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ABSTRACT 

Technical debt management entails the quantification of 

principal and interest. In our previous work we had 

introduced a framework for calculating the Technical Debt 

Breaking Point (TD-BP), which is a point in time where the 

accumulated interest becomes larger than the principal; 

thus the debt of the company is no longer sustainable after 

this point in time. In this paper, we instantiate this 

framework and validate its ability to assess the breaking 

point of source code modules in an industrial setting. The 

results of the validation suggest that the calculated TD-BP 

is strongly correlated to experts’ opinion on the 

sustainability of modules, and that it can accurately rank 

components, based on their maintenance difficulty. 
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1 INTRODUCTION 

In the last years, the technical debt research community has 

been spending increasingly large effort on the different 

activities of Technical Debt Management (TDM). To a 

large extent, this research is focusing on issues related to 

cost and benefit analysis of software quality management 

[3]. An overview of TDM research is presented in, among 

others, two literature reviews [4, 5]. Although research on 

TDM has been intense in the last years, the community still 

faces major challenges, two of which are the focus of this 

paper: (a) a sound estimation of the amount of TD (i.e., the 

quantification of interest and principal [5]), and (b) the 

monitoring of the TD amount, as it increases due to the 

accumulation of interest [6]. 

In our previous work [6, 7], we begun to address these 

challenges, by defining a theoretical framework, named 

FITTED, that can be used for the long-term management of 

Technical Debt. FITTED considers that interest 

accumulating during software evolution, can potentially 

outgrow the amount required for repaying the principal of 

TD. Therefore, it is critical for project managers to be able 

to estimate the point in time where the accumulated interest 

will be equal to the TD principal. This point in time is 

called the “breaking point” (TD-BP), in the sense that 

any benefit deriving from the decision to take on technical 

debt is being neutralized after that point, i.e. the cost 

becomes higher than the benefit [8]. 

The aim of this paper is twofold: (a) we instantiate the 

FITTED framework by providing details on the calculation 

of principal and interest, and (b) we validate the proposed 

instantiation of the FITTED framework in an industrial 

setting. We note that both the instantiation of the 
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framework and its subsequent validation are at the source 

code level; instantiation could also take place for technical 

debt at other levels but that is out of the scope of this paper. 

The instantiation of the framework is supported by a 

software tool which can extract data on: (a) the principal of 

technical debt, (b) the interest accumulated in every version 

of the system, and (c) the occurrence of the breaking point 

for every version of the system.  

The validation of the framework was conducted in 

collaboration with a software development company. 

Specifically the tool was applied on two of their current 

software development projects, and its results were 

analyzed together with two software engineers. Compared 

to the state-of-research (see Section 2.1), this is the first 

automated approach that calculates the Breaking Point of 

Technical Debt and validates it within an industrial setting. 

The rest of the paper is structured as follows: In Section 2, 

the FITTED framework is presented. In Section 3, we 

present our approach for validating FITTED, and in Section 

4, we explain the design of our study. Next, we present the 

results of our analysis, in Section 5, and we discuss them, 

in Section 6. In Section 7 we refer to the threats to validity, 

and finally, in Section 8, we present our conclusions and 

future work.  

2 BACKGROUND INFORMATION  

2.1  Interest Theories in Technical Debt 

Management 

Section 2.1 presents the results of several studies that have 

investigated interest in Technical Debt Management 

(TDM). Ampatzoglou et al. [5] and Li et al. [4] have 

suggested that interest is the most frequently financial term 

used in TDM research. It should be mentioned here that in 

economic theory, the level of interest rate (not interest per 

se) is the main subject of research, since interest is 

calculated upon interest rate. Nevertheless, in Technical 

Debt Management, interest is estimated according to a 

variety of proposed theories, presented later in this section 

and it is not calculated based on interest rate, which is a 

term not clearly defined in TD literature. 

Ampatzoglou et al. [6] suggest that in literature, interest is 

described either as the extra effort during maintenance (in 

approximately 31% of primary studies), or as the extra 

maintenance cost (in 51% if primary studies). Therefore, as 

software economics mainly refer to cost as a function of 

effort, we can presume that in 82% of primary studies 

interest is defined as the extra cost/effort occurring during 

maintenance, because of the accumulated technical debt. In 

the rest of the literature, interest is approached through 

more high-level definitions—as in [10] and [18]—or through 

references to economic theory, i.e., it is defined as the 

increase rate of the amount of TD [11], or through software 

engineering concepts, i.e., it is defined as a change in a 

design-time quality attribute—e.g., [12] and [13]. Moreover, 

it is observed that almost 28% of primary studies recognize 

the effect of interest probability. Two of these studies [14, 

15] approach TDM with a financial risk management 

theory and define interest probability as the standard 

deviation of interest rate, i.e., they consider it as the 

probability of TD to occur.  

