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The Effect of GoF Design Patterns on Stability:
A Case Study

Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Member IEEE, Sofia Charalampidou and Paris
Avgeriou, Senior Member IEEE

Abstract — Stability refers to a software system’s resistance to the “ripple effect”, i.e., propagation of changes. In this paper, we investigate the
stability of classes that participate in instances/occurrences of GoF design patterns. We examine whether the stability of such classes is affected
by (a) the pattern type, (b) the role that the class plays in the pattern, (c) the number of pattern occurrences in which the class participates, and (d)
the application domain. To this end, we conducted a case study on about 65.000 Java open-source classes, where we performed change impact
analysis on classes that participate in zero, one (single pattern), or more than one (coupled) pattern occurrences. The results suggest that, the
application of design patterns can provide the expected “shielding” of certain pattern-participating classes against changes, depending on their
role in the pattern. Moreover, classes that participate in coupled pattern occurrences appear to be the least stable. The results can be used for
assessing the benefits and liabilities of the use of patterns and for testing and refactoring prioritization, because less stable classes are expected

to require more effort while testing, and urge for refactoring activities that would make them more resistant to change propagation.

Index Terms—D.2.2 Design Tools and Techniques, D.2.3.a Object-oriented programming, D.2.8 Metrics/Measurement

1 INTRODUCTION

he term pattern, in the field of software engineering,

refers to solutions to commonly occurring problems;
software patterns have been written for different develop-
ment phases (e.g., requirements, design, architecture) as
well as application domains (e.g., embedded systems, en-
terprise applications). Some of the most used patterns are
object-oriented design patterns [19], architectural patterns
[14] and analysis patterns [18]. The first ones ([19]) were
introduced in the mid-90s by Gamma, Helm, Johnson, and
Vlissides (known as Gang of Four or GoF), where solutions
to 23 common object-oriented problems were documented.
These patterns are also known as the GoF design patterns.

Since their inception, the GoF design patterns have at-
tracted large attention from the software engineering re-
search community, as revealed by two recent secondary
studies, conducted by Ampatzoglou et al. [6] and Zhang
and Budgen [53]. In these secondary studies, more than 130
scientific papers related to research on GoF design patterns
have been identified. The mapping study of Ampatzoglou
et al. [6] revealed that one of the most important research
topics on GoF design patterns is their effect on software
quality characteristics (the rest research topics were: pattern
formalizations, pattern detection, patterns application, and
other topics [6]). One particular quality characteristic that
both secondary studies emphasize is maintainability. Ac-
cording to both [6] and [53], research on the effect of GoF
design patterns on software maintainability is highly active,
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but still deserves more investigation as many research
questions remain unanswered. In this article, we adopt the
ISO-9126 definition for maintainability as the “software qual-
ity characteristic concerning the effort needed to make specified
modifications to an already implemented system”. 1SO-9126
decomposes maintainability into four characteristics [24]:
analyzability;

changeability;

stability;

testability.

We focus on software stability! (and its opposite, insta-
bility), which according to ISO 9126 “characterizes the sensi-
tivity to change of a given system that is the negative impact that
may be caused by system changes”. Concerning design pat-
terns’ effect on stability, until now, most studies have con-
centrated on pattern change proneness, i.e., the number of
actual changes to pattern-participating classes, without
differentiating between changes from new requirements,
changes due to debugging activities, and changes that
propagate from changes in other classes. Instability is dif-
ferent to change proneness as follows:

e change proneness is a measurement of all changes
that occur to a class (e.g., new requirements, debug-
ging, change propagation, etc.) [25], whereas stability
only refers to the last type of change (propagation of
other changes).

e change proneness is usually calculated from the ac-
tual changes that occur in a class (a posteriori analy-
sis), whereas stability can be calculated a priori.

Although instability and change proneness are closely re-
lated concepts that can be characterized as two sides of the

1 Instability is used in this paper as the opposite of stability, i.e., the
probability of a system to change, due to changes occurring in different
parts of the system
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same coin, there may be cases in which they are not corre-
lated. For example, a class heavily depending on other clas-
ses would be highly instable; however, if this class does not
actually change, then its change proneness would be low.

Therefore, in this study, instability is defined and meas-
ured at class level as the degree to which a class is subject to
change, due to changes in other, related classes, considering the
probability of such classes to change as equal to a certain value.
This value is obtained considering a constant value for its
internal change probability (due to reasons other than
change propagation) as well as its dependencies on other
classes. The exact value of the constant internal probability
of change for a class does not influence the ranking of clas-
ses according to their instability. It will only affect the range
of the absolute value of instability (for more details see
Section 3.2). Therefore, the co-change of classes that imple-
ment the same requirement, which is not occurring because
of their dependency, but because of their overlapping class
contracts [35] is outside the aforementioned definition of
instability. Similarly, the above definition of instability
excludes all changes that occur to classes due to changing
or additional requirements, and bug-fixing activities (as
most definitions of co-change in the literature).

The reason that we focus on stability is that it has been
advocated as one of the major benefits of GoF design pat-
terns [19]: design patterns are expected to “shield” some
participating classes from ripple effects, i.e., changes prop-
agated to them due to changes occurring in the rest of the
system. For example, in the Facade design pattern, the class
playing the role of Facade should prevent the propagation
of changes from clients to subsystem and vice-versa. We
examine this “shielding” effect from the perspective of the
design pattern structure, rather than the change frequency
of the surrounding classes of the design pattern. Consider-
ing the change frequency of the surrounding classes would
invalidate the findings of our study because the stability of
the examined patterns classes would be subject to the histo-
ry of changes in each system (see Section 3.2).

Therefore, we investigate if the claim that GoF patterns
support the stability of certain pattern-participating classes
holds in practice. In particular, our aim is to investigate
how the instability of classes that participate in a GoF de-
sign pattern is influenced by four different factors, i.e., pat-
tern type, class role, pattern coupling, and application do-
main. These factors have also been examined in the litera-
ture (see Section 2.3). The reasons why these factors are
expected to be influential with respect to class instability
are as follows:

e Type of the GoF design pattern. The type of the pattern
is expected to influence the instability of the classes
that participate in it, because the particular structure
of each pattern is expected to provide “shielding” to
different classes.

® Role of the class inside the GoF design pattern. The role
that a class plays in the pattern is expected to lead to
different levels of instability since different roles
have different dependencies to the rest of the system.

e Intersection of several GoF patterns on a single class
(termed pattern coupling in [34]). In the literature
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[27], [34], it is suggested that coupled pattern occur-
rences exhibit a different effect on several source
code metrics. Thus, we investigate if a different effect
holds for the instability of classes that participate in
more than one pattern occurrences.

o Application domain. The application domain of a
software system is expected to influence the way
GoF design patterns are implemented. According to
[1] and [48], quality differs significantly among ap-
plication domains. Therefore, based on these differ-
ences, we assume the existence of: (a) differences in
levels of instability, (b) differences in the way that
both pattern and non-pattern parts of the system are
implemented w.r.t. the use of object-oriented charac-
teristics (e.g., encapsulation, inheritance, polymor-
phism etc.), and (c) potential differences on the
amount of design pattern occurrences that would be
identified in each domain. All the aforementioned
assumptions are expected to differentiate our results
per application domain.

To provide empirical evidence on the relation between
pattern instability and those four factors, we conducted a
multi-case study on about 65,000 classes of 537 open-source
software (OSS) projects by performing change impact anal-
ysis (see Section 2.1). The reason for performing change
impact analysis is to investigate all possible dependencies,
through which a change can propagate from one class to
another and the probability of such an event, i.e., class in-
stability. Comparing the scope, the goals, and the research
method of this study to the previous work on this subject
(presented in Section 2), the main contributions of this
study (elaborated in Section 2.4) are that:

e [t investigates the effect of GoF design patterns on
the estimated instability of classes, i.e., the probability
of a class to change according to changes that oc-
curred in other classes of the system, rather than ac-
tual changes occurring in the classes. Studying class
instability gives a different perspective on the effect
of design patterns on software maintainability, be-
cause it relates to the design structure of the pattern,
rather than its context (surrounding classes). Addi-
tionally, instability, as a design measure and assum-
ing constant internal probabilities of change, can be
calculated early (in a pre-deployment phase), while,
change proneness is a post-deployment measure.
Therefore, instability indicates design spots that
might suffer from changeability issues, which can be
mitigated before software deployment.

e It is a large-scale empirical study. Until now, the larg-
est study on design patterns and change proneness
was conducted on three OSS (see Section 2.5).

e [t investigates the effect of coupled patterns on stabil-
ity. This is the first study that investigates the afore-
mentioned phenomenon (see Section 2.5).

In the next section, we present related work on change
impact analysis, on the effect of GoF design patterns on
maintainability and stability, on pattern coupling, as well as
an overview of the main contributions of this work with
respect to related work. In Section 3, we present the tools
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used in the case study data collection phase. In Section 4,
we present the case study design according to the guide-
lines provided by Runeson et al. [41]. In Section 5, we re-
port the findings of the case study, which are discussed
against each research question in Section 6. Threats to va-
lidity are discussed in Section 7. Finally, conclusions and
future work are presented in Section 8.

2 RELATED WORK

In this section, we provide an overview of previous re-
search efforts related to the scope of this paper. More spe-
cifically, in Section 2.1, we introduce related work in the
field of change impact analysis and in Sections 2.2 and 2.3,
we discuss research findings on the effect of GoF design
patterns on system maintainability and stability. In Section
2.4, we discuss research that has been performed on how
design patterns interact and possible implications of this
interaction. Finally, in Section 2.5, we summarize key re-
sults of studies that have assessed the effect of GoF design
patterns on stability, introduced in detail in Section 2.3, and
compare those studies against our study.

2.1 Change Impact Analysis

Change impact analysis deals with identifying and quanti-
fying the effects caused by changes in one part of a system
on other parts of the same system. According to the first
law of software evolution stated by Lehman and Belady
[31], namely 'Continuing Change', software systems must
be continually adapted lest they become obsolete and there-
fore change impact analysis plays an important role in
software development and maintenance. Before the actual
application of changes, change impact analysis can be valu-
able for program comprehension and effort estimation
([13], [22]) whereas, after changes have been applied, it can
be used to prioritize test cases and reveal relations among
components [40]. The term impact analysis has been used
for the first time by Horowitz et al. [23] in the mid-80s.
Recently, Li et al. [32] have presented a survey of 23 code-
based change impact analysis techniques. Change impact
analysis techniques can be classified in two broad catego-
ries [32]: (a) traceability-based, where the goal is to identify
the potential consequences of a change by relating different
types of software artifacts (e.g., requirements with source
code) and (b) dependency-based analysis, where depend-
encies among program entities (usually at the code level)
are identified and used to assess change impact. The ap-
proach and the tool that have been used in this study to
assess the stability of pattern- and non-pattern-participating
classes belong to the second category since the dependen-
cies among classes in object-oriented systems are used to
identify potential change propagation.

