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Abstract — Stability refers to a software system’s resistance to the “ripple effect”, i.e., propagation of changes. In this paper, we investigate the 

stability of classes that participate in instances/occurrences of GoF design patterns. We examine whether the stability of such classes is affected 

by (a) the pattern type, (b) the role that the class plays in the pattern, (c) the number of pattern occurrences in which the class participates, and (d) 

the application domain. To this end, we conducted a case study on about 65.000 Java open-source classes, where we performed change impact 

analysis on classes that participate in zero, one (single pattern), or more than one (coupled) pattern occurrences. The results suggest that, the 

application of design patterns can provide the expected “shielding” of certain pattern-participating classes against changes, depending on their 

role in the pattern. Moreover, classes that participate in coupled pattern occurrences appear to be the least stable. The results can be used for 

assessing the benefits and liabilities of the use of patterns and for testing and refactoring prioritization, because less stable classes are expected 

to require more effort while testing, and urge for refactoring activities that would make them more resistant to change propagation. 

Index Terms—D.2.2 Design Tools and Techniques, D.2.3.a Object-oriented programming, D.2.8 Metrics/Measurement 
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1 INTRODUCTION

he term pattern, in the field of software engineering, 
refers to solutions to commonly occurring problems; 

software patterns have been written for different develop-
ment phases (e.g., requirements, design, architecture) as 
well as application domains (e.g., embedded systems, en-
terprise applications). Some of the most used patterns are 
object-oriented design patterns [19], architectural patterns 
[14] and analysis patterns [18]. The first ones ([19]) were 
introduced in the mid-90s by Gamma, Helm, Johnson, and 
Vlissides (known as Gang of Four or GoF), where solutions 
to 23 common object-oriented problems were documented. 
These patterns are also known as the GoF design patterns. 

Since their inception, the GoF design patterns have at-
tracted large attention from the software engineering re-
search community, as revealed by two recent secondary 
studies, conducted by Ampatzoglou et al. [6] and Zhang 
and Budgen [53]. In these secondary studies, more than 130 
scientific papers related to research on GoF design patterns 
have been identified. The mapping study of Ampatzoglou 
et al. [6] revealed that one of the most important research 
topics on GoF design patterns is their effect on software 
quality characteristics (the rest research topics were: pattern 
formalizations, pattern detection, patterns application, and 
other topics [6]). One particular quality characteristic that 
both secondary studies emphasize is maintainability. Ac-
cording to both [6] and [53], research on the effect of GoF 
design patterns on software maintainability is highly active, 

but still deserves more investigation as many research 
questions remain unanswered. In this article, we adopt the 
ISO-9126 definition for maintainability as the “software qual-
ity characteristic concerning the effort needed to make specified 
modifications to an already implemented system”. ISO-9126 
decomposes maintainability into four characteristics [24]:  

• analyzability;  
• changeability; 
• stability;  
• testability.  

We focus on software stability1 (and its opposite, insta-
bility), which according to ISO 9126 “characterizes the sensi-
tivity to change of a given system that is the negative impact that 
may be caused by system changes”. Concerning design pat-
terns’ effect on stability, until now, most studies have con-
centrated on pattern change proneness, i.e., the number of 
actual changes to pattern-participating classes, without 
differentiating between changes from new requirements, 
changes due to debugging activities, and changes that 
propagate from changes in other classes. Instability is dif-
ferent to change proneness as follows: 

• change proneness is a measurement of all changes 
that occur to a class (e.g., new requirements, debug-
ging, change propagation, etc.) [25], whereas stability 
only refers to the last type of change (propagation of 
other changes). 

• change proneness is usually calculated from the ac-
tual changes that occur in a class (a posteriori analy-
sis), whereas stability can be calculated a priori. 

Although instability and change proneness are closely re-
lated concepts that can be characterized as two sides of the 
 

1  Instability is used in this paper as the opposite of stability, i.e., the 
probability of a system to change, due to changes occurring in different 
parts of the system 
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same coin, there may be cases in which they are not corre-
lated. For example, a class heavily depending on other clas-
ses would be highly instable; however, if this class does not 
actually change, then its change proneness would be low. 

Therefore, in this study, instability is defined and meas-
ured at class level as the degree to which a class is subject to 
change, due to changes in other, related classes, considering the 
probability of such classes to change as equal to a certain value. 
This value is obtained considering a constant value for its 
internal change probability (due to reasons other than 
change propagation) as well as its dependencies on other 
classes. The exact value of the constant internal probability 
of change for a class does not influence the ranking of clas-
ses according to their instability. It will only affect the range 
of the absolute value of instability (for more details see 
Section 3.2). Therefore, the co-change of classes that imple-
ment the same requirement, which is not occurring because 
of their dependency, but because of their overlapping class 
contracts [35] is outside the aforementioned definition of 
instability. Similarly, the above definition of instability 
excludes all changes that occur to classes due to changing 
or additional requirements, and bug-fixing activities (as 
most definitions of co-change in the literature). 

The reason that we focus on stability is that it has been 
advocated as one of the major benefits of GoF design pat-
terns [19]: design patterns are expected to “shield” some 
participating classes from ripple effects, i.e., changes prop-
agated to them due to changes occurring in the rest of the 
system. For example, in the Façade design pattern, the class 
playing the role of Façade should prevent the propagation 
of changes from clients to subsystem and vice-versa. We 
examine this “shielding” effect from the perspective of the 
design pattern structure, rather than the change frequency 
of the surrounding classes of the design pattern. Consider-
ing the change frequency of the surrounding classes would 
invalidate the findings of our study because the stability of 
the examined patterns classes would be subject to the histo-
ry of changes in each system (see Section 3.2).  

Therefore, we investigate if the claim that GoF patterns 
support the stability of certain pattern-participating classes 
holds in practice. In particular, our aim is to investigate 
how the instability of classes that participate in a GoF de-
sign pattern is influenced by four different factors, i.e., pat-
tern type, class role, pattern coupling, and application do-
main. These factors have also been examined in the litera-
ture (see Section 2.3). The reasons why these factors are 
expected to be influential with respect to class instability 
are as follows:  

• Type of the GoF design pattern. The type of the pattern 
is expected to influence the instability of the classes 
that participate in it, because the particular structure 
of each pattern is expected to provide “shielding” to 
different classes. 

• Role of the class inside the GoF design pattern. The role 
that a class plays in the pattern is expected to lead to 
different levels of instability since different roles 
have different dependencies to the rest of the system. 

• Intersection of several GoF patterns on a single class 
(termed pattern coupling in [34]). In the literature 

[27], [34], it is suggested that coupled pattern occur-
rences exhibit a different effect on several source 
code metrics. Thus, we investigate if a different effect 
holds for the instability of classes that participate in 
more than one pattern occurrences. 

• Application domain. The application domain of a 
software system is expected to influence the way 
GoF design patterns are implemented. According to 
[1] and [48], quality differs significantly among ap-
plication domains. Therefore, based on these differ-
ences, we assume the existence of: (a) differences in 
levels of instability, (b) differences in the way that 
both pattern and non-pattern parts of the system are 
implemented w.r.t. the use of object-oriented charac-
teristics (e.g., encapsulation, inheritance, polymor-
phism etc.), and (c) potential differences on the 
amount of design pattern occurrences that would be 
identified in each domain. All the aforementioned 
assumptions are expected to differentiate our results 
per application domain. 

To provide empirical evidence on the relation between 
pattern instability and those four factors, we conducted a 
multi-case study on about 65,000 classes of 537 open-source 
software (OSS) projects by performing change impact anal-
ysis (see Section 2.1). The reason for performing change 
impact analysis is to investigate all possible dependencies, 
through which a change can propagate from one class to 
another and the probability of such an event, i.e., class in-
stability. Comparing the scope, the goals, and the research 
method of this study to the previous work on this subject 
(presented in Section 2), the main contributions of this 
study (elaborated in Section 2.4) are that: 

• It investigates the effect of GoF design patterns on 
the estimated instability of classes, i.e., the probability 
of a class to change according to changes that oc-
curred in other classes of the system, rather than ac-
tual changes occurring in the classes. Studying class 
instability gives a different perspective on the effect 
of design patterns on software maintainability, be-
cause it relates to the design structure of the pattern, 
rather than its context (surrounding classes). Addi-
tionally, instability, as a design measure and assum-
ing constant internal probabilities of change, can be 
calculated early (in a pre-deployment phase), while, 
change proneness is a post-deployment measure. 
Therefore, instability indicates design spots that 
might suffer from changeability issues, which can be 
mitigated before software deployment. 

• It is a large-scale empirical study. Until now, the larg-
est study on design patterns and change proneness 
was conducted on three OSS (see Section 2.5). 

• It investigates the effect of coupled patterns on stabil-
ity. This is the first study that investigates the afore-
mentioned phenomenon (see Section 2.5). 

In the next section, we present related work on change 
impact analysis, on the effect of GoF design patterns on 
maintainability and stability, on pattern coupling, as well as 
an overview of the main contributions of this work with 
respect to related work. In Section 3, we present the tools 
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used in the case study data collection phase. In Section 4, 
we present the case study design according to the guide-
lines provided by Runeson et al. [41]. In Section 5, we re-
port the findings of the case study, which are discussed 
against each research question in Section 6. Threats to va-
lidity are discussed in Section 7. Finally, conclusions and 
future work are presented in Section 8. 

2 RELATED WORK 

In this section, we provide an overview of previous re-
search efforts related to the scope of this paper. More spe-
cifically, in Section 2.1, we introduce related work in the 
field of change impact analysis and in Sections 2.2 and 2.3, 
we discuss research findings on the effect of GoF design 
patterns on system maintainability and stability. In Section 
2.4, we discuss research that has been performed on how 
design patterns interact and possible implications of this 
interaction. Finally, in Section 2.5, we summarize key re-
sults of studies that have assessed the effect of GoF design 
patterns on stability, introduced in detail in Section 2.3, and 
compare those studies against our study. 

2.1 Change Impact Analysis 

Change impact analysis deals with identifying and quanti-
fying the effects caused by changes in one part of a system 
on other parts of the same system. According to the first 
law of software evolution stated by Lehman and Belady 
[31], namely 'Continuing Change', software systems must 
be continually adapted lest they become obsolete and there-
fore change impact analysis plays an important role in 
software development and maintenance. Before the actual 
application of changes, change impact analysis can be valu-
able for program comprehension and effort estimation 
([13], [22]) whereas, after changes have been applied, it can 
be used to prioritize test cases and reveal relations among 
components [40]. The term impact analysis has been used 
for the first time by Horowitz et al. [23] in the mid-80s. 
Recently, Li et al. [32] have presented a survey of 23 code-
based change impact analysis techniques. Change impact 
analysis techniques can be classified in two broad catego-
ries [32]: (a) traceability-based, where the goal is to identify 
the potential consequences of a change by relating different 
types of software artifacts  (e.g., requirements with source 
code) and (b) dependency-based analysis, where depend-
encies among program entities (usually at the code level) 
are identified and used to assess change impact. The ap-
proach and the tool that have been used in this study to 
assess the stability of pattern- and non-pattern-participating 
classes belong to the second category since the dependen-
cies among classes in object-oriented systems are used to 
identify potential change propagation. 

