through
the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) — Research Fund-
ing Program: Thalis—Athens University of Economics and Business
- SOFTWARE ENGINEERING RESEARCH PLATFORM. The authors
would like to thank the anonymous reviewers for their valu-
able comments and suggestions to improve the quality of the
paper. Especially their comments on the correct application of the
methodology and the distinction of papers and studies have been
extremely valuable for us.

Appendix A. Papers included in the review

[P1] P.S.C. Alencar, D.D. Cowan,]. Dong and CJ.P. de Lucena,
“A Pattern-Based Approach to Structural Design Composition”,
23rd International Computer Software and Applications Confer-
ence(COMPSAC'99), IEEE, pp. 160-165, Phoenix, Arizona, 25-26
October 1999.

[P2] H. A. Amiot, P. Cointe, Y. G. Guéhéneuc and N. Jussien,
“Instantiating and Detecting Design Patterns: Putting Bits and
Pieces Together”, Proceedings of the 16th IEEE international confer-
ence on Automated software engineering, ACM, pp. 166, San Diego,
California, 26-29 November 2001.

[P3] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-
oriented design patterns in game development”, Information and
Software Technology, Elsevier, 49 (5), pp. 445-454, May 2007.

[P4] G. Antoniol, G. Casazza, M. Di Penta and R. Fiutem,
“Object-Oriented design patterns recovery”, Journal of Systems and
Software, Elsevier, 59 (2), pp. 181-196, November 2001.

[P5] G. Antoniol, R. Fiutem and L. Christoforetti, “Using Metrics to
Identify Design Patterns in Object-Oriented Software”, Proceedings
of the 5th International Symposium on Software Metrics, IEEE, pp. 23,
Bethesda, Maryland, 20-21 March 1998.

[P6] G. Antoniol, R. Fiutem and L. Christoforetti, “Design Pattern
Recovery in Object-Oriented Systems”, Proceedings of the 6th Inter-
national Conference on Program Comprehension (ICPC’ 98), IEEE,
Ischia, Italy, 24-26 July 1998.

[P7] F. Arcelli, C. Tosi and M. Zanoni, “Can design pattern detection
be useful for legacy systemmigration toward SOA?”, Proceedings
of the 2nd international workshop on Systems development in SOA
environments(ICSE’ 08), IEEE, pp. 63-68, Leipzig, Germany, 10-18
May 2008.

[P8] A. Asencio, S. Cardman, D. Harris and E. Laderman, “Relat-
ing Expectations to Automatically Recovered Design Patterns”,
Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), pp. 87, Richmond, Virginia, 29 October-01 November
2002.

[P9] L. Aversano, G. Canfora, L. Cerulo, C. D. Grosso and M. Di
Penta, “An empirical study on the evolution of design patterns”,
Foundations of Software Engineering (FSE’ 07), ACM, pp. 385-394,
Dubrovnik, Croatia, 3-7 September 2007.

[P10] Z. Balanyi and R. Ferenc, “Mining Design Patterns from
C++ Source Code”, Proceedings of the International Conference on
Software Maintenance, IEEE, Amsterdam, The Netherlands, 22-26
September 2003.

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1959

[P11]E.L. A. Baniassad, G. C. Murphy and C. Schwanninger, “Design
Pattern Rationale Graphs: linking design to source”, Proceedings of
the 25th International Conference on Software Engineering, IEEE, pp.
352-362, Portland, Oregon, 03-10 May 2003.

[P12] B. Baudry, Y. Le Sunye and J. M. Jezequel, “Toward a
‘Safe’ Use of Design Patterns to Improve OO Software Testabil-
ity”, Proceedings of the 12th International Symposium on Software
Reliability Engineering, IEEE, pp. 324, Hong Kong, China, 27-30
November 2001.

[P13]B.Baudry,Y.Le Traon, G.Sunyé and J. M. Jezequel, “Measuring
and Improving Design Patterns Testability”, Proceedings of the 9th
International Symposium on Software Metrics, IEEE, pp. 50, Sydney,
Australia, 03-05 September 2003.

[P14] L. Bayley and H. Zhu, “Formal specification of the variants
and behavioral features of design patterns”, Journal of Systems and
Software, Elsevier, 83 (2), pp. 209-221, February 2010.

[P15] 1. Bayley and H. Zhu, “Specifying Behavioral Features of
Design Patterns in First Order Logic”, Proceedings of the 2008
32nd Annual IEEE International Computer Software and Applications
Conference (COMPSAC ‘08), 1IEEE, pp. 203-210, Turku, Finland, 28
July-01 August 2008.

[P16] J. M. Bieman, G. Straw, H. Wang, P. W. Munger and R. T.
Alexander, “Design Patterns and Change Proneness: An Examina-
tion of Five Evolving Systems”, Proceedings of the 9th International
Symposium on Software Metrics, IEEE, pp. 40, Sydney, Australia,
03-05 September 2003.

[P17]]. Bishop, “Language features meet design patterns: raising
the abstraction bar”, Proceedings of the 2nd international workshop
on The role of abstraction in software engineering (ICSE'08), IEEE, pp.
1-7, Leipzig, Germany, 10-18 May 2008.

[P18] A. Blewitt, A. Bundy and I. Stark, “Automatic verification of
design patterns in Java”, Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering, ACM, pp.
224-232, Long Beach, CA, 07-11 November 2005.

[P19] G. E. Boussaidi and H. Mili, “A model driven frame-
work for representing and applying design patterns”, 31st
Annual International Computer Software and Applications Confer-
ence (COMPSAC'07), IEEE, pp 97-100, Beijing, China, 24-27 July
2007.

[P20] L. C. Briannd, Y. Labiche and A. Sauve, “Guiding the Appli-
cation of Design Patterns Based on UML Models”, Proceedings of
the 22nd IEEE International Conference on Software Maintenance,
IEEE, pp. 234-243, Philadelphia, Pennsylvania, 24-27 September
2006.