2.2 Design Patterns and Maintainability

According to two recent mapping studies on the research
state of the art on GoF design patterns, [6] and [53], soft-
ware maintainability appears to be one of the key quality
concerns of researchers that investigate the use of GoF de-
sign patterns. More specifically, according to Ampatzoglou
et al., 40% (14 out of 35) of the studies on the effect of GoF

design patterns on software quality attributes investigate
the effect of GoF design patterns on software maintainabil-
ity [6] whereas, according to Zhang and Budgen, GoF de-
sign patterns offer a framework for maintainability and
future research efforts should be more focused on main-
tainability [53].

Two of the most well-known controlled experiments on
the effect of GoF design patterns on software maintainabil-
ity have been performed by Prechelt et al. and Vokac et al.,
in 2001 and 2004 respectively ([38], [49]). The aim of both
studies was to compare the maintainability of systems with
and without design patterns. In [38], the patterns consid-
ered were Abstract Factory, Observer, Decorator, Compo-
site, and Visitor, while the participants of the experiment
were professional software engineers. The results of the
experiment suggest that it is usually preferable to apply a
design pattern rather than a simpler solution (more details
on the examined simpler solutions can be found in papers
[38], [49]). In a later replication of the experiment by Vokac
et al. [49], who used the same patterns and similar subject
groups, the authors increased experimental realism because
participants used a real programming environment instead
of pen and paper. The results suggest that design patterns
are not all beneficial or harmful with respect to mainte-
nance and that the decision of applying a GoF design pat-
tern or a simpler solution is best answered by the designer’s
common sense.

Jeanmart et al. [26] performed an experiment with stu-
dent participants that aimed at evaluating the under-
standability and the modifiability of Visitor design pattern
instances. The experiment used three open-source projects
as objects (including canonical and non-canonical represen-
tations of the Visitor pattern) and various comprehension
and modification tasks as evaluation criteria. Their results
suggest that the effort needed for modification tasks is re-
duced in cases where the canonical representation of the
Visitor pattern is used and when the subjects have a good
understanding of UML notations.

Ampatzoglou et al. [4] have attempted to provide an ob-
jective way of selecting between the application of patterns
and alternative design solution, with respect to software
maintenance. They proposed an analytical method that uses
a set of maintainability predictors [47] and mathematically
formalized their metric scores as functions of the number of
pattern-participating classes. Applying that method on
Bridge and Abstract Factory design patterns, they provided
several cut-off points, i.e., number of pattern participating
classes thresholds that, when surpassed, make the solutions
become more maintainable than the alternative solutions,
and vice versa. Both the study of Ampatzoglou et al. [4] and
Jeanmart et al. [26] point out the existence of certain condi-
tions, i.e., number of classes and design pattern representa-
tion/knowledge of UML notations respectively, that can be
used as predictors to decide in which cases the design pat-
tern solution is more maintainable.

Several other research efforts have empirically evaluated
the use of design patterns, with respect to software main-
tainability. Specifically, Khomh and Guéhéneuc per-formed
a survey with software engineers with significant experi-
ence on GoF design patterns and asked them to evaluate
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each pattern with respect to eight quality characteristics.
The quality characteristic that was related to maintainabil-
ity was expandability, i.e., the degree to which the design of
a system can be extended. The results suggested that 19 out
of the 23 GoF design patterns are evaluated as beneficial
with respect to maintainability, whereas only four as harm-
ful, i.e., Singleton, Flyweight, Proxy, and Memento [28].

Ampatzoglou and Chatzigeorgiou evaluated the main-
tainability of State, Strategy, and Bridge design pattern
occurrences [3]. The case study was performed on two
open-source computer games and provided a comparison
between a pattern and a non-pattern version, with respect
to complexity, coupling, cohesion, and size metrics. The
results suggested that all identified GoF design pattern
occurrences improved cohesion, coupling, and complexity
of the systems but, as a side effect, increased the size of the
systems, both in terms of lines of code and number of clas-
ses [3]. In a similar context, Kouskouras and Chatzigeor-
giou evaluated the use of an architectural pattern, i.e.,
namely the Registry pattern adopted from [42], with respect
to maintainability, by comparing it to a simple OO imple-
mentation, without the use of a pattern, as well as an alter-
native that combines the pattern with an AOP implementa-
tion. The results suggested that using the pattern offers a
more maintainable design than the non-pattern version,
while the AOP solution was optimal because it retained all
beneficial pattern characteristics and limited coupling of the
pattern inside the aspect [30].

Finally, Ng et al. investigated the relation between de-
sign patterns and the Open Closed Principle [33], through
experimentation. More specifically, the authors checked
real instances of the State design pattern to examine if the
code that should be encapsulated within a particular design
is actually using the encapsulation mechanisms of the pat-
tern. The results of the performed experiment suggests that
there is only a 20% chance of achieving conformance to the
Open Closed Principle if the State design pattern is not
used [37]. Assuming that conformance to the Open Closed
Principle is the desired way of extending a system, i.e., a
way of maintaining the system, the results suggested that
there is only a 20% chance for a system without a State
design pattern to be maintained in the desired Object-
Oriented way, i.e., by adding subclasses, rather than modi-
fying existing code. The result that adding subclasses is the
most common way of maintaining a pattern instance dur-
ing its evolution is supported by the same author, in [36].

2.3 Design Patterns and Stability

In addition to the ISO-9126 definition provided earlier, Yau
and Collofello ([50], [51]) define software stability as re-
sistance to propagation of changes (ripple effect) that the
software would have when it is modified, which is also
known as modular continuity [35]. Although the goal of
this study is to evaluate the effect of GoF design patterns on
stability, we do not to exclude from this discussion studies
related to GoF design patterns and change proneness be-
cause: (a) work on patterns and stability is limited and (b)
because results on change proneness and results on stability
are related in the sense that instability is a subset of change
proneness
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Some of the first studies on the effect of design patterns

on class change proneness were produced by Bieman et al.
First, in 2001, the authors conducted an industrial case
study that aimed at investigating correlation among code
changes, reusability, design patterns, and class size. The
results of the study suggest that the number of changes is
highly correlated to class size and that classes that play
roles in patterns or that are reused through inheritance are
more change prone than others [9]. In a replication of the
case study, in 2003, the same authors used three profes-
sional and two open-source projects, with the same re-
search objectives. The results of the second study do not
fully agree with those of the prior case study. The relation-
ships between class size, design patterns participation and
change proneness are still valid but appear weaker [10]. In
2009, Gatrell et al. replicated the work of Bieman [9], [10] on
proprietary C# applications, by taking the same GoF design
patterns into account. The main difference, apart from the
programming language, was the metric used for measuring
changes. Gatrell used a change-per-class measurement,
whereas Bieman used a change-per-operation measure-
ment. However, the results of the replication validated that
classes that participate in GoF pattern occurrences are more
change prone than classes which do not [20].
Di Penta et al. [15] investigated possible correlations among
class change proneness, the role that a class holds in a pat-
tern, and the kind of change that occurs. The design pat-
terns under study are Abstract Factory, Adapter, Com-
mand, Composite, Decorator, Factory Method, Observer,
Prototype, Singleton, State, Strategy, and Template Method.
They studied three open-source projects. The results of the
paper are intuitive for the majority of the roles that a class
can play in a design pattern instance. For example, classes
playing the Abstract Factory role (Abstract Factory pattern)
and the Product role (Command pattern) change less fre-
quently than the concrete ones. Another example is the
Command pattern, where classes playing the role of Receiv-
er change more frequently than classes playing the role of
Command. Furthermore, it is suggested that design activities
should take into consideration the roles that a class can
play, because interface roles’ change proneness can make
other parts of the system less robust to changes. Building
on [15], Aversano et al. [7] investigated the evolution of
GoF design patterns from the perspective of real changes
that occur on pattern occurrences, across different releases.
More specifically, the authors replicated the research ques-
tions of Di Penta et al. [15] and built on them by investigat-
ing the changes on pattern client and pattern target classes
[7]. The results of the study suggest that pattern occurrenc-
es that are used for application purposes are changing more
frequently and that different types of changes have a differ-
ent effect on co-changing classes. Furthermore, Elish has
qualitatively investigated the effect of structural GoF design
patterns on stability [16] and describe through examples the
way changes propagate among GoF design pattern partici-
pating classes. The illustrative examples suggest that the
studied patterns (i.e., Adapter, Bridge, Composite and Fa-
cade) have a positive effect on stability of class diagrams.

Finally, as indirect related work, we have identified sev-
eral studies on the effect of anti-patterns and code smells on
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change-proneness, that will be used in our discussion sec-
tion. Although this presentation is not exhaustive, we pro-
vide an overview of the studies that we have used. Firstly,
Khombh et al. [29] investigate the impact of code smells on
change-proneness by performing a case study on two OSS
projects. The results that are relevant to ours are those that
are related to specific class roles, such as abstract classes
and subclasses. Secondly, Romano et al. [39], investigated
the effect of anti-patterns on actual source code changes.
More specifically, they indicate that different anti-patterns
have different effect on change proneness (also underline
the most change prone ones), and that specific anti-
patterns lead to specific types of changes.

2.4 Design Patterns Coupling

The term 'design pattern coupling' has been introduced in
2001 by McNatt and Bieman [34]. Two or more design pat-
tern occurrences are considered coupled when they share at
least one pattern participating class [34].

Concerning the effect of coupled GoF design patterns on
quality characteristics, we have been able to identify, only
one related study [27]. In this study, Khomh and
Guéhéneuc, have identified coupled GoF design pattern
instances from five open-source projects and calculated
several well-known structural quality metrics, such as Cy-
clomatic Complexity, Lack of Cohesion of Methods, Cou-
pling Between Objects, etc. The results revealed quite a
different behavior of classes that participate in zero, one, or
two and more roles in GoF design pattern occurrences.
More specifically, the results suggest that classes that play
two and more roles in a design pattern are more complex,
more coupled, and less coherent than classes playing one or
zero roles in GoF design patterns. The study reported on
some demographic results, on the frequency of encounter-
ing GoF design pattern coupling. More specifically, the
study found that JHotDraw contains only 5.81% of classes
that play only one role while 24.45% play two roles in GoF
pattern occurrences [27].

2.5 Overview

In this section, we summarize the key characteristics of
studies (elaborated in Section 2.3) that have assessed the
effect of GoF design patterns on stability or change prone-
ness to discuss the main contribution of our study with
respect to related work. The key characteristics of research
that deals with patterns and stability or change proneness
are summarized in Table 1. In the last line of the table, we
present the features of our work.
Comparing the scope, the goals, and the research meth-
od of this study to the previous work, this study is:
¢ the largest-scale empirical study investigating the ef-
fect of GoF design patterns occurrences on stability.
¢ the first large-scale empirical study investigating the
effect of GoF design pattern occurrences on any
maintainability sub-characteristic, including, but not
limited to stability.
e the first empirical study that deals with the effect of
coupled GoF design patterns on stability.