2.2 Design Patterns and Maintainability 

According to two recent mapping studies on the research 
state of the art on GoF design patterns, [6] and [53], soft-
ware maintainability appears to be one of the key quality 
concerns of researchers that investigate the use of GoF de-
sign patterns. More specifically, according to Ampatzoglou 
et al., 40% (14 out of 35) of the studies on the effect of GoF 

design patterns on software quality attributes investigate 
the effect of GoF design patterns on software maintainabil-
ity [6] whereas, according to Zhang and Budgen, GoF de-
sign patterns offer a framework for maintainability and 
future research efforts should be more focused on main-
tainability [53].  

Two of the most well-known controlled experiments on 
the effect of GoF design patterns on software maintainabil-
ity have been performed by Prechelt et al. and Vokac et al., 
in 2001 and 2004 respectively ([38], [49]). The aim of both 
studies was to compare the maintainability of systems with 
and without design patterns. In [38], the patterns consid-
ered were Abstract Factory, Observer, Decorator, Compo-
site, and Visitor, while the participants of the experiment 
were professional software engineers. The results of the 
experiment suggest that it is usually preferable to apply a 
design pattern rather than a simpler solution (more details 
on the examined simpler solutions can be found in papers 
[38], [49]). In a later replication of the experiment by Vokac 
et al. [49], who used the same patterns and similar subject 
groups, the authors increased experimental realism because 
participants used a real programming environment instead 
of pen and paper. The results suggest that design patterns 
are not all beneficial or harmful with respect to mainte-
nance and that the decision of applying a GoF design pat-
tern or a simpler solution is best answered by the designer’s 
common sense.  

Jeanmart et al. [26] performed an experiment with stu-
dent participants that aimed at evaluating the under-
standability and the modifiability of Visitor design pattern 
instances. The experiment used three open-source projects 
as objects (including canonical and non-canonical represen-
tations of the Visitor pattern) and various comprehension 
and modification tasks as evaluation criteria. Their results 
suggest that the effort needed for modification tasks is re-
duced in cases where the canonical representation of the 
Visitor pattern is used and when the subjects have a good 
understanding of UML notations. 

Ampatzoglou et al. [4] have attempted to provide an ob-
jective way of selecting between the application of patterns 
and alternative design solution, with respect to software 
maintenance. They proposed an analytical method that uses 
a set of maintainability predictors [47] and mathematically 
formalized their metric scores as functions of the number of 
pattern-participating classes. Applying that method on 
Bridge and Abstract Factory design patterns, they provided 
several cut-off points, i.e., number of pattern participating 
classes thresholds that, when surpassed, make the solutions 
become more maintainable than the alternative solutions, 
and vice versa. Both the study of Ampatzoglou et al. [4] and 
Jeanmart et al. [26] point out the existence of certain condi-
tions, i.e., number of classes and design pattern representa-
tion/knowledge of UML notations respectively, that can be 
used as predictors to decide in which cases the design pat-
tern solution is more maintainable.  

Several other research efforts have empirically evaluated 
the use of design patterns, with respect to software main-
tainability. Specifically, Khomh and Guéhéneuc per-formed 
a survey with software engineers with significant experi-
ence on GoF design patterns and asked them to evaluate 
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each pattern with respect to eight quality characteristics. 
The quality characteristic that was related to maintainabil-
ity was expandability, i.e., the degree to which the design of 
a system can be extended. The results suggested that 19 out 
of the 23 GoF design patterns are evaluated as beneficial 
with respect to maintainability, whereas only four as harm-
ful, i.e., Singleton, Flyweight, Proxy, and Memento [28]. 

Ampatzoglou and Chatzigeorgiou evaluated the main-
tainability of State, Strategy, and Bridge design pattern 
occurrences [3]. The case study was performed on two 
open-source computer games and provided a comparison 
between a pattern and a non-pattern version, with respect 
to complexity, coupling, cohesion, and size metrics. The 
results suggested that all identified GoF design pattern 
occurrences improved cohesion, coupling, and complexity 
of the systems but, as a side effect, increased the size of the 
systems, both in terms of lines of code and number of clas-
ses [3]. In a similar context, Kouskouras and Chatzigeor-
giou evaluated the use of an architectural pattern, i.e., 
namely the Registry pattern adopted from [42], with respect 
to maintainability, by comparing it to a simple OO imple-
mentation, without the use of a pattern, as well as an alter-
native that combines the pattern with an AOP implementa-
tion. The results suggested that using the pattern offers a 
more maintainable design than the non-pattern version, 
while the AOP solution was optimal because it retained all 
beneficial pattern characteristics and limited coupling of the 
pattern inside the aspect [30].  

Finally, Ng et al. investigated the relation between de-
sign patterns and the Open Closed Principle [33], through 
experimentation. More specifically, the authors checked 
real instances of the State design pattern to examine if the 
code that should be encapsulated within a particular design 
is actually using the encapsulation mechanisms of the pat-
tern. The results of the performed experiment suggests that 
there is only a 20% chance of achieving conformance to the 
Open Closed Principle if the State design pattern is not 
used [37].  Assuming that conformance to the Open Closed 
Principle is the desired way of extending a system, i.e., a 
way of maintaining the system, the results suggested that 
there is only a 20% chance for a system without a State 
design pattern to be maintained in the desired Object-
Oriented way, i.e., by adding subclasses, rather than modi-
fying existing code. The result that adding subclasses is the 
most common way of maintaining a pattern instance dur-
ing its evolution is supported by the same author, in [36]. 

2.3 Design Patterns and Stability 

In addition to the ISO-9126 definition provided earlier, Yau 
and Collofello ([50], [51]) define software stability as re-
sistance to propagation of changes (ripple effect) that the 
software would have when it is modified, which is also 
known as modular continuity [35]. Although the goal of 
this study is to evaluate the effect of GoF design patterns on 
stability, we do not to exclude from this discussion studies 
related to GoF design patterns and change proneness be-
cause: (a) work on patterns and stability is limited and (b) 
because results on change proneness and results on stability 
are related in the sense that instability is a subset of change 
proneness 

Some of the first studies on the effect of design patterns 
on class change proneness were produced by Bieman et al. 
First, in 2001, the authors conducted an industrial case 
study that aimed at investigating correlation among code 
changes, reusability, design patterns, and class size. The 
results of the study suggest that the number of changes is 
highly correlated to class size and that classes that play 
roles in patterns or that are reused through inheritance are 
more change prone than others [9]. In a replication of the 
case study, in 2003, the same authors used three profes-
sional and two open-source projects, with the same re-
search objectives. The results of the second study do not 
fully agree with those of the prior case study. The relation-
ships between class size, design patterns participation and 
change proneness are still valid but appear weaker [10]. In 
2009, Gatrell et al. replicated the work of Bieman [9], [10] on 
proprietary C# applications, by taking the same GoF design 
patterns into account. The main difference, apart from the 
programming language, was the metric used for measuring 
changes. Gatrell used a change-per-class measurement, 
whereas Bieman used a change-per-operation measure-
ment. However, the results of the replication validated that 
classes that participate in GoF pattern occurrences are more 
change prone than classes which do not [20]. 
Di Penta et al. [15] investigated possible correlations among 
class change proneness, the role that a class holds in a pat-
tern, and the kind of change that occurs. The design pat-
terns under study are Abstract Factory, Adapter, Com-
mand, Composite, Decorator, Factory Method, Observer, 
Prototype, Singleton, State, Strategy, and Template Method. 
They studied three open-source projects. The results of the 
paper are intuitive for the majority of the roles that a class 
can play in a design pattern instance. For example, classes 
playing the Abstract Factory role (Abstract Factory pattern) 
and the Product role (Command pattern) change less fre-
quently than the concrete ones. Another example is the 
Command pattern, where classes playing the role of Receiv-
er change more frequently than classes playing the role of 
Command. Furthermore, it is suggested that design activities 
should take into consideration the roles that a class can 
play, because interface roles’ change proneness can make 
other parts of the system less robust to changes. Building 
on [15], Aversano et al. [7] investigated the evolution of 
GoF design patterns  from the perspective of real changes 
that occur on pattern occurrences, across different releases. 
More specifically, the authors replicated the research ques-
tions of Di Penta et al. [15] and built on them by investigat-
ing the changes on pattern client and pattern target classes 
[7]. The results of the study suggest that pattern occurrenc-
es that are used for application purposes are changing more 
frequently and that different types of changes have a differ-
ent effect on co-changing classes. Furthermore, Elish has 
qualitatively investigated the effect of structural GoF design 
patterns on stability [16] and describe through examples the 
way changes propagate among GoF design pattern partici-
pating classes. The illustrative examples  suggest that the 
studied patterns (i.e., Adapter, Bridge, Composite and Fa-
çade) have a positive effect on stability of class diagrams. 

Finally, as indirect related work, we have identified sev-
eral studies on the effect of anti-patterns and code smells on 
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change-proneness, that will be used in our discussion sec-
tion. Although this presentation is not exhaustive, we pro-
vide an overview of the studies that we have used. Firstly, 
Khomh et al. [29] investigate the impact of code smells on 
change-proneness by performing a case study on two OSS 
projects. The results that are relevant to ours are those that 
are related to specific class roles, such as abstract classes 
and subclasses. Secondly, Romano et al. [39], investigated 
the effect of anti-patterns on actual source code changes. 
More specifically, they indicate that different anti-patterns 
have different effect on change proneness (also underline 
the most change prone ones), and  that specific anti-
patterns lead to specific types of changes. 

2.4 Design Patterns Coupling 

The term 'design pattern coupling' has been introduced in 
2001 by McNatt and Bieman [34]. Two or more design pat-
tern occurrences are considered coupled when they share at 
least one pattern participating class [34]. 

Concerning the effect of coupled GoF design patterns on 
quality characteristics, we have been able to identify, only 
one related study [27]. In this study, Khomh and 
Guéhéneuc, have identified coupled GoF design pattern 
instances from five open-source projects and calculated 
several well-known structural quality metrics, such as Cy-
clomatic Complexity, Lack of Cohesion of Methods, Cou-
pling Between Objects, etc. The results revealed quite a 
different behavior of classes that participate in zero, one, or 
two and more roles in GoF design pattern occurrences. 
More specifically, the results suggest that classes that play 
two and more roles in a design pattern are more complex, 
more coupled, and less coherent than classes playing one or 
zero roles in GoF design patterns. The study reported on 
some demographic results, on the frequency of encounter-
ing GoF design pattern coupling. More specifically, the 
study found that JHotDraw contains only 5.81% of classes 
that play only one role while 24.45% play two roles in GoF 
pattern occurrences [27]. 

2.5 Overview 

In this section, we summarize the key characteristics of 
studies (elaborated in Section 2.3) that have assessed the 
effect of GoF design patterns on stability or change prone-
ness to discuss the main contribution of our study with 
respect to related work. The key characteristics of research 
that deals with patterns and stability or change proneness 
are summarized in Table 1. In the last line of the table, we 
present the features of our work.  

Comparing the scope, the goals, and the research meth-
od of this study to the previous work, this study is: 

• the largest-scale empirical study investigating the ef-
fect of GoF design patterns occurrences on stability. 

• the first large-scale empirical study investigating the 
effect of GoF design pattern occurrences on any 
maintainability sub-characteristic, including, but not 
limited to stability. 

• the first empirical study that deals with the effect of 
coupled GoF design patterns on stability. 

