
R

A
a

b

A
R
R
A
A

K
D
M
S

1

fi
p
1
o
G
2
o

t
p
n
t
G
e
(
p
n
2

s

0
h

The Journal of Systems and Software 86 (2013) 1945– 1964

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u r n al homepage: www.elsev ier .com/ locate / j ss

esearch state of the art on GoF design patterns: A mapping study

postolos Ampatzogloua,∗, Sofia Charalampidoub, Ioannis Stamelosa

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Department of Computer Science & Technology, Chalmers University of Technology, Gothenburg, Sweden

a r t i c l e i n f o

rticle history:
eceived 27 October 2011
eceived in revised form 12 March 2013
ccepted 14 March 2013
vailable online 26 March 2013

eywords:
esign patterns
apping study

a b s t r a c t

Design patterns are used in software development to provide reusable and documented solutions to
common design problems. Although many studies have explored various aspects of design patterns, no
research summarizing the state of research related to design patterns existed up to now. This paper
presents the results of a mapping study of about 120 primary studies, to provide an overview of the
research efforts on Gang of Four (GoF) design patterns. The research questions of this study deal with
(a) if design pattern research can be further categorized in research subtopics, (b) which of the above
subtopics are the most active ones and (c) what is the reported effect of GoF patterns on software quality
attributes. The results suggest that design pattern research can be further categorized to research on
oftware quality attributes GoF patterns formalization, detection and application and on the effect of GoF patterns on software
quality attributes. Concerning the intensity of research activity of the abovementioned subtopics, research
on pattern detection and on the effect of GoF patterns on software quality attributes appear to be the
most active ones. Finally, the reported research to date on the effect of GoF patterns on software quality
attributes are controversial; because some studies identify one pattern’s effect as beneficial whereas
others report the same pattern’s effect as harmful.
. Introduction

Patterns have been introduced by Christopher Alexander in the
eld of architecture, where he documented reusable architectural
roposals for producing good quality designs (Alexander et al.,
977). In the mid-90s, the idea of patterns was adopted by object-
riented software developers. In Gamma et al. (1995), the so-called
oF (Gang of Four, Gamma, Helms, Johnson and Vlisides), cataloged
3 design patterns aimed at meeting some commonly-recurring
bject-oriented design needs.

In recent years, GoF design patterns have attracted the atten-
ion of researchers and they are now considered a respectable
art of software engineering research and practice. However, until
ow, there has not been any published review that summarizes
he research state of the art in this area. Even though we focus on
oF patterns, GoF patterns are not the only software patterns. For
xample, other pattern catalogs introduce architectural patterns
Avgeriou and Zdun, 2005; Buschmann et al., 1996), i.e., design

atterns on a higher-level of abstraction than objects (compo-
ent/subsystem interactions), game design patterns (Bjork et al.,
003), i.e., patterns on game logic, etc. This study focuses on GoF

∗ Corresponding author. Tel.: +30 2310348007.
E-mail addresses: apamp@csd.auth.gr (A. Ampatzoglou),

tamelos@csd.auth.gr (I. Stamelos).

164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2013.03.063
© 2013 Elsevier Inc. All rights reserved.

patterns although it does not suggest that GoF patterns are better
practices than other design patterns. However, the interest that GoF
patterns have attracted from both academia and industry justifies
the scope of this study. Furthermore, intheir mapping study Zhang
and Budgen (2012) note that all their available primary studies deal
with GoF patterns, which therefore supports our contention that
GoF patterns form a reasonable object of study. Additionally, it is
expected that if we widen the scope of our study to include other
types of patterns, there will be no real obvious boundary.

The goal of this paper is to summarize the existing research work
on GoF design patterns, later referenced as design patterns, through
a mapping study, which is sometimes considered as a form of a
systematic literature review. Recently, the number of systematic
literature reviews has increased in Software Engineering. At this
point, it is estimated that over 150 SLRs have been published (da
Silva et al., 2010; Kitchenham et al., 2009, 2011; Kitchenham et al.,
2010). In Section 2, we discuss related work and in Section 3 we
provide background information on software quality attributes. In
Section 4, we present an overview of the followed methodology
and define the research questions that our study will investigate.
Section 5 presents an overview of the primary studies and accumu-
lated data from the primary studies. The discussion of the paper (see

Section 6) is divided in subsections, according to the research goals,
i.e., active research subtopics and effect on quality attributes. Finally,
threats to validity and conclusions are described in Sections 7 and
8, respectively.

dx.doi.org/10.1016/j.jss.2013.03.063
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:apamp@csd.auth.gr
mailto:stamelos@csd.auth.gr
dx.doi.org/10.1016/j.jss.2013.03.063

1 ystem

2

p
e
s
w

r
q
t
t
m
a
T
f

a
a
T
p
T
a
i
b
p

a
d
t
e
a
r
o
b
r
o
r

3

I
m
q
q
i
s
i

(
(
(
(
(

946 A. Ampatzoglou et al. / The Journal of S

. Related work

In this section, we present some previous studies which either
erform a systematic review of pattern literature or catalog the
ffect of patterns on software quality attributes. Under this per-
pective, we identified three studies that are close to our work,
hich however have important differences.

In (Galster and Avgeriou, 2012), Galster and Avgeriou summa-
ize the effect of software architecture patterns (SOA patterns) on
uality attributes. The authors have related more than 70 SOA pat-
erns, with quality attributes based on the pattern description on
he catalog that they have been introduced. Their results indicate a

ismatch between patterns for service-based systems and quality
ttributes that are considered important for service-based systems.
he main difference of this work, with respect to our study, is the
ocus on SOA patterns rather than GoF patterns.

A similar work on GoF patterns has been performed by Khomh
nd Gueheneuc [P62], where the authors evaluated the effect of
ll GoF patterns on software quality attributes through a survey.
he results suggested that, in constrast to common beliefs, design
atterns in practice impact negatively several quality attributes.
he difference of [P62] in comparison to this study is the use of

 different research method. [P62] is a survey whereas this paper
s a mapping study. Thus, [P62] is one of the 33 studies that have
een taken into account while investigating the effect of GoF design
atterns on software quality attributes.

In Zhang and Budgen (2012), Zhang and Budgen performed
 systematic literature review on the effectiveness of software
esign patterns, on articles published until 2009. More specifically,
he research method used was a systematic literature review on
mpirical studies concerning design patterns and software quality
ttributes. The main difference of Zhang and Budgen (2012) with
espect to this paper is the aim of the two literature reviews. In
ur study, we do not aim only on summarizing empirical evidence,
ut to gather a broader dataset, concerning GoF design pattern
esearch. In addition to that, we do not only focus on the effect
f patterns on quality attributes, but introduce GoF design patterns
esearch subtopics, as well.

. Software quality attributes

Software quality models are usually hierarchical (Dormey, 1995;
SO9126, 1992). In this paper, we use ISO/IEC 9126 as reference

odel for discussing the effect of design patterns on software
uality (ISO9126, 1992). The first level of ISO 9126 describes six

uality attributes, i.e., portability, functionality, reliability, usabil-

ty, efficiency, and maintainability, which are further divided in
everal sub-characteristics as shown in Fig. 1. Next, each qual-
ty sub-attribute (low-level quality attributes, such as complexity,

Fig. 1. ISO 9126 qua
s and Software 86 (2013) 1945– 1964

cohesion, etc.), can be assessed by a set of metrics that can be
used as indicators for the score of a system with respect to the
corresponding high level quality attribute.

One of the major concerns of a developer who employs a
pattern is the quality attributes of the design, after pattern applica-
tion. When using patterns, some of the software quality attributes
that will be affected are maintainability (Vokáč et al., 2004),
understandability [P40] and reliability [P62]. However, assessing
the effect of patterns on software quality is an extremely diffi-
cult task. Until now, researchers have attempted to evaluate the
use of patterns with empirical, i.e. surveys, case studies, exper-
iments and analytical methods. In most real systems, patterns
interact (pattern coupling) and such interactions make the eval-
uation of the effect of patterns on quality attributes even more
difficult.

4. Mapping study methodology

To perform our mapping study, we used a well-known method-
ology for systematic literature reviews (Bereton et al., 2007;
Petticrew and Roberts, 2006). The selected methodology is consid-
ered a standard for conducting and presenting systematic reviews
in software engineering and it is applied in a wide variety of
papers (Ampatzoglou and Stamelos, 2010; Cai and Card, 2008; Dyba
and Dingsoyr, 2008; Hauge et al., 2010; Heckman and Williams,
2011; Kitchenham et al., 2009; Walia and Carver, 2009). Follow-
ing (Kitchenham and Charters, 2007; Kitchenham et al., 2009), the
mapping study plan consists of six definitions:

a) Research questions definition
b) Search process definition
c) Inclusion and exclusion criteria definition
d) Quality assessment definition
e) Data collection process definition
(f) Data analysis definition.

A flow chart that summarizes the review process is presented in
Fig. 2. The notions used in Fig. 2, are exactly the ones used in a flow
chart, i.e. the nodes represent actions (Gather Data for Each Study,
Identify Research Topics, etc.) and edges represent the transition
from one node to another (Zhang and Budgen, 2012).

4.1. Research questions
In this study, we planed to investigate several issues concerning
the research state-of-the-art on patterns. The research ques-
tions have been identified using a Goal-Question-Metrics (GQM)
approach (Basili et al., 1994). GQM defines a top down approach that

lity attributes.

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945– 1964 1947

dy pro

a
t

(

(

(

o
t
r
t
d
a
w
a

Fig. 2. Mapping stu

ims at developing meaningful metrics. The approach introduces
hree levels:

a) Conceptual level (goal): “A goal is defined for an object for a vari-
ety of reasons, with respect to various models of quality, from
various points of view and relative to a particular environment”
(Basili et al., 1994).

b) Operational level (question): “A set of questions is used to define
models of the object of study and then focuses on that object to char-
acterize the assessment or achievement of a specific goal” (Basili
et al., 1994).

c) Quantitative level (metric): “A set of metrics, based on the mod-
els, is associated with every question in order to answer it in a
measurable way” (Basili et al., 1994).

The goal of the study is to provide researchers with a catalog
f related work and possible interesting research areas. In addition
o that, concerning practitioners the study aims to provide a quick
eference to quality attributes that are related to GoF design pat-
erns. The questions are defined in this section and the metrics are

efined in Section 4.6. Concerning the first goal of the paper, i.e.,
ctive research subtopics, two research questions have been stated,
hereas concerning the second goal, i.e., effect of patterns on quality

ttributes, an additional research question has derived.
cess–flow diagram.

RQ1 : Can design pattern research be further categorized according
to more specialized research subtopics?

This research question is important for providing researchers an
overview of trends and gaps in current design pattern research.

RQ2 : Which are the most active research subtopics concerning design
patterns?

This research question is important to researchers. The findings
related to this question can be used by researchers as a catalog of
related work, divided by a rationale categorization. Additionally,
the results point to interesting research subtopics and to research
subtopics that are neglected up to now.

RQ3 : What pattern effects on quality attributes have been identified
to date?

This research question is interesting for both researchers and
practitioners. Researchers, who are specialized on the effect of GoF
patterns on software quality attributes, can easily identify the con-
troversial reported results on the subject and further investigate
them. Practitioners can consult the findings of our study when using
a design pattern and take into account their personal needs with
respect to relevant software quality attributes.
The names of the quality attributes that are investigated come
from ISO 9126 model. However, in several primary studies, we have
identified several quality attributes that are not presented in Fig. 1.

1948 A. Ampatzoglou et al. / The Journal of System

Table 1
Quality attribute mapping.

Primary study quality attribute ISO-based quality attribute Studies

Change Proneness Stability P44
Reusability Adaptability P62, P93
Flexibility Maintainability P72
Modularity Maintainability P62, P93
Generality Adaptability P62

T
t

a
c
e
p
p
r
F
i
a
i
a

4

d
j
b
w
a
w
o
s
w
g
h
i
f
a
a
S
s
l
n
p
i
s
s
a
A
v
u
p

i
e
f

s
t
f

Scalability Maintainability P62
Robustness Reliability P62

he mapping between the terms of primary studies and ISO-based
erms are presented in Table 1.

For example [P44] references the change proneness quality
ttribute which is the probability of a class to change. In ISO 9126
hange proneness is not defined as a quality attribute. The clos-
st ISO-based attribute is stability which is the opposite of change
roneness, i.e., the probability of a class not to change. Thus, change
roneness is mapped to stability, taking into account the negative
elationships between quality attributes while evaluating patterns.
inally, some quality attributes of the ISO first level, e.g., usabil-
ty, are quality in use attributes, whereas patterns are expected to
ffect internal and external ones1. For example, usability is exam-
ned from a developer’s perspective, i.e. how understandable and
ttractive the code that uses a pattern is.

.2. Search process

The search process of our research has been based on the process
escribed in (Cai and Card, 2008), where the authors selected seven

ournals and seven conferences as search space. The journals have
een selected according to their impact factor (greater than 0.800),
hereas the conferences have been selected according to their

cceptance rate (about 30%). After creating the selected venue list,
e observed that our study explores the journals and conferences

f Cai and Card (2008) and investigated four additional journals,
ix additional conferences, and two additional workshops that deal
ith reverse engineering, maintenance, refactoring, metrics, and

eneric software engineering. The journals and conferences that
ave been explored are presented in Table 2, along with their

mpact factor or acceptance rate.2 The topic of the journals and con-
erences must strictly be software engineering. Thus, venues such
s IEEE Computer, Journal of the ACM, or Communication of the ACM,
lthough of very high quality and impact factor, were excluded.
oftware architecture conferences have not been considered in the
earch space because we assumed that the majority of papers pub-
ished in such venues would deal with architectural patterns and
ot GoF design patterns. Concerning the time period of the search
rocess, the study has not defined any starting search date and

ncludes articles published until the end of 2010, i.e., all editions of
elected conference and all volumes of selected journals were con-
idered in the review process. The search process was conducted by

 manual search through the portals of five digital libraries, namely
CM, IEEE, ScienceDirect, Springer, and Wiley. The mapping among

enues and digital libraries is presented in Table 2. The only term
sed in the search process was pattern, referenced in the title of the
ublication. The exclusion of non-relevant articles was conducted

1 Quality in use: Type of quality that is perceived when the final product is used
n real conditions. Internal Quality: Type of quality that is perceived from a non-
xecutable view of the software (static). External Quality: Type of that is perceived
rom running software (Kitchenham and Pfleeger, 1996).