TABLE 1
Research state of the art on the effect of GoF design pat-
terns on stability and change proneness
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[7] FM, Pr, CF No Casestudy Yes No
Si, Ad, Co, CFT (3 OSS)
De, Ob,Sta, LoCCoC
Str, TM, Vi
[9] Si,FM,Prx,It ACC No Case study No No
ACO (39 versions of
1 commercial)
[10] Ad, Bu, FM, ACC No Case study No No
It, Prx, Si, Sta, ACO (3 commercial,
Str, Vi 2 0OSS)
[15] AF, Cmd, Ad, CF No Casestudy  Yes Yes
Co, De, FM, CFT (3 OSS)
Ob, Pr, Si, Sta,
Str, TM, Vi
[16] Ad,Br,Co,Fa N/A No  Descriptive Yes No
Evaluation
[20] Ad, Bu, FM, ACC No Casestudy  Yes No
It, Prx, Si, Sta, (1 commercial)
Str, Vi
2 AF, Pr, Si, Ins Yes Case Study  Yes Yes
2 Ad, Co,De, (537 OSS)
§ Ob, Sta, Str,
e) TM, Vi, Pr

Design Patterns Abbreviations

Factory Method (FM), Prototype (Pr), Singleton (Si), Adapter (Ad),
Composite (Co), Decorator (De), Observer (Ob), State (Sta), Strategy
(Str), Template Method (TM), Visitor (Vi), Proxy (Prx), Iterator (It),
Builder (Bu), Abstract Factory (AF), Command (Cmd), Bridge (Br), Fa-
cade (Fa)

Metrics Abbreviations

Actual Change per Class (ACC), Not Available (N/A), Change Frequen-
cy (CF), Change Frequency Type (CFT), Actual Changes per Operation
(ACO), Lines of Code Changed in Other Classes (LoCCoC), Instability
(Ins)

3 Useb TooLs

In this section, we discuss background information needed
to understand the tools that we used for GoF pattern detec-
tion and for calculating the probability of a class to change.

3.1 Design Pattern Detection

We employed two different pattern detection tools (SSA,
by Tsantalis et al.) [45] and (PINOT, by Shi et al.) [43], both
capable of automatically identifying pattern occurrences (of
the GoF catalogue) in a given Java project. Both tools can be
downloaded from the web?.

2 http://java.uom.gr/~nikos/ pattern-detection.html




The tool proposed by Tsantalis et al. [45] identifies pat-
tern occurrences based on a similarity scoring algorithm
(SSA), even if the patterns are variations to the standard
forms in which they have been originally described. As an
example, the approach can identify an occurrence of the
Strategy pattern even if there is an intermediate inheritance
level between the Strategy role (abstract class or interface)
and the Concrete Strategy subclass role. The underlying
detection algorithm is based on a generalization of the link
analysis algorithms proposed by Blondel et al. [12].

Pattern inference and recovery tool (PINOT) is a pattern
detection approach [43] that can identify occurrences from
all structural and behavioral patterns in the GoF catalogue.
Detection places emphasis not only on the structural as-
pects of patterns (derived from inter-class relationships) but
also acknowledges the need to consider their behavioral
aspect. Once inter-class analysis has been performed to
narrow down the search space to particular methods, fur-
ther static behavioral analysis is applied to each candidate
method's body in terms of control flow and data flow.

Consequently, although both tools are performing static
analysis, the results of the tools are not expected to be iden-
tical, in the sense that:

¢ SSA investigates methods calls, whereas PINOT does
not;

e SSA investigates object creation, whereas PINOT
does not;

e PINOT investigates control flow and data flow,
whereas SSA does not;

e PINOT identifies pattern occurrences only in their
original versions. SSA identifies deviations, as well.

According to an independent study on design pattern
detection tools, by Binun and Kniesel [11], the recall rate
(i.e., the percentage of existing patterns that are identified by the
tool) of the SSA tool ranges from 24% to 52% (40.8% in aver-
age), while the recall rate for PINOT ranges from 13% to
50% (27.2% in average). Additionally, the precision rate
(i.e., the percentage of the identified patterns that is correct) for
the SSA tool ranges from 51% to 80% (66.0% in average)
and from 9% to 78% (30.6% in average) for the PINOT tool.
Yet, the evaluation was performed only on a limited
amount of GoF design pattern types (i.e., Composite, Ob-
server, Decorator, Chain of Responsibility, and Proxy) and,
therefore, cannot be generalized to all design pattern occur-
rences that the tools identify. Finally, among the tools dis-
cussed in [11], the similarity scoring tool and PINOT are the
only ones that can analyze projects regardless of their size.

To increase the degree of confidence on the employed
tools and to exclude from the analysis patterns for which
the results are not sufficiently accurate, we have manually
inspected a number of design pattern occurrences, as pre-
sented in Appendix A. We have selected to inspect one
pattern occurrence of each type, recovered from each appli-
cation domain (so in total approximately eight pattern oc-
currences per application domain, i.e.,, a grand total 119
pattern occurrences). The process was as follows:

http:/ /www.cs.ucdavis.edu/~shini/research /pinot

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

(a) One pattern occurrence of each type has been ran-
domly picked for every application domain (i.e., ap-
proximately eight design pattern occurrences for
each pattern type);

(b) The first and the second author independently re-
viewed the retrieved patterns, by providing a “v"or
an “X”;

(c) All pattern occurrences in which the results were
contradictive have been discussed by the two au-
thors, this procedure could lead in a change in the
evaluation of the reviewer;

(d) Every pattern occurrence that included even one “X”
was characterized as false positive, accompanied
with the reasoning for such a decision.

The results of the inspection led to the following corrective
actions:

e Merge State and Strategy occurrences, because they
are not easy to differentiate, even manually.

* Merge Facade and Mediator occurrences, because
many Mediator occurrences have been manually
identified as Facade occurrences.

¢ Remove Flyweight and Chain of Responsibility oc-
currences, because the number of false-positives was
high.

These actions are expected to reduce the number of false
positive pattern occurrences, because pattern types with
low precision levels have been either removed from the
analysis or merged with similar patterns.

As a final step on the process of selecting and using de-
sign pattern detection tools, we faced the decision on
whether we should consider the union or the intersection of
the two tools. In this study, as the final set of explored pat-
terns, we use the union of the results of the two tools, for
the following reasons:

o Increased number of investigated GoF design pattern
types. The SSA tool identifies occurrences from 11
GoF design patterns types, whereas PINOT from 13
types (9 in common and 6 unique). Therefore, con-
sidering the intersection of the results would lead to
a dataset involving a reduced number of GoF design
pattern types (ie., 9 patterns, compared to the 13
pattern types, in the case of union).

¢ Increasing recall. Based on the low number of recall of
both tools, we can deduct that both tools “miss” a
significant number of pattern occurrences. By joining
the results of the tools we aim at including addition-
al true-positive occurences (decrease false negatives),
that will increase recall.

However, as a side-effect of this decision, we acknowledge
the possible increase of false-positive (decrease of preci-
sion). We discuss this as a threat to the validity of this
study.

3.2 Class Instability

Predicting whether a given software module will change in
a future version is an ambitious goal because any actual
decision to perform changes to a class is subject to numer-
ous factors. The probability that a certain class will change
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in the future is affected not only by the likelihood of modi-
fying the class itself but also from possible changes in other
classes that might propagate to it. These so-called ripple
effects [21] (or change propagation) are the result of de-
pendencies or ‘axes of change’ (the term “axis of change’ is
used as in [46]) among classes through which a change in a
class (such as the change in a method signature - i.e., meth-
od name, types of parameters and return type) can affect
other classes enforcing them to be modified.

The tool® that has been employed in this study [46] ana-
lyzes the axes of change in which each class is involved and
calculates the instability incurred by each axis of change.
The accuracy of these probabilistic estimates can be im-
proved by using past data to calculate the probability of
change for each class due to modifications to the class itself
(internal probability), as well as the percentage of changes
that actually have propagated from other classes (propaga-
tion factor). As an example, for a class A having a depend-
ency on another class B due to the existence of a reference
(axisB), the probability of A being changed due to a change
in class B is obtained as P(A:axisB) = P(A | B)*P(B). P(A | B) is
the conditional probability of a change in class A with re-
spect to a change in class B and represents the possibility of
propagating a change from one class to the other while P(B)
refers to the internal probability of changing class B. A class
might be involved in several dependencies and, because
even one change will be a reason for editing the code, the
probability in which we are interested is the joint probabil-
ity of all events.

Regarding the internal probability of change, a constant
value has been used for all classes. In that sense the results
of this study do not reflect the actual distribution of internal
changes, because classes are expected to change with dif-
ferent frequencies. Because of this decision, the extracted
probabilities reflect only the extent to which a class is sub-
ject to future changes because of propagation of changes
due to the underlying system design, i.e., due to the de-
pendencies that it has on other classes in terms of inher-
itance, reference or name dependencies. Consequently, the
obtained values are consistent with the notion of stability,
which according to the ISO 9126 quality model [24] cap-
tures the capability of a software product to avoid unex-
pected effects from modifications of the software (other-
wise, if we had not used a constant value for internal prob-
ability of change, it would calculate change proneness and
not instability.

As an example, suppose the same instance of a design
pattern used in two different circumstances, i.e., (a) in a
“design hotspot” where the classes that emit changes to the
pattern are changing very frequently (see Figure 1a), (b) in a
design spot where the classes that emit changes to the pat-
tern are not changing very frequently (see Figure 1b). In this
example, if we had not used a fixed internal probability of

3 old tool: http://java.uom.gr/nikos/probabilistic-evaluation.html
new tool: http://iwi.eldoc.ub.rug.nl/root/2014/ClassInstability

We provide a link to both the old and the new version of the tool: (a) as an
acknowledgement to the tool that we used a starting point for reuse and (b)
as a reference for readers that might be interested in comparing the results
of the two tools.

change for the classes that communicate with the pattern
instance (classes in the pattern ‘neighborhood’), the same
design pattern instance would have been characterized as
stable in the case of Figure 1b, and as instable in the case of
Figure 1la. However, the structure and connectivity of the
pattern instance to the rest of the system is the same. There-
fore, we believe that considering the actual frequency of
changes in our study would invalidate the investigation of
pattern stability from a structural perspective, since in such
a case, stability would also be affected by the design spot,
in which the pattern is used.

emitted changes

- d h . ’ -
1 Partofa System
I with frequent.
L8 changes "= o

Pattern under Study

Context Strategy

+ execute()

C gyA C gyB

+ execute() + execute()

Fig.la Design Pattern instance placed in a frequently-
changing spot of the design
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Fig.1b Design pattern instance placed in an infrequently-
changing spot of the design

Concerning the propagation factor of changes among
dependent classes, we preferred not to use a constant value,
because the change propagation factor should ideally re-
flect as closely as possible the underlying design and the
effect of design patterns. For this reason, we used a Ripple
Effect Measure (REM), which attempts to quantify the
probability of a change occurring in class B to be propagat-
ed to a dependent class A, as discussed in Section 3.3.