 

TABLE 1 
Research state of the art on the effect of GoF design pat-

terns on stability and change proneness 
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[7] FM, Pr, 
Si, Ad, Co, 
De, Ob, Sta, 
Str, TM, Vi 

CF  
CFT 

LoCCoC 
 

No Case study  
(3 OSS) 

Yes No 

[9] Si, FM, Prx, It ACC  
ACO 

 

No Case study  
(39 versions of 
1 commercial) 

No No 

[10] Ad, Bu, FM, 
It, Prx, Si, Sta, 

Str, Vi 

ACC  
ACO 

No Case study  
(3 commercial,  

2 OSS) 

No No 

[15] AF, Cmd, Ad,  
Co, De, FM, 

Ob, Pr, Si, Sta, 
Str, TM, Vi 

CF  
CFT 

 

No Case study  
(3 OSS) 

Yes Yes 

[16] Ad, Br, Co, Fa 
 

N/A No Descriptive  
Evaluation  

Yes No 

[20] Ad, Bu, FM, 
It, Prx, Si, Sta, 

Str, Vi 

ACC 
 

No Case study  
(1 commercial) 

 

Yes No 
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u

r 
st

u
d

y
 AF, Pr, Si, 

Ad, Co, De, 
Ob, Sta, Str, 
TM, Vi, Pr 

Ins Yes Case Study  
(537 OSS) 

Yes Yes 

Design Patterns Abbreviations  

Factory Method (FM), Prototype (Pr), Singleton (Si), Adapter (Ad), 

Composite (Co), Decorator (De), Observer (Ob), State (Sta), Strategy 

(Str), Template Method (TM), Visitor (Vi), Proxy (Prx), Iterator (It), 

Builder (Bu), Abstract Factory (AF), Command (Cmd), Bridge (Br), Fa-

çade (Fa) 

Metrics Abbreviations  

Actual Change per Class (ACC), Not Available (N/A), Change Frequen-

cy (CF), Change Frequency Type (CFT), Actual Changes per Operation 

(ACO), Lines of Code Changed in Other Classes (LoCCoC), Instability 

(Ins) 

3 USED TOOLS 

In this section, we discuss background information needed 
to understand the tools that we used for GoF pattern detec-
tion and for calculating the probability of a class to change. 

3.1 Design Pattern Detection  

We employed two different pattern detection tools (SSA, 
by Tsantalis et al.) [45] and (PINOT, by Shi et al.) [43], both 
capable of automatically identifying pattern occurrences (of 
the GoF catalogue) in a given Java project. Both tools can be 
downloaded from the web2. 
 

2     http://java.uom.gr/~nikos/pattern-detection.html 
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The tool proposed by Tsantalis et al. [45] identifies pat-
tern occurrences based on a similarity scoring algorithm 
(SSA), even if the patterns are variations to the standard 
forms in which they have been originally described. As an 
example, the approach can identify an occurrence of the 
Strategy pattern even if there is an intermediate inheritance 
level between the Strategy role (abstract class or interface) 
and the Concrete Strategy subclass role. The underlying 
detection algorithm is based on a generalization of the link 
analysis algorithms proposed by Blondel et al. [12].  

Pattern inference and recovery tool (PINOT) is a pattern 
detection approach [43] that can identify occurrences from 
all structural and behavioral patterns in the GoF catalogue. 
Detection places emphasis not only on the structural as-
pects of patterns (derived from inter-class relationships) but 
also acknowledges the need to consider their behavioral 
aspect. Once inter-class analysis has been performed to 
narrow down the search space to particular methods, fur-
ther static behavioral analysis is applied to each candidate 
method's body in terms of control flow and data flow.  

Consequently, although both tools are performing static 
analysis, the results of the tools are not expected to be iden-
tical, in the sense that: 

• SSA investigates methods calls, whereas PINOT does 
not; 

• SSA investigates object creation, whereas PINOT 
does not; 

• PINOT investigates control flow and data flow, 
whereas SSA does not;  

• PINOT identifies pattern occurrences only in their 
original versions. SSA identifies deviations, as well. 

According to an independent study on design pattern 
detection tools, by Binun and Kniesel [11], the recall rate 
(i.e., the percentage of existing patterns that are identified by the 
tool) of the SSA tool ranges from 24% to 52% (40.8% in aver-
age), while the recall rate for PINOT ranges from 13% to 
50% (27.2% in average). Additionally, the precision rate 
(i.e., the percentage of the identified patterns that is correct) for 
the SSA tool ranges from 51% to 80% (66.0% in average) 
and from 9% to 78% (30.6% in average) for the PINOT tool. 
Yet, the evaluation was performed only on a limited 
amount of GoF design pattern types (i.e., Composite, Ob-
server, Decorator, Chain of Responsibility, and Proxy) and, 
therefore, cannot be generalized to all design pattern occur-
rences that the tools identify. Finally, among the tools dis-
cussed in [11], the similarity scoring tool and PINOT are the 
only ones that can analyze projects regardless of their size. 

To increase the degree of confidence on the employed 
tools and to exclude from the analysis patterns for which 
the results are not sufficiently accurate, we have manually 
inspected a number of design pattern occurrences, as pre-
sented in Appendix A. We have selected to inspect one 
pattern occurrence of each type, recovered from each appli-
cation domain (so in total approximately eight pattern oc-
currences per application domain, i.e., a grand total 119 
pattern occurrences). The process was as follows:  

                                                                                                           
      http://www.cs.ucdavis.edu/~shini/research/pinot 
 

(a)  One pattern occurrence of each type has been ran-
domly picked for every application domain (i.e., ap-
proximately eight design pattern occurrences for 
each pattern type);  

(b)  The first and the second author independently re-
viewed the retrieved patterns, by providing a “√”or 
an “X”;  

(c)  All pattern occurrences in which the results were 
contradictive have been discussed by the two au-
thors, this procedure could lead in a change in the 
evaluation of the reviewer;  

(d)  Every pattern occurrence that included even one “X” 
was characterized as false positive, accompanied 
with the reasoning for such a decision.  

The results of the inspection led to the following corrective 
actions: 

• Merge State and Strategy occurrences, because they 
are not easy to differentiate, even manually. 

• Merge Façade and Mediator occurrences, because 
many Mediator occurrences have been manually 
identified as Façade occurrences. 

• Remove Flyweight and Chain of Responsibility oc-
currences, because the number of false-positives was 
high. 

These actions are expected to reduce the number of false 
positive pattern occurrences, because pattern types with 
low precision levels have been either removed from the 
analysis or merged with similar patterns. 

As a final step on the process of selecting and using de-
sign pattern detection tools, we faced the decision on 
whether we should consider the union or the intersection of 
the two tools. In this study, as the final set of explored pat-
terns, we use the union of the results of the two tools, for 
the following reasons:  

• Increased number of investigated GoF design pattern 
types. The SSA tool identifies occurrences from 11 
GoF design patterns types, whereas PINOT from 13 
types (9 in common and 6 unique). Therefore, con-
sidering the intersection of the results would lead to 
a dataset involving a reduced number of GoF design 
pattern types (i.e., 9 patterns, compared to the 13 
pattern types, in the case of union).  

• Increasing recall. Based on the low number of recall of 
both tools, we can deduct that both tools “miss” a 
significant number of pattern occurrences. By joining 
the results of the tools we aim at including addition-
al true-positive occurences (decrease false negatives), 
that will increase recall. 

However, as a side-effect of this decision, we acknowledge 
the possible increase of false-positive (decrease of preci-
sion). We discuss this as a threat to the validity of this 
study.  

3.2 Class Instability 

Predicting whether a given software module will change in 
a future version  is an ambitious goal because any actual 
decision to perform changes to a class is subject to numer-
ous factors. The probability that a certain class will change 
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in the future is affected not only by the likelihood of modi-
fying the class itself but also from possible changes in other 
classes that might propagate to it. These so-called ripple 
effects [21] (or change propagation) are the result of de-
pendencies or ‘axes of change’ (the term ‘axis of change’ is 
used as in [46]) among classes through which a change in a 
class (such as the change in a method signature – i.e., meth-
od name, types of parameters and return type) can affect 
other classes enforcing them to be modified.  

The tool3 that has been employed in this study [46] ana-
lyzes the axes of change in which each class is involved and 
calculates the instability incurred by each axis of change. 
The accuracy of these probabilistic estimates can be im-
proved by using past data to calculate the probability of 
change for each class due to modifications to the class itself 
(internal probability), as well as the percentage of changes 
that actually have propagated from other classes (propaga-
tion factor). As an example, for a class A having a depend-
ency on another class B due to the existence of a reference 
(axisB), the probability of A being changed due to a change 
in class B is obtained as P(A:axisB) = P(A|B)•P(B). P(A|B) is 
the conditional probability of a change in class A with re-
spect to a change in class B and represents the possibility of 
propagating a change from one class to the other while P(B) 
refers to the internal probability of changing class B. A class 
might be involved in several dependencies and, because 
even one change will be a reason for editing the code, the 
probability in which we are interested is the joint probabil-
ity of all events.  

Regarding the internal probability of change, a constant 
value has been used for all classes. In that sense the results 
of this study do not reflect the actual distribution of internal 
changes, because classes are expected to change with dif-
ferent frequencies. Because of this decision, the extracted 
probabilities reflect only the extent to which a class is sub-
ject to future changes because of propagation of changes 
due to the underlying system design, i.e., due to the de-
pendencies that it has on other classes in terms of inher-
itance, reference or name dependencies. Consequently, the 
obtained values are consistent with the notion of stability, 
which according to the ISO 9126 quality model [24] cap-
tures the capability of a software product to avoid unex-
pected effects from modifications of the software (other-
wise, if we had not used a constant value for internal prob-
ability of change, it would calculate change proneness and 
not instability.  

As an example, suppose the same instance of a design 
pattern used in two different circumstances, i.e., (a) in a 
“design hotspot” where the classes that emit changes to the 
pattern are changing very frequently (see Figure 1a), (b) in a 
design spot where the classes that emit changes to the pat-
tern are not changing very frequently (see Figure 1b). In this 
example, if we had not used a fixed internal probability of 

 

3      old tool:    http://java.uom.gr/nikos/probabilistic-evaluation.html    
      new tool:  http://iwi.eldoc.ub.rug.nl/root/2014/ClassInstability/  
 

We provide a link to both the old and the new version of the tool: (a) as an 
acknowledgement to the tool that we used a starting point for reuse and (b) 
as a reference for readers that might be interested in comparing the results 
of the two tools. 

change for the classes that communicate with the pattern 
instance (classes in the pattern ‘neighborhood’), the same 
design pattern instance would have been characterized as 
stable in the case of Figure 1b, and as instable in the case of 
Figure 1a. However, the structure and connectivity of the 
pattern instance to the rest of the system is the same. There-
fore, we believe that considering the actual frequency of 
changes in our study would invalidate the investigation of 
pattern stability from a structural perspective, since in such 
a case, stability would also be affected by the design spot, 
in which the pattern is used. 

 

Fig. 1a  Design Pattern instance placed in a frequently-
changing spot of the design  

 

Fig. 1b Design pattern instance placed in an infrequently-
changing spot of the design 

Concerning the propagation factor of changes among 
dependent classes, we preferred not to use a constant value, 
because the change propagation factor should ideally re-
flect as closely as possible the underlying design and the 
effect of design patterns. For this reason, we used a Ripple 
Effect Measure (REM), which attempts to quantify the 
probability of a change occurring in class B to be propagat-
ed to a dependent class A, as discussed in Section 3.3. 

