
Quality Rule Violations in SharePoint Applications:

An Empirical Study in Industry

Apostolos Ampatzoglou
1
, Paris Avgeriou

1
, Thom Koenders

2
,

Pascal van Alphen
2
, Ioannis Stamelos

3

1 Department of Computer Science, University of Groningen, Groningen, Netherlands
2 SharePoint Department, Capgemini Netherlands, Utrecht, Netherlands

3 Department of Computer Science, Aristotle University, Thessaloniki, Greece

apostolos.ampatzoglou@gmail.com, paris@cs.rug.nl, thomkoenders@gmail.com,

pascal.van.alphen@capgemini.com, stamelos@csd.auth.gr

Abstract. In this paper, we focus on source code quality assessment for Share-

Point applications, which is a powerful framework for developing software by

combining imperative and declarative programming. In particular, we present an

industrial case study conducted in a software consulting/development company in

Netherlands, which aimed at: identifying the most common SharePoint quality

rule violations and their severity. The results indicate that the most frequent rule

violations are identified in the JavaScript part of the applications, and that the

most severe ones are related to correctness, security and deployment. The afore-

mentioned results can be exploited by both researchers and practitioners, in terms

of future research directions, and to inform the quality assurance process.

Keywords: Quality assessment ∙ Defect prediction ∙ SharePoint

1 Introduction

Although some organizations have such unique business processes that urge for

custom-made software solutions, in most cases, business processes are fairly typi-

cal; therefore, their needs can be accommodated using more standardized solutions

(e.g., by reusing existing commercial-off-the-self—COTS software). This has led

to a shift from developing custom-made solutions to standardized solutions that are

based on modular development. A prominent way to develop such solutions is

SharePoint, in which standardized COTS are combined to offer the required func-

tionality. These standardized modules can be configured to target and facilitate the

specific needs of diverse organizations. The configuration of such solutions can be

performed by using a declarative programming language (e.g., XML). Furthermore,

SharePoint can be extended with custom modules and code, so as to provide func-

tionality that is not found in the offered COTS. This way, solutions can be created

by combining standardized off-the-self components and organization-specific

modules (developed using an imperative language—e.g., C#).

Similarly to conventional software development maintainability of SharePoint

applications is of paramount importance, since maintenance of a software system is

considered as the most effort-intensive part of the software development lifecycle

mailto:apostolos.ampatzoglou@gmail.com,%20paris@cs.rug.nl,%20thomkoenders@gmail.com,%20pascal.van.alphen@capgemini.com,%20stamelos@csd.auth.gr
mailto:apostolos.ampatzoglou@gmail.com,%20paris@cs.rug.nl,%20thomkoenders@gmail.com,%20pascal.van.alphen@capgemini.com,%20stamelos@csd.auth.gr

[11], urging organizations to increase maintainability to reduce the overall mainte-

nance expenditures [1]. In this paper we study a particular aspect of maintainabil-

ity, namely source code quality. Source code quality has been assessed in many

ways in the literature: through software metrics [2], number of defects [10], number

of vulnerabilities [3], etc. Focusing on the number of vulnerabilities (also known as

quality rule violations) has certain benefits: (a) they are more easily interpreted

compared to metrics, since they are targeting specific lines of code and the way to

resolve them is simple; and (b) they can be handled at a pre-deployment phase (in

contrast to defects), thus they do not reach the attention of the customer/end-user. A

common practice for identifying such rule violations is code reviews [6], which can

be performed manually (code inspection), or with tool-support (tool-assisted code

review). The latter enables not only distributed reviewing, but also improves both

the quality and the quantity of reviews [7].

The goal of this paper is to investigate the source code quality of SharePoint ap-

plications, through tool-assisted code reviews. Specifically, we aim at investigating

which rules: (a) are more frequently violated; and (b) are the most severe ones de-

pending on certain characteristics. The identification of the most frequently violat-

ed rules can provide insights into what are the most common “programming mis-

takes”. Among those, special attention should be given to the rules that are most

severe, as well as those that are more probable to lead to defects, as the number of

defects is crucial for the success of a software system. To achieve this goal, we

performed am industrial case study, based on the guidelines provided by Runeson

et al. [9] (more details are available in Section 3).