2 The conference acceptance rates are from (http://people.engr.ncsu.edu/txie/
econferences.htm) for the year 2010. If 2010 is not available, we take into account
he last known acceptance rate. The journals’ impact factors have been extracted
rom (http://www.isiwebofknowledge.com).
s and Software 86 (2013) 1945– 1964

manually according to the article filtering criteria defined in Section
4.3.

In Zhang and Budgen (2012) it is suggested that many papers
might include one or more studies and that one study might be
reported by one or more papers. In the field of software engineer-
ing, a common practice among researchers is to publish their early
research results in conference proceedings in order to get quicker
feedback from the research community, as a means for evolving
and maturing their work. In most of the cases the final outcome of
a study is a publication to a software engineering journal. In this
work we have grouped papers into studies and report them both.
The main criterion for merging papers into studies was the similar-
ity of research method and questions.3 The papers that have been
merged into one study are presented in Appendix C.

4.3. Article filtering phases

The papers that are selected as primary studies in the review
must be relevant to an object-oriented design pattern described in
(Gamma et al., 1995). In line with (Dyba and Dingsoyr, 2008), there
are four stages of filtering the article set to produce the primary
study data set. These stages are presented in Table 3. In line with
(Bereton et al., 2007), the search process was handled by one of the
three authors.

The article search process returned a set of studies that included
all publications that used the term pattern in their title, without
evaluating its relevance to GoF design patterns. On the completion
of this phase the article set (413 articles), went through a manual
inspection of their titles. Although the search process returned a set
of primary studies that included the term pattern in the title, there
was no article exclusion regarding its relevance to a GoF design
pattern at that stage. For example, a paper entitled Performance
of circuit-switched interconnection networks under no uniform traffic
patterns, was excluded in the second phase because the paper is
clearly unrelated to GoF design patterns.

On the completion of the abovementioned phase, the candi-
date primary study set included 215 papers. In the next phase,
one author assessed the relevance of each paper by examining its
abstract. The most common exclusion criterion at this phase proved
to be the relation of the candidate primary study to architectural
patterns or human computer interaction patterns. Next, the full
manuscripts of the 158 articles remaining were examined by all
three authors independently. In this phase, any article that had no
strict reference to at least one GoF design pattern was excluded. No
conflicts among the authors’ opinions arose. Finally, all 118 arti-
cles that successfully passed all previously mentioned phases have
been included in the review without applying further criteria. The
inclusion/exclusion criteria are explicitly listed below:

• Inclusion criteria:
◦ papers dealing with software design patterns
◦ explicit reference to one GoF design pattern

• Exclusion criteria:
◦ literature that was only available in the form of abstract
◦ literature in the form of a poster or a short paper (less than 5

pages)

4.4. Quality assessment
The quality of a systematic review is highly correlated to the
quality of the primary studies in the sense that the results and the

3 The complete list of comparisons among papers, so as to merged them into
studies is provided in the web, see http://students.csd.auth.gr/∼apamp/mapping
study all authors.xlsx.

http://people.engr.ncsu.edu/txie/seconferences.htm
http://people.engr.ncsu.edu/txie/seconferences.htm
http://www.isiwebofknowledge.com/
http://students.csd.auth.gr/~apamp/mapping_study_all_authors.xlsx
http://students.csd.auth.gr/~apamp/mapping_study_all_authors.xlsx

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945– 1964 1949

Table 2
Publication venues.

Name # papers Impact factor/acceptance rate Digital sources

Annual Computer Software and Application Conference (COMPSAC) 13 31% IEEE
European Conference on Software Maintenance and Reengineering (CSMR) 13 30% IEEE
International Conference on Software Engineering (ICSE) 10 14% IEEE
International Conference on Software Maintenance (ICSM) 10 26% IEEE
ICSE Workshops 9 N/A IEEE
IEEE Working Conference on Reverse Engineering (WCRE) 9 25% IEEE
IEEE Transactions on Software Engineering (TSE) 8 2.265 IEEE
Journal of Systems and Software (JSS) 7 1.293 Science Direct
Information and Software Technology (IST) 6 1.527 Science Direct
International Conference on Automated Software Engineering (ASE) 6 18% IEEE/ACM
Object Oriented Programming, Systems, Languages and Applications (OOPSLA) 6 28% ACM
International Conference on Program Comprehension (ICPC) 4 27% IEEE
IEEE Metrics Symposium (METRICS) 3 29% IEEE
Symposium on Empirical Software Engineering and Measurement (ESEM) 3 29% IEEE/ACM
IEEE Software (IEEESoft) 2 1.511 IEEE
Empirical Software Engineering (ESE) 2 1.796 Springer
International Symposium on Software Reliability Engineering (ISSRE) 2 25% IEEE
ACM SIGSOFT Symposium on Foundation of Software Engineering (FSE) 1 20% ACM
Advancements in Software Engineering (AdSE) 1 1.004 Elsevier
ACM Transactions on Programming Languages and Systems (TOPLAS) 1 1.167 ACM
FSE Workshops 1 N/A ACM
Journal of Software: Evolution and Process 1 0.844 Wiley
Software Testing, Verification and Reliability (STVR) 1 0.957 Wiley
ACM Transactions on Software Engineering and Methodology (TOSEM) 0 1.694 ACM
Automated Software Engineering Journal (ASEJ) 0 0.806 Springer
International Symposium in Software Testing and Analysis (ISSTA) 0 23% ACM

c
t
m
p
t
s
e
t
a
a
b
f
o
a
b
t

4

v
e

e

T
A

Requirements Engineering Journal (RE)

Science of Computer Programming (SCP)

Software and Systems Modeling (SoSyM)

onclusions of the secondary study are based on the findings of
he primary studies. Thus, in a review, it is crucial to include pri-

ary studies that are methodologically sound and that are clearly
resenting their results. In our review, we have included papers
hat are published in top journals and conferences, and work-
hops that are held in conjunction with top conferences in software
ngineering. Conferences and workshops have been included in
he search space, because many good software engineering papers
re presented at international conferences or workshops that usu-
lly cover more current and up-to-date research advancements;
ecause their review and publication period is shorter than that
or journals, without significant trade-off concerning the quality
f the articles. Hence, although we have not performed a system-
tic quality assessment for the primary studies in our review, we
elieve that the quality of the selected papers is good enough for
he purpose of our study.

.5. Data collection

During the data collection phase, we have collected a set of
ariables that describe each primary study. For every study, we
xtracted the following data:

[A1] Type of publication (journal, conference, workshop)
[A] Published in (journal or conference name)
2
[A3] Year of publication
[A4] Keywords (the keywords have been extracted from authors’

xpert judgment)

able 3
rticle inclusion–exclusion phases.

Step Remaining papers

Identify relevant studies–search digital libraries 413
Exclude studies on the basis of titles 215
Exclude studies on the basis of abstracts 158
Obtain studies and select the most relevant to design

patterns on the basis of full text
118
0 0.862 Springer
0 1.306 Science Direct
0 1.404 Springer

For the studies that deal with software quality, additional infor-
mation has been retrieved:

[Q1] Patterns investigated (name of pattern)
[Q2] Quality attributes investigated
[Q3] Software metrics used (if any)
[Q4] Research method used
All retained articles have been examined by all three authors.

Every author has completed data extraction for every primary
study separately. Then the values of each variable (obtained by
each author) have been compared to each other and its final value
has been assigned to the primary study after discussion on every
author’s opinion. If two or more authors assigned the same value
to one variable this value was assigned to the variable without fur-
ther discussion. In any other case after a debate among the authors
a value was assigned to every variable. In total, 72 conflicts have
been resolved concerning 44 primary studies.

4.6. Data analysis

The data collected for variables, type of publication (A1), published
in (A2), year of publication (A3), and research method used (Q4) were
used to provide descriptive statistics, mostly frequency tables, on
design pattern research. The keywords (A4) variables were used to
identify and discuss the most active research subtopics that deal
with design patterns and to aid in the description of research state
of the art on every subtopic (addressing RQ1 and RQ2). Concern-
ing the discussion on the effect of each pattern on software quality
attributes (addressing RQ3), variables pattern investigated (Q1), qual-
ity attributes investigated (Q2), and software metrics used (Q3) were
taken into account.

In a mapping study an important step toward drawing valu-
able conclusions is the categorization of the papers that have been
found. In this step, data from all studies are put together so as to cre-

ate a data set that can be analyzed to answer the research questions.
The data categorization plan in our study aims at accessing data
needed for answering every research question from many perspec-
tives, as shown in Table 4. The topics emerged during analysis, by

1950 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945– 1964

Table 4
Data categorization overview.

RQ Basic measures Variables used

RQ1
Count of keywords Keywords (A4)
Count of articles per year for every research subtopic Year of publication (A3)

RQ2

Count of keywords per research subtopic Type of publication (A1)
Count of research methods used for investigating the effect of GoF patterns on
software quality attributes

Published in (A2)

Keywords (A4)
Research method used (Q4)

RQ3

Mapping among design patterns & software quality attributes Pattern investigated (Q1)
Count of positive and negative critiques on every pattern–quality attribute pair Quality attributes investigated (Q2)

Software metrics used (Q3)

Table 5
Primary study keywords frequency.

Keyword # papers # studies Brief description

Detection 36 30 Papers that present algorithms, tools or methods that can be used to identify GoF design pattern
instances in source or binary code.

Specification 11 10 Papers that discuss possible ways of presenting and specifying GoF design patterns.
Detection Algorithm 10 8 Papers that present algorithms that can be used to identify GoF design pattern instances in source

or binary code.
Quality 10 10 Papers that deal with the effect of GoF design patterns on software quality.
Detection Accuracy 9 9 Papers that deal with the detection accuracy of algorithms, tools or methods that can be used to

identify GoF design pattern instances in source or binary code.
Detection Tool 9 9 Papers that present tools that can be used to identify GoF design pattern instances in source or

binary code.
Detection Technique 8 8 Papers that present techniques that can be used to identify GoF design pattern instances in source

or binary code.
Implementation 7 6 Papers that exhibit how GoF design patterns can be implemented on various languages, or

automatically applied.
deal w
someh
presen

u
(
t
o
o
H
c
s
D
n
f
S

5

s
(
t
s
p
t
a
s
t

5

t

Maintainability 7 7 Papers that

Structural 7 3 Papers that

Visualization 6 5 Papers that

sing reciprocal translation, which is a content analysis approach
Noblit and Hare, 1988). The process of reciprocal translation is used
o express the concept of each study, in relation to the concept
f other studies. An alternative approach for classifying research
n patterns is the ACM Classification Schema (Cai and Card, 2008).
aving used this approach, most studies would have primarily been
lassified in D.2.10 (Design). Secondary categorizations would clas-
ify the studies to D.2.2 (Design Tool) for design pattern detection,
.2.3 (Coding Techniques) for pattern application, D.2.7 (Mainte-
ance) for the effect of patterns on maintainability, D.2.8 (Metrics)

or the effect of patterns on metric values and D.2.13 (Reusable
oftware) for the effect of patterns on reusability.

. Results

This section of the paper presents the results of this mapping
tudy, according to the three research questons. The first section
Section 5.1) presents the research subtopics that have been iden-
ified according to our analysis. Next, an overview of the primary
tudies included in the review, handling each study separately is
rovided (Section 5.2). The third part (Section 5.3) provides descrip-
ive statistics, which derived from synthesizing the results of the
nalysis, which will be used for discussing the effect of patterns on
oftware quality. The complete dataset of each study is available in
he web.4
.1. Research subtopics & top publishers identification

The first research question of our study aims at the identifica-
ion of specialized research subtopics that can further categorize

4 http://students.csd.auth.gr/∼apamp/mapping study.html.
ith the effect of GoF design patterns on software maintenace.
ow deal with only one category of GoF design patterns, i.e. structural patterns
t possible ways of visualizing GoF design patterns.

research on GoF design patterns. To achieve this goal, we qual-
itatively analyzed and synthesized the most common keywords
that have been extracted during the review process. An issue
with qualitative analysis of this form is that it really needs to be
performed systematically. In order to eliminate posibble inconsis-
tencies among terms used in different studies we used reciprocal
translation for the brief descriptions provided for each keyword.
The most common keywords that have been identified from all pri-
mary studies are presented in Table 5, accompanied by their brief
descriptions.

The analysis has been performed on the brief descriptions of
the keywords, where we attempted to identify similarities among
them. Keywords with similar brief descriptions have been put
together. For example, keywords Detection, Detection Algorithm,
Detection Tool, Detection Tool Accuracy and Detection Technique all
share the common aim of identifying GoF design pattern instances
from existing projects. This aim was not a part, of any other brief
description. Thus, Design Pattern Detection is identified as a GoF
Design Pattern research subtopic.

After performing the abovementioned process for all keywords,
the research state-of-the-art on design patterns has been divided
into five research subtopics, as they have been identified by our
data analysis, as follows:

• Design Pattern Formalization (from keywords Specification and
Visualization), deals with papers that attempt to create ontolo-
gies, markup languages, and so on, to describe design patterns.

• Design Patterns and Software Quality subtopic (from keywords
Quality and Maintainability), deals with papers that investigate

the effect of design pattern application on software quality.

• Design Pattern Detection (from keywords Detection, Detection
Algorithm, Detection Tool, Detection Tool Accuracy and Detec-
tion Technique), includes papers that deal with methodologies,

http://students.csd.auth.gr/~apamp/mapping_study.html

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945– 1964 1951

Table 6
Top Publishers of papers on design patterns.