3.3 Ripple Effects Measurement (REM)

In general, there are two types of axis of change, along
which a change can propagate: i.e., generalization and asso-
ciation relationships. To quantify the propagation factor,
we attempt to estimate the percentage of the accessible
interface of a class, which might emit changes to a depend-
ent class. In case of an association, this estimate can be ob-
tained as the ratio of distinct method calls from A to B, over
the number of public methods in class B. In case of general-
ization, there are three possible reasons for change propa-
gation: (a) super method invocation (use of super), (b) ac-
cess of protected fields, and (c) override or implementation
of abstract methods of the superclass. All these sources
should be normalized over the total number of accessible
members in the superclass. According to these observa-
tions, REM can be calculated as follows:



NDMC+NOP+NPTA
REM = (1)
NOM+NA

NDMC: Number of distinct method calls from class A to
class B (super class method invocations for the
case of generalization)

NOP: Number of polymorphic methods in class B (valid
only for generalization)

NPrA: Number of protected attributes in class B (valid
only for generalization)

NOM: Number of methods in class B

NA: Number of attributes in class B (valid only for

generalization)

The aforementioned measure has been incorporated in
the employed tool, by re-writing the functionality related to
the calculation of class probability of change*. Specifically,
for every dependency that is identified by the tool, we cal-
culate REM and set it as the propagation factor between the
depended classes. For example, consider the sample design
of Figure 2, where class A extends class B.

B

- att1 :int
# att2 : float
+m1()
+m2() :int
+ foo()

+ bar()
+baz()

att2 = CONST;
X = super.m2();

+m1() pd
+m3() :into”

Fig.2  Sample code for illustrating the calculation of REM
In the general case, class A can change if a change occurs
in B in the following cases:

e if it overrides a method, and the signature (method
name, types of parameters and return type) of this
method changes.

e if it calls a method of the superclass and the signa-
ture of the superclass method changes.

e if it uses a protected attribute, and this attribute
changes name.

On the other hand, the following changes in B do not prop-
agate in A:

¢ changes in the body of any function.

¢ changes in the signature of methods that A does not
call or override.

¢ changes in private attributes.

In the above example there are three types of change
which might propagate from superclass B to subclass A: (a)
change in att2, (b) change in ml (), and (c) change in
m2 (). Changing the type, the name, or deleting att2 will
lead to a compile error wherever att2 is accessed. Chang-
ing the signature of m2 () would lead to a compile error in
the corresponding invocation. Finally, changing the signa-
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ture of ml () would lead to a compile error in the place
where m1 () is overridden, because ml () is declared ab-
stract in the superclass. Thus, the estimate for the propaga-
tion factor can be calculated as:

RFC+NOP+NPrA __ 1+1+1

REM = —omTna 5+2

=0.42

Although REM is not a proper probability value, it cap-
tures the degree of interdependence between two classes,
and thus provides a relative estimate for the propagation
factor in each case.

3.4 Discussion on the REM

In this section we discuss some key strengths and limita-
tions of the previously defined measurement (REM). Specif-
ically, we discuss: (a) differences of REM to existing met-
rics, (b) ability of REM to differentiate between pattern and
non-pattern versions of the system, and (c) REM as a
change proneness measure.

One of the first tasks that we have performed while de-
signing this study was the identification of an existing
software metric that would be adequate for quantifying the
instability of a class. Intuitively, instability can be associat-
ed to coupling metrics, i.e., metrics that quantify the extent
to which classes are interconnected*. After going through
the definition of the most popular coupling metrics we
identified that all of them suffer from at least one of the
following limitations for measuring stability:

¢ they quantify only the number of dependencies be-
tween classes, and not the intensity of the coupling -
e.g. Coupling Between Objects (CBO), Afferent Cou-
pling (AfC), Efferent Coupling (EfC), etc.

¢ they quantify the intensity of a class dependency,
but use a count of how many times a method is
called inside another method as a measure - e.g,
Message Passing Coupling (MPC). This is not desir-
able because even one method call can lead to a
change propagation.

¢ they use attribute-related coupling, only by counting
the number of fields that are declared through an
aggregation relationship - e.g., Measure of Aggrega-
tion (MOA). This is not desirable, since for classes in
the same hierarchy, changes can propagate also
through protected fields.

Therefore, none of the already existing metrics was able of
quantifying all the identified ways that a class could emit
changes to another (see Section 3.3). Furthermore, to vali-
date our aforementioned qualitative evaluation, we per-
formed a small scale quantitative evaluation of REM (on
two open-source projects). The results suggested that REM
is more highly correlated to change propagation than any
of the aforementioned existing coupling metrics.

In addition to that, when comparing design-patterned
versus non-design-patterned spots of the system design, the
differences in the nature of the expected changes to them

4 Other structural quality attributes like complexity or cohesion have not
been considered, because they quantify internal characteristics of a class
(e.g., similarity of methods/attributes or number of decision statements
in a method), and not its interconnection to other classes.
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should be identified. The basic issue that discriminates
between these two spots is that the goal of many design
patterns is to make the design resilient against certain kinds
of change that are expected to be frequent. Those kinds of
change will never propagate, yet many (if not most) of the
changes will be of such type. According to [36], the most
common way of maintaining a design pattern instance is by
adding subclasses in the class hierarchies of the patterns (in
cases when they are applicable). Also, this way of maintain-
ing a system is acknowledged as the desired way, based on
the Open-Closed Principle [33]. Therefore, such a discrimi-
nation should not be neglected by the way that REM is
calculated. Based on the definition of REM, the difference
between propagating changes over inheritance versus
propagating changes over associations is captured, leading
to the desired differentiation.

For example, consider the following two cases (the first
with a template method instance, see Figure 3a, and the
second an equivalent non-pattern solution, see Figure 3b).
We note that in order for the examples to be realistic we do
not consider that the pattern instance is completely self-
sufficient, but some information is encapsulated in other
classes as well. For the design in Fig. 3a (Template Method
pattern) the calculation of REM is as follows:

e Client:0.2, it depends on 1 out of 5 methods of Ab-
stractClass (templateOperation)

e AbstractClass: 0.5, it depends on 1 out of 2 meth-
ods of CommonBehaviour (primitiveOpera-
tion1Helper)

e ConcreteSubclasses: 0.4, they depend on 2 out
of 5 methods of AbstractClass (i.e, primitive-
Operationl and primitiveOperation?2)

Whereas, for the design in Fig. 3b (Template Method alter-
native) the calculation of REM is as follows:

e Client:0.2+0.2-0.2*0.2 =0.36, it depends on 1 out
of 5 methods of both ConcreteSubclasses (tem-
plateOperation)

e ConcreteSubclasses: 0.5 they depend on 1 out of
2 methods of CommonBehaviour (primitive-—
OperationlHelper).

During evolution, a typical expected change in the de-
sign is the addition of ConcreteSubclasses, which in
the non-pattern version appear to have larger REM values
than the pattern version. Also, as ConcreteSubclasses
are added, the REM of the Client increases as well. Thus,
the proposed metric discriminates between design-
patterned spots from non-patterned spots (based on the
dependencies they are involved into), even with regard to
the particular changes for which the patterns have been
designed.

Finally, we acknowledge that the proposed metric is in-
capable of quantifying class change proneness, because it is
purely syntactic and does not take into account class con-
tracts, changes due to modified requirements, and bug
fixing activities. To propose such a metric one would have
to consider the semantics of functions, but even then it
would be impossible to obtain an accurate estimate of
change propagation probability, without analyzing the
history of actual changes. However, addressing this need

would invalidate the findings of our study as the stability
of the examined patterns would be subject to the history of
changes of the surrounding classes and not only to their
dependencies.

AbstractCl
S CommonBehaviour
o lateOperation() abs +templateOperation() <cuse>> m jtiveOperationiHelper()
+primitiveQperation 1() |- —----------= = TROmivatpariani el it

sprimitveCperation2() +irrelevantOperation1()

+primitiveOperation3()
+primitiveOperation4()

f

C 1
+primitiveOperation1()
+primitiveOperation2()

ConcreteSub: 2
+primitiveOperation1()
+primitiveOperation2()

Fig.3a Illustrative Template Method instance

+templateOperation()
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+templateOperation()
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+primitiveOperation3()

+templateOperation()

+primitiveOperation1()
+primitiveOperation2()
+primitiveOperation3()

+primitiveOperationd ()
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CommonBehaviour
+primitiveOperation1Helper()
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Fig. 3b Illustrative Template Method alternative

4 CASE STupY DESIGN

The objective of this case study is to investigate the stability
of classes that participate in GoF design pattern occurrenc-
es. To achieve this goal, we compare the stability of classes
participating in zero, one, or more design pattern occur-
rences, through a multi-case study. The case study has been
designed and reported according to the template suggested
by Runeson et al. [41]. The next sub-sections contain the
four parts of the design, i.e., Objectives and Research Ques-
tions, Case Selection and Units of Analysis, Data Collection
and Pre-Processing, and Data Analysis.

4.1 Objectives and Research Questions

The goal of the study is described using the Goal-Question-
Metrics (GQM) approach [8]:

“Analyze open source projects for the purpose of evaluating
design pattern participating classes with respect to their stabil-
ity, i.e., their probability to change due to changes occurring
on classes directly or indirectly associated with them from the
point of view of software developers, in the context of open-
source Java software projects”.

According to our goal and the four factors that we ex-
plained in the Introduction section (pattern type, class role,
pattern coupling, and application domain), we have de-
rived three research questions that will guide the case study
design and the reporting of the results:



RQq: Is the number of pattern occurrences, in which a
class participates, correlated to the stability of the
class?

RQu.1: Is there a difference in the stability of clas-
ses that participate and classes that do not
participate in design patterns?

RQi.2: Is there a difference in the stability of clas-
ses that participate in zero, one, or more
than one design pattern occurrences?

RQu3: Is there a difference in the stability of clas-
ses that participate in zero, one, or more
than one design pattern occurrences, across
different application domains?

RQy: Is the type of the pattern, in which a class partici-
pates, correlated to the stability of the class?

RQ:;: Is the type of the single pattern, in which a
class participates, correlated to the stability
of the class?

RQz2: Is the type of the coupled patterns, in which
a class participates, correlated to the stabil-
ity of the class?

RQs: Is the role that a class plays in a single pattern, cor-
related to the stability of the class?

Although RQ11 could be answered through the investiga-
tion of RQi», we have preferred to state it as a separate
research question because all previous studies have only
answered RQ:; and we can directly compare our results
with those of previous studies. The metrics used to answer
these research questions are discussed in Section 4.3.

4.2 Case Selection and Units of Analysis

According to Yin, for every case study, researchers must
determine the context, the cases, and the units of analysis
[52]. In this study, the context is open-source software and
the cases/units of analysis are open source system classes.
We note that this case study is holistic, because for each
case, one unit of analysis is extracted.