2 Related Work

In this section we present research efforts that can be characterized as related

work to our study. We note that, to the best of our knowledge, there are no availa-

ble studies in SharePoint quality assessment. Therefore, we present related work

that uses rule violations as a means for quality assessment. Quality rule violations

have been extensively investigated as indicators of quality in the software engineer-

ing literature. For example, Misra and Bhavsar [8] have explored rule violations as

indicators for correctness, and Zaman et al. [12] have explored them as indicators

for security and performance. When using rule violations to quantify quality, it is a

common practice to classify them into categories. Zaman et al. [12] classified rule

violations according to their effect on specific QAs (e.g., security and perfor-

mance). Therefore, to evaluate software projects with respect to their quality, one

can perform static analysis by collecting the number of violated rules. One of the

most established tools that is used for this purpose is FindBugs. FindBugs is capa-

ble of detecting vulnerabilities in software by using bug patterns [4], divided into

five categories (in total 246 bug patterns) that can be mapped to: correctness, per-

formance, and security. In this study, since FindBugs is not applicable for Share-

Point applications, we used SPCAF (see Section 3.3). Other tools that perform such

analysis for different programming languages are PMD and CPPcheck.

3 Case Study Design

Objectives and Research Questions. The goal of the study is described using the

Goal-Question-Metric (GQM) approach, as follows: “analyze quality rule viola-

tions for SharePoint applications for the purpose of evaluation, with respect to their

(a) frequency of occurrence, and (b) severity according to certain characteristics,

from the viewpoint of software engineers, in the context of SharePoint application

development”. Based to the aforementioned goal, we derived two research ques-

tions that guide the design and reporting of the case study.

RQ1: What are the most frequently violated rules in SharePoint applications?

This research question aims at identifying the rules that are most frequently violat-

ed in real-world SharePoint applications. Existing tools for SharePoint quality as-

surance are capable of assessing approximately 400 predefined quality rules, so we

will explore which ones are more frequent. In addition, we investigate the frequen-

cy of rules at different levels of criticality (e.g., warning, error, critical error, etc.)

RQ2: What is the severity of SharePoint rule violations?

SharePoint quality rules can be classified based on several characteristics (e.g.,

some rules are related to correctness). Before specific defects can be detected, it is

important to determine what kinds of rules are more severe, either due to the diffi-

culty of their manual identification or due to their criticality. Therefore, this re-

search question is focused on the orientation of preventive maintenance activities

(i.e., the ones that aim at identifying and correcting latent faults in the software

product before they become effective faults [11]).

Case Selection: This study involves different cases for each research question. For

RQ1, as cases we used three projects developed at Capgemini. The three projects

have been selected so as to belong to a different production stage (ranging from

‘under development’ to ‘production-ready’ versions). The projects are referenced

as Project-A, Project-B, and Project-C for confidentiality reasons. Project-A was

developed internally by Capgemini. At the time of the analysis, the project was still

in its early stages of development. Project-B was developed by an external organi-

zation and Capgemini was managing the code-base. At the time of the analysis, this

code-base was ready for use in a production environment according to the external

organization that was responsible for the development. Finally, Project-C had been

developed internally by Capgemini. At the time of the analysis, the code-base was

being used in a production environment. Concerning RQ2, we conducted a super-

vised survey with SharePoint experts, so as to investigate the relationship of quality

rules and defects. The term supervised survey [5] refers to the process during which

an interview takes place, but with a specific data collection instrument (question-

naire) with mostly closed questions that the responded would be able to complete

without any guidance. Nevertheless, in supervised surveys the researcher is in the

same place as the subjects to provide possible clarifications. The questionnaire has

been given to 10 SharePoint experts of Capgemini Netherlands.

Data Collection and Analysis: The case study has been performed within Capgem-

ini, which is an international corporation primarily focused on providing IT ser-

vices, which is present in over 40 countries with more than 180,000 employees. At

this point, concerning SharePoint solutions, the quality assurance process is in a

research stage. Therefore, this project was of great interest to the company.