Name # papers # studies Papers

Y. G. Guéhéneuc 11 10 P2, P33, P45, P46, P57, P58,
P59, P62, P63, P66, P90

C. Gravino 7 4 P27, P28, P29, P30,P31,
P32, P98

M. Risi 7 4 P27, P28, P29, P30,P31,
P32, P98

A. De Lucia 6 3 P27, P28, P29, P30,P31, P32
V. Deufemia 6 3 P27, P28, P29, P30,P31, P32
G. Antoniol 6 4 P4, P5, P6, P33, P45

•

•

t
e
W
r
o
C
p
b
r
s

i
s
b

5

o
t
r

s
H
d
C

Fig. 4. Research intensity over time (design pattern formalization).

Fig. 5. Research intensity over time (design pattern detection).
A. Chatzigeorgiou 4 4 P3, P66, P67, P109
T. H. Ng 4 4 P78, P79, P80, P81
S. C. Cheung 4 4 P78, P79, P80, P81

algorithms, and tools that mine pattern instances from source
code and other artifacts.
Design Pattern Application (from keyword Implementation)
subtopic involves papers that present methods for identifying
systems that need pattern application or methods and tools that
automate or assist the application of patterns.
Miscellaneous Issues on Design Patterns, consists of studies that
cannot be classified into any other previous subtopic.

At this point it is necessary to clarify that, some papers are linked
o keywords of two subtopics. In such cases, the article has been cat-
gorized under only one subtopic, according to authors’ judgment.
e believe that our classification schema adequately demarcates

esearch subtopics within the overall design pattern research state
f the art, in a more balanced way than a generic schema, e.g., ACM
lassification Schema, because it is more specialized and focuses on
attern related characteristics that could not have been retrieved
y more generic schemas. In the remaining of the paper, we will
efer to the identified GoF patterns research subtopics as research
ubtopics.

A common practice when performing a mapping study is the
dentification and ranking of the researchers in the domain under
tudy. Table 6, summarizes the publishers with the maximum num-
er of publications in research on the field of design patterns.

.2. Research subtopics intensity and overview

Figs. 3–8 depict the trend of research activity for each subtopic
ver the time period covered by the mapping study. In addition to
hat, Table 7 presents the count of published articles within each
esearch subtopic and pointers to the corresponding publications.

The figures suggest that considering the overall research inten-

ity over time, the volume of research is increasing over the years.
owever, there are years when the number of published papers on
esign patterns has decreased with respect to the previous year.
oncerning research subtopics, research on pattern application was

Fig. 3. Total research intensity over time.
Fig. 6. Research intensity over time (design pattern application).

the most intense research subtopic until 2002 (30.23% of over-
all number of papers), but since then the research effort on this
subtopic has faded out. Research on pattern detection and pattern
formalization was limited to a small number of papers until 2005

and 2003 respectively. Then, both subtopics were subject to more
publications. However, research on pattern detection had a more
stable rate of published studies. Additionally, research on the effect

Fig. 7. Research intensity over time (effect of design patterns on quality).

1952 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945– 1964

Table 7
Research subtopics.

Name # papers # studies Papers

Design Pattern Formalization 20 (16.95%) 18 (17.14%) P1, P11, P14, P15, P18, P19, P34, P35, P37, P38, P42, P64, P71, P74, P76, P85, P90,
P101, P104, P118

Design Pattern Detection 36 (30.51%) 30 (28.57%) P2, P4, P5, P6, P8, P10, P23, P27, P28, P29, P30,P31, P32, P36, P41, P43, P45, P51,
P54, P58, P59, P61, P65, P66, P68, P83, P88, P89, P96, P100, P102, P109, P112, P113,
P114, P117

Design Patterns and Software Quality 35 (29.66%) 33 (31.42%) P3, P9, P12, P13, P16, P33, P39, P40, P44, P46, P47, P48, P49, P52, P55, P56, P57,
P62, P63, P67, P72, P73, P77, P78, P79, P80, P81, P91, P92, P93, P98, P99, P110,
P111, P115

Design Pattern Application 18 (15.25%) 15 (14.28%) P1
P1

Miscellaneous Issues 9 (7.63%) 9 (8.57%) P7

o
s
t

n
t
t
p
e
o
t
o
o
p

e
l
b
fi
o

e
i
a
c
s
s
t
o
t
p
t
t

Fig. 8. Research intensity over time (design pattern miscellaneous issues).

f patterns on software quality attributes is the most stable research
ubtopic, because from 2001, there was only one year with fewer
han two publications.

Concerning the differences between number of studies and
umber of papers, we observe that the topic with most studies
hat have been published in more than one venue is design pat-
ern detection. This is a reasonable result in the sense that design
attern detection algorithms, tools and techniques can more easily
volve than any other kind of research activity. Changing one step
f an algorithm, to make it work faster or more accurately, is a result
hat worths publishing without changing the complete methodol-
gy. This is not applicable to other research topics, e.g. the effect
f GoF patterns on software quality, where minor changes do not
roduce publishable results.

Finally, one role for a mapping study is to establish if there are
nough primary studies in an area to justify conducting a systematic
iterature review. In the case of GoF design patterns research we
elieve that there is room for a systematic literature review in the
elds of design pattern detection and on the effect of GoF patterns
n software quality attributes.

Next, we provide a detailed description of the state of the art on
ach subtopic, according to the categories that have been defined
n Section 5.1. The papers have been classified in the five subtopics
nd then grouped in a content-based manner. For each group, a
umulative overview of their goals is provided. A more detailed pre-
entation of each paper is provided in the web.5 For every research
ubtopic, we created a list of the most frequent keywords within
his subtopic. The keywords can be the method used for the purpose
f the study, e.g. meta-programming languages, or the actual aim of
he study, e.g., visualization of patterns. Every keyword is accom-

anied by two characteristics, i.e., a list of pointers to the articles
hat it has been identified and its identification frequency within
he subtopic. The keywords that are presented in the tables aim at

5 http://students.csd.auth.gr/∼apamp/mapping study.html.
7, P20, P22, P24, P25, P26, P50, P53, P60, P69, P70,P75, P82, P86, P94, P105,
06, P116
, P21, P84, P87, P95, P97, P103, P107, P108

providing indications on research intensity around these keywords
and not to clearly describe the primary study.

5.2.1. Design patterns formalization
The articles that deal with pattern formalizations all share the

common aim of investigating, identifying, and specifying innova-
tive approaches that deal with modeling and formalizing patterns.
In [P35, P42, and P64] the authors deal with the visualization of
design patterns with UML artifacts. These studies provide a way
to use design patterns with several practical benefits concerning
tools that help practitioners in applying design patterns. In [P19
and P85], the authors present a repository including formal speci-
fications of the problems that each pattern solves and demonstrate
a language for formally describing the Visitor pattern to capture its
essence in a reusable library. In [P14, P15, and P104], the authors use
first order predicate logic to specify the behavioral and structural
characteristics of design patterns.

In [P1 and P34], a component-based specification of design pat-
terns is suggested, guided by the design artifacts that are involved
in patterns and propose new symbols on class and collaboration
diagrams that help in pattern representation. In [P11 and P18],
the authors provide tools that are based on constraints and logical
graphs to formalize design patterns. [P37, P74 and P101] introduce
meta-programming languages for describing the way a pattern is
applied. In [P38, P76, and P118], the authors deal with enhanc-
ing the descriptions of design patterns. More specifically, they
propose transformations for pattern application and they provide
documentation on pattern usage. In [P71 and P90], construc-
tional attributes of patterns, a comparison of pattern visualization
methods, and general information on pattern comprehension are
presented (Table 8).

5.2.2. Design patterns detection
During our search process, we have identified 36 articles that

deal with design pattern detection. In [P29, P31, P51, and P114]
the authors have created algorithms that identify behavioral and
structural patterns through static and dynamic analysis. In [P4, P5,
P6, and P45], the authors introduce methods for identifying struc-
tural design patterns with a multilayer approach. In [P30 and P109]
introduce methods for identifying structural design patterns with
a two phase approach and perform design pattern detection using
a similarity scoring algorithm.

In [P32] the authors perform design pattern detection with
model checking techniques. In [P27, P28, and P96] the authors
identify pattern instances by visual language parsing techniques.
In [P112 and P117] the authors present two pattern detection
tools, for the Eiffel programming language and for UML diagrams,

respectively. In [P2, P36, and P83] additional tools that discover
occurrences of patterns in their standard form are presented. The
[P8, P10, P68, and P100] provide techniques and tools that identify
design patterns in source code.

http://students.csd.auth.gr/~apamp/mapping_study.html

A. Ampatzoglou et al. / The Journal of System

Table 8
Keywords for pattern formalization.

Keyword # papers # studies Papers

Specification 11 10 P1, P14, P15, P37, P38,
P74, P76, P85, P101,
P104, P118

Visualization 6 5 P35, P42, P64, P71, P88,
P90,

Application 4 4 P19, P38, P76, P118
Transformations 4 4 P19, P38, P76, P118
UML 4 3 P35, P42, P64, P90
Documentation 3 3 P38, P76, P118
First order predicate logic 3 2 P14, P15, P104
Meta-programming languages 3 3 P37, P74, P101
Comprehension 2 2 P71, P88
Formalization 2 2 P11, P18
Formal specification 2 2 P19, P85
Logical Graphs 2 2 P11, P18
Architectural design artifacts 1 1 P1
Class diagram 1 1 P34
Collaboration diagram 1 1 P34
Component based specification 1 1 P1
Language 1 1 P85

f
r
P
i
s
t
a
t
t

5

o
d
l

T
K

Repository 1 1 P19
Representation 1 1 P34

In [P58 and P59] the authors suggest a bit-vector algorithm
or pattern detection. In [P23 and P61] pattern detection algo-
ithms have been employed for reverse engineering. In [P41 and
54] the authors aim at improving the accuracy of design pattern
dentification algorithms by machine learning and formal pattern
pecifications respectively. Paper [P88] investigates the parame-
ers that would improve pattern detection accuracy. Paper [P43
nd P113] present several benchmark problems for pattern detec-
ion. Papers [P65, P66, P89, and P102] compar pattern detection
echniques and evaluate their accuracy (Table 9).

.2.3. Design patterns and software quality

This section presents the research state of the art on the effect

f GoF patterns on software quality. The primary studies are
escribed, divided into two major categories, (1) effect on high-

evel quality attributes and (2) effect on low-level quality attributes.

able 9
eywords for pattern detection.

Keyword # papers # studies Papers

Detection 36 30 P2, P4, P5,
P59, P61, P

Detection Algorithm 10 8 P23, P29,P
Detection Accuracy 9 9 P41, P42, P
Detection Tool 9 9 P2, P8, P10
Detection Technique 8 8 P8, P10, P6
Structural 7 3 P4, P5, P6,
Source Code 4 4 P8, P10, P6
Behavioral 3 2 P29,P31, P
Dynamic Analysis 3 2 P29,P31, P
Multilayer Approach 3 1 P4, P5, P6
Pattern Standard Form 3 3 P2, P36, P8
Static Analysis 3 2 P29,P31, P
Benchmark 2 2 P43, P113
Bit-vector 2 1 P58, P59
Formal Specifications 2 2 P41, P42
Language Parsing Techniques 2 1 P27, P28
Machine Learning 2 2 P41, P42
Reverse Engineering 2 2 P23, P61
Annotation 1 1 P96
Eiffel 1 1 P112
Model Checking 1 1 P32
Pattern Variant Form 1 1 P83
Similarity Scoring 1 1 P109
UML 1 1 P117
s and Software 86 (2013) 1945– 1964 1953

In [P12, P13 and P16] the authors investigate testability of
Abstract Factory, State, Mediator, Observer and Visitor patterns. In
[P9, P33, P49, P73, P80, P91, P93 and P98] the authors deal with the
maintainability, modularity, reusability, changeability and adapt-
ability of every design pattern. More specifically, adaptability and
maintainability are investigated for every pattern, whereas other
quality attributes only for some of the GoF patterns.

In [P79, P99 and P110] the defect frequency arising from the
use of Abstract Factory, Observer, Template Method, Adapter and
Singleton are investigated. In [P39, P44, P56 and P63] the change
proneness, i.e. the probability of a class to change, of Command,
Composite, Decorator, Observer, Singleton, State, Factory Method,
Iterator, Adapter, Bridge and Faç ade are investigated. In [P3, P46,
P52, P55, P67, and P77] the authors focus on low-level quality
attributes, such as complexity, coupling, cohesion, inheritance and
size.

In [P72, P78, P79, and P81] the authors investigate the ease of
adopting new requirements to instances of Factory Method, State,
Visitor, Flyweight and Decorator patterns, i.e. pattern flexibility and
extendibility. In [P40, P57, P62, P92, and P111] the authors inves-
tigate the maintainability, the stability and the understandability
of design patterns. In [P47, P48 and P115] the understandability of
Adapter, Bridge, Composite, Template Method, State, Strategy, Vis-
itor, Bridge, Command, Observer, Proxy and Singleton patterns are
investigated (Table 10).

5.2.4. Design patterns application
This section deals with the articles that investigate design pat-

tern application. In [P50] the authors describe their experiences
with design patterns. In [P17, P60 and P116] the authors suggest
that design patterns are the key to provide abstraction in software
and for adapting software components into existing systems. In
[P20 and P75] the authors detect software anti-patterns that neces-
sitate reengineering through design pattern application.

In [P22 and P86] focus their investigation to design patterns for

Java. In [P94 and P105] propose innovative design patterns that
might be a composition of other patterns. In [P69 and P70] the
authors deal with generative design patterns (GDP), and try to
address the major problems when using GDP. In [P24, P25, P26,

 P6, P8, P10, P23, P27, P28, P29, P30,P31, P32, P36, P41, P43, P45, P51, P54, P58,
65, P66, P68, P83, P88, P89, P96, P100, P102, P109, P112, P113, P114, P117
31, P41, P42, P58, P59, P61, P109, P114
43, P65, P66, P88, P89, P102, P113
, P36, P68, P83, P100, P112, P117
5, P66, P68, P89, P100, P102

 P29, P30,P31, P114
8, P100
114
114

3
114

1954 A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945– 1964

Table 10
Keywords for pattern effect on quality.