To gather as many cases as possible, we have decided to
use a software engineering repository that documents de-
sign pattern occurrences (using the design pattern detection
tools mentioned in Section 3.1); the repository, named per-
cerons.com, was created by one of the authors [5]. The
aforementioned repository was initially created in 2009 as a
catalogue of design pattern occurrences and a search engine
to provide access to them. In the current version, the reposi-
tory shares data on 537 OSS projects. In order to guarantee,
as far as possible, the data validity, we performed the pat-
tern occurrence validation process and the corrective ac-
tions (see Section 3.1), before data extraction.

On the completion of this process we obtained 64,941
units of analysis. From these classes, 10,413 participated in
exactly one design pattern occurrence 2,716 participated in
more than one design pattern occurrences and 51,812 did
not participate in any design pattern occurrence.

4.3 Data Collection and Pre-Processing

The dataset that has been used in this study consists of
64,941 rows, one row for each class of the considered sys-
tems. For every class, we recorded nine variables:
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[V1] Software system: the name of the OSS project from
where we extracted the data.

[V2] Application domain: the application domain of the
software system (as defined in Sourceforge).

[V3] Class name: the name of the class under study.

[V4] Type of pattern: the name/names of the GoF de-
sign patterns that a class participates in (e.g., for
single patterns: State, for coupled patterns: Strate-
gy and Visitor)

[V5] Names of roles: the name/names of the role/roles
that a class [V3] plays in GoF design pat-
tern/patterns mentioned in [V4] (e.g., for single
patterns: Concrete Product, for coupled patterns:
Concrete Strategy and Concrete Element)

[V6] Instability: the probability of class [V3] to change
due to change propagation, as provided by the tool
described in Section 3.2. For the rest of the paper,
this value will be referred to as instability.

[V7] Count of pattern occurrences: a numeric represen-
tation of [V4], i.e., number of pattern occurrences.

[V8] Pattern participation: a Boolean representation of
[V4]. It is set to true for classes that participate in at
least one pattern and to false for classes that partic-
ipate in no pattern occurrences.

[V9] Coupled pattern participant: an additional repre-
sentation of variable [V4]. It has three values: no
pattern, single pattern, or coupled pattern. We use
this variable to distinguish coupled from single
patterns.

[V8] and [V9] are variables that are derived from [V7].
These variables have been created to ease the analysis of the
dataset because Boolean and ordinal representations offer
additional means for statistical analysis. In Section 4.4, we
map the aforementioned variables to the research questions
where they were used.

The produced dataset can be categorized with respect to
GoF design patterns participation as shown in Table 2. The
results of Table 2 suggest that approximately 20% of system
classes participate in at least one GoF design pattern occur-
rence. This is in accordance to the outcome of a previous
study, by Khomh and Guéhéneuc, who suggested that the
number of classes that participate in at least one design
pattern is between 4 - 30% [27]. However, by comparing
the percentage of classes playing exactly one (in [27] it is
reported to be between 4 - 30%) or more than one role (in
[27] it is reported to be between 12 - 26%), we can observe a
differentiation, that is probably due to the used pattern
detection tools, and due to the fact that in [27] the authors
selected to investigate 6 selected well-known OSS projects,
whereas in our study we investigated 537 projects, includ-
ing both reputed and less-known ones.

TABLE 2
Dataset Description
Pattern Participation Class Count %
No Pattern 51,812 79.8
Single Pattern 10,413 16,0
Coupled Pattern 2,716 4,2
Total 64,941 100.0
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In Table 3, we present the application domains of the
OSS projects, the number of projects classes, and the num-
ber of pattern participating classes in each domain.

TABLE 3
GoF Design Patterns Repository Demographics

. Pattern
Application Domain Project Class Participation
pp Count Count o
(%)
Audio and Video 50 4,301 31,3%
Business and Enterprise 50 5,768 28,8%
Communications 59 4,305 28,6%
Development 119 16,273 13,3%
Games 135 12,970 20,9%
Graphics 53 7,715 25,9%
Home and Education 31 3,177 21,9%
Science and Engineering 40 10432 12,4%
Total 537 64.941 20,2%
visitor [N
observer |GGG
composite |GG
Decorator | NI
Abstract Factory [
proxy [
prototype |
Factory Method |
strategy-state | N
Fagade-Mediator [N
singleton |
Template
Method T
Adapter |
0% 20% 40% 60% 80% 100%
m Audio and Video m Business and Enterprise
m Communications m Development
m Games ® Graphics
Home and Education Science and Engineering
Fig.4 Distribution of Pattern Occurrences across Applica-

tion Domains

The application domains have been recorded during da-
ta extraction according to the categorization in Sourceforge,
which is the OSS repository that was used for mining open-
source software projects in 2009. We believe that mapping
OSS projects with the application domains that their own-
ers have selected to classify them is a safe option for this
kind of characterization. The data in Table 3 suggest that
around 20% of classes in OSS systems participate in GoF
patterns, a result which is in accordance with [27, in which
Khomh and Guéhéneuc suggest that approximately 30% of
JHotDraw (i.e., one of the most frequent and pattern inten-
sive OSS examples for GoF pattern research) classes partic-
ipate in patterns. In Figure 4, we present the distribution of

patterns across domains, across investigated pattern types.
In Table 4, we present the number of classes that partici-
pate in single design pattern occurrences that have been
retrieved during our analysis, whereas in Table 5, we pre-
sent the number of classes that participate in the most
common combinations of GoF design pattern occurrences
that occur in coupled patterns. The sum of coupled pattern
occurrences does not match the one presented in Table 2,
because there are 180 more coupled pattern types (with
lower occurrence frequency) that are omitted from Table 5.

TABLE 4
Single GoF Design Patterns Participants

GoF Design Pattern Class Count
Adapter” 2,894
Template Method 2,388
Singleton 2,384
Facade-Mediator 1,280
Strategy-State 550
Factory Method 476
Prototype 161
Proxy 89
Abstract Factory 73
Decorator 57
Composite 32
Observer 24
Visitor 5
Total 10,413

*  We note that both tools report occurrences of Object Adapter
TABLE 5

Coupled GoF Design Patterns Participants

Coupled GoF Design Patterns ~ Class Count

2 Fagade-Mediator 314
Adapter, Template Method 250
Singleton, Adapter 133
Adapter, Strategy-State 106
Adapter, Facade-Mediator 84
Template Method, Prototype 78
2 Adapters 67
Singleton, Facade-Mediator 61
2 Template Methods 52
Adapter, Factory Method 44
Total 1,189

* 180 more combinations of patterns with occurrences that involve
less than 44 participating classes

In Table 6, we present the number of occurrences for
each pattern role, for single pattern occurrences. Similar to
Table 5, single pattern roles with a low number of occur-
rences are omitted. Finally, in Table 7, we present a synthe-
sized representation of roles across patterns. The rationale
behind this data synthesis is based on the existence of simi-
lar roles that are found in different patterns. Namely, every
role can be classified as:

e client,
e abstract class/interface,
e concrete subclass,



e aggregate/container in a “whole-part” relationship,
or the dependent class in a “simple association” (for
simplicity, further referenced as aggregate)

e component in a “whole-part” relationship or the in-
dependent class in a “simple association” (for sim-
plicity, further referenced as component), and

e other type, with either more than one associations,
e.g., both inheritance and aggregation (compo-
site/ decorator) or no association (singleton).

TABLE 6
Single Patterns Roles

GoF Design Pattern Class Count
Singleton 2,384
Concrete Class [Template Method] 1,883
Adapter 1,451
Adaptee 1,443
Hidden Type-Colleague 840
Abstract Class [Template Method] 505
Mediator-Facade 440
Concrete Factory [Factory Method] 363
Concrete Strategy-State 336
Context [Strategy-State] 119
Creator [Factory Method] 113
Concrete Prototype 102
Strategy-State 95
Concrete Factory [Abstract Factory] 66
Proxy 40
Real Subject [Proxy] 40
Client [Prototype] 37
Concrete Decorator 32
Leaf [Composite] 22
Prototype 22
Concrete Observer 16
Component [Decorator] 13
Decorator 11
Total 10,373

* 20 more roles with less than 10 occurrences

In Table 7, we observe that the number of clients is low,
namely 156. This fact is due to a limitation of pattern detec-
tion tools to identify classes that play this role in all types of
patterns (only for State-Strategy, Prototype, Observer).

TABLE 7
Roles Across GoF Design Patterns

GoF Design Pattern Class Count
Abstract Class / Interface 779
Concrete Subclass 2,864
Aggregate / Container 1,891
Component 2,283
Client 156
Other 2,440
Total 10,413

4.4 Data Analysis

To explore our dataset for answering the research ques-
tions described in Section 4.1, we applied descriptive statis-
tics and hypothesis testing, as shown in Table 8. From Table
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8, we observe that all variables are used in the investigation
of at least one research question, except for variables [V1]
and [V3]. Variables [V1] and [V3] are used for track-
ing/verification purposes, i.e., to identify systems and clas-
ses that are involved in design pattern occurrences so as to
manually assess the validity of the pattern detection tools.
Spearman correlation is used as measurement of correla-
tion between numerical and ordinal variables. Values of
Spearman Correlation Coefficient that are near unity (1.0)
suggest that the values are highly correlated. In addition,
although scatter plots are normally used for correlation
analysis (RQi), a heat map has been used because both
variables are ordinal. The 95% CI Bars present the mean
value of a numerical variable and its 95% confidence inter-
val. Error bars can also be used to visually compare the
mean values of two or more groups and get preliminary
indications on the existence of significant differences.

TABLE 8
Data Analysis Per Research Question

RQs Variables Data Analysis
RQ: [V6] numerical Spearman Correlation
[V7] ordinal Line Chart and Heat Map
RQi1 [V6] numerical 95% Confidence Interval Error Bars
[V8] binary Independent Sample t-test
RQi2 [V6] numerical 95% Confidence Interval Error Bars
[V9] ordinal Independent Sample t-test
Hochberg’s GT2 Post Hoc test
RQ1s [V2] categorical 95% Confidence Interval Error Bars
[V6] numerical Independent Sample t-test
[V9] ordinal Hochberg’s GT2 Post Hoc test
RQ> [V4] categorical 95% Confidence Interval Error Bars
[V6] numerical ~ Analysis of Variance (ANOVA)
Hochberg’s GT2 Post Hoc test
RQs  [V4] categorical 95% Confidence Interval Error Bars
[V6] numerical ~ Analysis of Variance (ANOVA)
Hochberg’s GT2 Post Hoc test
RQs [V5] categorical 95% Confidence Interval Error Bars

[V6] numerical ~ Analysis of Variance (ANOVA)

To investigate the existence of statistically significant dif-
ferences in the mean values of numerical variables among
groups, we have used two kinds of tests: (a) independent
sample t-tests for comparing two groups of variables and
(b) analysis of variance (ANOVA) for comparing the mean
values of more than two groups. In the case of ANOVA, the
test only reveals the existence of some differences among
groups but does not point out the groups that differ. To
have a more precise understanding of the relationships
among certain groups, we performed Hochberg’s GT2 Post
Hoc tests, which is for samples whose internal groups are
not equal in terms of population [17] and [44].