[P21] F. Buschmann, K. Henney and D. C. Schmidt, “Past, Present
and Future in Software Patterns”, IEEE Software, IEEE, 24 (4), pp.
31-37,July 2007.

[P22] M. L. Cagnin, R. T. V. Braga, P. C. Masiero, 1. Usp, R. Pen-
teado, and Dc UFSCar, “Reengineering using Design Patterns”,
Proceedings of the Seventh Working Conference on Reverse Engi-
neering (WCRE’00), pp.118, Brisbane, Australia, 23-25 November
2000.

[P23] R. Chaabane, “Poor performing patterns of code: Analysis
and Detection”, Proceedings of the IEEE International Conference on
Software Maintenance (ICSM’'07), IEEE, pp. 501-502, Paris, France,
02-05 October 2007.

[P24] M. O’ Cinneide, “Automated refactoring to introduce design
patterns”, Proceedings of the 22nd international conference on Soft-
ware engineering (ICSE’00), 1IEEE, pp. 722-724, Limeric, Ireland,
4-11 June 2000.

[P25] M. O’ Cinneide and P. Nixon, “A Methodology for the Auto-
mated Introduction of Design Patterns”, Proceedings of the 15th IEEE
International Conference on Software Maintenance, IEEE, pp. 463,
Oxford, England, 30 August-03 September 1999.

[P26] M. O’ Cinneide and P. Nixon, “Automated software evolu-
tion toward design patterns”, Proceedings of the 4th International

Workshop on Principles of Software Evolution (ICSE'01), IEEE, pp.
162-165, Vienna, Austria, 12-19 May 2001.

[P27] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino and
M. Risi, “Case Studies of Visual Language Based Design Patterns
Recovery”, Proceedings of the Conference on Software Mainte-
nance and Reengineering, IEEE, pp. 165-174, Bari, Italy, 22-24
March 2006.

[P28] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino
and M. Risi, “Design Pattern Recovery by Visual Language
Parsing”, Proceedings of the 29th international conference on Soft-
ware Engineering, 1EEE, pp 102-111, Manchester, UK, 21-23
March 2005.

[P29] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “Design
pattern recovery through visual language parsing and source code
analysis”, Journal of Systems and Software, 82(7), pp. 1177-1193,
July 2009.

[P30] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “A Two
Phase Approach to Design Pattern Recovery”, Proceedings of the
11th European Conference on Software Maintenance and Reenginee-
ring, IEEE, pp. 297-306, Amsterdam, the Netherlands, 21-23 March
2007.

[P31] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “Behav-
ioral Pattern Identification through Visual Language Parsing and
Code Instrumentation”, Proceedings of the 2009 European Confer-
ence on Software Maintenance and Reengineering, IEEE, pp. 99-108,
Kaiserslautern, Germany, 24-27 March 2009.

[P32] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “Improv-
ing Behavioral Design Pattern Detection through Model Checking”,
Proceedings of IEEE European Conference on Software Maintenance
and Reengineering (CSMR’10), IEEE press, pp. 176-185, Madrid,
Spagna, 15-18 March, 2010.

[P33] M. Di Penta, L. Cerulo, Y. G. Guéhéneuc and G. Antoniol, “An
empirical study of the relationships between design pattern roles
and class change proneness”, Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’08), IEEE, pp. 217-226,
Beijing, China, 28 September—04 October 2008.

[P34]]. Dong, “Adding pattern related information in structural
and behavioral diagrams”, Information and Software Technology,
Elsevier, 46 (5), pp. 293-300, 15 April 2004.

[P35] J. Dong, S. Yang and K. Zhang, “Visualizing Design Patterns
in Their Applications and Compositions”, IEEE Transactions on Soft-
ware Engineering, IEEE, 33 (7), pp. 433-453, July 2007.

[P36] J. Dong and Y. Zhao, “Experiments on Design Pattern Discov-
ery”, Proceedings of the Third International Workshop on Predictor
Models in Software Engineering (ICSE'07), IEEE, pp. 12, Minneapolis,
Minnesota, 23-25 May 2007.

[P37] A. H. Eden, A. Yehudai, and]. Gil, “Precise specification on
automatic application of design patterns”, Proceedings of the 12th
international conference on Automated software engineering (for-
merly: KBSE), ACM, pp. 143, Lake Tahoe, CA, 02-05 November 1997.
[P38] E. Eide, A. Reid,]. Regehr and J. Lepreau, “Static and Dynamic
structure in design patterns”, Proceedings of the 24th International
Conference on Software Engineering (ICSE’02), IEEE, pp. 208-218,
Orlando, Florida, 19-25 May 2002.

[P39] M. Elish, “Do Structural Design Patterns Promote Design
Stability?”, Proceedings of the 30th Annual International Computer
Software and Applications Conference - Volume 01 (COMPSAC'06),
IEEE, pp 215-220, Chicago, Illinois, 17-21 September 2006.

[P40] B. Ellis,]J. Stylos and B. Myers, “The Factory Pattern in API
Design: A Usability Evaluation”, Proceedings of the 29th inter-
national conference on Software Engineering, IEEE, pp. 302-312,
Minneapolis, Minnesota, 20-26 May 2007.

[P41] R. Ferenc, A. Beszedes, L. Fulop and]. Lele, “Design Pattern
Mining Enhanced by Machine Learning”, Proceedings of the 21st
IEEE International Conference on Software Maintenance, IEEE, pp.
295-304, Budapest, Hungary, 25-30 September 2005.

1960 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

[P42] R. B. France, D. K. Kim, S. Ghosh and E. Song, “A UML-Based
Pattern Specification Technique”, IEEE Transactions on Software
Engineering, IEEE, 30 (3), pp. 193-206, March 2004.