3.3 Ripple Effects Measurement (REM) 

In general, there are two types of axis of change, along 
which a change can propagate: i.e., generalization and asso-
ciation relationships. To quantify the propagation factor, 
we attempt to estimate the percentage of the accessible 
interface of a class, which might emit changes to a depend-
ent class. In case of an association, this estimate can be ob-
tained as the ratio of distinct method calls from A to B, over 
the number of public methods in class B. In case of general-
ization, there are three possible reasons for change propa-
gation: (a) super method invocation (use of super), (b) ac-
cess of protected fields, and (c) override or implementation 
of abstract methods of the superclass. All these sources 
should be normalized over the total number of accessible 
members in the superclass. According to these observa-
tions, REM can be calculated as follows: 

Context Strategy

ConStrategyA ConStrategyB

Part of a System 

with frequent 

changes

+ execute()

+ execute() + execute()

emitted changes

Pattern under Study

Context Strategy

ConStrategyA ConStrategyB

Part of a System 

with infrequent 

changes

+ execute()

+ execute() + execute()

emitted changes

Pattern under Study
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 REM  =  
������������	

�����	
                          (1) 

NDMC: Number of distinct method calls from class A to 
class B (super class method invocations for the 
case of generalization) 

NOP:  Number of polymorphic methods in class B (valid 
only for generalization) 

NPrA:  Number of protected attributes in class B (valid 
only for generalization) 

NOM:  Number of methods in class B 
NA:  Number of attributes in class B (valid only for 

generalization) 

The aforementioned measure has been incorporated in 
the employed tool, by re-writing the functionality related to 
the calculation of class probability of change4. Specifically, 
for every dependency that is identified by the tool, we cal-
culate REM and set it as the propagation factor between the 
depended classes. For example, consider the sample design 
of Figure 2, where class A extends class B.  

 

Fig. 2  Sample code for illustrating the calculation of REM 

In the general case, class A can change if a change occurs 
in B in the following cases: 

• if it overrides a method, and the signature (method 
name, types of parameters and return type) of this 
method changes. 

• if it calls a method of the superclass and the signa-
ture of the superclass method changes. 

• if it uses a protected attribute, and this attribute 
changes name. 

On the other hand, the following changes in B do not prop-
agate in A:  

 
• changes in the body of any function. 
• changes in the signature of methods that A does not 

call or override. 
• changes in private attributes. 

In the above example there are three types of change 
which might propagate from superclass B to subclass A: (a) 
change in att2, (b) change in m1(), and (c) change in 
m2(). Changing the type, the name, or deleting att2 will 
lead to a compile error wherever att2 is accessed. Chang-
ing the signature of m2()would lead to a compile error in 
the corresponding invocation. Finally, changing the signa-

ture of m1() would lead to a compile error in the place 
where m1() is overridden, because  m1() is declared ab-
stract in the superclass. Thus, the estimate for the propaga-
tion factor can be calculated as: 

REM  =  
��+���+����
���+��

=	
1+1+1

5+2
 = 0.42 

Although REM is not a proper probability value, it cap-
tures the degree of interdependence between two classes, 
and thus provides a relative estimate for the propagation 
factor in each case.  

3.4 Discussion on the REM 

In this section we discuss some key strengths and limita-
tions of the previously defined measurement (REM). Specif-
ically, we discuss: (a) differences of REM to existing met-
rics, (b) ability of REM to differentiate between pattern and 
non-pattern versions of the system, and (c) REM as a 
change proneness measure. 

One of the first tasks that we have performed while de-
signing this study was the identification of an existing 
software metric that would be adequate for quantifying the 
instability of a class. Intuitively, instability can be associat-
ed to coupling metrics, i.e., metrics that quantify the extent 
to which classes are  interconnected4. After going through 
the definition of the most popular coupling metrics we 
identified that all of them suffer from at least one of the 
following limitations for measuring stability: 

• they quantify only the number of dependencies be-
tween classes, and not the intensity of the coupling - 
e.g. Coupling Between Objects (CBO), Afferent Cou-
pling (AfC), Efferent Coupling (EfC), etc. 

• they quantify the intensity of a class dependency, 
but use a count of how many times a method is 
called inside another method as a measure – e.g.,  
Message Passing Coupling (MPC). This is not desir-
able because even one method call can lead to a 
change propagation.  

• they use attribute-related coupling, only by counting 
the number of fields that are declared through an 
aggregation relationship – e.g., Measure of Aggrega-
tion (MOA). This is not desirable, since for classes in 
the same hierarchy, changes can propagate also 
through protected fields. 

Therefore, none of the already existing metrics was able of 
quantifying all the identified ways that a class could emit 
changes to another (see Section 3.3). Furthermore, to vali-
date our aforementioned qualitative evaluation, we per-
formed a small scale quantitative evaluation of REM (on 
two open-source projects). The results suggested that REM 
is more highly correlated to change propagation than any 
of the aforementioned existing coupling metrics. 

In addition to that, when comparing design-patterned 
versus non-design-patterned spots of the system design, the 
differences in the nature of the expected changes to them 
 

4  Other structural quality attributes like complexity or cohesion have not 
been considered, because they quantify internal characteristics of a class 
(e.g., similarity of methods/attributes or number of decision statements 
in a method), and not its interconnection to other classes. 

B
-  att1 : int

# att2 : float

+ m1()
+ m2() : int

+ foo()

+ bar()
+ baz()

A

+ m1() 
+ m3() : int

... 

att2 = CONST;

x = super.m2();

...
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should be identified. The basic issue that discriminates 
between these two spots is that the goal of many design 
patterns is to make the design resilient against certain kinds 
of change that are expected to be frequent. Those kinds of 
change will never  propagate, yet many (if not most) of the 
changes will be of such type. According to [36], the most 
common way of maintaining a design pattern instance is by 
adding subclasses in the class hierarchies of the patterns (in 
cases when they are applicable). Also, this way of maintain-
ing a system is acknowledged as the desired way, based on 
the Open-Closed Principle [33]. Therefore, such a discrimi-
nation should not be neglected by the way that REM is 
calculated. Based on the definition of REM, the difference 
between propagating changes over inheritance versus 
propagating changes over associations is captured, leading 
to the desired differentiation.  
For example, consider the following two cases (the first 
with a template method instance, see Figure 3a, and the 
second an equivalent non-pattern solution, see Figure 3b). 
We note that in order for the examples to be realistic we do 
not consider that the pattern instance is completely self-
sufficient, but some information is encapsulated in other 
classes as well. For the design in Fig. 3a (Template Method 
pattern) the calculation of REM is as follows: 

• Client: 0.2, it depends on 1 out of 5 methods of Ab-
stractClass (templateOperation) 

• AbstractClass: 0.5, it depends on 1 out of 2 meth-
ods of CommonBehaviour (primitiveOpera-
tion1Helper) 

• ConcreteSubclasses: 0.4, they depend on 2 out 
of 5 methods of AbstractClass (i.e., primitive-
Operation1 and primitiveOperation2) 

Whereas, for the design in Fig. 3b (Template Method alter-
native) the calculation of REM is as follows: 

• Client: 0.2 + 0.2 – 0.2*0.2 = 0.36, it depends on 1 out 
of 5 methods of both ConcreteSubclasses (tem-
plateOperation) 

• ConcreteSubclasses: 0.5 they depend on 1 out of 
2 methods of CommonBehaviour (primitive-
Operation1Helper).  

During evolution, a typical expected change in the de-
sign is the addition of ConcreteSubclasses, which in 
the non-pattern version appear to have larger REM values 
than the pattern version. Also, as ConcreteSubclasses 
are added, the REM of the Client increases as well. Thus, 
the proposed metric discriminates between design-
patterned spots from non-patterned spots (based on the 
dependencies they are involved into), even with regard to 
the particular changes for which the patterns have been 
designed. 

Finally, we acknowledge that the proposed metric is in-
capable of quantifying class change proneness, because it is 
purely syntactic and does not take into account class con-
tracts, changes due to modified requirements, and bug 
fixing activities. To propose such a metric one would have 
to consider the semantics of functions, but even then it 
would be impossible to obtain an accurate estimate of 
change propagation probability, without analyzing the 
history of actual changes. However, addressing this need 

would invalidate the findings of our study as the stability 
of the examined patterns would be subject to the history of 
changes of the surrounding classes and not only to their 
dependencies. 

 

Fig. 3a  Illustrative Template Method instance  

 

Fig. 3b Illustrative Template Method alternative 

4 CASE STUDY DESIGN 

The objective of this case study is to investigate the stability 
of classes that participate in GoF design pattern occurrenc-
es. To achieve this goal, we compare the stability of classes 
participating in zero, one, or more design pattern occur-
rences, through a multi-case study. The case study has been 
designed and reported according to the template suggested 
by Runeson et al. [41]. The next sub-sections contain the 
four parts of the design, i.e., Objectives and Research Ques-
tions, Case Selection and Units of Analysis, Data Collection 
and Pre-Processing, and Data Analysis. 

4.1 Objectives and Research Questions 

The goal of the study is described using the Goal-Question-
Metrics (GQM) approach [8]:  

“Analyze open source projects for the purpose of evaluating 
design pattern participating classes with respect to their stabil-
ity, i.e., their probability to change due to changes occurring 
on classes directly or indirectly associated with them from the 
point of view of software developers, in the context of open-
source Java software projects”. 

According to our goal and the four factors that we ex-
plained in the Introduction section (pattern type, class role, 
pattern coupling, and application domain), we have de-
rived three research questions that will guide the case study 
design and the reporting of the results: 
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RQ1: Is the number of pattern occurrences, in which a 
class participates, correlated to the stability of the 
class? 
RQ1.1:  Is there a difference in the stability of clas-

ses that participate and classes that do not 
participate in design patterns? 

RQ1.2:  Is there a difference in the stability of clas-
ses that participate in zero, one, or more 
than one design pattern occurrences? 

RQ1.3:  Is there a difference in the stability of clas-
ses that participate in zero, one, or more 
than one design pattern occurrences, across 
different application domains? 

RQ2: Is the type of the pattern, in which a class partici-
pates, correlated to the stability of the class? 
RQ2.1:  Is the type of the single pattern, in which a 

class participates, correlated to the stability 
of the class? 

RQ2.2: Is the type of the coupled patterns, in which 
a class participates, correlated to the stabil-
ity of the class? 

RQ3: Is the role that a class plays in a single pattern, cor-
related to the stability of the class? 

Although RQ1.1 could be answered through the investiga-
tion of RQ1.2, we have preferred to state it as a separate 
research question because all previous studies have only 
answered RQ1.1 and we can directly compare our results 
with those of previous studies. The metrics used to answer 
these research questions are discussed in Section 4.3. 

4.2 Case Selection and Units of Analysis 

According to Yin, for every case study, researchers must 
determine the context, the cases, and the units of analysis 
[52]. In this study, the context is open-source software and 
the cases/units of analysis are open source system classes. 
We note that this case study is holistic, because for each 
case, one unit of analysis is extracted. 

To gather as many cases as possible, we have decided to 
use a software engineering repository that documents de-
sign pattern occurrences (using the design pattern detection 
tools mentioned in Section 3.1); the repository, named per-
cerons.com, was created by one of the authors [5]. The 
aforementioned repository was initially created in 2009 as a 
catalogue of design pattern occurrences and a search engine 
to provide access to them. In the current version, the reposi-
tory shares data on 537 OSS projects. In order to guarantee, 
as far as possible, the data validity, we performed the pat-
tern occurrence validation process and the corrective ac-
tions (see Section 3.1), before data extraction. 