Used Tool—Code quality analysis for SharePoint is still in its infancy. An initial

research on the state-of-practice on this topic, unveiled that there is only one tool

that is in front of competition, namely SPCAF
1
. SharePoint Code Analysis Frame-

work (SPCAF) is a commercial set of four tools, specialized for SharePoint appli-

cations, each one focused on different aspects of code quality in SharePoint. From

these tools, since we are interested in identifying rule violations, we used only

SPCop, which validates both the imperative and declarative code. The tool is of-

fered with several predefined rule sets, each set consisting of a certain group of

rules (e.g., the “All Rules” set includes all of the rules
2
). If a violation of one of the

rules is encountered, the occurrence is added to the rule violations report. The rule

violations are listed using the title of the rule that is violated and the location (file

and line number), where the violation was discovered. For the purpose of our study,

we used the predefined set of analysis rules (i.e., those that would be selected with-

out any tool customization), to increase replicability of the study, and mitigate re-

searcher bias (which would be raised if any selection was made by the authors).

The rules that we used in our case study identify quality rule violations of the fol-

lowing categories: correctness (cor), supportability (sup), deployment (dep), securi-

ty (sec), design (des), best practices (pra), memory (mem), naming (nam), localiza-

tion (loc), and JavaScript (jsh).

Data Collection Instruments from Experts—The outcome of using certain con-

structs in SharePoint can be difficult to predict, because some aspects are hard to

assess, unless they have been previously encountered. Therefore, we decided to

collect knowledge from experts to fill in these uncertainties, and in addition to vali-

date the information and conclusions. We elicit data from experts using one ques-

tionnaire, aiming at answering RQ2. The questionnaire consisted of five questions,

each inquiring about the severity of a certain SharePoint rule type, and an initial

one aiming at understanding which part of SharePoint code is more defect prone.

[q1] SharePoint projects are built using two types of code. The first type being the

imperative code, which is the C# code. The second type being the declarative

code, which is the XML code. Which of these types of code do you consider

more prone to produce defects (Imperative code, Declarative code, or Equal)?

[q2] The absence of referenced resources will most probably be followed by rule

violations. A missing resource should be easily detectable. From this perspec-

tive, how severe do you consider this kind of rule violations (“Not severe at

all considering it is easily detectable”, “Moderately severe, it may be easy to

detect, but that does not make the rule less important”, or “Highly severe, it is

important such a rule violation is detected and solved as soon as possible”)?

1 http://www.spcaf.com
2 Rules are available in https://docs.spcaf.com/v6/ SPCAF_PAGE_QUALITY.html

http://www.spcaf.com/
https://docs.spcaf.com/v6/%20SPCAF_PAGE_QUALITY.html

[q3] On the contrary, having too many resources might also result in rule viola-

tions. In some cases SharePoint deploys prohibited assemblies, e.g. “sso-

cli.dll”, or includes the same assembly in different configuration files. How

severe do you consider this (the options are the same as q2)?

[q4] In the XML configuration files, a lot of required attributes have to be defined.

Not filling in these required attributes might result in rule violations. How

would you value assistance on this kind of violations (“Very important, I con-

sider these rules to be severe”, “Moderately important, assistance would help

me solve these rule violations faster”, or “Do not need assistance, these rule

violations are easy enough to solve on my own”)?

[q5] A possible aspect of security related rule violations is that they may not be as

detectable as other violations, since security-related rules do not have to cause

crashes, but result in unwanted behavior that is more difficult to discover.

These rule violations might pose a big threat. How do you value security re-

lated rule violations that produce this unwanted behavior (“Highly severe, any

assistance in this field would be highly helpful since these rule violations are

hard to detect”, “Moderately severe, this kind of rule violations are uncom-

mon”, or “Not severe, these kind of rule violations are no problem at all”)?

[q6] The previous questions have covered the following kinds of rule violations:

(a) Missing resources, (b) Having too many resources, (c) Missing attributes

in XML, and (d) Security issues. Are there categories of rule violations that

have not been covered by the previous questions? If so, what types of rules do

you feel are not represented (This is an open-ended question)?

Data Analysis: The research questions have been answered by using descriptive

statistics. In particular we have used frequency tables, and bar charts for all ques-

tions. For RQ2, in case subjects provided some qualitative data, we tried to analyze

and synthesize their answers using semantic analysis. Nevertheless, this process

was very simple due to the low number of responses and the similarity of answers.