[P43] L.]. Fulop, R. Ferenc and T. Gyimothy, “Toward a Benchmark
for Evaluating Design Pattern Miner Tools”, Proceedings of the 2008
12th European Conference on Software Maintenance and Reenginee-
ring, IEEE, pp. 143-152, Athens, Greece, 01-04 April 2008.

[P44] M. Gatrell, S. Counsell and T. Hall, “Design Patterns and
Change Proneness: A Replication Using Proprietary C# Software”,
Proceedings of the 2009 16th Working Conference on Reverse Engi-
neering, pp. 160-164, Lille, France, 13-16 October 2009.

[P45] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A Multilayered
Approach foe Design Pattern Identification”, IEEE Transaction of
Software Engineering, IEEE, 34 (5), pp. 667-684, September 2008.
[P46] Y. -G. Guéhéneuc, H. Sahraoui and F. Zaidi, “Fingerprinting
Design Patterns”, Proceedings of the 11th Working Conference on
Reverse Engineering, pp. 172-181, Delft, The Netherlands, 08-12
November 2004.

[P47] J. Gustafsson,]. Paakki, L. Nenonen and A. I. Verkamo,
“Architecture-Centric Software Evolution by Software Metrics and
Design Patterns”, Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering, IEEE, pp. 108, Budapest,
Hungary, 11-13 March 2002.

[P48] Z. Han, L. Wang, L. Yu, X. Chen, J. Zhao, X. Li, “Design pattern
directed clustering for understanding open source code”, Interna-
tional Conference on Program Comprehension (ICPC 09), IEEE, pp.
295-296, Vancouver, British Columbia, Canada, 17-19 May 2009.
[P49]]. Hannemann and G. Kiczales. “Design Pattern Implementa-
tion in Java and Aspect]”, Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications(OOPSLA ‘02), ACM, pp. 161-173, Seattle, Wash-
ington, 4-8 November 2002.

[P50] R. Helm, “Patterns in Practice”, Proceedings of the tenth
annual conference on Object-oriented programming systems, lan-
guages, and applications (OOPSLA ‘95), ACM, pp. 337-341, Austin,
Texas, 15-19 October 1995.

[P51] D. Heuzeroth, T. Holl, G. Hégstrém, W. Lowe, “Automatic
Design Pattern Detection”, Proceedings of the 11th International
Working Conference on Program Comprehension (ICPC ‘03), IEEE,
Portland, USA, 10-11 May 2003.

[P52] N. L. Hsueh, P. H. Chu and W. Chu, “A quantitative approach
for evaluating the quality of design patterns”, Journal of Systems
and Software, Elsevier, 81 (8), pp. 1430-1439, August 2008.

[P53] N.L. Hsueh, P.H. Chu, P.A. Hsiung, M.]. Chuang, W. Chu, C.H.
Chang, C.S. Koong and C.H. Shih, “Supporting Design Enhancement
by Pattern-Based Transformation”, 34th Annual Computer Soft-
ware and Applications Conference (COMPSAC ‘10), IEEE, pp. 462-467,
Seoul, Korea, 19-23 July 2010.

[P54] H. Huang, S. Zhang, J. Cao, Y. Duan, “A practical pattern
recovery approach based on both structural and behavioral analy-
sis”, Journal of Systems and Software, Elsevier, 75 (1-2), pp. 69-87,
February 2005.

[P55] B. Huston, “The effects of design pattern application on met-
ric scores”, Journal of Systems and Software, Elsevier, 58 (3), pp.
261-269, September 2001.

[P56] D. Jain and H.]. Yang, “O0 Design Patterns, Design Structure,
and Program Changes: An Industrial Case Study” Proceedings of the
IEEE International Conference on Software Maintenance (ICSM’01),
IEEE, pp. 580, Florence, Italy, 07-09 November 2003.

[P57] S. Jeanmart, Y. -G. Guéhéneuc, H. Sahraoui and N. Habra,
“A Study of the Impact of the Visitor Design Pattern on Program
Comprehension and Maintenance Tasks”, Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM’ 09), IEEE, pp. 69-78, Lake Buena Vista, Florida,
15-16 October 2009.

[P58] O. Kaczor, Y.-G. Guéhéneuc, and S. Hamel, “Efficient Iden-
tification of Design Patterns with Bit-vector Algorithm”, IEEE
Proceedings of the 10th Conference on Software Maintenance and
Reengineering, (CSMR’06), IEEE, pp. 175-184, 22-24 March 2006.
[P59] O. Kaczor, Y. -G. Guéhéneuc and S. Hamel, “Identification of
design motifs with pattern matching algorithms”, Information and
Software Technology, Elsevier, 52 (2), pp. 152-168, February 2010.
[P60] B. Keepence and M. Mannion, “Using Patterns to Model
Variability in Produst Families”, IEEE Software, IEEE, 16 (4), pp.
102-108, July 1999.

[P61] R. K. Keller, R. Schauer, S. Robitaille and P. Page, “Pattern-
based reverse-engineering of design components”, Proceedings of
the 21st international conference on Software engineering (ICSE’99),
IEEE, pp. 226-235, Los Angeles, California, 16-22 May 1999.
[P62] F. Khomh and Y.-G. Guéhéneuc, “Do Design Patterns Impact
Software Quality Positively?”, Proceedings of the 2008 12th Euro-
pean Conference on Software Maintenance and Reengineering, IEEE,
pp. 274-278, Athens, Greece, 01-04 April 2008.

[P63] F. Khomh and Y.-G. Guéhéneuc, “Playing roles in design pat-
terns: An empirical descriptive and analytic study”, Proceedings
of the 25th IEEE International Conference on Software Maintenance,
IEEE, pp 83-92, Edmonton, Canada, 20-26 September 2009.