Keyword # papers # studies Papers

Quality 10 10 P16, P47, P49, P63, P73,
P77, P78, P79, P91, P98

Maintainability 7 7 P3, P57, P62, P67, P80, P92,
P111

Design Coupling 5 5 P3, P46, P52, P55, P67
Stability 5 5 P39, P56, P72, P92, P110
Understandability 5 5 P57, P62, P92, P111, P115
Changeability 4 3 P9, P33, P44, P110
Code Complexity 3 3 P3, P46, P55
Defect Frequency 3 3 P79, P99, P110
Flexibility 3 3 P39, P72, P78
Inheritance 3 3 P46, P55, P67
Modularity 3 3 P49, P62, P93
Reusability 3 3 P49, P62, P93
Change Proneness 2 2 P56, P63
Code Cohesion 2 2 P3, P67
Code Size 2 2 P3, P115
Documentation 2 2 P91, P98
Extendibility 2 2 P3, P81
Refactoring 2 2 P77, P81
Testability 2 1 P12, P13
Generality 1 1 P62
Open–Close principle 1 1 P80
Pattern Coupling 1 1 P73
Polymorphism 1 1 P52
Robustness 1 1 P62
Scalability 1 1 P62
Usability 1 1 P40

P
c
[
d

5

s
J
[
i
i
p
f
p

T
K

Table 12
Keywords for miscellaneous issues on patterns.

Keyword # papers # studies Papers

Documentation 2 2 P97, P107
HTML 2 2 P97, P107
Run-time Behavior 2 2 P21, P87
Client Program 1 1 P84
Framework 1 1 P108
Pattern Application Density 1 1 P95
Work experience 1 1 P81

53 and P82] the authors propose a methodology for automatically
onstructing the transformations described in design patterns. In
P106] the authors’ method suggests pattern-based architecting for
ocumenting design decisions in real-time (Table 11).

.2.5. Miscellaneous issues on design patterns
Concerning research on generic issues on GoF patterns, nine (9)

tudies have been identified. In [P97 and P107] the authors use
avadoc to produce HTML documentation for design patterns. In
P7, P84, P103, and P108] the use authors discuss the use of patterns
n the development of a testing framework, software migration
ssues concerning patterns and other generic issues on GoF design
atterns. In [P21, P87, and P95] refer to patterns’ past, present and
uture, they investigate run-time behavior of several patterns and

ropose metrics for measuring design pattern usage intensity.

able 11
eywords for pattern application.

Keyword # papers # studies Papers

Implementation 7 6 P17, P22, P60, P69, P70,
P82, P86

Transformation 5 3 P24, P25, P26, P53, P82
Automated Method 4 2 P24, P25, P26, P53
Abstraction 2 2 P17, P60
Anti-patterns 2 2 P20, P75
Generative Patterns 2 2 P69, P70
Java 2 2 P22, P86
Pattern Composition 2 2 P94, P105
Reengineering 2 2 P20, P75
Component Adaptation 1 1 P116
Documentation 1 1 P106
Pattern-Based Architecting 1 1 P106
Practical Experience 1 1 P50
Programming Language 1 1 P113
Real-time 1 1 P106
Pattern Categorization 1 1 P103
Testing Framework 1 1 P108

5.3. GoF patterns and software quality attributes

This section, presents results for further investigating the pri-
mary studies that deal with the effect of GoF design patterns on
software quality attributes.

In Table 12, only the studies that deal with the effect of patterns
on quality attributes are considered (in total 33 primary studies).
Comparing our retrieved primary study dataset on the effect of
patterns on software quality attributes with the one of Zhang and
Budgen (2012) we observe that we have identified and studied 17
additional papers. These additional papers have been identified
because the searching period of our review included one addi-
tional year of research, because our work did not only focus on
empirical studies. However, some papers that have been reported
from Zhang and Budgen (2012) are not reported in this mapping
study because of the narrower searching space, in the sense that we
only searched within specific journal and conference proceedings.
The table summarizes how many and which studies employ which
research method (as described in Glass et al. (2002)) to evaluate
the effect of pattern application on software quality attributes. It is
observed that the dominant empirical methodology (Wohlin et al.,
2000) is experiment, followed by case studies. These results are in
accordance with similar findings reported in (Glass et al., 2002;
Höfer and Tichy, 2007; Zhang and Budgen, 2012) (Table 13).

Finally, Table 14 presents the reported effect of design patterns
on software quality attributes and software metrics. Table 14 is pre-
sented similarly to a force resolution map as described in (Galster
and Avgeriou, 2012; Souza et al., 2002). The metrics that are pre-
sented in the paper are discussed in detail in Appendix B.

In Table 14, the (+) symbol suggests that the pattern has a pos-
itive effect on the corresponding quality attribute whereas the (−)
symbol suggests that the pattern has a negative effect. Finally, the
study on which the selection of each symbol is based on is refer-
enced in the brackets next to the symbol. (+) does not necessarily
imply higher metric scores, but better metric scores. For example, a
(+) in Complexity means lower complexity levels whereas a (+) in
a polymorphism metric, means a system with more polymorphic
behavior. (+) and (−) symbols provide guidance to researchers and
practitioners, but they are by no means a strict evaluation.

The evaluation of each pattern with regard to quality attributes
has been conducted according to the evaluation provided in the pri-
mary studies. Additionally, blank cells in Table 14 suggest that the
corresponding pair of (quality attribute, pattern) has not been inves-
tigated by any study. In Table 14 we only present studies that clearly
present results and discussion on the effect of a specific pattern, on
a specific quality attribute. Primary studies that present more gen-
eral conclusions have been presented in Section 5.2.3, but are not
reported in Table 14.

6. Discussion
In this section we discuss the findings of our review with respect
to the research questions specified in Section 4.1. In Sections 6.1 and
6.2, we summarize the current state of the art concerning design

A. Ampatzoglou et al. / The Journal of Systems and Software 86 (2013) 1945– 1964 1955

Table 13
Research methods for studies on patterns and software quality.

Name Brief description # papers # studies Papers

Experiment A set of subjects is asked to perform a task in a
highly controlled environment. The results are
derived from observing the subjects during the
experiment, from inspecting the task outcome or
from questioning the subjects at the end of the
procedure.

12 (34.29%) 12 (36.36%) P40, P49, P57, P72, P78, P79, P80, P81, P91, P92,
P98, P111

Case Study A project, an activity or an assignment is
monitored with respect to the methodology
under study. Results are directly derived from
project measurements.

11 (31.43%) 10 (30.30%) P3, P9, P16, P33, P44, P46, P56, P63, P67, P99, P110

Conceptual Analysis/
Mathematical

Conceptual analysis is a technique that treats
concepts as classes of objects, events, properties,
or relationships. The technique involves precisely
defining the meaning of a given concept by
identifying and specifying the conditions under
which any entity or phenomenon is classified
under the concept in question.

7 (20.00%) 6 (18.18%) P12, P13, P39, P52, P55, P93, P115

Descriptive A descriptive research paper typically describes a
system, tool or method.

3 (8.57%) 3 (9.09%) P47, P48, P77

Literature Review A literature review gathers data from already
published studies synthesize them and draws
colnclusions from them.

1 (2.86%) 1 (3.03%) P73

Survey A set of subjects is asked to fill-in questionnaires 1 (2.86%) 1 (3.03%) P62

p
r
q

6

r
n
t
p
(
o
a

6

d
t
t

d
o
I
i
p
d
e
e
p
s
u
r
h
v
m
m
e

Additionally, in most cases, design patterns are about trade-
offs and it is impossible to assess the effect of patterns on
software quality in a generic way without knowing the context

6 As cut-off point in (Ampatzoglou et al., 2012) the authors characterize a specific
number of classes, where the metric score for a specific quality attribute, in a pattern-
either directly, or via internet. The results are
derived from the valid answers to the
questionnaire.

atterns research. In Section 6.3, we discuss the findings of the
eview on the effect of patterns on high and low-level software
uality attributes.

.1. Research subtopics identification

The first part of analyzing existing literature with respect to
esearch subtopics on design patterns was the introduction of a
ew research classification schema, which would be more fitting
o design pattern research than more generic ones. Our results,
ointed out five main subtopics on design pattern research, namely
a) design pattern formalization, (b) design pattern detection, (c) effect
f design patterns on software quality, (d) design pattern application,
nd (e) miscellaneous.

.2. Research subtopics activity

The results of Table 7 suggest that the most popular subtopics of
esign pattern research is design pattern detection and the inves-
igation of the effect of patterns on software quality, followed by
echniques for formulating design patterns.

Furthermore, concerning the studies that assess the effect of
esign pattern application on software quality, we have found
ut that 66.4% employ an empirical research method (Table 13).
n (Glass et al., 2002; Höfer and Tichy, 2007), it is reported that
n general software engineering research, i.e., not only design
attern research, the fraction of studies that employ empirical vali-
ation methods is between 20% and 30%. Although the amount of
mpirical research in design patterns is higher than the average
mpirical research in software engineering, we believe that design
attern research is in need of more empirical studies that use large-
cale and realistic problems, use practitioners instead of students,
se more subjects, more projects, etc. Also, maybe more diverse
esearch methods should be applied. For example, only one survey
as been conducted so far so there might be a need for more sur-

eys. Additionally, the plethora of open-source projects, which are
ainly the subjects of case studies, leaves much space for improve-
ent both in terms of size and in the control of the case studies’

nvironment.
6.3. Effect of design patterns on quality attributes

According to the results of our study (Table 14), the most com-
monly investigated quality attributes appear to be maintainability,
understandability, and reusability. More specifically, most patterns,
i.e., 18 out of 23, have been reported to have a positive effect
on software maintainability. Concerning reusability, the results
are controversial, because some patterns appear to provide more
reusable design than others. Additionally, the understandability of
design patterns seems to be the most elusive quality aspect because
six patterns, i.e., Visitor, Composite, Decorator, Proxy, Observer, and
Abstract Factory, are referenced as easily understood in some stud-
ies and as hard to understand in others. This fact can be explained by
the findings of Ampatzoglou et al. (2012) where the authors identi-
fied the number of design pattern participating classes as a decider
of the quality of the final design. In Ampatzoglou et al. (2012), the
authors identified eleven (11) specific design pattern sizes that can
be used as cut-off6 points while comparing the understandability of
the visitor pattern with alternative designs. Thus, if one case study
selected a visitor instance with pattern size below one of the afore-
mentioned cut-off points and another one a visitor instance higher
than the same cut-off point, the evaluation of the two instances
would be different. However, it is out of scope of this manuscript to
discuss details on the structural characteristics of each pattern and
attempt to explain its effect on every quality attribute. The inter-
ested reader can access such information on the primary studies
that are mapped to the pair (pattern–quality attribute) he/she is
interested in.
based version of a system, equals the metric score for a specific quality attribute,
in a non-pattern-based version of the same system. If the number of classes in one
system is higher than the cut-off point the one solution is better than other, if the
number of classes in one system is lower than the cut-off point the other solution is
better.

1956
A

.
 A

m
patzoglou

 et
 al.

 /
 The

 Journal
 of

 System
s

 and
 Softw

are
 86 (2013) 1945– 1964

Table 14
Effect of design patterns on quality attributes.

Attribute Abstract Factory Builder Factory Method Prototype Singleton Adapter Composite Decorator Facade Flyweight Bridge Proxy

Usability
Understandability − [P040]

− [P062]
− [P111]

+ [P062] − [P062] + [P062] + [P062] − [P062] + [P062]
− [P111]

+ [P111]
− [P062]
+ [P092]

+ [P062] − [P062] + [P062] + [P115]
− [P062]

Maintainability + [P062]
+ [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

− [P062]
− [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P072]
+ [P092]
+ [P093]
+ [P111]

+ [P062]
+ [P093]

− [P062]
− [P093]

+ [P003]
+ [P062]
− [P093]

+ [P067]
+ [P093]
− [P062]

Stability + [P110]
− [P062]

− [P044] + [P039]
− [P044]

− [P062] − [P092] + [P039] − [P062] + [P039] − [P044]

Reliability − [P062] − [P062] − [P062]
Portability
Adaptability + [P062]

+ [P093]
+ [P093]
− [P062]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

− [P062]
− [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

− [P062]
− [P093]

+ [P093]
− [P062]

− [P062]
− [P093]

− [P062]
− [P093]

+ [P062]
+ [P093]

Metrics
Complexity (WMC, AC) + [P046] + [P003]
Cohesion (H, LCOM) + [P003] − [P067]
Coupling (CF, Ce, CBO) + [P046] + [P003] − [P067]
Size (LOC, NOC) − [P003]

− [P115]
− [P115]

Polymorphism (NOP) + [P052] + [P052]
Inheritance (DIT, NOCC, A, NMI) + [P055] − [P067]

Attribute Command Interpreter Iterator Mediator Memento Observer State Template
method

Strategy Visitor Chain of
responsibility

Usability
Understandability − [P062] + [P062] + [P062] + [P062] − [P062] + [P111]

− [P062]
− [P092]

+ [P062] − [P062] + [P062] + [P062]
− [P051]
− [P058]
− [P111]

+ [P062]

Maintainability + [P062]
+ [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

− [P062]
− [P093]

+ [P062]
+ [P093]

+ [P003]
+ [P062]
− [P093]

+ [P062]
+ [P093]

+ [P062]
+ [P093]

+ [P058]
+ [P062]
+ [P072]
+ [P092]
+ [P093]
− [P051]
− [P111]

+ [P062]
+ [P093]

Stability + [P044] − [P110] − [P044] + [P110] − [P044]
Testability − [P013] − [P013] − [P013]
Portability
Adaptability + [P093]

− [P062]
− [P093] + [P062]

+ [P093]
− [P062]
− [P093]

− [P062]
− [P093]

+ [P062]
+ [P093]

− [P062]
− [P093]

+ [P062]
+ [P093]

+ [P093]
− [P062]

− [P062]
− [P093]

+ [P062]
+ [P093]

Metrics
Complexity (WMC, AC) + [P003]

− [P003]
+ [P055]
− [P046]

Cohesion (H, LCOM) + [P003]
Coupling (CF, Ce, CBO) + [P052]

+ [P055]
+ [P052]
+ [P046]

+ [P003] + [P046]

Size (LOC, NOC) − [P115] − [P115] − [P003]
Polymorphism (NOP) + [P052] + [P052] + [P052]
Inheritance (DIT, NOCC, A, NMI) + [P046]

ystem

(
h
m
b
t
q
e
i
r
t
a
a
a
a

e
d
i
T
s
l

t
I
o
e
a
i
i
e
i
e
p
s
t
t

r
p
t
i
w
d
e
s
m
p
a
i
w
t
p
i

7

s
n
(

7

a

A. Ampatzoglou et al. / The Journal of S

flexibility, requirements, etc.). Most pattern catalogs describe
ow to introduce flexibility, but as a side-effect, they introduce
ore complexity. This is preferable in cases when extra flexi-

ility is required. If a design pattern leads to more complexity
o enhance system flexibility, without really needing it, software
uality would deteriorate. Usually, the application of one pattern
nhances some quality attributes and simultaneously other qual-
ty attributes diminish. For example, the Abstract Factory pattern is
eported to be beneficial to maintainability, because new product
ypes can be added without altering the existing code.However, the
pplication of the Abstract Factory also decreases the understand-
bility of the design. The designer should consider which quality
ttribute is more important to him/her and decide if he/she will
pply the pattern.