On the completion of this process we obtained 64,941 
units of analysis. From these classes, 10,413 participated in 
exactly one design pattern occurrence 2,716 participated in 
more than one design pattern occurrences and 51,812 did 
not participate in any design pattern occurrence. 

4.3 Data Collection and Pre-Processing 

The dataset that has been used in this study consists of   
64,941  rows, one row for each class of the considered sys-
tems. For every class, we recorded nine variables: 

[V1] Software system: the name of the OSS project from 
where we extracted the data. 

[V2] Application domain: the application domain of the 
software system (as defined in Sourceforge).  

[V3] Class name: the name of the class under study. 
[V4] Type of pattern: the name/names of the GoF de-

sign patterns that a class participates in (e.g., for 
single patterns: State, for coupled patterns: Strate-
gy and Visitor) 

[V5] Names of roles: the name/names of the role/roles 
that a class [V3] plays in GoF design pat-
tern/patterns mentioned in [V4] (e.g., for single 
patterns: Concrete Product, for coupled patterns: 
Concrete Strategy and Concrete Element) 

[V6] Instability: the probability of class [V3] to change 
due to change propagation, as provided by the tool 
described in Section 3.2. For the rest of the paper, 
this value will be referred to as instability. 

[V7] Count of pattern occurrences: a numeric represen-
tation  of [V4], i.e., number of pattern occurrences.  

[V8] Pattern participation: a Boolean representation of 
[V4]. It is set to true for classes that participate in at 
least one pattern and to false for classes that partic-
ipate in no pattern occurrences.  

[V9] Coupled pattern participant: an additional repre-
sentation of variable [V4]. It has three values: no 
pattern, single pattern, or coupled pattern. We use 
this variable to distinguish coupled from single 
patterns. 

[V8] and [V9] are variables that are derived from [V7]. 
These variables have been created to ease the analysis of the 
dataset because Boolean and ordinal representations offer 
additional means for statistical analysis. In Section 4.4, we 
map the aforementioned variables to the research questions 
where they were used.  

The produced dataset can be categorized with respect to 
GoF design patterns participation as shown in Table 2. The 
results of Table 2 suggest that approximately 20% of system 
classes participate in at least one GoF design pattern occur-
rence. This is in accordance to the outcome of a previous 
study, by Khomh and Guéhéneuc, who suggested that the 
number of classes that participate in at least one design 
pattern is between 4 – 30% [27]. However, by comparing 
the percentage of classes playing exactly one (in [27] it is 
reported to be between 4 – 30%) or more than one role (in 
[27] it is reported to be between 12 – 26%), we can observe a 
differentiation, that is probably due to the used pattern 
detection tools, and due to the fact that in [27] the authors 
selected to investigate 6 selected well-known OSS projects, 
whereas in our study we investigated 537 projects, includ-
ing both reputed and less-known ones. 

TABLE 2 
Dataset Description  

Pattern Participation Class Count    % 
No Pattern 51,812 79.8 

Single Pattern 10,413 16,0 
Coupled Pattern   2,716   4,2 

Total 64,941 100.0 
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In Table 3, we present the application domains of the 
OSS projects, the number of projects classes, and the num-
ber of pattern participating classes in each domain.  

TABLE 3 
GoF Design Patterns Repository Demographics  

Application Domain 
Project 
Count 

Class 
Count 

Pattern 
Participation 

(%) 
Audio and Video 50 4,301 31,3% 
Business and Enterprise 50 5,768 28,8% 
Communications 59 4,305 28,6% 
Development 119 16,273 13,3% 
Games 135 12,970 20,9% 
Graphics 53 7,715 25,9% 
Home and Education 31 3,177 21,9% 
Science and Engineering 40 10,432 12,4% 
Total 537 64.941 20,2% 

 
Fig. 4  Distribution of Pattern Occurrences across Applica-

tion Domains 

The application domains have been recorded during da-
ta extraction according to the categorization in Sourceforge, 
which is the OSS repository that was used for mining open-
source software projects in 2009. We believe that mapping 
OSS projects with the application domains that their own-
ers have selected to classify them is a safe option for this 
kind of characterization. The data in Table 3 suggest that 
around 20% of classes in OSS systems participate in GoF 
patterns, a result which is in accordance with [27, in which 
Khomh and Guéhéneuc suggest that approximately 30% of 
JHotDraw (i.e., one of the most frequent and pattern inten-
sive OSS examples for GoF pattern research) classes partic-
ipate in patterns. In Figure 4, we present the distribution of 

patterns across domains, across investigated pattern types. 
In Table 4, we present the number of classes that partici-

pate in single design pattern occurrences that have been 
retrieved during our analysis, whereas in Table 5, we pre-
sent the number of classes that participate in the most 
common combinations of GoF design pattern occurrences 
that occur in coupled patterns. The sum of coupled pattern 
occurrences does not match the one presented in Table 2, 
because there are 180 more coupled pattern types (with 
lower occurrence frequency) that are omitted from Table 5.  

TABLE 4 
Single GoF Design Patterns Participants  

GoF Design Pattern Class Count 

Adapter*  2,894 
Template Method  2,388 
Singleton  2,384 
Façade-Mediator  1,280 
Strategy-State      550 
Factory Method      476 
Prototype      161 
Proxy       89 
Abstract Factory       73 
Decorator       57 
Composite       32 
Observer       24 
Visitor         5 
Total 10,413 

*  We note that both tools report occurrences of Object Adapter 

TABLE 5 
Coupled GoF Design Patterns Participants  

Coupled GoF Design Patterns Class Count 

2 Façade-Mediator 314 
Adapter, Template Method 250 
Singleton, Adapter 133 
Adapter, Strategy-State 106 
Adapter, Façade-Mediator   84 
Template Method,  Prototype   78 
2 Adapters   67 
Singleton, Façade-Mediator    61 
2 Template Methods   52 
Adapter, Factory Method   44 
Total 1,189 

*  180 more combinations of patterns with occurrences that involve 
less than 44 participating classes 

In Table 6, we present the number of occurrences for 
each pattern role, for single pattern occurrences. Similar to 
Table 5, single pattern roles with a low number of occur-
rences are omitted. Finally, in Table 7, we present a synthe-
sized representation of roles across patterns. The rationale 
behind this data synthesis is based on the existence of simi-
lar roles that are found in different patterns. Namely, every 
role can be classified as:  

• client,  
• abstract class/interface,  
• concrete subclass,  
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• aggregate/container in a “whole-part” relationship, 
or the dependent class in a “simple association” (for 
simplicity, further referenced as aggregate)  

• component in a “whole-part” relationship or the in-
dependent class in a “simple association” (for sim-
plicity, further referenced as component), and  

• other type, with either more than one associations, 
e.g., both inheritance and aggregation (compo-
site/decorator) or no association (singleton).  

TABLE 6 
Single Patterns Roles  

GoF Design Pattern Class Count 

Singleton   2,384 
Concrete Class [Template Method]   1,883 
Adapter   1,451 
Adaptee   1,443 
Hidden Type-Colleague      840 
Abstract Class [Template Method]       505 
Mediator-Façade      440 
Concrete Factory [Factory Method]      363 
Concrete Strategy-State      336 
Context [Strategy-State]      119 
Creator [Factory Method]      113 
Concrete Prototype      102 
Strategy-State        95 
Concrete Factory [Abstract Factory]        66 
Proxy        40 
Real Subject [Proxy]        40 
Client [Prototype]        37 
Concrete Decorator        32 
Leaf [Composite]        22 
Prototype        22 
Concrete Observer        16 
Component [Decorator]        13 
Decorator        11 
Total 10,373 

* 20 more roles with less than 10 occurrences 

In Table 7, we observe that the number of clients is low, 
namely 156. This fact is due to a limitation of pattern detec-
tion tools to identify classes that play this role in all types of 
patterns (only for State-Strategy, Prototype, Observer). 

TABLE 7 
Roles Across GoF Design Patterns  

GoF Design Pattern Class Count 
Abstract Class / Interface     779 
Concrete Subclass  2,864 
Aggregate / Container 1,891 
Component 2,283 
Client    156 
Other 2,440 
Total     10,413 

4.4 Data Analysis 

To explore our dataset for answering the research ques-
tions described in Section 4.1, we applied descriptive statis-
tics and hypothesis testing, as shown in Table 8. From Table 

8, we observe that all variables are used in the investigation 
of at least one research question, except for variables [V1] 
and [V3]. Variables [V1] and [V3] are used for track-
ing/verification purposes, i.e., to identify systems and clas-
ses that are involved in design pattern occurrences so as to 
manually assess the validity of the pattern detection tools. 

Spearman correlation is used as measurement of correla-
tion between numerical and ordinal variables. Values of 
Spearman Correlation Coefficient that are near unity (1.0) 
suggest that the values are highly correlated. In addition, 
although scatter plots are normally used for correlation 
analysis (RQ1), a heat map has been used because both 
variables are ordinal. The 95% CI Bars present the mean 
value of a numerical variable and its 95% confidence inter-
val. Error bars can also be used to visually compare the 
mean values of two or more groups and get preliminary 
indications on the existence of significant differences. 

TABLE 8 
Data Analysis Per Research Question 

RQs Variables Data Analysis 
RQ1 [V6] numerical 

[V7] ordinal 
Spearman Correlation 

Line Chart and Heat Map 

RQ1.1 [V6] numerical 
[V8] binary 

95% Confidence Interval Error Bars 

Independent Sample t-test 

RQ1.2 [V6] numerical 
[V9] ordinal 

95% Confidence Interval Error Bars 

Independent Sample t-test 
Hochberg’s GT2 Post Hoc test 

RQ1.3 [V2] categorical 
[V6] numerical 
[V9] ordinal 

95% Confidence Interval Error Bars 

Independent Sample t-test 
Hochberg’s GT2 Post Hoc test 

RQ2 [V4] categorical 
[V6] numerical 
 

95% Confidence Interval Error Bars 

Analysis of Variance (ANOVA) 
Hochberg’s GT2 Post Hoc test 

RQ3 [V4] categorical 
[V6] numerical 
 

95% Confidence Interval Error Bars 

Analysis of Variance (ANOVA) 
Hochberg’s GT2 Post Hoc test 

RQ4 [V5] categorical 
[V6] numerical 

95% Confidence Interval Error Bars 

Analysis of Variance (ANOVA) 

To investigate the existence of statistically significant dif-
ferences in the mean values of numerical variables among 
groups, we have used two kinds of tests: (a) independent 
sample t-tests for comparing two groups of variables and 
(b) analysis of variance (ANOVA) for comparing the mean 
values of more than two groups. In the case of ANOVA, the 
test only reveals the existence of some differences among 
groups but does not point out the groups that differ. To 
have a more precise understanding of the relationships 
among certain groups, we performed Hochberg’s GT2 Post 
Hoc tests, which is for samples whose internal groups are 
not equal in terms of population [17] and [44].  

5 RESULTS 

In this section, we present the results of the case study, 
organized per research question. All results and compari-
son to related work are discussed in Section 6. 
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5.1 RQ1: Number of Pattern Occurrences 

To investigate if the number of design pattern occurrences 
in which a class participates is correlated to the instability 
of a class, we performed a Spearman correlation test. The 
two variables appear to be almost not correlated at all (Cor-
relation Coefficient: 0.18, sig: 0.00). Despite the weak corre-
lation, the results suggest that as the number of design pat-
terns in which a class participates increases, the less stable the 
class becomes (see the heat map and embedded line chart in 
Figure 5). In addition to that, one can observe that the insta-
bility of classes that participate in exactly one pattern occurrence 
is slightly smaller (approx. 3%) than the average instability of 
classes that do not participate in any pattern.  