[P64] D. K. Kim, R. France, S. Ghosh and E. Song, “A Role-
Based Metamodeling Approach to Specifying Design Patterns”,
Proceedings of the 27th Annual International Conference on Com-
puter Software and Applications, IEEE, pp. 452, Dallas, Texas, 03-06
November 2003

[P65] G. Kniesel, A. Binun, “Standing on the shoulders of giants
- A data fusion approach to design pattern detection”, Interna-
tional Conference on Program Comprehension (ICPC’ 09), IEEE, pp.
208-217, Vancouver, British Columbia, Canada, 17-19 May 2009.
[P66] G. Kniesel, A. Binun, P. Hegedus, L.]. Fiilop, A. Chatzige-
orgiou, Y.G. Guéhéneuc, and N. Tsantalis, “DPDX - A Common
Exchange Format for Design Pattern Detection Tools”, Proceedings
of the 14th European Conference on Software Maintenance and
Reengineering (CSMR’10), IEEE, p.p 232-235, Madrid, Spain, 15-18
March 2010.

[P67] K. Kouskouras, A. Chatzigeorgiou and G. Stephanides,
“Facilitating software extension with design patterns and Aspect-
Oriented Programming”, Journal of Systems and Software, Elsevier,
81 (10), pp 1725-1737, October 2008.

[P68] C. Kramer and L. Prechelt, “Design Recovery by Auto-
mated Search for Structural Design Patterns in Object-Oriented
Software”, Proceedings of the 3rd Working Conference on Reverse
Engineering (WCRE ‘96), IEEE, pp. 208, Monterey, CA, 8-10
November 1996.

[P69] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling
and K. Tan, “Generative Design Patterns”, Proceedings of the 17th
IEEE international conference on Automated software engineering,
ACM, pp. 23, Edinburgh, UK, 23-27 September 2002.

[P70] S. MacDonald, K. Tan,]J. Schaeffer and D. Szafron, “Defer-
ring Design Pattern Decisions and Automating Structural Pattern
Changes Using a Design-Pattern-Based Programming System”,
ACM Transactions on Programming Languages and Systems, ACM,
31(3), article 9, April 2009.

[P71]]. K. H. Mak, C. S. T. Choy and D. P. K. Lun, “Precise Modeling
of Design Patterns in UML”, Proceedings of the 26th International
Conference on Software Engineering (ICSE'04), 1EEE, pp. 252-261,
Edimburg, Scotland, 23-28 May 2004.

[P72] B.A. Malloy and].F. Power, “Exploiting design patterns to
automate validation of class invariants: Research articles”, Soft-
ware Testing Verification & Reliability, Wiley Interscience, 16 (2),
pp. 71-95, June 2006.

[P73] W. B. McNatt and]. M. Bieman, “Coupling of Design patterns:
Common Practices and Their Benefits”, 25th Annual International

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1961

Computer Software and Applications Conference (COMPSAC’01), IEEE,
pp.574, Chicago, Illinois, 08-12 October 2001.

[P74] T. Mens and T. Tourwe, “A Declarative Evolution Framework
for Object-Oriented Design Patterns”, Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM’01), 1EEE, pp.
570, Florence, Italy, 07-09 November 2003.

[P75] M. Meyer, “Pattern-based Reengineering of Software Sys-
tems”, Proceedings of the 13th Working Conference on Reverse
Engineering, pp. 305-306, Benevento, Italy, 23-27 October 2006.
[P76] T. Mikkonen, “Formalizing design patterns”, Proceedings of
the 20th international conference on Software engineering (ICSE’98),
IEEE, pp. 115-124, Kyoto, Japan, 19-25 April 1998.

[P77] T. Muraki and M. Saeki, “Metrics for applying GOF design
patterns in refactoring processes”, Proceedings of the 4th Interna-
tional Workshop on Principles of Software Evolution, IEEE, pp. 27-36,
Vienna, Austria, 10-11 September 2001.

[P78] T. H. Ng and S. C. Cheung, “Enhancing class commutability
in the deployment of design patterns”, Information and Software
Technology, Elsevier, 47 (12), pp. 797-804, September 2005.
[P79]T.H.Ng,S. C.Cheung, W.K.Chanand Y.T. Yu, “Do Maintainers
Utilize Deployed Design Patterns Effectively?”, International Con-
ference on Software Engineering, IEEE, pp. 168-177, Minneapolis,
Minnesota, 20-26 May 2007.

[P80] T. H. Ng, S. C. Cheung, W. K. Chan and Y. T. Yu, “Toward
effective deployment of design patterns for software extension:
a case study”, Proceedings of the 2006 international workshop on
Software quality (ICSE’06), IEEE, pp. 51-56, Shanghai, China, 21
May 2006.

[P81] T. H. Ng, S. C. Cheung, W. K. Chan and Y. T. Yu, “Work
experience versus refactoring to design patterns: a controlled
experiment” Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, ACM, pp. 12-22,
Portland, Oregon, 5-11 November 2006.

[P82] S.J. Nielson and C. D. Knutson, “Design dysphasia and the
pattern maintenance cycle”, Information and Software Technology,
Elsevier, 48 (8), pp. 660-675, August 2006.

[P83] J. Niere, W. Schafer,]J. P. Wadsack, L. Wendehals and]J.
Welsh, “Toward pattern-based design recovery”, Proceedings of
the 24th International Conference on Software Engineering, IEEE, pp.
338-348, Orlando, Florida, 19-25 May 2002.

[P84] N. Noda and T. Kishi, “Design pattern concerns for software
evolution”, Proceedings of the 4th International Workshop on Prin-
ciples of Software Evolution, IEEE, pp. 158-161, Vienna, Austria,
10-11 September 2001.