4 Results

In this section we present the results that have been obtained from data analysis,

organized by research question. Implications to researchers and practitioners are

provided in the discussions section (see Section 5). Figure 1 presents the number of

violations identified in each project. From the figure, we can observe that the three

studied projects are different, providing broad and representative data. Additional-

ly, regardless of the maturity of the code-base, the tool was able, in all three cases,

to provide valuable data on how to improve the source code quality.

Rule Violations Frequency: In Table 1, we present the most frequent rule viola-

tions in the three examined projects. In particular, in Table 1 we present the cate-

gory, the criticality, the name, and the occurrence frequency of the most recurrent

rule violations. We note that each rule has a single criticality, regardless of the

context in which it is used.

Fig. 1. Demographics on Rule Violations Criticality

From Table 1, two observations can be made: (a) jsh is the category, in which

the most frequent rule violations can be identified, and (b) the top-10 most fre-

quent rule violations are Warnings or Critical Warnings. The first column of the

table shows that six out of the ten most recurring rule violations are found in the

JavaScript (jsh) category. This means that an important percentage of the identi-

fied rule violations is found in the JavaScript code. However, this does not neces-

sarily mean that violating these rules has a negative impact on the external behav-

ior of the system, since some of these rules focus only on code conventions. Nev-

ertheless, it still is interesting to take such an observation into account, when op-

timizing and improving code quality. Additionally, two out of the ten most fre-

quent rule violations are critical warnings, while the remaining eight are warnings.

Therefore, there are no errors in the first positions of the rule violation frequency

table. By inspecting the complete list of rule violations (omitted from this manu-

script due to space limitations), it becomes apparent that the first twenty-two rule

violations are either critical warnings or warnings.

Table 1. Most Frequent Rule Violations.

Category Criticality Name Frequency

loc W Use resources for localizable attributes 1642

jsh W Use curly braces around blocks 745

jsh W Use correct === and !== 700

jsh W Declare variable before it is used 430

jsh W Avoid trailing whitespaces 379

jsh W Do not exceed max length of a line in code 324

sec CW Avoid usage of “RunWithElevatedPrivileges” 196

jsh W Remove unused variables 189

nam W Files / Folders should contain the name of the parent solution 146

sec CW Avoid setting “AllowUnsafe Updates” on SPWeb 142

By inspecting the top-10 most encountered errors (see Table 2), one can highlight

the following:

 The number of occurrences of the ten most occurring critical errors

and errors is relatively low, especially when compared to the amount of

occurrences of the ten most frequently occurring rule violations. However,

each of these errors has a higher potential to cause system crashes or unex-

pected behavior. Therefore, the information that is provided by these reports

can be considered valuable, since they directly provide information on as-

pects that require immediate attention.

 The other aspect that is different between the ten most frequently occurring

rule violations and the ten most recurring errors are the categories of the vio-

lations. The list of top-10 most frequently occurring rule violations was

dominated by the JavaScript (front-end) category, whereas the top-10 most

recurring errors is identified in the SharePoint backbone categories

(i.e., correctness and deployment). A possible explanation for this is that

rules of the JavaScript category rule violations cannot have a large negative

influence on the system, but rather result in user interface problems, while

SharePoint backbone categories, can potentially have a huge impact on the

ability of the system to function as intended.

Table 2. Most Frequent Errors caused by Rule Violations

Category Criticality Name Frequency

cor E Define attribute ’ID’ in FieldRef in correct casing 50

dep E Do not deploy assembly multiple times 28

cor E Declare required attributes in schema of ListTemplate 27

dep E Do not deploy assembly with DEBUG mode 24

cor CE Define unique value for ’Id’ in CustomAction 22

dep E Do not deploy TemplateFile multiple times 10

sup CE Do not access SharePoint API via reflection 6

sup E Do not read ConnectionString from SPContent-Database 6

cor E Declare required attribute in CustomAction 4

cor E Declare required attributes in SiteDefinition 4

Severity of Rule Violations: In this section we discuss the level of severity of rule

violations, organized by the six questions included in our questionnaire. The first

question was designed to determine what type of code, (i.e., imperative or declara-

tive), was considered most prone to result in defects (related to Correctness). The

results obtained based on experts opinion suggest that 10% of the participants con-