Additionally, although design patterns are about design, most
xisting studies consider the implementation of the solutions of
esign patterns in source code for practical reasons. Furthermore,

mplementation of a design pattern can vary across primary studies.
hus, we believe that these variants themselves could be respon-
ible for any difference observed in the effect of pattern usage on
ow-level and high-level quality attributes.

As the current state of the art stands, evaluation of design pat-
erns has been performed through code metrics in only six studies.
n the rest of the cases, the evaluation has been performed by expert
pinion. Although evaluating patterns through metrics is not nec-
ssarily superior than evaluating according to expert judgment,
ssessing the effect of patterns through code and design metrics
s a field that needs further investigation and is expected to grow
n the next years. This fact is explained by the findings of Zhang
t al., where it is suggested that the majority of empirical stud-
es that investigate design patterns are conducted by controlled
xperiments (Zhang and Budgen, 2012). Additionally, pattern cou-
ling is clearly mentioned in only two studies, although in real
ystems pattern occurrences interact. Thus, evaluating isolated pat-
ern instances may be risky or just an approach of the real effect of
he pattern on real systems.

According to the results of the study, we suggest that future
esearch might focus on areas such as pattern understandability,
attern reusability, and reusability of patterns that are used at
he component or subsystem levels. Additionally, we believe that
nteresting future work might deal with identifying variables that

ould formulate the abovementioned trade-offs and be used in
ecision making tools that would evaluate pattern application ben-
fits and drawbacks. Such tools would help practitioners during
ystem design in deciding whether to use a pattern or not. Further-
ore, we propose future research efforts to deal with the effect of

atterns on quality attributes such as usability, modularity, gener-
lity, scalability, and robustness, which have not been thoroughly
nvestigated yet. Moreover, we claim that interesting future work

ould be the evaluation of design patterns at the design level rather
han on an implementation level, that is only considered at this
oint. Finally, studies that will investigate real systems with pattern

nstances that interact appear to be of great interest.

. Threats to validity

In this section, we discuss possible threats to the validity of our
tudy. Threats to validity are divided into four major categories,
amely (a) construct validity threats, (b) internal validity threats,
c) external validity threats and (d) threats to conclusions validity.
.1. Construct threats to validity

Construct threats to validity deal with problems that might
rise during research design. In a literature review, such threats
s and Software 86 (2013) 1945– 1964 1957

are related to the identification of primary studies. Concerning our
search process, any study that does not mention the word “pat-
tern” in the title of the article has been excluded from the primary
studies set. So, a number of articles that deal with design patterns
might have been omitted. However, we believe that papers that
deal with design patterns would most probably explicitly state it
in their titles. Additionally, not performing a global search on an
indexing system such as SCOPUS, EI COMPENDIX, or Web of Science,
means that papers in less popular journals and conferences may
have been omitted from the study. However, we believe that includ-
ing in the review only top journals, conference, and workshops,
raise the quality standards of the primary studies and therefore the
quality of the results of our systematic review. This is in line with
past published surveys similar to our work. We have chosen not to
include PLoP conferences in the searched venues, because the stud-
ies published in PLoP are usually about introducing new patterns
and not discussing the GoF patterns. The acceptance rate of PLoP
conferences could not be retrieved to validate if it fits the selection
criteria for conferences.

7.2. Internal threats to validity

Internal threats to validity deal with problems that arise dur-
ing data extraction. Concerning the results on the impact of design
patterns on software quality, we identify three limitations. Firstly,
although we tried to map every quality attribute that was identi-
fied in a primary study to the ISO 9126 quality model, there might
be the case of a misplaced study, because sometimes researchers
have different understandings of quality attributes and use the
same term for different attributes or different terms for the same
quality attribute. However, it was not possible to locate a single
quality model that references all quality attributes that are used
in the primary studies. Additionally, using a quality model and
merging quality attributes in larger categories has been preferred
over presenting the quality attributes as described in the primary
studies, because primary studies have used different names for sim-
ilar or same quality attributes and this fact leads to loss of data
synthesis and categorization opportunities. Secondly, design pat-
terns are blue prints that leave variants implementation options
to the developers. Considering that implementation plays impor-
tant role with respect to quality attributes, there might be possible
deviations from the metrics calculated in the primary studies that
we reference. However, the majority of primary studies investi-
gated the standard pattern implementations (Gamma et al., 1995),
consequently the results of the study deal with the standard
pattern forms and cannot be generalized to pattern variations
or implementation different from the original implementation
(Gamma et al., 1995). Finally, the extracted data concerning the
keywords, quality attributes and research methods of primary stud-
ies have been identified through expert judgment and therefore
they are no strict characterizations of the papers. However, the
way that conflicts have been resolved limits the possibilities of
errors.

7.3. External threats to validity

External threats to validity deal with problems, in generalizing
the obtained results from the sample to the population. The conclu-
sions that have been drawn are design pattern type specific. Thus,
results on one pattern for which a lot of data are available can-

not be generazlized to other design patterns for which we do not
have enough data. In addition to this, results from primary studies
which are mainly concerned with maintenance tasks results cannot
be generalized to development tasks.

1 ystem

7

r
m
a
t
e
o
r
v
a
r
m
F
h
c
h
b

8

o
t
r
d
s
(
a

fi
a
p
d
i
i
p
m
p
a
p

a
m
s
t
U
p
d
t
e
a
t
a

r
r
t
b
t
i
m
t
s

958 A. Ampatzoglou et al. / The Journal of S

.4. Threats to conclusions validity

Threats to conclusions validity are factors that can lead to incor-
ect conclusions, either by identifying incorrect relationship, or by
issing existing relationships. In the case of our study, such factors

re related to identification of primary studies, i.e., missing studies
hat should have been included in the review, and incorrect data
xtraction. Both these threats are discussed in detail in the previ-
us paragraphs. An additional threat to validity is that we measure
esearch intensity with the number of studies and not with the
olume of research or information they provide. However, such an
ttempt would introduce subjective criteria into the analysis of the
esults. For this reason, we preferred to use an objective (directly
easurable) criterion for characterizing the intensity of research.

inally, having not merged multiple papers under one study, might
ave slightly altered our results. However, we believe that in the
ommon case, major journals and conferences, such as the ones we
ave used as a searching space rarely publish papers that are not
ased on innovative ideas and studies.

. Conclusions

This paper aims at summarizing the research state of the art
n GoF design patterns, emphasizing on studies that deal with
he effect of pattern application on quality attributes. The main
esearch questions that the mapping study answers are: (a) if
esign pattern research can be further categorized in research
ubtopics, (b) which of the above subtopics are the most active and
c) what is the reported effect of GoF patterns on software quality
ttribute.

The research efforts on GoF design patterns have been classi-
ed according a classification schema, which has been extracted
ccording to our search result, into five subtopics: (a) papers on
attern formalizations, i.e. papers that attempt to provide formal
escriptions of design patterns, (b) papers on pattern detection,

.e. papers that propose algorithms/tools/techniques for identify-
ng design pattern instances, (c) papers on pattern application, i.e.
apers that discuss how design patterns can be applied and imple-
ented, (d) papers on the effect of patterns on software quality, i.e.

apers that evaluate the effect of GoF patterns on software quality
ttributes, and (e) miscellaneous papers, i.e. papers that cannot be
laced in any other subtopic.

The most active research subtopics are design pattern detection,
nd the impact of GoF patterns on software quality attributes. The
ain bulk of publications that evaluate the effect of patterns on

oftware quality consist of empirical studies that appear to inves-
igate both low-level and high-level software quality attributes.
ntil now, the research efforts produce controversial results and
ractitioners must employ judgment to select the most fitting
esign. Additionally, the results confirm that patterns are about
rade-offs. Design patterns enhance one quality attribute in the
xpense of another. Consequently, design patterns cannot be char-
cterized as universally “good” or “bad”, but the quality attributes
hat are important for the specific application must be examined
s well.

The abovementioned indications suggest that in the near future,
esearchers might attempt to narrow these gaps by employing
esearch approaches other than empirical methods, to investigate
he effect of pattern application on software quality attributes, e.g.,
y analytical methods as in [2,P52, and P55]. However, we believe
hat research on both design patterns and software engineering

n general are still in need of empirical studies. Furthermore, this

apping study pointed out several gaps in the research state of
he art concerning the effect of patterns on software quality, as
ummarized below:
s and Software 86 (2013) 1945– 1964

• Design pattern understandability
• Design pattern reusability
• Design pattern modularity
• Design pattern robustness
• Design pattern coupling

Acknowledgements

This research has been co-financed by the European Union
(European Social Fund – ESF) and Greek national funds through
the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) – Research Fund-
ing Program: Thalis–Athens University of Economics and Business
– SOFTWARE ENGINEERING RESEARCH PLATFORM. The authors
would like to thank the anonymous reviewers for their valu-
able comments and suggestions to improve the quality of the
paper. Especially their comments on the correct application of the
methodology and the distinction of papers and studies have been
extremely valuable for us.

Appendix A. Papers included in the review

[P1] P.S.C. Alencar, D.D. Cowan, J. Dong and C.J.P. de Lucena,
“A Pattern-Based Approach to Structural Design Composition”,
23rd International Computer Software and Applications Confer-
ence(COMPSAC’99), IEEE, pp. 160–165, Phoenix, Arizona, 25–26
October 1999.
[P2] H. A. Amiot, P. Cointe, Y. G. Guéhéneuc and N. Jussien,
“Instantiating and Detecting Design Patterns: Putting Bits and
Pieces Together”, Proceedings of the 16th IEEE international confer-
ence on Automated software engineering, ACM, pp. 166, San Diego,
California, 26–29 November 2001.
[P3] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-
oriented design patterns in game development”, Information and
Software Technology, Elsevier, 49 (5), pp. 445–454, May 2007.
[P4] G. Antoniol, G. Casazza, M. Di Penta and R. Fiutem,
“Object-Oriented design patterns recovery”, Journal of Systems and
Software, Elsevier, 59 (2), pp. 181–196, November 2001.
[P5] G. Antoniol, R. Fiutem and L. Christoforetti, “Using Metrics to
Identify Design Patterns in Object-Oriented Software”, Proceedings
of the 5th International Symposium on Software Metrics, IEEE, pp. 23,
Bethesda, Maryland, 20–21 March 1998.
[P6] G. Antoniol, R. Fiutem and L. Christoforetti, “Design Pattern
Recovery in Object-Oriented Systems”, Proceedings of the 6th Inter-
national Conference on Program Comprehension (ICPC’ 98), IEEE,
Ischia, Italy, 24–26 July 1998.
[P7] F. Arcelli, C. Tosi and M. Zanoni, “Can design pattern detection
be useful for legacy systemmigration toward SOA?”, Proceedings
of the 2nd international workshop on Systems development in SOA
environments(ICSE’ 08), IEEE, pp. 63–68, Leipzig, Germany, 10–18
May 2008.
[P8] A. Asencio, S. Cardman, D. Harris and E. Laderman, “Relat-
ing Expectations to Automatically Recovered Design Patterns”,
Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), pp. 87, Richmond, Virginia, 29 October–01 November
2002.
[P9] L. Aversano, G. Canfora, L. Cerulo, C. D. Grosso and M. Di
Penta, “An empirical study on the evolution of design patterns”,
Foundations of Software Engineering (FSE’ 07), ACM, pp. 385–394,
Dubrovnik, Croatia, 3–7 September 2007.