[P85] B. C. d. S. Oliveira, M. Wang and J. Gibbons, “The Visitor Pat-
tern as a Reusable, Generic, Type-Safe Component”, Proceedings of
the 23rd ACM SIGPLAN conference on Object-oriented program-
ming systems languages and applications (OOPSLA 2008), ACM,
pp. 439-456, Nashville, Tennessee, 19-23 October 2008.

[P86] J. Palsberg and C. B. Jay, “The Essence of the Visitor Pattern”,
Proceedings of the 22nd International Computer Software and Appli-
cations Conference, IEEE, pp. 9-15, Vienna, Austria, 17-21 August
1998.

[P87] C. Park, Y. Kang, C. Wu and K. Yi, “A Static Reference Flow
Analysis to Understand Design Pattern Behavior” 11th Working
Conference on Reverse Engineering (WCRE 2004), pp. 300-301, Delft,
The Netherlands, 08-12 November 2004.

[P88] N. Pettersson, “Measuring precision for static and dynamic
design pattern recognition as a function of coverage”, Proceedings
of the third international workshop on Dynamic analysis (ICSE’05),
IEEE, pp. 1-7, St. Louis, Missouri, 17 May 2005.

[P89] N. Petterson, W. Lowe and]J. Nivre, “Evaluation of
Accuracy in Design Pattern Occurrence Detection”, IEEE Trans-
actions on Software Engineering, IEEE, 36 (4), pp. 575-590, July/
August 2010.

[P90] G. C. Porras and Y. G. Guéhéneuc, “An Empirical Study on the
Efficiency of Different Design Pattern Representations in UML Class
Diagrams”, Empirical Software Engineering, Springer, Jan 2010.
[P91] L. Prechelt, B. Unger-Lamprecht, M. Philipsen and W. F. Tichy,
“Two Controlled Experiments Assessing the Usefulness of Design
Pattern Documentation in Program Maintenance”, IEEE Transac-
tions on Software Engineering, IEEE, 28 (6), pp. 595-606, June 2002.
[P92] L. Prechelt, B. Unger-Lamprecht, W.F. Tichy, P. Brossler and
L. G. Votta, “A controlled experiment in maintenance comparing
design patterns to simpler solutions”, IEEE Transactions on Software
Engineering, IEEE, 27 (3), pp. 1134-1144, December 2001.

[P93] H. Rajan, S. M. kautz and W. Rowcliffe, “Concurrency by
Modularity: Design Patterns, a Case in Point”, Proceedings of
the ACM international conference on Object oriented program-
ming systems languages and applications (OOPSLA ‘10), ACM, pp.
790-805, Reno, Nevada, 17-21 October 2010.

[P94] D. Riehle “Composite Design Patterns”, Proceedings of the
1997 Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA ‘97), ACM Press, pp. 218-228,
Atlanta, Georgia, 05-09 October 1997.

[P95] D. Riehle “Design Pattern Density Defined”, Proceeding of
the 24th ACM SIGPLAN conference on Object oriented program-
ming systems languages and applications (OOPSLA ‘09), ACM, pp.
469-480, Orlando, Florida, 25-29 October 2009.

[P96] G. Rasool, 1. Philippow, P. Mader, “Design pattern recovery
based on annotations”, Advances in Engineering Software, Elsevier,
41(4), pp. 519-526, April 2009.

[P97] J. Sametinger and M. Riebish, “Evolution Support by Homo-
geneously Documenting Patterns, Aspects and Traces”, Proceedings
of the Sixth European Conference on Software Maintenance and Reen-
gineering, IEEE, pp. 134, Budapest, Hungary, 11-13 March 2002.
[P98] G. Scanniello, C. Gravino, M. Risi and G. Tortora, “A con-
trolled experiment for assessing the contribution of design pattern
documentation on software maintenance”, Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement(ESEM’ 10), ACM, Bolzano-Bozen, Italy, 16-17
September 2010.

[P99] T. Schanz and C. Izurieta, “Object Oriented Design Pat-
tern Decay: A Taxonomy”, Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM’ 10), ACM, Bolzano-Bozen, Italy, 16-17
September 2010.

[P100] N. Shi and R. A. Olsson, “Reverse Engineering of Design
Patterns from Java Source Code”, Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, ACM,
pp. 123-134, Tokyo, Japan, 18-22 September 2006.

[P101] N. Soundarajan and J. O. Hallstrom, “Responsibilities and
Rewards: Specifying Design patterns”, Proceedings of the 26th Inter-
national Conference on Software Engineering (ICSE'04), IEEE, pp.
666-675, Edinburgh, UK, 23-28 May 2004.

[P102] D. Streitferdt, C. Heller and 1. Philippow, “Searching
Design Patterns in Source Code”, Proceedings of the 29th Annual
International Computer Software and Applications Conference - Vol-
ume 02 (COMPSAC'05), IEEE, pp. 33-34, Edinburgh, UK, 26-28
July 2005.

[P103] L. Tahvildari and K. Kontogiannis, “On the Role of Design
Patterns in Quality-Driven Re-engineering”, Proceedings of the Sixth
European Conference on Software Maintenance and Reengineering,
IEEE, pp. 134, Budapest, Hungary, 11-13 March 2002.

[P104] T. Taibi and D.C. L. Ngo, “Formal specification of design
pattern combination using BPSL”, Information and Software Tech-
nology, Elsevier, 45 (3), pp. 157-170, March 2003.

[P105] T. D. Thu and H. T. B. Tran, “A Composite Design Pattern for
Object Frameworks”, 31st Annual International Computer Software

1962 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

and Applications Conference (COMPSAC’'07), IEEE, pp. 521-526, Bei-
jing, China, 24-27 July 2007.

[P106] P. Tonella and G. Antoniol, “Object Oriented Design Pat-
tern Inference”, Journal of Software Maintenance, Wiley, 13 (5),
September-October 2001.