 

Fig. 5  Pattern Occurrences vs. Instability (Heat Map, plus 
Line Chart representing average instability values) 

The instability of classes is weakly correlated to the 

number of patterns that a class participates in (the cor-

relation is statistically significant). However, as the 

number of pattern occurrences increases, the instability 

increases as well. 

Next, to further investigate the relationships between the 
count of pattern occurrences in which a class participates 
and its instability, we explore three null hypotheses: 

H0(a)  The mean instability of classes that participate in at 
least one design pattern occurrence equals the mean 
instability of classes that do not participate in any 
design pattern occurrence. 

H0(b)  The mean instability of classes that participate in ze-
ro, one and more pattern occurrences is equal. 

H0(c)  The mean instability of classes that participate in ze-
ro, one and more GoF design pattern occurrences is 
equal, regardless of the application domain. 

5.1.1 RQ1.1:  Participation in At Least One, or Zero Occur-
rences 

In Figure 6, we observe that classes that participate in at 
least one design pattern occurrence are slightly less stable 
than classes that do not participate in any GoF design pat-

tern occurrence (meanat least one design pattern: 0.341 and meanzero 

patterns: 0.339). This result  is mainly caused by the fact that in 
the "at least one pattern participant" category, we synthesize 
the average  instability of classes that participate in at least 
one design pattern occurrences. Therefore, the results are 
not contradictory to those of Figure 5; however, although 
the results in Figure 5 indicate that classes that participate 
in exactly one design pattern are slightly more stable than 
classes that do not participate in any pattern, the instability 
increases significantly when the number of patterns in 
which a class participates is higher. 

 

Fig. 6  Pattern Participation vs. Instability (Error Bars) 

The results of the corresponding independent sample t-
test (sig: 0.41, lower confidence interval of difference: -0.004 
and higher confidence interval of difference: 0.001), cannot 
lead to the rejection of the aforementioned hypothesis H0(a). 
Thus, the mean instability of classes that participate in at least 
one design pattern occurrence does not differ with statistical 
significance from the mean instability of classes that do not par-
ticipate in any design pattern occurrence. 

The instability of classes that do not participate in de-

sign pattern occurrences is not statistically significantly 

different, from the instability of classes that participate 

in design pattern occurrences 

5.1.2 RQ1.2: Participation in Zero, One, or More Occurrenc-
es 

The results illustrated in Figure 7 suggest that although the 
mean instability of classes that participate in exactly one 
GoF design pattern is slightly lower than the mean instabil-
ity of classes that do not participate in any design pattern 
occurrence, there is an overlap in the 95% intervals of their 
mean values. This fact indicates that the difference in the 
corresponding mean values might not be statistically signif-
icant. 

To more thoroughly examine hypothesis H0(b), i.e., wheth-
er the mean instability of classes that participate in zero, 
one, and more design pattern occurrences is equal, we per-
formed an analysis of variance (ANOVA).The results of 
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ANOVA suggest that the three groups, i.e., no pattern, single 
pattern, and coupled pattern present statistically significant 
differences (F: 20.19 and sig: 0.00), but the Post-Hoc test of 
Hochberg’s GT2 suggests that the differences are not signifi-
cant between all groups, but only between no pattern and coupled 
pattern (sig: 0.03, lower confidence interval of difference: -
0.02 and higher confidence interval of difference: -0.01), and 
single pattern and coupled pattern (sig: 0.03, lower confidence 
interval of difference: -0.03 and higher confidence interval 
of difference: -0.01). 

 
Fig. 7  Pattern Coupling vs. Instability (Error Bars) 

The instability of classes that participate in more than 

one design pattern occurrence is statistically signifi-

cantly higher, from the instability of classes that partici-

pate in exactly one design pattern occurrence and of 

classes that do not participate in any design pattern oc-

currences 

5.1.3 RQ1.3: Application Domains 

Finally, concerning the mean instability of classes that par-
ticipate in zero, one, and more GoF design pattern occur-
rences, across different application domains, the results 
reveal five different clusters of application domains, that 
exhibit different effect of GoF design pattern participation 
to class instability as follows (for 95% CI Error Bars see 
Figure 13 in Appendix B). The main findings are summa-
rized in Figure 8. 
From Figure 8, it becomes clear that the reported results on 
RQ1.2 (i.e., the relationship of the participation of a class in 
zero, one or more pattern occurrences and class instability) 
vary, depending on the examined application domain. For 
example, in Graphics, Audio and Video applications, the 
most stable classes do not participate in GoF design pattern 
occurrences, whereas the most instable ones, participate in 
more than one design pattern occurrence. On the other 
hand, in Games, Scientific and Engineering applications, 
the most stable classes participate in exactly one design 
pattern occurrence, whereas the most instable ones, do not 
participate in any pattern. 

 

Fig. 8  Differences among various application domains 

The instability of classes that participate in zero, one or 

more design pattern occurrences is statistically signifi-

cantly different across different application domains 

5.2 RQ2: Design Pattern Type 

In this section, we present the results concerning RQ2, i.e., 
the effect of the design pattern type on class stability.  More 
specifically, in Section 5.2.1, we present results on single 
design pattern occurrences whereas in Section 5.2.2 on cou-
pled design patterns. 

5.2.1 RQ2.1: Single Design Pattern 

To investigate if the effect of patterns on class instability is 
equal across all studied GoF design patterns, we have set 
and explored the following null hypothesis:  

H0(d)  The instability of a class that participates in a GoF 
design pattern occurrence is equal, across the stud-
ied GoF design pattern types.   

Investigating the hypothesis, through an error bar on the 
95% confidence interval (CI) of instability (see Figure 9) 
suggests that there are differences in the mean values of 
instability across different types of GoF design patterns. 
The confidence interval for each design pattern is obtained 
considering the values of instability of individual classes 
participating in each pattern. In most of the cases, there are 
limited or no overlaps of the 95% CI bars. The mean insta-
bility of a pattern is calculated as the average instability of 
classes that participate in it. Although in Figure 9, the mean 
instability for each pattern is depicted (the dot in each line), 
the main emphasis of the diagram is on the 95% CI bars. 
Focusing on the mean values poses a threat to the validity 
of the results because the number of pattern participating 
classes in each pattern occurrence is related to the type of 
the pattern (e.g., Singleton in its most common form in-
volves only one class, whereas other patterns like State or 
Strategy can involve a large number of concrete subclasses), 
as we discuss in Section 7.  

The ANOVA test indicates that the studied groups, i.e., 
GoF design pattern types, present statistically significant 
differences in terms of their mean values of instability (F: 
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108.56 and sig: 0.00). The results of the Hochberg’s GT2 
Post-Hoc tests are presented in Table 9. Patterns that are 
not included in Table 9, do not differ from any other pat-
tern, possibly because of the small number of occurrences 
in the dataset. In each cell of Table 9, we present the signifi-
cance value of the Hochberg’s GT2 test (i.e., the extent to 
which the difference in the mean instability of one pattern 
[row] from the mean instability of another pattern [column] 
is statistically significant). A difference between two pattern 
types is statistically significant if the corresponding value is 

less than 0.01(annotated with a double asterisk in Table 9, 
whereas single asterisks denote a statistical significance at a 
0.05 level). 

The instability of classes that participate in exactly one 

design pattern occurrence is statistically significantly 

different across different types of GoF design patterns. 

TABLE 9 
POST-HOC RESULTS (SINGLE PATTERN TYPE VS. INSTABILITY) 
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Abstract Factory 0,848 
          

Composite 0,001** 0,773 
         

Decorator 0,000** 0,224 1,000 
        

Façade -Mediator 0,000** 0,000** 1,000 1,000 
       

Factory Method 0,000** 1,000 0,647 0,052 0,000** 
      

Observer 0,002** 0,735 1,000 1,000 1,000 0,653      
Prototype 0,103 1,000 0,411 0,030* 0,000** 1,000 0,425 

    
Proxy 1,000 1,000 0,025* 0,001** 0,000** 0,850 0,034* 1,000 

   
Singleton 0,000** 0,000** 1,000 1,000 1,000 0,000** 1,000 0,000** 0,000** 

  
Strategy - State 0,000** 1,000 0,779 0,091 0,000** 1,000 0,771 1,000 0,617 0,000** 

 
Template Method 0,000** 1,000 0,996 0,497 0,000** 0,873 0,991 0,907 0,024* 0,000** 0,998 

 

 

Fig. 9   Single Pattern Type vs. Instability (Error Bars) 

5.2.2 RQ2.2: Coupled Design Patterns 
The results of this section concern only the coupled pattern 
occurrences of Table 5, because of the large numbers of 
possible combinations of GoF design pattern occurrences. 
To investigate RQ2.2, we have stated and investigated the 
following null hypothesis: 

 
H0(e)  The instability of a class that participates in more 

than one GoF design pattern occurrences is equal, 
across the studied combinations of GoF design pat-
tern occurrences. 
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The 95% Confidence Interval Error Bars (see Figure 10) 
suggest that classes that participate in most types of cou-
pled design pattern occurrences exhibit similar levels of 
instability because in most of them there are overlaps on 
their 95% confidence interval error bars. However, the 
ANOVA test suggests that mean values of instability differ 
across groups, i.e., different types of coupled patterns (F: 
53.66 and sig: 0.00). The Hochberg’s GT2 Post-Hoc analysis 
pointed out the most stable and most unstable pattern cou-
plings, as follows: 

Most Unstable Couplings :  
       - 2 Adapters 
Most Stable Couplings :   
       - 2 Façade-Mediator  
       - Façade-Mediator, Singleton 

The instability of classes that participate in more than 

one design pattern occurrence is statistically signifi-

cantly different across different types of coupled GoF de-

sign patterns. 

5.3 RQ3: Design Pattern Roles 

To investigate RQ3 we performed the same analysis, i.e., 
error bars, ANOVA and Hochberg’s GT2 Post-Hoc tests, on 
the groups formed by the primary pattern roles and synthe-
sized pattern roles, defined in Tables 6 and 7: 

H0(f)  The instability of a class that participates in a single 
GoF design pattern occurrence is the same, regard-
less of the role that the class plays in the GoF de-
sign pattern occurrence. 

Concerning roles of specific GoF design patterns (see er-
ror bars on Figure 11), the ANOVA test suggests that the 
mean values of instability across different pattern roles 

have statistically significant differences (F: 118.52 and sig: 
0.00). Thus, different roles are subject to different change 
propagation from the classes not participating in the pat-
tern, because some roles are “shielded” inside the pattern 
occurrence while others are not. The results of the 
Hochberg’s GT2 Post-Hoc tests suggest that there are cer-
tain motifs on the roles that differ from others. These differ-
ences can be mainly explained by the purpose of the role in 
the GoF design patterns, as described in Table 7. The find-
ings illustrated in Figure 11 are summarized in Table 10.  