5 RESULTS

In this section, we present the results of the case study,
organized per research question. All results and compari-
son to related work are discussed in Section 6.
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5.1 RQ1: Number of Pattern Occurrences

To investigate if the number of design pattern occurrences
in which a class participates is correlated to the instability
of a class, we performed a Spearman correlation test. The
two variables appear to be almost not correlated at all (Cor-
relation Coefficient: 0.18, sig: 0.00). Despite the weak corre-
lation, the results suggest that as the number of design pat-
terns in which a class participates increases, the less stable the
class becomes (see the heat map and embedded line chart in
Figure 5). In addition to that, one can observe that the insta-
bility of classes that participate in exactly one pattern occurrence
is slightly smaller (approx. 3%) than the average instability of
classes that do not participate in any pattern.
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Fig.5 Pattern Occurrences vs. Instability (Heat Map, plus

Line Chart representing average instability values)

The instability of classes is weakly correlated to the
number of patterns that a class participates in (the cor-
relation is statistically significant). However, as the
number of pattern occurrences increases, the instability
increases as well.

Next, to further investigate the relationships between the
count of pattern occurrences in which a class participates
and its instability, we explore three null hypotheses:

Ho@) The mean instability of classes that participate in at
least one design pattern occurrence equals the mean
instability of classes that do not participate in any
design pattern occurrence.

Hop) The mean instability of classes that participate in ze-
ro, one and more pattern occurrences is equal.

Ho) The mean instability of classes that participate in ze-
ro, one and more GoF design pattern occurrences is
equal, regardless of the application domain.

5.1.1 RQq1: Participation in At Least One, or Zero Occur-
rences

In Figure 6, we observe that classes that participate in at

least one design pattern occurrence are slightly less stable

than classes that do not participate in any GoF design pat-

tern occurrence (meanat least one design pattern: 0.341 and meanero
patterns: 0.339). This result is mainly caused by the fact that in
the "at least one pattern participant" category, we synthesize
the average instability of classes that participate in at least
one design pattern occurrences. Therefore, the results are
not contradictory to those of Figure 5; however, although
the results in Figure 5 indicate that classes that participate
in exactly one design pattern are slightly more stable than
classes that do not participate in any pattern, the instability
increases significantly when the number of patterns in
which a class participates is higher.
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Fig.6  Pattern Participation vs. Instability (Error Bars)

The results of the corresponding independent sample t-
test (sig: 0.41, lower confidence interval of difference: -0.004
and higher confidence interval of difference: 0.001), cannot
lead to the rejection of the aforementioned hypothesis Ho).
Thus, the mean instability of classes that participate in at least
one design pattern occurrence does not differ with statistical
significance from the mean instability of classes that do not par-
ticipate in any design pattern occurrence.

The instability of classes that do not participate in de-
sign pattern occurrences is not statistically significantly
different, from the instability of classes that participate

in design pattern occurrences

5.1.2 RQ,: Participation in Zero, One, or More Occurrenc-
es

The results illustrated in Figure 7 suggest that although the
mean instability of classes that participate in exactly one
GoF design pattern is slightly lower than the mean instabil-
ity of classes that do not participate in any design pattern
occurrence, there is an overlap in the 95% intervals of their
mean values. This fact indicates that the difference in the
corresponding mean values might not be statistically signif-
icant.

To more thoroughly examine hypothesis Ho), i.e., wheth-
er the mean instability of classes that participate in zero,
one, and more design pattern occurrences is equal, we per-
formed an analysis of variance (ANOVA).The results of
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ANOVA suggest that the three groups, i.e., no pattern, single
pattern, and coupled pattern present statistically significant
differences (F: 20.19 and sig: 0.00), but the Post-Hoc test of
Hochberg's GT2 suggests that the differences are not signifi-
cant between all groups, but only between no pattern and coupled
pattern (sig: 0.03, lower confidence interval of difference: -
0.02 and higher confidence interval of difference: -0.01), and
single pattern and coupled pattern (sig: 0.03, lower confidence
interval of difference: -0.03 and higher confidence interval
of difference: -0.01).
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Fig.7  Pattern Coupling vs. Instability (Error Bars)

The instability of classes that participate in more than
one design pattern occurrence is statistically signifi-
cantly higher, from the instability of classes that partici-
pate in exactly one design pattern occurrence and of
classes that do not participate in any design pattern oc-
currences

5.1.3 RQ1.3: Application Domains

Finally, concerning the mean instability of classes that par-
ticipate in zero, one, and more GoF design pattern occur-
rences, across different application domains, the results
reveal five different clusters of application domains, that
exhibit different effect of GoF design pattern participation
to class instability as follows (for 95% CI Error Bars see
Figure 13 in Appendix B). The main findings are summa-
rized in Figure 8.

From Figure 8, it becomes clear that the reported results on
RQ1.2 (i.e., the relationship of the participation of a class in
zero, one or more pattern occurrences and class instability)
vary, depending on the examined application domain. For
example, in Graphics, Audio and Video applications, the
most stable classes do not participate in GoF design pattern
occurrences, whereas the most instable ones, participate in
more than one design pattern occurrence. On the other
hand, in Games, Scientific and Engineering applications,
the most stable classes participate in exactly one design
pattern occurrence, whereas the most instable ones, do not
participate in any pattern.
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Application Domain
Audio & Video Thost stable ‘
Graphics

no pattern single pattern coupled pattern
Games most stable

!

Science & Engineering

single pattern coupled pattern no pattern

Business & Enterprise most stable ‘
Communications no pattern single pattern
coupled pattern
Home & Education fijgststable _
single pattern no pattern
coupled pattern
Development Tools cststable -
single pattern no pattern

coupled pattern

Fig.8 Differences among various application domains

The instability of classes that participate in zero, one or
more design pattern occurrences is statistically signifi-

cantly different across different application domains

5.2 RQz: Design Pattern Type

In this section, we present the results concerning RQ);, i.e.,
the effect of the design pattern type on class stability. More
specifically, in Section 5.2.1, we present results on single
design pattern occurrences whereas in Section 5.2.2 on cou-
pled design patterns.

5.2.1 RQz1: Single Design Pattern

To investigate if the effect of patterns on class instability is
equal across all studied GoF design patterns, we have set
and explored the following null hypothesis:

Ho(g) The instability of a class that participates in a GoF
design pattern occurrence is equal, across the stud-
ied GoF design pattern types.

Investigating the hypothesis, through an error bar on the
95% confidence interval (CI) of instability (see Figure 9)
suggests that there are differences in the mean values of
instability across different types of GoF design patterns.
The confidence interval for each design pattern is obtained
considering the values of instability of individual classes
participating in each pattern. In most of the cases, there are
limited or no overlaps of the 95% CI bars. The mean insta-
bility of a pattern is calculated as the average instability of
classes that participate in it. Although in Figure 9, the mean
instability for each pattern is depicted (the dot in each line),
the main emphasis of the diagram is on the 95% CI bars.
Focusing on the mean values poses a threat to the validity
of the results because the number of pattern participating
classes in each pattern occurrence is related to the type of
the pattern (e.g., Singleton in its most common form in-
volves only one class, whereas other patterns like State or
Strategy can involve a large number of concrete subclasses),
as we discuss in Section 7.

The ANOVA test indicates that the studied groups, i.e.,
GoF design pattern types, present statistically significant
differences in terms of their mean values of instability (F:
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108.56 and sig: 0.00). The results of the Hochberg's GT2
Post-Hoc tests are presented in Table 9. Patterns that are
not included in Table 9, do not differ from any other pat-
tern, possibly because of the small number of occurrences
in the dataset. In each cell of Table 9, we present the signifi-
cance value of the Hochberg's GT2 test (i.e., the extent to
which the difference in the mean instability of one pattern
[row] from the mean instability of another pattern [column]
is statistically significant). A difference between two pattern
types is statistically significant if the corresponding value is
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less than 0.01(annotated with a double asterisk in Table 9,
whereas single asterisks denote a statistical significance at a
0.05 level).

The instability of classes that participate in exactly one
design pattern occurrence is statistically significantly
different across different types of GoF design patterns.

TABLE 9
POST-HOC RESULTS (SINGLE PATTERN TYPE VS. INSTABILITY)
[
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Fig.9 Single Pattern Type vs. Instability (Error Bars)

5.2.2 RQ»»: Coupled Design Patterns

The results of this section concern only the coupled pattern
occurrences of Table 5, because of the large numbers of
possible combinations of GoF design pattern occurrences.
To investigate RQ,2, we have stated and investigated the
following null hypothesis:

Mediator

State Method

pattern type

Ho) The instability of a class that participates in more
than one GoF design pattern occurrences is equal,
across the studied combinations of GoF design pat-
tern occurrences.



The 95% Confidence Interval Error Bars (see Figure 10)
suggest that classes that participate in most types of cou-
pled design pattern occurrences exhibit similar levels of
instability because in most of them there are overlaps on
their 95% confidence interval error bars. However, the
ANOVA test suggests that mean values of instability differ
across groups, i.e., different types of coupled patterns (F:
53.66 and sig: 0.00). The Hochberg’'s GT2 Post-Hoc analysis
pointed out the most stable and most unstable pattern cou-
plings, as follows:

Most Unstable Couplings :
- 2 Adapters
Most Stable Couplings :
- 2 Facade-Mediator
- Facade-Mediator, Singleton

The instability of classes that participate in more than
one design pattern occurrence is statistically signifi-
cantly different across different types of coupled GoF de-

sign patterns.

5.3 RQs: Design Pattern Roles

To investigate RQ3; we performed the same analysis, i.e.,
error bars, ANOVA and Hochberg’s GT2 Post-Hoc tests, on
the groups formed by the primary pattern roles and synthe-
sized pattern roles, defined in Tables 6 and 7:

Hy¢ The instability of a class that participates in a single
GoF design pattern occurrence is the same, regard-
less of the role that the class plays in the GoF de-
sign pattern occurrence.

Concerning roles of specific GoF design patterns (see er-
ror bars on Figure 11), the ANOVA test suggests that the
mean values of instability across different pattern roles
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have statistically significant differences (F: 118.52 and sig:
0.00). Thus, different roles are subject to different change
propagation from the classes not participating in the pat-
tern, because some roles are “shielded” inside the pattern
occurrence while others are not. The results of the
Hochberg's GT2 Post-Hoc tests suggest that there are cer-
tain motifs on the roles that differ from others. These differ-
ences can be mainly explained by the purpose of the role in
the GoF design patterns, as described in Table 7. The find-
ings illustrated in Figure 11 are summarized in Table 10.