[P10] Z. Balanyi and R. Ferenc, “Mining Design Patterns from
C++ Source Code”, Proceedings of the International Conference on
Software Maintenance, IEEE, Amsterdam, The Netherlands, 22–26
September 2003.

ystem
A. Ampatzoglou et al. / The Journal of S

[P11] E. L. A. Baniassad, G. C. Murphy and C. Schwanninger, “Design
Pattern Rationale Graphs: linking design to source”, Proceedings of
the 25th International Conference on Software Engineering, IEEE, pp.
352–362, Portland, Oregon, 03–10 May 2003.
[P12] B. Baudry, Y. Le Sunye and J. M. Jezequel, “Toward a
‘Safe’ Use of Design Patterns to Improve OO Software Testabil-
ity”, Proceedings of the 12th International Symposium on Software
Reliability Engineering, IEEE, pp. 324, Hong Kong, China, 27–30
November 2001.
[P13] B. Baudry, Y. Le Traon, G. Sunyè and J. M. Jezequel, “Measuring
and Improving Design Patterns Testability”, Proceedings of the 9th
International Symposium on Software Metrics, IEEE, pp. 50, Sydney,
Australia, 03–05 September 2003.
[P14] I. Bayley and H. Zhu, “Formal specification of the variants
and behavioral features of design patterns”, Journal of Systems and
Software, Elsevier, 83 (2), pp. 209–221, February 2010.
[P15] I. Bayley and H. Zhu, “Specifying Behavioral Features of
Design Patterns in First Order Logic”, Proceedings of the 2008
32nd Annual IEEE International Computer Software and Applications
Conference (COMPSAC ‘08), IEEE, pp. 203–210, Turku, Finland, 28
July-01 August 2008.
[P16] J. M. Bieman, G. Straw, H. Wang, P. W. Munger and R. T.
Alexander, “Design Patterns and Change Proneness: An Examina-
tion of Five Evolving Systems”, Proceedings of the 9th International
Symposium on Software Metrics, IEEE, pp. 40, Sydney, Australia,
03–05 September 2003.
[P17] J. Bishop, “Language features meet design patterns: raising
the abstraction bar”, Proceedings of the 2nd international workshop
on The role of abstraction in software engineering (ICSE’08), IEEE, pp.
1–7, Leipzig, Germany, 10–18 May 2008.
[P18] A. Blewitt, A. Bundy and I. Stark, “Automatic verification of
design patterns in Java”, Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering, ACM, pp.
224–232, Long Beach, CA, 07–11 November 2005.
[P19] G. E. Boussaidi and H. Mili, “A model driven frame-
work for representing and applying design patterns”, 31st
Annual International Computer Software and Applications Confer-
ence (COMPSAC’07), IEEE, pp 97–100, Beijing, China, 24–27 July
2007.
[P20] L. C. Briannd, Y. Labiche and A. Sauve, “Guiding the Appli-
cation of Design Patterns Based on UML Models”, Proceedings of
the 22nd IEEE International Conference on Software Maintenance,
IEEE, pp. 234–243, Philadelphia, Pennsylvania, 24–27 September
2006.
[P21] F. Buschmann, K. Henney and D. C. Schmidt, “Past, Present
and Future in Software Patterns”, IEEE Software, IEEE, 24 (4), pp.
31–37, July 2007.
[P22] M. I. Cagnin, R. T. V. Braga, P. C. Masiero, I. Usp, R. Pen-
teado, and Dc UFSCar, “Reengineering using Design Patterns”,
Proceedings of the Seventh Working Conference on Reverse Engi-
neering (WCRE’00), pp.118, Brisbane, Australia, 23–25 November
2000.
[P23] R. Chaabane, “Poor performing patterns of code: Analysis
and Detection”, Proceedings of the IEEE International Conference on
Software Maintenance (ICSM’07), IEEE, pp. 501–502, Paris, France,
02–05 October 2007.
[P24] M. O’ Cinneide, “Automated refactoring to introduce design
patterns”, Proceedings of the 22nd international conference on Soft-
ware engineering (ICSE’00), IEEE, pp. 722–724, Limeric, Ireland,
4–11 June 2000.
[P25] M. O’ Cinneide and P. Nixon, “A Methodology for the Auto-
mated Introduction of Design Patterns”, Proceedings of the 15th IEEE

International Conference on Software Maintenance, IEEE, pp. 463,
Oxford, England, 30 August–03 September 1999.
[P26] M. O’ Cinneide and P. Nixon, “Automated software evolu-
tion toward design patterns”, Proceedings of the 4th International
s and Software 86 (2013) 1945– 1964 1959

Workshop on Principles of Software Evolution (ICSE’01), IEEE, pp.
162–165, Vienna, Austria, 12–19 May 2001.
[P27] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino and
M. Risi, “Case Studies of Visual Language Based Design Patterns
Recovery”, Proceedings of the Conference on Software Mainte-
nance and Reengineering, IEEE, pp. 165–174, Bari, Italy, 22–24
March 2006.
[P28] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino
and M. Risi, “Design Pattern Recovery by Visual Language
Parsing”, Proceedings of the 29th international conference on Soft-
ware Engineering, IEEE, pp 102–111, Manchester, UK, 21–23
March 2005.
[P29] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “Design
pattern recovery through visual language parsing and source code
analysis”, Journal of Systems and Software, 82(7), pp. 1177–1193,
July 2009.
[P30] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “A Two
Phase Approach to Design Pattern Recovery”, Proceedings of the
11th European Conference on Software Maintenance and Reenginee-
ring, IEEE, pp. 297–306, Amsterdam, the Netherlands, 21–23 March
2007.
[P31] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “Behav-
ioral Pattern Identification through Visual Language Parsing and
Code Instrumentation”, Proceedings of the 2009 European Confer-
ence on Software Maintenance and Reengineering, IEEE, pp. 99–108,
Kaiserslautern, Germany, 24–27 March 2009.
[P32] A. De Lucia, V. Deufemia, C. Gravino and M. Risi, “Improv-
ing Behavioral Design Pattern Detection through Model Checking”,
Proceedings of IEEE European Conference on Software Maintenance
and Reengineering (CSMR’10), IEEE press, pp. 176–185, Madrid,
Spagna, 15–18 March, 2010.
[P33] M. Di Penta, L. Cerulo, Y. G. Guéhéneuc and G. Antoniol, “An
empirical study of the relationships between design pattern roles
and class change proneness”, Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’08), IEEE, pp. 217–226,
Beijing, China, 28 September–04 October 2008.
[P34] J. Dong, “Adding pattern related information in structural
and behavioral diagrams”, Information and Software Technology,
Elsevier, 46 (5), pp. 293–300, 15 April 2004.
[P35] J. Dong, S. Yang and K. Zhang, “Visualizing Design Patterns
in Their Applications and Compositions”, IEEE Transactions on Soft-
ware Engineering, IEEE, 33 (7), pp. 433–453, July 2007.
[P36] J. Dong and Y. Zhao, “Experiments on Design Pattern Discov-
ery”, Proceedings of the Third International Workshop on Predictor
Models in Software Engineering (ICSE’07), IEEE, pp. 12, Minneapolis,
Minnesota, 23–25 May 2007.
[P37] A. H. Eden, A. Yehudai, and J. Gil, “Precise specification on
automatic application of design patterns”, Proceedings of the 12th
international conference on Automated software engineering (for-
merly: KBSE), ACM, pp. 143, Lake Tahoe, CA, 02–05 November 1997.
[P38] E. Eide, A. Reid, J. Regehr and J. Lepreau, “Static and Dynamic
structure in design patterns”, Proceedings of the 24th International
Conference on Software Engineering (ICSE’02), IEEE, pp. 208–218,
Orlando, Florida, 19–25 May 2002.
[P39] M. Elish, “Do Structural Design Patterns Promote Design
Stability?”, Proceedings of the 30th Annual International Computer
Software and Applications Conference - Volume 01 (COMPSAC’06),
IEEE, pp 215–220, Chicago, Illinois, 17–21 September 2006.
[P40] B. Ellis, J. Stylos and B. Myers, “The Factory Pattern in API
Design: A Usability Evaluation”, Proceedings of the 29th inter-
national conference on Software Engineering, IEEE, pp. 302–312,
Minneapolis, Minnesota, 20–26 May 2007.
[P41] R. Ferenc, A. Beszedes, L. Fulop and J. Lele, “Design Pattern

Mining Enhanced by Machine Learning”, Proceedings of the 21st
IEEE International Conference on Software Maintenance, IEEE, pp.
295–304, Budapest, Hungary, 25–30 September 2005.

1 ystem
960 A. Ampatzoglou et al. / The Journal of S

[P42] R. B. France, D. K. Kim, S. Ghosh and E. Song, “A UML-Based
Pattern Specification Technique”, IEEE Transactions on Software
Engineering, IEEE, 30 (3), pp. 193–206, March 2004.
[P43] L. J. Fulop, R. Ferenc and T. Gyimothy, “Toward a Benchmark
for Evaluating Design Pattern Miner Tools”, Proceedings of the 2008
12th European Conference on Software Maintenance and Reenginee-
ring, IEEE, pp. 143–152, Athens, Greece, 01–04 April 2008.
[P44] M. Gatrell, S. Counsell and T. Hall, “Design Patterns and
Change Proneness: A Replication Using Proprietary C# Software”,
Proceedings of the 2009 16th Working Conference on Reverse Engi-
neering, pp. 160–164, Lille, France, 13–16 October 2009.
[P45] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A Multilayered
Approach foe Design Pattern Identification”, IEEE Transaction of
Software Engineering, IEEE, 34 (5), pp. 667–684, September 2008.
[P46] Y. -G. Guéhéneuc, H. Sahraoui and F. Zaidi, “Fingerprinting
Design Patterns”, Proceedings of the 11th Working Conference on
Reverse Engineering, pp. 172–181, Delft, The Netherlands, 08–12
November 2004.
[P47] J. Gustafsson, J. Paakki, L. Nenonen and A. I. Verkamo,
“Architecture-Centric Software Evolution by Software Metrics and
Design Patterns”, Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering, IEEE, pp. 108, Budapest,
Hungary, 11–13 March 2002.
[P48] Z. Han, L. Wang, L. Yu, X. Chen, J. Zhao, X. Li, “Design pattern
directed clustering for understanding open source code”, Interna-
tional Conference on Program Comprehension (ICPC 09), IEEE, pp.
295–296, Vancouver, British Columbia, Canada, 17–19 May 2009.
[P49] J. Hannemann and G. Kiczales. “Design Pattern Implementa-
tion in Java and AspectJ”, Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications(OOPSLA ‘02), ACM, pp. 161–173, Seattle, Wash-
ington, 4–8 November 2002.
[P50] R. Helm, “Patterns in Practice”, Proceedings of the tenth
annual conference on Object-oriented programming systems, lan-
guages, and applications (OOPSLA ‘95), ACM, pp. 337–341, Austin,
Texas, 15–19 October 1995.
[P51] D. Heuzeroth, T. Holl, G. Högström, W. Löwe, “Automatic
Design Pattern Detection”, Proceedings of the 11th International
Working Conference on Program Comprehension (ICPC ‘03), IEEE,
Portland, USA, 10–11 May 2003.
[P52] N. L. Hsueh, P. H. Chu and W. Chu, “A quantitative approach
for evaluating the quality of design patterns”, Journal of Systems
and Software, Elsevier, 81 (8), pp. 1430–1439, August 2008.
[P53] N.L. Hsueh, P.H. Chu, P.A. Hsiung, M.J. Chuang, W. Chu, C.H.
Chang, C.S. Koong and C.H. Shih, “Supporting Design Enhancement
by Pattern-Based Transformation”, 34th Annual Computer Soft-
ware and Applications Conference (COMPSAC ‘10), IEEE, pp. 462–467,
Seoul, Korea, 19–23 July 2010.
[P54] H. Huang, S. Zhang, J. Cao, Y. Duan, “A practical pattern
recovery approach based on both structural and behavioral analy-
sis”, Journal of Systems and Software, Elsevier, 75 (1–2), pp. 69–87,
February 2005.
[P55] B. Huston, “The effects of design pattern application on met-
ric scores”, Journal of Systems and Software, Elsevier, 58 (3), pp.
261–269, September 2001.
[P56] D. Jain and H. J. Yang, “OO Design Patterns, Design Structure,
and Program Changes: An Industrial Case Study” Proceedings of the
IEEE International Conference on Software Maintenance (ICSM’01),
IEEE, pp. 580, Florence, Italy, 07–09 November 2003.
[P57] S. Jeanmart, Y. -G. Guéhéneuc, H. Sahraoui and N. Habra,
“A Study of the Impact of the Visitor Design Pattern on Program
Comprehension and Maintenance Tasks”, Proceedings of the 2009

3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM’ 09), IEEE, pp. 69–78, Lake Buena Vista, Florida,
15–16 October 2009.
s and Software 86 (2013) 1945– 1964

[P58] O. Kaczor, Y.-G. Guéhéneuc, and S. Hamel, “Efficient Iden-
tification of Design Patterns with Bit-vector Algorithm”, IEEE
Proceedings of the 10th Conference on Software Maintenance and
Reengineering, (CSMR’06), IEEE, pp. 175–184, 22–24 March 2006.
[P59] O. Kaczor, Y. -G. Guéhéneuc and S. Hamel, “Identification of
design motifs with pattern matching algorithms”, Information and
Software Technology, Elsevier, 52 (2), pp. 152–168, February 2010.
[P60] B. Keepence and M. Mannion, “Using Patterns to Model
Variability in Produst Families”, IEEE Software, IEEE, 16 (4), pp.
102–108, July 1999.
[P61] R. K. Keller, R. Schauer, S. Robitaille and P. Page, “Pattern-
based reverse-engineering of design components”, Proceedings of
the 21st international conference on Software engineering (ICSE’99),
IEEE, pp. 226–235, Los Angeles, California, 16–22 May 1999.
[P62] F. Khomh and Y.-G. Guéhéneuc, “Do Design Patterns Impact
Software Quality Positively?”, Proceedings of the 2008 12th Euro-
pean Conference on Software Maintenance and Reengineering, IEEE,
pp. 274–278, Athens, Greece, 01–04 April 2008.
[P63] F. Khomh and Y.-G. Guéhéneuc, “Playing roles in design pat-
terns: An empirical descriptive and analytic study”, Proceedings
of the 25th IEEE International Conference on Software Maintenance,
IEEE, pp 83–92, Edmonton, Canada, 20–26 September 2009.
[P64] D. K. Kim, R. France, S. Ghosh and E. Song, “A Role-
Based Metamodeling Approach to Specifying Design Patterns”,
Proceedings of the 27th Annual International Conference on Com-
puter Software and Applications, IEEE, pp. 452, Dallas, Texas, 03–06
November 2003
[P65] G. Kniesel, A. Binun, “Standing on the shoulders of giants
– A data fusion approach to design pattern detection”, Interna-
tional Conference on Program Comprehension (ICPC’ 09), IEEE, pp.
208–217, Vancouver, British Columbia, Canada, 17–19 May 2009.
[P66] G. Kniesel, A. Binun, P. Hegedus, L. J. Fülöp, A. Chatzige-
orgiou, Y.G. Guéhéneuc, and N. Tsantalis, “DPDX – A Common
Exchange Format for Design Pattern Detection Tools”, Proceedings
of the 14th European Conference on Software Maintenance and
Reengineering (CSMR’10), IEEE, p.p 232–235, Madrid, Spain, 15–18
March 2010.
[P67] K. Kouskouras, A. Chatzigeorgiou and G. Stephanides,
“Facilitating software extension with design patterns and Aspect-
Oriented Programming”, Journal of Systems and Software, Elsevier,
81 (10), pp 1725–1737, October 2008.
[P68] C. Kramer and L. Prechelt, “Design Recovery by Auto-
mated Search for Structural Design Patterns in Object-Oriented
Software”, Proceedings of the 3rd Working Conference on Reverse
Engineering (WCRE ‘96), IEEE, pp. 208, Monterey, CA, 8–10
November 1996.
[P69] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling
and K. Tan, “Generative Design Patterns”, Proceedings of the 17th
IEEE international conference on Automated software engineering,
ACM, pp. 23, Edinburgh, UK, 23–27 September 2002.
[P70] S. MacDonald, K. Tan, J. Schaeffer and D. Szafron, “Defer-
ring Design Pattern Decisions and Automating Structural Pattern
Changes Using a Design-Pattern-Based Programming System”,
ACM Transactions on Programming Languages and Systems, ACM,
31(3), article 9, April 2009.
[P71] J. K. H. Mak, C. S. T. Choy and D. P. K. Lun, “Precise Modeling
of Design Patterns in UML”, Proceedings of the 26th International
Conference on Software Engineering (ICSE’04), IEEE, pp. 252–261,
Edimburg, Scotland, 23–28 May 2004.
[P72] B.A. Malloy and J.F. Power, “Exploiting design patterns to
automate validation of class invariants: Research articles”, Soft-
ware Testing Verification & Reliability, Wiley Interscience, 16 (2),