siders imperative code and declarative code equally prone to defects. The remain-

ing 90% chose the imperative or the declarative code options nearly the same

amount of times, consisting an indecisive difference. Therefore, both types of code

are considered equally prone to result in defects. In addition to the quantitative

results, we have encountered some qualitative results as well: One developer stat-

ed that coding in C#, and XML was mostly used to facilitate communication be-

tween websites. A second developer pointed to code written with XSL, which is a

form of declarative language, as the most defect prone parts of the code. The third

comment stated that XML is more sensitive to syntax related mistakes, and that

these small mistakes may have big consequences. However, these are supposed to

be easier to fix, leaving choice on the multiple choice part to the imperative op-

tion. Finally, the fourth comment stated that XML is more error prone, but the

impact on the systems’ defects and performance is significantly less.

The second question was designed to determine the severity of leaving out ref-

erenced resources, the emphasis being on the influence, since this rule violation

should be relatively easy to detect (related to Deployment). Only 20% of the partic-

ipants considered the potential to result in defects to be highly severe. On top of

that, 60% considered the potential to result in defects to be moderately severe.

Overall, this means that a total of 80% considered the potential for defects at least

moderately severe. This is a good indication that this aspect of SharePoint has to be

monitored when analyzing the code quality. The third question was designed to

determine the negative influence of adding too many assemblies, i.e. prohibited

assemblies or including the same assembly twice (related to Deployment). Out of

the 80% of the participants that chose one of the multiple choice answers, only 10%

considered the defect not severe. Therefore, it was concluded that this kind of rule

violation in SharePoint will be considered moderately severe meaning this kind of

rule violations will be monitored when analyzing the code quality. After initial re-

search into the SPCAF tool, it soon became clear that it offered good detection and

assistance on missing required attributes in the XML configuration files. The

fourth question was designed to explore the severity of this kind of defects, to de-

termine its impact on the number of times the system present unexpected behavior,

and to ascertain the importance of this rule. 40% of the participants considered the

assistance very important, since they considered potential defects that can result

from this rule violation. 30% considered the assistance moderately important,

mainly because it allowed them to solve the problematic code faster. Only 20% of

the participants stated that they did not find the assistance valuable. In conclusion,

the severity of this type of rules will be regarded as highly severe since 70% con-

sidered it at least moderately important and 40% considered it as very important.

Even though Security related vulnerabilities might not have a huge impact on

the behavior of the software, possible rule violations may have an even bigger im-

pact on the system. Software carrying security related vulnerabilities may appear to

function as intended, but would malfunction in the security area, e.g., it may pro-

vide entrance to users to parts that should not be accessible. The fifth question is

designed to determine how valuable the experts consider detection and assistance

in the security area. The results suggested that 70% of the participants considered

the potential of rule violations to result in defects, highly severe, and that assistance

on this type of defects is highly appreciated. The remaining 30% of the participants

consider the rule violations moderately severe (since they are uncommon). Finally,

the sixth question aimed to provide the experts with the ability to name types of

rules that were not discussed in the first five questions. This way, the types of rules

that were not yet represented, could still be brought forward. The additional types

of vulnerabilities were: (a) Memory violations, e.g. disposing all sorts of instances

or memory leaks; (b) Performance related violations, e.g. endless loops or other

inefficient code; (c) Common coding mistakes, e.g. wrong syntax or improper use

of variables; (d) Not using unique identification of components; and (e) Incon-

sistency of developed code. This new insight posed a valuable addition to the types

of rules that were already considered in the code quality analysis.

5 Discussion

The results of this study can be considered as a starting point for code quality

analysis in SharePoint applications, which is a rather understudied research field.

The obtained results can be useful to both researchers and practitioners:

 (researchers) The relation of some SPCAF rules to defects remains uncertain.

These rules require further investigation.

 (researchers) This research effort was exploratory since it was based on expert

opinion and descriptive statistics. More explanatory research is required.

 (researchers) Evolution analysis with data analytics can be performed, to confirm

the relationship between the existence of defects and specific rule violations.

 (practitioners) The majority (approx. 67%) of the predefined rules offered by

SPCAF is associated to defects. Therefore SPCAF can consist a good starting

point for tool-assisted code reviews.