TABLE 10
Instability of GoF Design Patterns Participant Roles

Roles Instability
Comparison
Aggregate > Component
Aggregate > Component
Subclass > Superclass

GoF Design Pattern

Adapter
Facade-Mediator
Strategy-State

Factory Method Subclass > Superclass
Prototype Subclass > Superclass
Proxy Subclass > Superclass
Abstract Factory Subclass > Superclass
Observer Subclass > Superclass
Template Method Superclass > Subclass

As observed in association/aggregation-based patterns
(e.g. Adapter and Facade), the class playing the Aggregate
role is more unstable than the class playing the Component
role. On the other hand, in inheritance-based patterns (e.g.
Strategy and Observer), the concrete subclasses are more
unstable than abstract classes (see discussion on Section
6.3). The only exception are Template Method occurrences.
The results of ANOVA validate that the mean value of
instability is different across groups (F: 458.32 and sig: 0.00).
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Fig.10 Coupled Pattern Types vs. Instability (Error Bars)
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To further investigate the relationship between the role that pattern-internal classes (i.e., their superclass) than
a class plays in a pattern and its instability, we differentiate pattern external;
between instability caused by: ¢ The average number of dependencies and REM,
a) Dependencies among classes within the same pat- regardless of the type of dependency (external or
p 8 p g YP p y
tern (pattern-internal dependencies); internal), is in agreement with the results on the In-
(b) Dependencies between a pattern-participating class stability of GoF Design Pattern participating clas-
and a class “outside” the pattern (pattern-external ses presented in Table 10;
dependencies). e The roles that are most “shielded” behind an ag-
The distinction between the two types of instability is gregate class or a superclass are the Hidden Type
important because instability of type (b) can be used for (Facade-Mediator), the Concrete Subclass (Template
assessing the shielding from the “outside world” that a role Method), and the Concrete Observer (Observer).
offers to the rest of the pattern-participating classes, where-
as instability of type (a) is representing the instability . TABLE 11 .
caused by the structure of the pattern itself. To this end, in Dependencies and REM for GoF Design Pattern Roles
Table 11, we present the average number of dependencies AVG AVG
(both internal and external) and the average REM per de- ~ GoF Design o ' (Dependencies) (REM)
pendency, for each pattern role. We list only pattern roles Pattern
e . Internal External Internal External
that can be classified either as aggregate/component (when
.. . . : . Adapter Aggregate  1.00 5.52 0.13 0.18
they participate in part-whole relations or a simple associa-
. .. . Component  0.00 2.80 0.00 0.22
tion) or as subclass/superclass (when they participate in -
eneralization relationships). The results of Table 11 sug- Facade- Aggregate  2.86 225 015 0.19
S that ' Mediator Component 100 155 024 015
& ) Strategy- Subclass 1.00 2.40 0.38 0.34
®  Pattern-external dependencies are higher in number  giate Superclass  0.00 0.97 0.00 0.21
than pattern-internal dependencies and therefore Factory Subclass 1.00 261 0.19 0.14
more important concerning the instability of the  pfethod Superclass  0.00 281 0.00 0.20
pattern participating classes; Prototype  Subclass 1.00 2.65 0.27 0.21
¢ The only patterns with more than one pattern- Superclass  0.00 2.53 0.00 0.20
internal dependency per role are Proxy and Fagade-  Proxy Subclass 1.50 3.13 0.25 0.20
Mediator; Superclass  0.00 1.50 0.00 0.35
e In association/aggregation-based patterns, pattern par- Abstract Subclass 1.00 2.83 015 0.12
ticipating classes are more tightly coupled (higher ~_Factory Superclass _ 0.00 242 0.00 0.10
REM) to pattern-external classes than pattern inter- Observer  Subclass 1.00 1.85 0.31 0.24
nal classes; Superclass  0.50 1.55 0.11 0.16
o In inherit based patt t ticipati Template Subclass 1.00 211 0.28 0.18
L puerttance-oused: patierns, pattern parucipating  nrohod  Superclass  0.00 271 000 017

classes are more tightly coupled (higher REM) to

* the average number of Hidden Types / Colleagues are not related to
the structure of the pattern, but is empirically retrieved.



The instability of classes that participate in design pat-
tern occurrences is statistically significantly different

across different GoF design patterns roles

6 Discussion

In this section, we discuss the findings of our case study
organized per research question and in comparison to the
previous work. We remind that all evidence reported from
the literature on the stability of design patterns, in fact deal
with change proneness, i.e., the actual changes that occur in
a class, merging changes from new requirements, debug-
ging, and change propagation, whereas our study focuses
only on the impact of change propagation.

6.1 Number of Pattern Occurrences

The state-of-the-art on the change proneness of GoF design
pattern-participating classes suggests that classes that par-
ticipate in GoF design patterns change more often than the
classes that do not participate in design pattern occurrences
[9], [10], [20]. These results are validated from our case
study (see Figure 5), if we do not differentiate between
single and coupled design pattern occurrences. Such a dis-
tinction has not been made in any previous studies. The
two studies [27], [34] that investigate the effect of design
pattern coupling on quality attributes are not related to
instability or change proneness.

By distinguishing between single and coupled design pat-
tern occurrences, we observe that classes that participate in
a single design pattern are, on average, slightly more stable
than classes that are not pattern participants. This is an
intuitive result, because design patterns provide decou-
pling, which stops changes from being propagated to the
classes that participate in the design pattern. On the contra-
ry, classes that participate in more than one design pattern
occurrences are clearly losing this advantage (see Figures 5
and 7). This result is also intuitive because the more re-
sponsibilities a class is assigned, the more unstable it be-
comes in terms of propagated changes. This observation is
due to the fact that a class with more responsibilities must
communicate with more classes, increasing the number of
external dependencies, thus rendering it more “vulnerable”
to change propagation. The results are in accordance to
those of Khomh and Guéhéneuc, that suggest that quality
characteristics, such as coupling, cohesion, and complexity
appear to be worse in classes that participate in more than
two design pattern occurrences, rather than classes that
participate in one or zero design pattern occurrences [27].

However, for the first observation (single pattern-
participating classes are more stable than the non-pattern
participating classes) to be statistically significant, we must
take an additional parameter into consideration: application
domain. The abovementioned claims are statistically signif-
icant for the application domains of Games, Home and Educa-
tion Applications, Development Tools, and Science and Engi-
neering Applications. This fact suggests that design pattern
occurrences in these domains are loosely coupled to the rest
of the system and thus become more resistant to propaga-
tion of changes. On the contrary, in Communication Tools,
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Business and Enterprise, Audio and Video, and Graphics appli-
cations, classes that participate in GoF design pattern oc-
currences are more prone to change propagation. Therefore,
developers of such applications should be aware of the
increased probability of changes propagating to pattern
participating classes from the rest of the system. The results
of our study are in accordance to those of Vasquez et al.
[48], that suggest that other indirect quality indicators (such
as anti-patterns or code smells) vary among different appli-
cation domains as well.

6.2 Design Pattern Type

A different perspective for further investigating the effect of
GoF design patterns on stability is not to examine the set of
patterns as a whole, but independently, according to the
type of each design pattern occurrence. To the best of our
knowledge, the only research results that are comparable to
ours are the results of Aversano et al. [7]. However, Aver-
sano et al. have not separately investigated single from
coupled design pattern occurrences, while they measured
change proneness by summing up changes due to new
requirements, debugging, and change propagation. Because
Aversano et al. [7] have not studied the same set of pat-
terns, we only compare results on the common subset. Our
results suggest that similarly to anti-patterns [39], each
design pattern has a different effect on change-proneness.
According to the results of Figure 9 and the accompa-
nying ANOVA test, the most stable classes can be found in
Singleton, Facade-Mediator, Observer, Composite, and
Decorator occurrences. Classes that participate in Proxy
and Adapter occurrences are more unstable than other
pattern-participating and non-pattern-participating classes.
These results are similar to those of Aversano et al., in
terms of Singleton, Adapter, Composite and Decorator, but
are not completely similar for Observer®. A possible reason
is that Aversano et al. [7] investigated change proneness
incurred by the addition, deletion. or modification of Ob-
server occurrences, whereas in our case the addition or
deletion of Concrete Observers or Subjects does not lead to
the propagation of any change: adding or deleting a sub-
class in an hierarchy does not change the dependencies and
the REM value of the other classes in the system (Figure 3a).
The fact that the Singleton design pattern occurrence is
more stable than other design pattern occurrences can be
explained by the fact that it consists of a single class, which
does not have to carry additional dependencies to imple-
ment the pattern. This lack of dependencies limits the clas-
ses through which it can receive change requests and there-
fore its instability. Concerning Facade-Mediator, their low
levels of instability might be caused by the clean separation
they provide between subsystems. When using Fagade or
Mediator, the communication between Colleagues is syn-
chronized by a single class, limiting the number of depend-
encies between them, and therefore their instability. Finally,
the fact that the instabilities of Composite and Decorator
are similar is intuitively correct, because these patterns
share a common structure.

5 The Proxy, Fagade, and Mediator design pattern are not examined in
Aversano et al. [6]
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Among the inheritance-based patterns Proxy is the most
unstable, because it is the only one in which one subclass is
dependent on the other, increasing the number of internal
dependencies (see Table 11). Concerning associa-
tion/agqregation-based patterns, Adapter, which provides a
means for reusing the functionality of a class, is highly
unstable, especially in the role of the Adapter that holds a
large number of external dependencies (see Table 11).

Another interesting result with respect to design pattern
type instability is that the three creational patterns that
have been investigated, i.e., Factory Method, Abstract Fac-
tory, and Prototype exhibit similar levels of instability. This
fact implies that all creational patterns are implemented in
a similar way in terms of dependencies and that their struc-
tural differences are not strongly affecting their stability.

The results of investigating the stability of coupled de-
sign patterns (see Figure 10) suggest that coupling: (a) two
Facade/Mediator or (b) Facade/Mediator with Singleton
occurrences does not have a substantial negative effect on
stability. Combining two Adapter occurrences should be
avoided, because this pattern combination exhibits high
levels of instability for the involved classes. These results
cannot be compared to any other results in the literature,
because this is the first time that design pattern coupling is
being explored with respect to stability. However, we can
observe that the effect of single patterns on instability is
propagated to the coupled pattern occurrences. For exam-
ple, one of the most stable single patterns, i.e.,, Facade-
Mediator is part of the most stable coupled pattern occur-
rences. In particular, when combining two occurrences of
stable design patterns, e.g., Facade-Mediator (instability ~
0.28), the produced coupled pattern is slightly more unsta-
ble than the single pattern occurrences. However, the cou-
pled pattern remains the most stable among coupled pat-
tern occurrences (instability ~ 0.30). On the other hand,
Adapter, which is one of the patterns with the most unsta-
ble single pattern occurrences, is part of the two most un-
stable coupled pattern types.