pp. 71–95, June 2006.
[P73] W. B. McNatt and J. M. Bieman, “Coupling of Design patterns:
Common Practices and Their Benefits”, 25th Annual International

ystem
A. Ampatzoglou et al. / The Journal of S

Computer Software and Applications Conference (COMPSAC’01), IEEE,
pp.574, Chicago, Illinois, 08–12 October 2001.
[P74] T. Mens and T. Tourwe, “A Declarative Evolution Framework
for Object-Oriented Design Patterns”, Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM’01), IEEE, pp.
570, Florence, Italy, 07–09 November 2003.
[P75] M. Meyer, “Pattern-based Reengineering of Software Sys-
tems”, Proceedings of the 13th Working Conference on Reverse
Engineering, pp. 305–306, Benevento, Italy, 23–27 October 2006.
[P76] T. Mikkonen, “Formalizing design patterns”, Proceedings of
the 20th international conference on Software engineering (ICSE’98),
IEEE, pp. 115–124, Kyoto, Japan, 19–25 April 1998.
[P77] T. Muraki and M. Saeki, “Metrics for applying GOF design
patterns in refactoring processes”, Proceedings of the 4th Interna-
tional Workshop on Principles of Software Evolution, IEEE, pp. 27–36,
Vienna, Austria, 10–11 September 2001.
[P78] T. H. Ng and S. C. Cheung, “Enhancing class commutability
in the deployment of design patterns”, Information and Software
Technology, Elsevier, 47 (12), pp. 797–804, September 2005.
[P79] T. H. Ng, S. C. Cheung, W. K. Chan and Y. T. Yu, “Do Maintainers
Utilize Deployed Design Patterns Effectively?”, International Con-
ference on Software Engineering, IEEE, pp. 168–177, Minneapolis,
Minnesota, 20–26 May 2007.
[P80] T. H. Ng, S. C. Cheung, W. K. Chan and Y. T. Yu, “Toward
effective deployment of design patterns for software extension:
a case study”, Proceedings of the 2006 international workshop on
Software quality (ICSE’06), IEEE, pp. 51–56, Shanghai, China, 21
May 2006.
[P81] T. H. Ng, S. C. Cheung, W. K. Chan and Y. T. Yu, “Work
experience versus refactoring to design patterns: a controlled
experiment” Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, ACM, pp. 12–22,
Portland, Oregon, 5–11 November 2006.
[P82] S.J. Nielson and C. D. Knutson, “Design dysphasia and the
pattern maintenance cycle”, Information and Software Technology,
Elsevier, 48 (8), pp. 660–675, August 2006.
[P83] J. Niere, W. Schafer, J. P. Wadsack, L. Wendehals and J.
Welsh, “Toward pattern-based design recovery”, Proceedings of
the 24th International Conference on Software Engineering, IEEE, pp.
338–348, Orlando, Florida, 19–25 May 2002.
[P84] N. Noda and T. Kishi, “Design pattern concerns for software
evolution”, Proceedings of the 4th International Workshop on Prin-
ciples of Software Evolution, IEEE, pp. 158–161, Vienna, Austria,
10–11 September 2001.
[P85] B. C. d. S. Oliveira, M. Wang and J. Gibbons, “The Visitor Pat-
tern as a Reusable, Generic, Type-Safe Component”, Proceedings of
the 23rd ACM SIGPLAN conference on Object-oriented program-
ming systems languages and applications (OOPSLA 2008), ACM,
pp. 439–456, Nashville, Tennessee, 19–23 October 2008.
[P86] J. Palsberg and C. B. Jay, “The Essence of the Visitor Pattern”,
Proceedings of the 22nd International Computer Software and Appli-
cations Conference, IEEE, pp. 9–15, Vienna, Austria, 17–21 August
1998.
[P87] C. Park, Y. Kang, C. Wu and K. Yi, “A Static Reference Flow
Analysis to Understand Design Pattern Behavior” 11th Working
Conference on Reverse Engineering (WCRE 2004), pp. 300–301, Delft,
The Netherlands, 08–12 November 2004.
[P88] N. Pettersson, “Measuring precision for static and dynamic
design pattern recognition as a function of coverage”, Proceedings
of the third international workshop on Dynamic analysis (ICSE’05),
IEEE, pp. 1–7, St. Louis, Missouri, 17 May 2005.
[P89] N. Petterson, W. Löwe and J. Nivre, “Evaluation of

Accuracy in Design Pattern Occurrence Detection”, IEEE Trans-
actions on Software Engineering, IEEE, 36 (4), pp. 575–590, July/
August 2010.
s and Software 86 (2013) 1945– 1964 1961

[P90] G. C. Porras and Y. G. Guéhéneuc, “An Empirical Study on the
Efficiency of Different Design Pattern Representations in UML Class
Diagrams”, Empirical Software Engineering, Springer, Jan 2010.
[P91] L. Prechelt, B. Unger-Lamprecht, M. Philipsen and W. F. Tichy,
“Two Controlled Experiments Assessing the Usefulness of Design
Pattern Documentation in Program Maintenance”, IEEE Transac-
tions on Software Engineering, IEEE, 28 (6), pp. 595–606, June 2002.
[P92] L. Prechelt, B. Unger-Lamprecht, W.F. Tichy, P. Brossler and
L. G. Votta, “A controlled experiment in maintenance comparing
design patterns to simpler solutions”, IEEE Transactions on Software
Engineering, IEEE, 27 (3), pp. 1134–1144, December 2001.
[P93] H. Rajan, S. M. kautz and W. Rowcliffe, “Concurrency by
Modularity: Design Patterns, a Case in Point”, Proceedings of
the ACM international conference on Object oriented program-
ming systems languages and applications (OOPSLA ‘10), ACM, pp.
790–805, Reno, Nevada, 17–21 October 2010.
[P94] D. Riehle “Composite Design Patterns”, Proceedings of the
1997 Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA ‘97), ACM Press, pp. 218–228,
Atlanta, Georgia, 05–09 October 1997.
[P95] D. Riehle “Design Pattern Density Defined”, Proceeding of
the 24th ACM SIGPLAN conference on Object oriented program-
ming systems languages and applications (OOPSLA ‘09), ACM, pp.
469–480, Orlando, Florida, 25–29 October 2009.
[P96] G. Rasool, I. Philippow, P. Mader, “Design pattern recovery
based on annotations”, Advances in Engineering Software, Elsevier,
41(4), pp. 519–526, April 2009.
[P97] J. Sametinger and M. Riebish, “Evolution Support by Homo-
geneously Documenting Patterns, Aspects and Traces”, Proceedings
of the Sixth European Conference on Software Maintenance and Reen-
gineering, IEEE, pp. 134, Budapest, Hungary, 11–13 March 2002.
[P98] G. Scanniello, C. Gravino, M. Risi and G. Tortora, “A con-
trolled experiment for assessing the contribution of design pattern
documentation on software maintenance”, Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement(ESEM’ 10), ACM, Bolzano-Bozen, Italy, 16–17
September 2010.
[P99] T. Schanz and C. Izurieta, “Object Oriented Design Pat-
tern Decay: A Taxonomy”, Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM’ 10), ACM, Bolzano-Bozen, Italy, 16–17
September 2010.
[P100] N. Shi and R. A. Olsson, “Reverse Engineering of Design
Patterns from Java Source Code”, Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, ACM,
pp. 123–134, Tokyo, Japan, 18–22 September 2006.
[P101] N. Soundarajan and J. O. Hallstrom, “Responsibilities and
Rewards: Specifying Design patterns”, Proceedings of the 26th Inter-
national Conference on Software Engineering (ICSE’04), IEEE, pp.
666–675, Edinburgh, UK, 23–28 May 2004.
[P102] D. Streitferdt, C. Heller and I. Philippow, “Searching
Design Patterns in Source Code”, Proceedings of the 29th Annual
International Computer Software and Applications Conference – Vol-
ume 02 (COMPSAC’05), IEEE, pp. 33–34, Edinburgh, UK, 26–28
July 2005.
[P103] L. Tahvildari and K. Kontogiannis, “On the Role of Design
Patterns in Quality-Driven Re-engineering”, Proceedings of the Sixth
European Conference on Software Maintenance and Reengineering,
IEEE, pp. 134, Budapest, Hungary, 11–13 March 2002.
[P104] T. Taibi and D.C. L. Ngo, “Formal specification of design
pattern combination using BPSL”, Information and Software Tech-
nology, Elsevier, 45 (3), pp. 157–170, March 2003.

[P105] T. D. Thu and H. T. B. Tran, “A Composite Design Pattern for
Object Frameworks”, 31st Annual International Computer Software

1 ystem

A

A
A
t
f
i
c
w

962 A. Ampatzoglou et al. / The Journal of S

and Applications Conference (COMPSAC’07), IEEE, pp. 521–526, Bei-
jing, China, 24–27 July 2007.
[P106] P. Tonella and G. Antoniol, “Object Oriented Design Pat-
tern Inference”, Journal of Software Maintenance, Wiley, 13 (5),
September-October 2001.
[P107] M. Torchiano, “Documenting Pattern Use in Java Programs”,
Proceedings of the International Conference on Software Maintenance
(ICSM’02), IEEE, Montreal, Canada, 03–06 October 2002.
[P108] W. T. Tsai, Y. Tu, W. Shao and E. Ebner, “Testing Extensible
Design Patterns in Object Oriented Frameworks through Scenario
Templates”, 23rd International Computer Software and Applications
Conference (COMPSAC’99), IEEE, pp. 166–171, Phoenix, Arizona,
25–26 October 1999.
[P109] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and S. T.
Halkidis, “Design Pattern Detection Using Similarity Scoring”, IEEE
Transaction of Software Engineering, IEEE, 32 (11), pp. 896–909,
November 2006.
[P110] M. Vokáč, “Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code”, IEEE Transactions on Software
Engineering, IEEE, 30(12), pp. 904–917, December 2004.
[P111] M. Vokáč, W. Tichy, D. I. K. Sjøberg, E. Arisholm and M.
Aldrin, “A Controlled Experiment Comparing the Maintainability
of Programs Designed with and without Design Patterns—A Repli-
cation in a Real Programming Environment”, Empirical Software
Engineering, Springer, 9(3), pp 149–195, September 2004.
[P112] W. Wang and V. Tzerpos, “Design Pattern Detection in
Eiffel Systems”, Proceedings of the 12th Working Conference on
Reverse Engineering, pp. 165–174, Pittsburgh, Pennsylvania, 07–11
November 2005.
[P113] P. Wegrzynowicz and K. Stencel, “Toward a comprehensive
Test Suite for Detectors of Design Patterns”, 24th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ‘09),
pp. 103–110, Auckland, New Zealand, 16–20 November 2009.
[P114] L. Wendehals and A. Orso, “Recognizing behavioral patterns
at run time using finite automata”, Proceedings of the 2006 inter-
national workshop on Dynamic systems analysis (ICSE’06), IEEE, pp.
33–40, Shanghai, China, 23 May 2006.
[P115] P. Wendorff, “Assessment of Design Patterns during Soft-
ware Reengineering: Lessons Learned from a Large Commercial
Project”, Proceedings of the Fifth European Conference on Software
Maintenance and Reengineering, IEEE, pp. 77, Lisbon, Portugal,
14–16 March 2001.
[P116] S. S. Yau and N. Dong, “Integration in Component-Based
Software Developmant Using Design Patterns”, 24th International
Computer Software and Applications Conference (COMPSAC’00), IEEE,
pp. 369, Taipei, Taiwan, 25–28 October 2000.
[P117] H. Zhu, I. Bayley, L. Shan and R. Amphlett, “Tool Support
for Design Pattern Recognition at Model Level”, Proceedings of the
2009 33rd Annual IEEE International Computer Software and Appli-
cations Conference, IEEE, pp. 228–233, Seattle, Washington, 20–24
July 2009.
[P118] M. Ziane, “A Transformational Viewpoint on Design Pat-
terns”, Proceedings of the 15th IEEE international conference on
Automated software engineering, ACM, pp. 273, Grenoble, France,
11–15 September 2000.

ppendix B. Low-level quality metrics

 (Abstractness)
bstractness is the ratio of abstract classes and interfaces to the

otal number of types (classes, concrete or abstract, and inter-

aces) of the measured package. By definition, abstract classes and
nterfaces are certain to draw incoming dependencies. Then, in
ombination with the discussion on instability above, packages
ith high abstractness would be good to be stable (and vice versa).
s and Software 86 (2013) 1945– 1964

AC (Attribute Complexity)
Is defined as the sum of each attribute’s value in the class. You can
set up weights for types and their arrays separately under Attribute
type complexity. Use “*” to define types of a package with all its
subpackages. For example, java.lang.* means that the row defines
all classes of the java.lang package and its subpackages. To process
all types not listed in the table, specify the last row as “*”. The row
order is important, because checking of attributes goes from the top
of the table downward. (Repetitions of a type aren’t counted, so if
a specific type follows a more general type that already included
it, the specific type isn’t counted. For example, java.lang.* won’t be
counted if it comes after java.*)
CBO (Coupling Between Objects)
Represents the number of other classes to which a class is coupled.
Counts the number of reference types that are used in attribute
declarations, formal parameters, return types, throws declarations
and local variables, and types from which attribute and method
selections are made. Primitive types, types from java.lang package
and supertypes are not counted.