TABLE 10 
Instability of GoF Design Patterns Participant Roles 

GoF Design Pattern 
Roles Instability  

Comparison 
Adapter Aggregate > Component 
Façade-Mediator Aggregate > Component 
Strategy-State Subclass > Superclass 
Factory Method Subclass > Superclass 
Prototype Subclass > Superclass 
Proxy Subclass > Superclass 
Abstract Factory Subclass > Superclass 
Observer Subclass > Superclass 
Template Method Superclass > Subclass 

As observed in association/aggregation-based patterns 
(e.g. Adapter and Façade), the class playing the Aggregate 
role is more unstable than the class playing the Component 
role. On the other hand, in inheritance-based patterns (e.g. 
Strategy and Observer), the concrete subclasses are more 
unstable than abstract classes (see discussion on Section 
6.3). The only exception are Template Method occurrences. 
The results of ANOVA validate that the mean value of 
instability is different across groups (F: 458.32 and sig: 0.00). 

 

Fig. 10  Coupled Pattern Types vs. Instability (Error Bars)
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Fig. 11  Pattern Roles vs. Instability (Error Bars)

To further investigate the relationship between the role that 
a class plays in a pattern and its instability, we differentiate 
between instability caused by: 

(a) Dependencies among classes within the same pat-
tern (pattern-internal dependencies);  

(b) Dependencies between a pattern-participating class 
and a class “outside” the pattern (pattern-external 
dependencies). 

The distinction between the two types of instability is 
important because instability of type (b) can be used for 
assessing the shielding from the “outside world” that a role 
offers to the rest of the pattern-participating classes, where-
as instability of type (a) is representing the instability 
caused by the structure of the pattern itself. To this end, in 
Table 11, we present the average number of dependencies 
(both internal and external) and the average REM per de-
pendency, for each pattern role. We list only pattern roles 
that can be classified either as aggregate/component (when 
they participate in part-whole relations or a simple associa-
tion) or as subclass/superclass (when they participate in 
generalization relationships). The results of Table 11 sug-
gest that:  

• Pattern-external dependencies are higher in number 
than pattern-internal dependencies and therefore 
more important concerning the instability of the 
pattern participating classes; 

• The only patterns with more than one pattern-
internal dependency per role are Proxy and Façade-
Mediator; 

• In association/aggregation-based patterns, pattern par-
ticipating classes are more tightly coupled (higher 
REM) to pattern-external classes than pattern inter-
nal classes; 

• In inheritance-based patterns, pattern participating 
classes are more tightly coupled (higher REM) to 

pattern-internal classes (i.e., their superclass) than 
pattern external; 

• The average number of dependencies and REM, 
regardless of the type of dependency (external or 
internal), is in agreement with the results on the In-
stability of GoF Design Pattern participating clas-
ses presented in Table 10; 

• The roles that are most “shielded” behind an ag-
gregate class or a superclass are the  Hidden Type 
(Façade-Mediator), the Concrete Subclass (Template 
Method), and the Concrete Observer (Observer).  

TABLE 11 
Dependencies and REM for GoF Design Pattern Roles  

GoF Design 

Pattern 
Roles 

AVG 

(Dependencies) 

AVG  

(REM) 

Internal External Internal External 

Adapter Aggregate  1.00 5.52 0.13 0.18 
 Component 0.00 2.80 0.00 0.22 
Façade-
Mediator 

Aggregate  2.86* 2.25 0.15 0.19 
Component 1.00 1.55 0.24 0.15 

Strategy- 
State 

Subclass  1.00 2.40 0.38 0.34 
Superclass 0.00 0.97 0.00 0.21 

Factory  
Method 

Subclass  1.00 2.61 0.19 0.14 
Superclass 0.00 2.81 0.00 0.20 

Prototype Subclass  1.00 2.65 0.27 0.21 
 Superclass 0.00 2.53 0.00 0.20 
Proxy Subclass  1.50 3.13 0.25 0.20 
 Superclass 0.00 1.50 0.00 0.35 
Abstract  
Factory 

Subclass  1.00 2.83 0.15 0.12 
Superclass 0.00 2.42 0.00 0.10 

Observer Subclass  1.00 1.85 0.31 0.24 
 Superclass 0.50 1.55 0.11 0.16 
Template 
Method 

Subclass  1.00 2.11 0.28 0.18 
Superclass 0.00 2.71 0.00 0.17 

*  the average number of Hidden Types / Colleagues are not related to 
the structure of the pattern, but is empirically retrieved. 
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The instability of classes that participate in design pat-

tern occurrences is statistically significantly different 

across different GoF design patterns roles 

 
6 Discussion 

In this section, we discuss the findings of our case study 
organized per research question and in comparison to the 
previous work. We remind that all evidence reported from 
the literature on the stability of design patterns, in fact deal 
with change proneness, i.e., the actual changes that occur in 
a class, merging changes from new requirements, debug-
ging, and change propagation, whereas our study focuses 
only on the impact of change propagation. 

6.1 Number of Pattern Occurrences 

The state-of-the-art on the change proneness of GoF design 
pattern-participating classes suggests that classes that par-
ticipate in GoF design patterns change more often than the 
classes that do not participate in design pattern occurrences 
[9], [10], [20]. These results are validated from our case 
study (see Figure 5), if we do not differentiate between 
single and coupled design pattern occurrences. Such a dis-
tinction has not been made in any previous studies. The 
two studies [27], [34] that investigate the effect of design 
pattern coupling on quality attributes are not related to 
instability or change proneness. 

By distinguishing between single and coupled design pat-
tern occurrences, we observe that classes that participate in 
a single design pattern are, on average, slightly more stable 
than classes that are not pattern participants. This is an 
intuitive result, because design patterns provide decou-
pling, which stops changes from being propagated to the 
classes that participate in the design pattern. On the contra-
ry, classes that participate in more than one design pattern 
occurrences are clearly losing this advantage (see Figures 5 
and 7). This result is also intuitive because the more re-
sponsibilities a class is assigned, the more unstable it be-
comes in terms of propagated changes. This observation is 
due to the fact that a class with more responsibilities must 
communicate with more classes, increasing the number of 
external dependencies, thus rendering it more “vulnerable” 
to change propagation. The results are in accordance to 
those of Khomh and Guéhéneuc, that suggest that quality 
characteristics, such as coupling, cohesion, and complexity 
appear to be worse in classes that participate in more than 
two design pattern occurrences, rather than classes that 
participate in one or zero design pattern occurrences [27]. 

However, for the first observation (single pattern-
participating classes are more stable than the non-pattern 
participating classes) to be statistically significant, we must 
take an additional parameter into consideration: application 
domain. The abovementioned claims are statistically signif-
icant for the application domains of Games, Home and Educa-
tion Applications, Development Tools, and Science and Engi-
neering Applications. This fact suggests that design pattern 
occurrences in these domains are loosely coupled to the rest 
of the system and thus become more resistant to propaga-
tion of changes. On the contrary, in Communication Tools, 

Business and Enterprise, Audio and Video, and Graphics appli-
cations, classes that participate in GoF design pattern oc-
currences are more prone to change propagation. Therefore, 
developers of such applications should be aware of the 
increased probability of changes propagating to pattern 
participating classes from the rest of the system. The results 
of our study are in accordance to those of Vasquez et al. 
[48], that suggest that other indirect quality indicators (such 
as anti-patterns or code smells) vary among different appli-
cation domains as well. 

6.2 Design Pattern Type 

A different perspective for further investigating the effect of 
GoF design patterns on stability is not to examine the set of 
patterns as a whole, but independently, according to the 
type of each design pattern occurrence. To the best of our 
knowledge, the only research results that are comparable to 
ours are the results of Aversano et al. [7]. However, Aver-
sano et al. have not separately investigated single from 
coupled design pattern occurrences, while they measured 
change proneness by summing up changes due to new 
requirements, debugging, and change propagation. Because 
Aversano et al. [7] have not studied the same set of pat-
terns, we only compare results on the common subset. Our 
results suggest that similarly to anti-patterns [39], each 
design pattern has a different effect on change-proneness.  

  According to the results of Figure 9 and the accompa-
nying ANOVA test, the most stable classes can be found in 
Singleton, Façade-Mediator, Observer, Composite, and 
Decorator occurrences. Classes that participate in Proxy 
and Adapter occurrences are more unstable than other 
pattern-participating and non-pattern-participating classes. 
These results are similar to those of Aversano et al., in 
terms of Singleton, Adapter, Composite and Decorator, but 
are not completely similar for Observer5. A possible reason 
is that Aversano et al. [7] investigated change proneness 
incurred by the addition, deletion. or modification of Ob-
server occurrences, whereas in our case the addition or 
deletion of Concrete Observers or Subjects does not lead to 
the propagation of any change: adding or deleting a sub-
class in an hierarchy does not change the dependencies and 
the REM value of the other classes in the system (Figure 3a). 

The fact that the Singleton design pattern occurrence is 
more stable than other design pattern occurrences can be 
explained by the fact that it consists of a single class, which 
does not have to carry additional dependencies to imple-
ment the pattern. This lack of dependencies limits the clas-
ses through which it can receive change requests and there-
fore its instability. Concerning Façade-Mediator, their low 
levels of instability might be caused by the clean separation 
they provide between subsystems. When using Façade or 
Mediator, the communication between Colleagues is syn-
chronized by a single class, limiting the number of depend-
encies between them, and therefore their instability. Finally, 
the fact that the instabilities of Composite and Decorator 
are similar is intuitively correct, because these patterns 
share a common structure.  
 

5 The Proxy, Façade, and Mediator design pattern are not examined in 
Aversano et al. [6] 
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Among the inheritance-based patterns  Proxy is the most 
unstable, because it is the only one in which one subclass is 
dependent on the other, increasing the number of internal 
dependencies (see Table 11). Concerning associa-
tion/aggregation-based patterns, Adapter, which provides a 
means for reusing the functionality of a class, is highly 
unstable, especially in the role of the Adapter that holds a 
large number of external dependencies (see Table 11).  

Another interesting result with respect to design pattern 
type instability is that the three creational patterns that 
have been investigated, i.e., Factory Method, Abstract Fac-
tory, and Prototype exhibit similar levels of instability. This 
fact implies that all creational patterns are implemented in 
a similar way in terms of dependencies and that their struc-
tural differences are not strongly affecting their stability.  

The results of investigating the stability of coupled de-
sign patterns (see Figure 10) suggest that coupling: (a) two 
Façade/Mediator or (b) Façade/Mediator with Singleton 
occurrences does not have a substantial negative effect on 
stability. Combining two Adapter occurrences should be 
avoided, because this pattern combination exhibits high 
levels of instability for the involved classes. These results 
cannot be compared to any other results in the literature, 
because this is the first time that design pattern coupling is 
being explored with respect to stability. However, we can 
observe that the effect of single patterns on instability is 
propagated to the coupled pattern occurrences. For exam-
ple, one of the most stable single patterns, i.e., Façade-
Mediator is part of the most stable coupled pattern occur-
rences. In particular, when combining two occurrences of 
stable design patterns, e.g., Façade-Mediator (instability ≈ 
0.28), the produced coupled pattern is slightly more unsta-
ble than the single pattern occurrences. However, the cou-
pled pattern remains the most stable among coupled pat-
tern occurrences (instability ≈ 0.30). On the other hand, 
Adapter, which is one of the patterns with the most unsta-
ble single pattern occurrences, is part of the two most un-
stable coupled pattern types.  