6.3 Design Pattern Roles

Finally, when taking into account the roles that a class can
play in GoF design pattern occurrences, we observed that
the instability of the role depends on the mechanism that
the pattern uses for relating classes, i.e., association or ag-
gregation (e.g., Adapter, Facade, etc.) or inheritance (Strat-
egy, Observer, etc.) and the type of pattern. From the re-
sults of this study, we observe that the most stable design
pattern roles are the Strategy and the Hidden Type (Fa-
cade-Mediator). Both results are intuitively correct, because:

® Strategy classes are in many cases purely abstract
classes that hold a limited number of dependencies
to other classes (0.97 in general - they usually hold 0
or 1 dependencies). Therefore, they are not heavily
dependent on the public interface of other classes
and their role is not prone to change propagation;

® Hidden Type classes are expected to be “shielded”
behind Facade or Mediator classes. The original in-
tention of these classes (i.e., Fagade and Mediator) is
to handle the communication among Hidden Type

classes, thereby decoupling them. This decoupling
offers shielding against change propagation from
classes outside the pattern.

The results of the study suggest that in a class hierarchy,
the superclass is more stable than the subclass, whereas in
an association or a “part-whole” relationship the compo-
nent (or independent) class is more stable than the aggre-
gate (or dependent) class, as shown in Figure 12. This result
might appear to be unexpected because the Aggregate and
the Superclass are the channel through which the pattern is
communicating with the rest of the system. However, a
closer investigation of how the mechanisms of inheritance
and aggregation or association work explains these results.

superclass
+
Aggregate Component
- Ko +
subclass

Fig.12 Stability of Pattern Roles w.r.t. class relation

Comparing the stability of the two roles in a hierarchy,
Subclasses inherits any dependency of the Superclass. So, if
the Superclass depends on many other “pattern-external”
classes, these dependencies are also added in the depend-
ency list of the Subclass. In addition, exactly because Sub-
classes supply concrete functionality, they usually must
collaborate with other classes, further increasing the num-
ber of external dependencies. Finally, they also hold a
strong relationship with their superclass. Therefore, the
dependencies of a Subclass are by definition more than
those of a Superclass. The fact that change proneness in-
creases as the depth of inheritance of a class becomes high-
er has also been observed by Bieman et al. [10]. Additional-
ly, the aforementioned results agree with those of Khombh et
al. [29], which suggest that abstract classes are less change
prone than children classes.

On the contrary, in object association/aggregation the
Aggregate role is less stable, because: (a) it communicates
with all the Components of the sub-system (which act as
suppliers of concrete functionality) and (b) it handles the
communication between different sub-systems, whereas the
dependencies of Components (which are shielded behind the
interface of the Aggregate and usually perform limited in-
teraction outside their boundaries) are at most equal to the
number of all Components in the same sub-system. There-
fore, the number of dependencies of the classes playing the
Component roles is less or equal to the number of dependen-
cies of classes playing the role of the Aggregate.

7 THREATS TO VALIDITY

In this section, we present and discuss construct, reliability,
external, and internal validity threats for this study [41].
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Construct validity reflects to what extent the phenomenon
under study really represents what is investigated accord-
ing to the research questions. The reliability of the case
study is related to whether the data is collected and the
analysis is conducted in a way that can be replicated with
the same results. External validity deals with possible
threats while generalizing the findings derived from the
sample to population. Finally, internal validity is related to
identification of confounding factors, i.e., factors other than
the independent variables that might influence the value of
the dependent variable.

7.1 Construct Validity

The threat to construct validity is related to the accuracy of
the tools and approach used to assess class instability and
to detect design pattern occurrences. This is a construct
validity in the sense that inaccurate results might lead to
measuring a different phenomenon than the one that we
originally intended to investigate.

The selected algorithm for calculating class instability
considers, as explained in Section 3.2, the dependencies in
the system’s structure through which changes can propa-
gate from one class to another [46]. The calculation of the
possibility of future changes is by nature an ambitious goal
that cannot be achieved with high levels of accuracy, con-
sidering the numerous factors that might affect the decision
of a designer to modify a classes, so this would be an im-
portant threat to validity if our study’s objective would be
to estimate change proneness. Likewise, setting a constant
value for the internal probability of change for system clas-
ses would also be a threat for accurately estimating change
proneness. However, the goal of this study is to assess in-
stability rather than the actual change proneness, which is a
straightforward procedure that is accurate, in the sense that
it is solely based on class dependency analysis. Therefore,
there is no real threat to validity from estimating instability.

In addition to that, concerning the accuracy of the select-
ed design pattern detection tool, one possible threat is re-
lated to the possibility of considering false positives in our
study or of neglecting true occurrences (false negatives)
[45]. To mitigate the threat regarding false positives, two of
the authors performed manual validation of design pattern
occurrences. Based on the results the authors performed
several enhancement actions, as presented in Section 3.1.
Finally, we believe that the precision rates in our dataset is
higher than the ones reported in [11], for two reasons:

(a) Based on our manual validation, we observed that
many false-positives were identified due to mis-
placement of a pattern occurrence between similar
patterns (e.g., Facade as Mediator, State as Strategy
and vice-versa). This threat is completely mitigated
in our study because we report results on such pat-
terns as one.

(b) The patterns that have been used in [11] are quite
complex in their structure and therefore the chance
of observing a misclassification on them is higher
than for simpler patterns (about 70-75%) [11]. Also
occurrences of simpler patterns is accurate by these
tools in approximately 80% of the cases [11]. Fol-
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lowing this observation, and the frequency of oc-
currence of these patterns in our dataset, we be-
lieve that the precision in our dataset is higher.

The impact of false negatives in our study (due to lim-
ited recall rate in certain patterns) is alleviated by the fact
that the examined data set contains already a vast number
of occurrences. Even if true occurrences have remained
undetected, the dataset is sufficiently large to enable the
investigation of the instability of pattern-participating clas-
ses, at least for a number of patterns. In any case, as a miti-
gation action for this threat we preferred to use the union of
the results of the used pattern detection tool, instead of
using the intersection.

7.2 Reliability

To mitigate threats to reliability, two different researchers
were involved in the data collection and one double-
checked the results of the other. Furthermore, one research-
er double-checked the results of the data analysis per-
formed by another researcher. All primitive data can be
reproduced by using the percerons.com online repository or
the tools mentioned in Section 3.

7.3 External Validity

Concerning external validity, we have identified three pos-
sible threats to the validity of our results. Firstly, all the
investigated systems are written in Java and there is a pos-
sibility that the results would be different for other object-
oriented languages and other patterns. Secondly, we have
examined fifteen (15) out of the twenty three (23) design
patterns described by Gamma et al. [19], thus the results
cannot be generalized to the rest of the GoF design patterns,
since their stability may differ. Finally, the results of the
study cannot be generalized to “special” implementations
of design patterns instances in which there are no static
relationships among classes playing different roles. For
example, in the reflective implementation of the Visitor design
pattern, the accept method uses reflection to choose the
appropriate method to call on a Visitor. However, these are
certainly exceptional cases and therefore we believe they
pose a minor threat to the validity of the results.

7.4 Internal Validity

Finally, we consider pattern participation as an instability
factor, i.e., we examine how the roles that classes have due
to their participation in patterns lead to instability. Howev-
er, a class may have other responsibilities outside the pat-
tern, which may also result in dependencies and thus cause
instability. This may potentially be a confounding factor
and therefore constitutes an internal threat to validity [41],
in the sense that factors other than the independent varia-
bles (pattern participation) affect the value of the depend-
ent variable (instability). To exclude other possible factors
of instability, we should compare two versions of the same
class, one designed with a GoF pattern and one designed
with an alternative solution. The two systems would offer
the same functionality, with the only change being the ap-
plication of the pattern itself. In such a case, it would be
possible to investigate the effect of design patterns isolated
from the other change factors. However, such cases are
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extremely difficult to find in existing real-world examples
or even to implement artificially on a large scale. Further-
more, GoF design patterns have been associated with a
large number of design alternatives, which can substitute
the role of the pattern [2]. Therefore, even if we set up such
an experiment, it would only be possible to compare the
GoF design patterns to a limited number of specific design
alternatives. Thus, both conducting a case study or a con-
trolled experiment have their own limitations and none of
the two would actually mitigate this risk.

8 CONCLUSION

This study investigated the effect of GoF design patterns on
class stability. To achieve this goal, we conducted a multi-
case study on about 65.000 open-source Java classes to ex-
plore the probability of a class to change, due to propaga-
tion of changes that occurred in other classes. To assess the
stability of GoF design patterns, we examined classes that
participate in zero, one, or more design pattern occurrences.
To the best of our knowledge, this is the largest case study
on the effect of GoF design patterns on stability and the
only study that reveals the different levels of stability be-
tween classes that participate in one or more pattern occur-
rences.

The results of the case study indicate that classes that
play exactly one role in a GoF design pattern are more sta-
ble than classes that play zero or more than one role in GoF
design pattern occurrences. However, the level of statistical
significance of that claim varies across different application
domains. The results also suggest that different GoF design
patterns provide different levels of stability to the classes
that participate in them. For example, Singleton, Fagade-
Mediator, Observer, Composite, and Decorator occurrences
seem to consist of classes that are more resistant to changes
propagating from other classes. Finally, the role that a class
plays in a design pattern is also an indicator of its resistance
to propagation of changes. We observed that the use of
association/aggregation for establishing object communica-
tion, classes that play the Aggregate role are less stable than
classes that play the Component role. On the other hand, in
design patterns that involve inheritance, public Superclasses
are more stable than Subclasses.

The aforementioned results are valuable to practitioners,
because they provide indications for testing and refactoring
prioritization. Firstly, concerning testability, classes that are
less resistant to change propagation should be checked for
defects more often and more exhaustively, because they are
expected to be more defect-prone. Secondly, concerning
refactorings, due to the harmful effects of instability, classes
that are less resistant to change propagation should be re-
factored to more stable designs.

Additionally, we strongly believe that GoF design pat-
terns are not uniformly impacted by all possible sources of
change, such as propagation from other classes, accommo-
dation of new requirements, and removal of defects. Treat-
ing all potential sources of change as a common type might
lead to coarse-grain conclusions, because a particular de-
sign pattern might be beneficial in preventing one type of
change and less helpful in shielding from other types of

changes. Thus, as a line of future research one could inves-
tigate the susceptibility of GoF design pattern-participating
classes to change with respect to factors other than the
propagation of change, such as modifications due to correc-
tive or adaptive maintenance. This could be performed by
contrasting instability and change proneness taking into
account the history of changes of system classes. Specifical-
ly, while inspecting past data, one would have to consider
not only method signature changes, but also changes in the
contract of classes, which might emit changes. By distin-
guishing among different types of actual changes, it would
be possible to investigate whether design pattern roles offer
selective shielding, in terms of types of change (e.g., from
new requirements, from propagated changes, or from bug
fixing).

Furthermore, the methodology that has been described
in this paper analyzes the proneness of classes that partici-
pate in patterns to change, due to changes occurring in
other classes. The analysis can also be performed at a more
fine-grained level, that is, by examining the susceptibility of
individual methods to change, which would require the
analysis of dependencies between methods.
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