[P107] M. Torchiano, “Documenting Pattern Use in Java Programs”,
Proceedings of the International Conference on Software Maintenance
(ICSM’02), IEEE, Montreal, Canada, 03-06 October 2002.

[P108] W.T. Tsai, Y. Tu, W. Shao and E. Ebner, “Testing Extensible
Design Patterns in Object Oriented Frameworks through Scenario
Templates”, 23rd International Computer Software and Applications
Conference (COMPSAC'99), IEEE, pp. 166-171, Phoenix, Arizona,
25-26 October 1999.

[P109] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and S. T.
Halkidis, “Design Pattern Detection Using Similarity Scoring”, IEEE
Transaction of Software Engineering, IEEE, 32 (11), pp. 896-909,
November 2006.

[P110] M. Vokac, “Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code”, IEEE Transactions on Software
Engineering, IEEE, 30(12), pp. 904-917, December 2004.

[P111] M. Voka¢, W. Tichy, D. L. K. Sjeberg, E. Arisholm and M.
Aldrin, “A Controlled Experiment Comparing the Maintainability
of Programs Designed with and without Design Patterns—A Repli-
cation in a Real Programming Environment”, Empirical Software
Engineering, Springer, 9(3), pp 149-195, September 2004.

[P112] W. Wang and V. Tzerpos, “Design Pattern Detection in
Eiffel Systems”, Proceedings of the 12th Working Conference on
Reverse Engineering, pp. 165-174, Pittsburgh, Pennsylvania, 07-11
November 2005.

[P113] P. Wegrzynowicz and K. Stencel, “Toward a comprehensive
Test Suite for Detectors of Design Patterns”, 24th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ‘09),
pp. 103-110, Auckland, New Zealand, 16-20 November 2009.
[P114] L. Wendehals and A. Orso, “Recognizing behavioral patterns
at run time using finite automata”, Proceedings of the 2006 inter-
national workshop on Dynamic systems analysis (ICSE’06), IEEE, pp.
33-40, Shanghai, China, 23 May 2006.

[P115] P. Wendorff, “Assessment of Design Patterns during Soft-
ware Reengineering: Lessons Learned from a Large Commercial
Project”, Proceedings of the Fifth European Conference on Software
Maintenance and Reengineering, IEEE, pp. 77, Lisbon, Portugal,
14-16 March 2001.

[P116] S. S. Yau and N. Dong, “Integration in Component-Based
Software Developmant Using Design Patterns”, 24th International
Computer Software and Applications Conference (COMPSAC’00), IEEE,
pp. 369, Taipei, Taiwan, 25-28 October 2000.

[P117] H. Zhu, L Bayley, L. Shan and R. Amphlett, “Tool Support
for Design Pattern Recognition at Model Level”, Proceedings of the
2009 33rd Annual IEEE International Computer Software and Appli-
cations Conference, IEEE, pp. 228-233, Seattle, Washington, 20-24
July 2009.

[P118] M. Ziane, “A Transformational Viewpoint on Design Pat-
terns”, Proceedings of the 15th IEEE international conference on
Automated software engineering, ACM, pp. 273, Grenoble, France,
11-15 September 2000.

Appendix B. Low-level quality metrics

A (Abstractness)

Abstractness is the ratio of abstract classes and interfaces to the
total number of types (classes, concrete or abstract, and inter-
faces) of the measured package. By definition, abstract classes and
interfaces are certain to draw incoming dependencies. Then, in
combination with the discussion on instability above, packages
with high abstractness would be good to be stable (and vice versa).

AC (Attribute Complexity)

Is defined as the sum of each attribute’s value in the class. You can
set up weights for types and their arrays separately under Attribute
type complexity. Use “™” to define types of a package with all its
subpackages. For example, java.lang.” means that the row defines
all classes of the java.lang package and its subpackages. To process
all types not listed in the table, specify the last row as “*”. The row
order is important, because checking of attributes goes from the top
of the table downward. (Repetitions of a type aren’t counted, so if
a specific type follows a more general type that already included
it, the specific type isn’t counted. For example, java.lang.” won’t be
counted if it comes after java.”)

CBO (Coupling Between Objects)

Represents the number of other classes to which a class is coupled.
Counts the number of reference types that are used in attribute
declarations, formal parameters, return types, throws declarations
and local variables, and types from which attribute and method
selections are made. Primitive types, types from java.lang package
and supertypes are not counted.

Excessive coupling between objects is detrimental to modular
design and prevents reuse. The more independent a class is, the
easier it is to reuse it in another application. In order to improve
modularity and promote encapsulation, inter-object class couples
should be kept to a minimum. The larger the number of couples,
the higher the sensitivity to changes in other parts of the design,
and therefore maintenance is more difficult. A measure of coupling
is useful to determine how complex the testing of various parts of
a design is likely to be. The higher the inter-object class coupling,
the more rigorous the testing needs to be
Ce (Coupling Efferent)

Efferent coupling counts the number of types within the measured
package which depend upon types outside that package (outgoing
dependencies). A high Ce value indicates that the package’s stability
depends too much on the stability of other packages.

CF (Coupling Factor)

This measure is from the MOOD (Metrics for Object-Oriented
Development) suite. It is calculated as a fraction. The numerator
represents the number of non-inheritance couplings. The denomi-
nator is the maximum possible number of couplings in a system.
DIT (Depth of Inheritance Tree)

Counts how far down the inheritance hierarchy a class is declared.
High values imply that a class is quite specialized.

H (Relational Cohesion)

Relational cohesion represents the relationship that the package
has to all its types. It is the average number of internal relation-
ships per type of the measured package. If N is the number of types
within the package and R the total number of relationships that are
directed to types of this package, then: H=(R+1)/N.