6.3 Design Pattern Roles 

Finally, when taking into account the roles that a class can 
play in GoF design pattern occurrences, we observed that 
the instability of the role depends on the mechanism that 
the pattern uses for relating classes, i.e., association or ag-
gregation (e.g., Adapter, Façade, etc.) or inheritance (Strat-
egy, Observer, etc.) and the type of pattern. From the re-
sults of this study, we observe that the most stable design 
pattern roles are the Strategy and the Hidden Type (Fa-
çade-Mediator). Both results are intuitively correct, because: 

• Strategy classes are in many cases purely abstract 
classes that hold a limited number of dependencies 
to other classes (0.97 in general – they usually hold 0 
or 1 dependencies). Therefore, they are not heavily 
dependent on the public interface of other classes 
and their role is not prone to change propagation; 

• Hidden Type classes are expected to be “shielded”  
behind Façade or Mediator classes. The original in-
tention of these classes (i.e., Façade and Mediator) is 
to handle the communication among Hidden Type 

classes, thereby decoupling them. This decoupling 
offers shielding against change propagation from 
classes outside the pattern.  

The results of the study suggest that in a class hierarchy, 
the superclass is more stable than the subclass, whereas in 
an association or a “part-whole” relationship the compo-
nent (or independent) class is more stable than the aggre-
gate (or dependent) class, as shown in Figure 12. This result 
might appear to be unexpected because the Aggregate and 
the Superclass are the channel through which the pattern is 
communicating with the rest of the system. However, a 
closer investigation of how the mechanisms of inheritance 
and aggregation or association work explains these results. 

  
Fig. 12  Stability of Pattern Roles w.r.t. class relation 

Comparing the stability of the two roles in a hierarchy, 
Subclasses inherits any dependency of the Superclass. So, if 
the Superclass depends on many other “pattern-external” 
classes, these dependencies are also added in the depend-
ency list of the Subclass. In addition, exactly because Sub-
classes supply concrete functionality, they usually must 
collaborate with other classes, further increasing the num-
ber of external dependencies. Finally, they also hold a 
strong relationship with their superclass. Therefore, the 
dependencies of a Subclass are by definition more than 
those of a Superclass. The fact that change proneness in-
creases as the depth of inheritance of a class becomes high-
er has also been observed by Bieman et al. [10]. Additional-
ly, the aforementioned results agree with those of Khomh et 
al. [29], which suggest that abstract classes are less change 
prone than children classes. 

On the contrary, in object association/aggregation the 
Aggregate role is less stable, because: (a) it communicates 
with all the Components of the sub-system (which act as 
suppliers of concrete functionality) and (b) it handles the 
communication between different sub-systems, whereas the 
dependencies of Components (which are shielded behind the 
interface of the Aggregate and usually perform limited in-
teraction outside their boundaries) are at most equal to the 
number of all Components in the same sub-system. There-
fore, the number of dependencies of the classes playing the 
Component roles is less or equal to the number of dependen-
cies of classes playing the role of the Aggregate. 

7  THREATS TO VALIDITY 

In this section, we present and discuss construct, reliability, 
external, and internal validity threats for this study [41]. 
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Construct validity reflects to what extent the phenomenon 
under study really represents what is investigated accord-
ing to the research questions. The reliability of the case 
study is related to whether the data is collected and the 
analysis is conducted in a way that can be replicated with 
the same results. External validity deals with possible 
threats while generalizing the findings derived from the 
sample to population. Finally, internal validity is related to 
identification of confounding factors, i.e., factors other than 
the independent variables that might influence the value of 
the dependent variable. 

7.1 Construct Validity 

The threat to construct validity is related to the accuracy of 
the tools and approach used to assess class instability and 
to detect design pattern occurrences. This is a construct 
validity in the sense that inaccurate results might lead to 
measuring a different phenomenon than the one that we 
originally intended to investigate.  

The selected algorithm for calculating class instability 
considers, as explained in Section 3.2, the dependencies in 
the system’s structure through which changes can propa-
gate from one class to another [46]. The calculation of the 
possibility of future changes is by nature an ambitious goal 
that cannot be achieved with high levels of accuracy, con-
sidering the numerous factors that might affect the decision 
of a designer to modify a classes, so this would be an im-
portant threat to validity if our study’s objective would be 
to estimate change proneness. Likewise, setting a constant 
value for the internal probability of change for system clas-
ses would also be a threat for accurately estimating change 
proneness. However, the goal of this study is to assess in-
stability rather than the actual change proneness, which is a 
straightforward procedure that is accurate, in the sense that 
it is solely based on class dependency analysis. Therefore, 
there is no real threat to validity from estimating instability.  

In addition to that, concerning the accuracy of the select-
ed design pattern detection tool, one possible threat is re-
lated to the possibility of considering false positives in our 
study or of neglecting true occurrences (false negatives) 
[45]. To mitigate the threat regarding false positives, two of 
the authors performed manual validation of design pattern 
occurrences. Based on the results the authors performed 
several enhancement actions, as presented in Section 3.1. 
Finally, we believe that the precision rates in our dataset is 
higher than the ones reported in [11], for two reasons:  

(a)  Based on our manual validation, we observed that 
many false-positives were identified due to mis-
placement of a pattern occurrence between similar 
patterns (e.g., Façade as Mediator, State as Strategy 
and vice-versa). This threat is completely mitigated 
in our study because we report results on such pat-
terns as one.  

(b)  The patterns that have been used in [11] are quite 
complex in their structure and therefore the chance 
of observing a misclassification on them is higher 
than for simpler patterns (about 70-75%) [11]. Also 
occurrences of simpler patterns is accurate by these 
tools in approximately 80% of the cases [11]. Fol-

lowing this observation, and the frequency of oc-
currence of these patterns in our dataset, we be-
lieve that the precision in our dataset is higher. 

The impact of false negatives in our study (due to lim-
ited recall rate in certain patterns) is alleviated by the fact 
that the examined data set contains already a vast number 
of occurrences. Even if true occurrences have remained 
undetected, the dataset is sufficiently large to enable the 
investigation of the instability of pattern-participating clas-
ses, at least for a number of patterns. In any case, as a miti-
gation action for this threat we preferred to use the union of 
the results of the used pattern detection tool, instead of 
using the intersection. 

7.2 Reliability  

To mitigate threats to reliability, two different researchers 
were involved in the data collection and one double-
checked the results of the other. Furthermore, one research-
er double-checked the results of the data analysis per-
formed by another researcher. All primitive data can be 
reproduced by using the percerons.com online repository or 
the tools mentioned in Section 3. 

7.3 External Validity 

Concerning external validity, we have identified three pos-
sible threats to the validity of our results. Firstly, all the 
investigated systems are written in Java and there is a pos-
sibility that the results would be different for other object-
oriented languages and other patterns. Secondly, we have 
examined fifteen (15) out of the twenty three (23) design 
patterns described by Gamma et al. [19], thus the results 
cannot be generalized to the rest of the GoF design patterns, 
since their stability may differ. Finally, the results of the 
study cannot be generalized to “special” implementations 
of design patterns instances in which there are no static 
relationships among classes playing different roles. For 
example, in the reflective implementation of the Visitor design 
pattern, the accept method uses reflection to choose the 
appropriate method to call on a Visitor. However, these are 
certainly exceptional cases and therefore we believe they 
pose a minor threat to the validity of the results. 

7.4 Internal Validity 

Finally, we consider pattern participation as an instability 
factor, i.e., we examine how the roles that classes have due 
to their participation in patterns lead to instability. Howev-
er, a class may have other responsibilities outside the pat-
tern, which may also result in dependencies and thus cause 
instability. This may potentially be a confounding factor 
and therefore constitutes an internal threat to validity [41], 
in the sense that factors other than the independent varia-
bles (pattern participation) affect the value of the depend-
ent variable (instability). To exclude other possible factors 
of instability, we should compare two versions of the same 
class, one designed with a GoF pattern and one designed 
with an alternative solution. The two systems would offer 
the same functionality, with the only change being the ap-
plication of the pattern itself. In such a case, it would be 
possible to investigate the effect of design patterns isolated 
from the other change factors. However, such cases are 
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extremely difficult to find in existing real-world examples 
or even to implement artificially on a large scale. Further-
more, GoF design patterns have been associated with a 
large number of design alternatives, which can substitute 
the role of the pattern [2]. Therefore, even if we set up such 
an experiment, it would only be possible to compare the 
GoF design patterns to a limited number of specific design 
alternatives. Thus, both conducting a case study or a con-
trolled experiment have their own limitations and none of 
the two would actually mitigate this risk. 

8  CONCLUSION 

This study investigated the effect of GoF design patterns on 
class stability. To achieve this goal, we conducted a multi-
case study on about 65.000 open-source Java classes to ex-
plore the probability of a class to change, due to propaga-
tion of changes that occurred in other classes. To assess the 
stability of GoF design patterns, we examined classes that 
participate in zero, one, or more design pattern occurrences. 
To the best of our knowledge, this is the largest case study 
on the effect of GoF design patterns on stability and the 
only study that reveals the different levels of stability be-
tween classes that participate in one or more pattern occur-
rences. 

The results of the case study indicate that classes that 
play exactly one role in a GoF design pattern are more sta-
ble than classes that play zero or more than one role in GoF 
design pattern occurrences. However, the level of statistical 
significance of that claim varies across different application 
domains. The results also suggest that different GoF design 
patterns provide different levels of stability to the classes 
that participate in them. For example, Singleton, Façade-
Mediator, Observer, Composite, and Decorator occurrences 
seem to consist of classes that are more resistant to changes 
propagating from other classes. Finally, the role that a class 
plays in a design pattern is also an indicator of its resistance 
to propagation of changes. We observed that the use of 
association/aggregation for establishing object communica-
tion, classes that play the Aggregate role are less stable than 
classes that play the Component role. On the other hand, in 
design patterns that involve inheritance, public Superclasses 
are more stable than Subclasses.  

The aforementioned results are valuable to practitioners, 
because they provide indications for testing and refactoring 
prioritization. Firstly, concerning testability, classes that are 
less resistant to change propagation should be checked for 
defects more often and more exhaustively, because they are 
expected to be more defect-prone. Secondly, concerning 
refactorings, due to the harmful effects of instability, classes 
that are less resistant to change propagation should be re-
factored to more stable designs. 

Additionally, we strongly believe that GoF design pat-
terns are not uniformly impacted by all possible sources of 
change, such as propagation from other classes, accommo-
dation of new requirements, and removal of defects. Treat-
ing all potential sources of change as a common type might 
lead to coarse-grain conclusions, because a particular de-
sign pattern might be beneficial in preventing one type of 
change and less helpful in shielding from other types of 

changes. Thus, as a line of future research one could inves-
tigate the susceptibility of GoF design pattern-participating 
classes to change with respect to factors other than the 
propagation of change, such as modifications due to correc-
tive or adaptive maintenance. This could be performed by 
contrasting instability and change proneness taking into 
account the history of changes of system classes. Specifical-
ly, while inspecting past data, one would have to consider 
not only method signature changes, but also changes in the 
contract of classes, which might emit changes. By distin-
guishing among different types of actual changes, it would 
be possible to investigate whether design pattern roles offer 
selective shielding, in terms of types of change (e.g., from 
new requirements, from propagated changes, or from bug 
fixing).  

Furthermore, the methodology that has been described 
in this paper analyzes the proneness of classes that partici-
pate in patterns to change, due to changes occurring in 
other classes. The analysis can also be performed at a more 
fine-grained level, that is, by examining the susceptibility of 
individual methods to change, which would require the 
analysis of dependencies between methods.    
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