Excessive coupling between objects is detrimental to modular
design and prevents reuse. The more independent a class is, the
easier it is to reuse it in another application. In order to improve
modularity and promote encapsulation, inter-object class couples
should be kept to a minimum. The larger the number of couples,
the higher the sensitivity to changes in other parts of the design,
and therefore maintenance is more difficult. A measure of coupling
is useful to determine how complex the testing of various parts of
a design is likely to be. The higher the inter-object class coupling,
the more rigorous the testing needs to be
Ce (Coupling Efferent)
Efferent coupling counts the number of types within the measured
package which depend upon types outside that package (outgoing
dependencies). A high Ce value indicates that the package’s stability
depends too much on the stability of other packages.
CF (Coupling Factor)
This measure is from the MOOD (Metrics for Object-Oriented
Development) suite. It is calculated as a fraction. The numerator
represents the number of non-inheritance couplings. The denomi-
nator is the maximum possible number of couplings in a system.
DIT (Depth of Inheritance Tree)
Counts how far down the inheritance hierarchy a class is declared.
High values imply that a class is quite specialized.
H (Relational Cohesion)
Relational cohesion represents the relationship that the package
has to all its types. It is the average number of internal relation-
ships per type of the measured package. If N is the number of types
within the package and R the total number of relationships that are
directed to types of this package, then: H = (R + 1)/N.
LCOM (Lack of Cohesion of Methods)
Takes each pair of methods in the class and determines the set of
fields they each access. If they have disjoint sets of field accesses,
the count P increases by one. If they share at least one field
access, Q increases by one. After considering each pair of methods:
RESULT = (P > Q)? (P − Q): 0

A low value indicates high coupling between methods, which
indicates high testing effort because many methods can affect the
same attributes. This also indicates potentially low reusability.
LOC (Lines of Code)
This is the traditional measure of size. It counts the number of code
lines. Documentation and implementation comments as well as
blank lines can be optionally interpreted as code. Documentation
comments are Javadoc comments for Java, C++ and C#. Implemen-

tation comments are any other type of comments
NMI (Number of Methods Inherited)
Is calculated as the percentage of the number of non-redefined
operations with regard to the number of operations inherited

ystem

N
C
N
C
m
l
t
m
t
t
N
T
b
W
T
w
n
a
m
t
W
T
i
a
t
f
a

A

A. Ampatzoglou et al. / The Journal of S

OC (Number of Classes)
ounts the number of classes
OCC (Number of Child Classes)
ounts the number of classes that inherit from a particular class,
eaning the number of classes in the inheritance tree that are

ocated below the class. A non-zero value indicates that the par-
icular class is being reused. However, the abstraction of the class

ay be poor if there are too many child classes. Also keep in mind
hat a high value for this measure points to the definite amount of
esting required for each child class.
OP (Number of Polymorphic Methods)
he metric is a count of the methods that exhibit polymorphic
ehavior. Such methods in C++ are marked as virtual.
MPC1 (Weighted Method Per Class-1)

his metric is the sum of the complexity of all methods for a class,
here each method is weighted by its cyclomatic complexity. The
umber of methods and the complexity of the methods involved is

 predictor of how much time and effort is required to develop and
aintain the class. Only methods specified in a class are included,

hat is, any methods inherited from a parent are excluded.
MPC2 (Weighted Method Per Class-2)

his metric is intended to measure the complexity of a class, assum-
ng that a class with more methods than another is more complex,
nd that a method with more parameters than another is also likely
o be more complex. The metric counts methods and parameters
or a class. Only methods specified in a class are included, that is,
ny methods inherited from a parent are excluded.

ppendix C. Papers merged into one study

Table C1

Papers Study Description

P058 and P059 P059 The later paper build on S58 and adds an
additional pattern matching algorithm to the
method, i.e. automata simulation (bit-vector
based).

P027 and P028 P028 Parsing language techniques. The later
version includes some negative criteria that
enhance the detection process.

P029, P030 and P031 P029 S30 introduces a two phase approach for
identifying design pattern instances. S31
uses dynamic analysis in the second phase to
enhance detection. S29 is the journal
publication of the algorithm that is enhanced
in terms of performance and accuracy.

P004, P005 and P006 P004 Similar logic and technology. Same year of
publication. S5 is more based on metrics. S4
is a journal publication which additionally
presents a tool and an evaluation on
industrial code.

P014 and P015 P014 Same aim and method. The journal paper
captures both behavioral and structural
properties of GoF patterns and pattern
variants. The conference paper only captures
behavioral properties and doesnot deal with
pattern variants.

P024, P025 and P026 P026 The first paper introduces the methodology,
the second one evaluates it on GoF design
patterns and the third one adds on how the
designer can wait before the application of
the pattern becomes beneficial in terms of
flexibility

P009 and P033 P033 Same method (case study). Two out of three
subjects are the same. Similar research
questions, different level. One at pattern
level, the other on pattern role level.

P012 and P013 P013 Same quality attribute, same method,
different patterns

P042 and P064 P042 The later paper build on the previous one.
The prior paper uses role based

representation in UML. The journal paper
specifies patterns through class and
sequence diagrams

P069 and P070 P070 The later work is an extension of the
previous one. Different goals
s and Software 86 (2013) 1945– 1964 1963

References

Alexander, C., Ishikawa, S., Silverstein, M., 1977. A Pattern Language: Town, Build-
ings, Construction. Oxford University Press, New York.

Ampatzoglou, A., Frantzeskou, G., Stamelos, I., 2012. A methodology to assess the
impact of design patterns on software quality. Information and Software Tech-
nology, Elsevier 54 (April (4)), 331–346.

Ampatzoglou, A., Stamelos, I., 2010. Software engineering research for computer
games: a systematic review. Information and Software Technology, Elsevier 52
(September (9)), 888–901.

Avgeriou, P., Zdun, U., 2005. Architectural patterns revisited – a pattern language.
In: 10th European Conference on Pattern Languages of Programs (EuroPLOP’05),
6–10 July 2005, Irsee, Germany.

Basili, V., Caldiera, G., Rombach, H.D., 1994. Goal Question Metric Approach Ency-
clopedia of Software Engineering. John Wiley & Sons528–532.

Bjork, S., Lundgren, S., Holopainen, J., 2003. Game design patterns. In: Lecture Note
of the Game Design track of Game Developers Conference, March 4–8, San Jose,
CA, USA.

Bereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil, M., 2007. Lessons
from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software, Elsevier 80 (April (4)),
571–583.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
Oriented Software Architecture. Wiley, West Sussex, UK.

Cai, K.Y., Card, D., 2008. An analysis of topics in software engineering – 2006. Journal
of Systems and Software, Elsevier 81 (June (6)), 1051–1058.

da Silva, F.Q.B., Santos, A.L.M., Soares, S.C.B., Franç a, A.C.C., Monteiro, C.V.F., 2010.
A critical appraisal of systematic reviews in software engineering from the

perspective of the research questions asked in the reviews. In: Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM’ 10), ACM, Bolzano, Italy, 16–17 September
2010.

Dormey, G.R., 1995. A model for software product quality. IEEE Transactions on
Software Engineering 21 (February (2)), 146–162.

Dyba, T., Dingsoyr, T., 2008. Empirical studies of agile software development: a
systematic review. Information and Software Technology, Elsevier 50 (August
(9–10)), 833–859.

Galster, M., Avgeriou, P., 2012. Qualitative analysis of the impact of SOA patterns
on quality attributes. In: Proceedings of the 12th International Conference on
Quality Software (QSIC 2012), IEEE Computer Society, Xi’an, China, 27–29 August
2012.

Gamma, E., Helms, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading, MA.

Glass, R.L., Vessey, I., Ramesh, V., 2002. Research in software engineering: an analysis
of the literature. Information and Software Technology, Elsevier 44 (June (8)),
491–506.

Hauge, O., Ayala, C., Conradi, R., 2010. Adoption of open source software
in software-intensive organizations – a systematic literature review.
Information and Software Technology, Elsevier 52 (November (11)),
1133–1154.

Heckman, S., Williams, L., 2011. A systematic literature review of actionable alert
identification techniques for automated static code analysis. Information and
Software Technology, Elsevier 53 (April (4)), 363–387.

Höfer, A., Tichy, W.F., 2007. Status of Empirical Research in Software
Engineering. Lecture Notes in Computer Science, vol. 4336. Springer,
Dagstuhl Castle, Germany, pp. 10–19.

ISO9126, 1992. Information Technology — Software Product Evaluation — Qual-
ity Characteristics and Guidelines for Their Use. International Organisation for
Standardization, Geneva.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering, Technical Report EBSE-2007-
001, Keele University & Durham University Joint Report, Staffordshire,
UK.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009.
Systematic literature reviews in software engineering – a systematic litera-

ture review. Information and Software Technology, Elsevier 51 (January (1)),
7–15.

Kitchenham, B.A., Budgen, D., Brereton, O.P., 2011. Using mapping studies as the
basis for further research – a participant-observer case study. Information and
Software Technology, Elsevier 53 (June (6)), 638–651.

Kitchenham, B., Pfleeger, S.L., 1996. Software quality: the elusive target. IEEE Soft-
ware, IEEE 13 (January (1)), 12–21.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M.,
Linkman, S., 2010. Systematic literature reviews in software engineering – a
tertiary study. Information and Software Technology, Elsevier 52 (August (8)),
792–805.

Noblit, G.W., Hare, R.D., 1988. Meta-ethnography: Synthesizing Qualitative Studies.
Sage, London.

Petticrew, M., Roberts, H., 2006. Systematic Reviews in the Social Sciences: a Prac-
tical Guide. Blackwell Publications, MA, USA.

Souza, J., Matwin, S., Japkowicz, N., 2002. Evaluating data mining models: a pat-

tern language. In: 9th Conference on Pattern Language of Programs (PLOP’02),
Monticello, Illinois, 8–12 September 2002.

Vokáč, M., Tichy, W., Sjøberg, D.I.K., Arisholm, E., Aldrin, M., 2004. A con-
trolled experiment comparing the maintainability of programs designed
with and without design patterns – a replication in a real programming

http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0010
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0045
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0050
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0060
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0075
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0085
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0105
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0115
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0135
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140

1 ystem

W

W

Z

D
D
i
f
H
g

ing, software project management and software education. He has published more
964 A. Ampatzoglou et al. / The Journal of S

environment. Empirical Software Engineering, Springer 9 (September (3)),
149–195.

alia, G.S., Carver, J.C., 2009. A systematic literature review to identify and classify
software requirement errors. Information and Software Technology, Elsevier 51
(July (7)), 1087–1109.

ohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A., 2000.
Experimentation in Software Engineering. Kluwer Academic Publishers,

Boston/Dordrecht/London.
hang, C., Budgen, D., 2012. What do we know about the effectiveness of soft-

ware design patterns. IEEE Transactions on Software Engineering, IEEE 38
(September–October (5)), 1213–1231.

r. Apostolos Ampatzoglou is an Assistant Professor at the Computer Science

epartment of the University of Groningen, where he carries research and teach-

ng in the areaof software engineering. He received a PhD in Software Engineering
rom the Department of Informatics, Aristotle University of Thessaloniki, Greece.
is research interests include design patterns, software metrics and computer
ames.
s and Software 86 (2013) 1945– 1964

Sofia Charalampidou is a Master Student in the Software Engineering program at
Chalmers University of Technology. She holds a BSc in Information Technology from
the Alexander Technological Institute of Thessaloniki. Her research interests include
software design, software architecture, embedded systems and literature reviews.
Formerly, she has been a member of the Software Engineering Group (SwEng) of the
Aristotle University of Thessaloniki where she participated in research activities.

Dr. Ioannis Stamelos is an Associate Professor at the Department of Informatics of
the Aristotle University of Thessaloniki, where he carries out research and teaching
in the area of software engineering. He holds a diploma of Electrical Engineering
(1983) and a PhD in Computer Science by the Aristotle University of Thessaloniki
(1988). His current research interests are focused on open source software engineer-
than 100 articles in international journals and conferences. He is/was the scien-
tific coordinator or principal investigator for his University in over 20 research and
development projects in Information & Communication Technologies with funding
from national and international organizations.

http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0145
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00075-7/SBREF0155

	Research state of the art on GoF design patterns: A mapping study
	1 Introduction
	2 Related work
	3 Software quality attributes
	4 Mapping study methodology
	4.1 Research questions
	4.2 Search process
	4.3 Article filtering phases
	4.4 Quality assessment
	4.5 Data collection
	4.6 Data analysis

	5 Results
	5.1 Research subtopics & top publishers identification
	5.2 Research subtopics intensity and overview
	5.2.1 Design patterns formalization
	5.2.2 Design patterns detection
	5.2.3 Design patterns and software quality
	5.2.4 Design patterns application
	5.2.5 Miscellaneous issues on design patterns

	5.3 GoF patterns and software quality attributes

	6 Discussion
	6.1 Research subtopics identification
	6.2 Research subtopics activity
	6.3 Effect of design patterns on quality attributes

	7 Threats to validity
	7.1 Construct threats to validity
	7.2 Internal threats to validity
	7.3 External threats to validity
	7.4 Threats to conclusions validity

	8 Conclusions
	Acknowledgements
	Appendix A Papers included in the review
	Appendix B Low-level quality metrics
	Appendix C Papers merged into one study
	References