LCOM (Lack of Cohesion of Methods)

Takes each pair of methods in the class and determines the set of
fields they each access. If they have disjoint sets of field accesses,
the count P increases by one. If they share at least one field
access, Q increases by one. After considering each pair of methods:
RESULT =(P>Q)? (P—Q): 0

A low value indicates high coupling between methods, which
indicates high testing effort because many methods can affect the
same attributes. This also indicates potentially low reusability.
LOC (Lines of Code)

This is the traditional measure of size. It counts the number of code
lines. Documentation and implementation comments as well as
blank lines can be optionally interpreted as code. Documentation
comments are Javadoc comments for Java, C++ and C#. Implemen-
tation comments are any other type of comments

NMI (Number of Methods Inherited)

Is calculated as the percentage of the number of non-redefined
operations with regard to the number of operations inherited

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964 1963

NOC (Number of Classes)

Counts the number of classes

NOCC (Number of Child Classes)

Counts the number of classes that inherit from a particular class,
meaning the number of classes in the inheritance tree that are
located below the class. A non-zero value indicates that the par-
ticular class is being reused. However, the abstraction of the class
may be poor if there are too many child classes. Also keep in mind
that a high value for this measure points to the definite amount of
testing required for each child class.

NOP (Number of Polymorphic Methods)

The metric is a count of the methods that exhibit polymorphic
behavior. Such methods in C++ are marked as virtual.

WMPC1 (Weighted Method Per Class-1)

This metric is the sum of the complexity of all methods for a class,
where each method is weighted by its cyclomatic complexity. The
number of methods and the complexity of the methods involved is
a predictor of how much time and effort is required to develop and
maintain the class. Only methods specified in a class are included,
that is, any methods inherited from a parent are excluded.
WMPC2 (Weighted Method Per Class-2)

This metricisintended to measure the complexity of a class, assum-
ing that a class with more methods than another is more complex,
and that a method with more parameters than another is also likely
to be more complex. The metric counts methods and parameters
for a class. Only methods specified in a class are included, that is,
any methods inherited from a parent are excluded.

Appendix C. Papers merged into one study

Table C1
Papers Study Description
P058 and P059 P059 The later paper build on S58 and adds an
additional pattern matching algorithm to the
method, i.e. automata simulation (bit-vector
based).
P027 and P028 P028 Parsing language techniques. The later

version includes some negative criteria that
enhance the detection process.

S30 introduces a two phase approach for
identifying design pattern instances. S31
uses dynamic analysis in the second phase to
enhance detection. S29 is the journal
publication of the algorithm that is enhanced
in terms of performance and accuracy.
Similar logic and technology. Same year of
publication. S5 is more based on metrics. S4
is a journal publication which additionally
presents a tool and an evaluation on
industrial code.

Same aim and method. The journal paper
captures both behavioral and structural
properties of GoF patterns and pattern
variants. The conference paper only captures
behavioral properties and doesnot deal with
pattern variants.

The first paper introduces the methodology,
the second one evaluates it on GoF design
patterns and the third one adds on how the
designer can wait before the application of
the pattern becomes beneficial in terms of
flexibility

Same method (case study). Two out of three
subjects are the same. Similar research
questions, different level. One at pattern
level, the other on pattern role level.

Same quality attribute, same method,
different patterns

The later paper build on the previous one.
The prior paper uses role based
representation in UML. The journal paper
specifies patterns through class and
sequence diagrams

The later work is an extension of the
previous one. Different goals

P029, P030 and PO31 P029

P004, PO05 and PO0O6 ~ P004

P014 and PO15 PO14

P024, P025 and P026 P026

P009 and P033 P033

P012 and P013 P0O13

P042 and P064 P042

P069 and PO70 P070

References

Alexander, C., Ishikawa, S., Silverstein, M., 1977. A Pattern Language: Town, Build-
ings, Construction. Oxford University Press, New York.

Ampatzoglou, A., Frantzeskou, G., Stamelos, 1., 2012. A methodology to assess the
impact of design patterns on software quality. Information and Software Tech-
nology, Elsevier 54 (April (4)), 331-346.

Ampatzoglou, A., Stamelos, 1., 2010. Software engineering research for computer
games: a systematic review. Information and Software Technology, Elsevier 52
(September (9)), 888-901.

Avgeriou, P., Zdun, U., 2005. Architectural patterns revisited — a pattern language.
In: 10th European Conference on Pattern Languages of Programs (EuroPLOP’05),
6-10 July 2005, Irsee, Germany.

Basili, V., Caldiera, G., Rombach, H.D., 1994. Goal Question Metric Approach Ency-
clopedia of Software Engineering. John Wiley & Sons528-532.

Bjork, S., Lundgren, S., Holopainen, J., 2003. Game design patterns. In: Lecture Note
of the Game Design track of Game Developers Conference, March 4-8, San Jose,
CA, USA.

Bereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil, M., 2007. Lessons
from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software, Elsevier 80 (April (4)),
571-583.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
Oriented Software Architecture. Wiley, West Sussex, UK.

Cai, K.Y., Card, D., 2008. An analysis of topics in software engineering — 2006. Journal
of Systems and Software, Elsevier 81 (June (6)), 1051-1058.

da Silva, F.Q.B., Santos, A.L.M., Soares, S.C.B., Fran¢a, A.C.C., Monteiro, C.V.F., 2010.

A critical appraisal of systematic reviews in software engineering from the
perspective of the research questions asked in the reviews. In: Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM’ 10), ACM, Bolzano, Italy, 16-17 September
2010.

Dormey, G.R., 1995. A model for software product quality. IEEE Transactions on
Software Engineering 21 (February (2)), 146-162.

Dyba, T., Dingsoyr, T., 2008. Empirical studies of agile software development: a
systematic review. Information and Software Technology, Elsevier 50 (August
(9-10)), 833-859.