 (practitioners) Most rule violations are related to the client-side of the applica-

tion, but these rules are not that sever. Correctness, deployment, and security rule

violations should be prioritized.

6 Threats to Validity

In this section we present potential threats to validity for our study following the

guidelines proposed by Runeson et al. [9]. According to Runeson et al., there are

four types of threats to validity: construct, reliability, external and internal validity

threats. In this study internal validity will not be considered, since causal relations

are not in the scope of this study. Concerning construct validity, we have identified

one possible threat, i.e., the fact that we assessed the quality of the code, based on

the suggestions of a single tool. Although this threat is important, a discussion with

practitioners suggested that 2 out of 3 rule violations, identified by the tool, are

considered vital by practitioners. In addition to that, no other tools for SharePoint

applications quality assurance exist, to the best of our knowledge. To mitigate

threats to reliability, we presented in detail the case study design, and we have not

parameterized the used tools, to ensure that our results are reproducible and compa-

rable to future replications. Concerning external validity, we need to underline that

the obtained results cannot be generalized to all SharePoint projects and that the use

of a different tool for code reviews, might have led to different results. Neverthe-

less, the diversity of the examined projects ensures some heterogeneity in the cases.

7 Conclusions

This study aimed at exploring the quality assessment processes in SharePoint

application development, through tool-assisted code reviews. The results of the

study suggested that the majority of the rule violations can potentially lead to de-

fects, and that they exist in all stages of software, regardless of their positioning in

the software development lifecycle. As expected, the number of critical errors and

errors are eliminated in production ready software. In addition, the most frequently

occurring rule violations are warnings that exist in the JavaScript part of the appli-

cations, whereas the more severe errors (i.e., correctness, deployment, and security)

are more probable to appear in the imperative parts of SharePoint applications.

References

[1] Ampatzoglou A., Ampatzoglou A., Chatzigeorgiou A., and Avgeriou P., “The Finan-

cial Aspect of Managing Technical Debt: A Systematic Literature Review”, Infor-

mation and Software Technology, Elsevier, 64 (8), pp. 52-73, August 2015.

[2] Charalampidou S., Ampatzoglou A., and Avgeriou P., “Size and cohesion metrics as

indicators of the long method bad smell: An empirical study”, 11th International Con-

ference on Predictive Models and Data Analytics in Software Engineering (PROM-

ISE ‘15), ACM, Beijing, China, October 2015.

[3] Feitosa D., Ampatzoglou A., Avgeriou A., Nakagawa E. Y., “Investigating Quality

Trade-offs in Open Source Critical Embedded Systems”, 11th International Confer-

ence on the Quality of Software Architectures (QoSA' 15), ACM, Canada, May 2015.

[4] Hovemeyer, D. and Pugh, W. “Finding bugs is easy”, SIGPLAN Notices, ACM, 39

(12), pp. 92–106, 2004.

[5] Kitchenham B. and Pfleeger S. L. “Principles of Survey Research Part 2: Designing a

survey”, Special Interest Group on Software, ACM, 27 (1), pp. 18-20, January 2002.

[6] McConnell S. C., “Code Complete: A Practical Handbook of Software Construction”,

Microsoft Press, 2004.

[7] Meyer B., “Design and code reviews in the age of the internet”, Communications,

ACM, 51 (9), pp. 66-71, September 2008.

[8] Misra, S.C. and Bhavsar, V.C., “Relationships Between Selected Software Measures

and Latent Bug-Density: Guidelines for Improving Quality”, 1st International Confer-

ence on Computational Science and Its Applications (ICCSA’ 2003), 2003.

[9] Runeson P., Höst M., Rainer A., and Regnell B., “Case Study Research in Software

Engineering: Guidelines and Examples”, John Wiley and Sons, Inc., 2012.

[10] Vokac M., “Defect frequency and design patterns: an empirical study of industrial

code”, Transactions on Software Engineering, IEEE, 30 (12), pp. 904–917, 2004.

[11] Van Vliet H., “Software Engineering: Principles and Practice”, Wiley & Sons, 2008.

[12] Zaman S., Adams B., Hassan A. E., “Security versus performance bugs”, 8th Working

Conference on Mining Software Repositories (MSR’ 11), pp. 93–102, 2011.