Galster, M., Avgeriou, P., 2012. Qualitative analysis of the impact of SOA patterns
on quality attributes. In: Proceedings of the 12th International Conference on
Quality Software (QSIC 2012), IEEE Computer Society, Xi’an, China, 27-29 August
2012.

Gamma, E., Helms, R,, Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading, MA.

Glass,R.L., Vessey, I, Ramesh, V.,2002. Research in software engineering: an analysis
of the literature. Information and Software Technology, Elsevier 44 (June (8)),
491-506.

Hauge, O., Ayala, C.,, Conradi, R, 2010. Adoption of open source software
in software-intensive organizations - a systematic literature review.
Information and Software Technology, Elsevier 52 (November (11)),
1133-1154.

Heckman, S., Williams, L., 2011. A systematic literature review of actionable alert
identification techniques for automated static code analysis. Information and
Software Technology, Elsevier 53 (April (4)), 363-387.

Hofer, A., Tichy, W.F, 2007. Status of Empirical Research in Software
Engineering. Lecture Notes in Computer Science, vol. 4336. Springer,
Dagstuhl Castle, Germany, pp. 10-19.

1S09126, 1992. Information Technology — Software Product Evaluation — Qual-
ity Characteristics and Guidelines for Their Use. International Organisation for
Standardization, Geneva.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering, Technical Report EBSE-2007-
001, Keele University & Durham University Joint Report, Staffordshire,
UK.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009.

Systematic literature reviews in software engineering — a systematic litera-
ture review. Information and Software Technology, Elsevier 51 (January (1)),
7-15.

Kitchenham, B.A., Budgen, D., Brereton, O.P., 2011. Using mapping studies as the
basis for further research - a participant-observer case study. Information and
Software Technology, Elsevier 53 (June (6)), 638-651.

Kitchenham, B., Pfleeger, S.L., 1996. Software quality: the elusive target. IEEE Soft-
ware, IEEE 13 (January (1)), 12-21.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M.,
Linkman, S., 2010. Systematic literature reviews in software engineering - a
tertiary study. Information and Software Technology, Elsevier 52 (August (8)),
792-805.

Noblit, G.W., Hare, R.D., 1988. Meta-ethnography: Synthesizing Qualitative Studies.
Sage, London.

Petticrew, M., Roberts, H., 2006. Systematic Reviews in the Social Sciences: a Prac-
tical Guide. Blackwell Publications, MA, USA.

Souza, J., Matwin, S., Japkowicz, N., 2002. Evaluating data mining models: a pat-
tern language. In: 9th Conference on Pattern Language of Programs (PLOP’02),
Monticello, Illinois, 8-12 September 2002.

Voka¢, M., Tichy, W., Sjeberg, D.LK. Arisholm, E., Aldrin, M., 2004. A con-
trolled experiment comparing the maintainability of programs designed
with and without design patterns - a replication in a real programming

http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140

1964 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945-1964

environment. Empirical Software Engineering, Springer 9 (September (3)),
149-195.

Walia, G.S., Carver, J.C., 2009. A systematic literature review to identify and classify
software requirement errors. Information and Software Technology, Elsevier 51
(July (7)), 1087-1109.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A., 2000.

Experimentation in Software Engineering. Kluwer Academic Publishers,
Boston/Dordrecht/London.

Zhang, C., Budgen, D., 2012. What do we know about the effectiveness of soft-
ware design patterns. IEEE Transactions on Software Engineering, IEEE 38
(September-October (5)), 1213-1231.

Dr. Apostolos Ampatzoglou is an Assistant Professor at the Computer Science
Department of the University of Groningen, where he carries research and teach-
ing in the areaof software engineering. He received a PhD in Software Engineering
from the Department of Informatics, Aristotle University of Thessaloniki, Greece.
His research interests include design patterns, software metrics and computer
games.

Sofia Charalampidou is a Master Student in the Software Engineering program at
Chalmers University of Technology. She holds a BSc in Information Technology from
the Alexander Technological Institute of Thessaloniki. Her research interests include
software design, software architecture, embedded systems and literature reviews.
Formerly, she has been a member of the Software Engineering Group (SWEng) of the
Aristotle University of Thessaloniki where she participated in research activities.

Dr. Ioannis Stamelos is an Associate Professor at the Department of Informatics of
the Aristotle University of Thessaloniki, where he carries out research and teaching
in the area of software engineering. He holds a diploma of Electrical Engineering
(1983) and a PhD in Computer Science by the Aristotle University of Thessaloniki
(1988). His current research interests are focused on open source software engineer-
ing, software project management and software education. He has published more
than 100 articles in international journals and conferences. He is/was the scien-
tific coordinator or principal investigator for his University in over 20 research and
development projects in Information & Communication Technologies with funding
from national and international organizations.

http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155

	Research state of the art on GoF design patterns: A mapping study
	1 Introduction
	2 Related work
	3 Software quality attributes
	4 Mapping study methodology
	4.1 Research questions
	4.2 Search process
	4.3 Article filtering phases
	4.4 Quality assessment
	4.5 Data collection
	4.6 Data analysis

	5 Results
	5.1 Research subtopics & top publishers identification
	5.2 Research subtopics intensity and overview
	5.2.1 Design patterns formalization
	5.2.2 Design patterns detection
	5.2.3 Design patterns and software quality
	5.2.4 Design patterns application
	5.2.5 Miscellaneous issues on design patterns

	5.3 GoF patterns and software quality attributes

	6 Discussion
	6.1 Research subtopics identification
	6.2 Research subtopics activity
	6.3 Effect of design patterns on quality attributes

	7 Threats to validity
	7.1 Construct threats to validity
	7.2 Internal threats to validity
	7.3 External threats to validity
	7.4 Threats to conclusions validity

	8 Conclusions
	Acknowledgements
	Appendix A Papers included in the review
	Appendix B Low-level quality metrics
	Appendix C Papers merged into one study
	References