Additionally, in Ampatzoglou et al. [6] it is suggested that 

almost 21% of studies refer to the evolution of interest 

along time. Under this perspective, interest is characterized 

either as compound or continuously increasing. On the 

other hand, Chin et al. [16] suggest that there is one type of 

interest which is simple. In particular, they propose that the 

cost of the organization to restrict TD neither increases nor 

decreases, but it is stable across time. Finally, only 17% of 

the studies suggest a specific methodology for measuring 

interest. In most of the cases, the estimation is performed 

by using historical data, documentation, and maintenance. 

2.2  FITTED: A Framework for Managing 

Interest in Technical Debt 

To develop a theory on managing technical debt interest, 

we borrowed the rationale of the economic interest theories 

on the equilibrium achievement. More particularly, we 

adopt the idea of the breaking point at the money market, 

where money supply is equal to money demand. As long as 

accumulated interest is lower than the principal, the benefit 

derived by the initial decision to save effort is more than 

the cost generated by the extra effort to maintain the 

software. On the other hand, when the accumulation of 

interest overcomes the principal, then the cost needed for 

the system’s maintenance becomes more than the money 

saved when technical debt incurred. Consequently, the 

point where the accumulated interest is equal to the 

principal (breaking point) is very critical in technical debt 

management and can help project managers in their 

decision making. Under this perspective, we map principal 

to money supply – since it represents the amount of money 

available – and the accumulated amount of interest with 

money demand – since it embodies the extra amount of 

money that will be necessary for future maintenance 

activities caused by the TD.  

Figure 1 represents the FITTED Interest Theory: the 

horizontal axis depicts time, while the vertical axis stands 

for money amount. The blue curve Σ(Ι) denotes the 

increasing cumulative interest, as the software develops. 

We consider cumulative interest as continuously increasing, 

because it consists of the accumulation of interest in every 

successive version of the project and because TD interest is 

compound [6]. Principal, on the other hand, is represented 

by the green line P and is also considered as increasing, in 

the sense that the introduction of new functionality to the 

software generates new TD items. Concerning principal, 

we have to point out that in our original analysis of the 
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FITTED framework [6], we have defined it as an amount of 

effort saved once while taking on technical debt and 

considered it stable throughout software evolution. 

However, as software grows, technical debt keeps 

accumulating. Therefore, in this study we take into account 

the development of principal and we calculate it during 

software development, so that we are able to reach a more 

accurate assessment of the version where breaking point 

occurs.  

 
Figure 1: FITTED Interest Theory 

As described by the figure, until time stamp t0, interest is 

lower than the principal and taking on technical debt can be 

perceived as beneficial for the project. After time point t0, 

interest accumulates and becomes larger than the principal 

and extra maintenance costs exceed the initial money 

saving. Therefore, the equilibrium point E, denotes the 

point in time t0 where the complete amount of money 

saved by incurring TD (i.e., the principal) equals the money 

spent on extra maintenance activities caused by the 

incurred TD [8]. If the development team proceeds with 

some repayment activity, e.g. at timestamp tr, accumulated 

interest increases, because of the addition of the repayment 

effort, and line Σ(I) shifts upwards to Σ(I)΄. However, 

the slope of the line decreases, since lower maintenance 

activities are expected in the future due to the repayment. 

On the other hand, principal decreases at time stamp tr, 

because of the repayment activity, and then follows the 

course of line P΄. Consequently, the equilibrium point 

moves to the right E΄, and the benefit period increases to 

time stamp t0΄ [8]. 

3 PROPOSED APPROACH 

In order to instantiate the aforementioned approach, we 

need to describe the way that the two components of TD-

BP can be calculated. To this end, in Section 3.1 we 

describe the employed way for calculating principal at 

source code level, whereas in Section 3.2, we present the 

proposed approach for assessing interest on source code 

artifacts.  

3.1  Principal Estimation 

As proposed in literature, TD principal can be calculated as 

a function of three variables [17]. The first variable is the 

number of problems that must be fixed, the second one is 

the time required to fix each one of these problems, and the 

third one is the cost for fixing each problem. Regarding the 

number of must-fix problems. In our previous work [7] we 

have presumed that there is an actual design quality for any 

object-oriented software, which can be estimated by a 

proper fitness function. Under this perspective, the ‘spread’ 

between the optimal and the actual design, as it can be 

derived by the difference in their fitness function values, 

can be mapped to the principal, i.e., the effort needed to 

convert the actual system to the correspondent optimum 

one. This notion of ‘distance’ is depicted in Figure 2, as 

Effortr.  

For the purpose of this study, we have decided to estimate 

principal, based on the computation of a widely used OSS 

platform, SonarQube—formerly known as Sonar, which is 

a state-of-the-art tool for calculating TD principal. 

According to its documentation1, SonarQube aims at the 

continuous evaluation of software quality. SonarQube can 

assess the quality of software on a plentitude of 

programming languages, generating documentation on 

quality measures and issues, such as coding rule violations. 

The analysis has been performed according to the 

platform’s default format, without any further 

configuration. The platform algorithm is based upon an 

adopted version of the SQALE method proposed by 

Letouzey [18], in which a remediation index is obtained for 

requirements of an applicable Quality Model. For example, 

for a requirement stating that all files should have at least 

70% code coverage, the corresponding remediation action 

is to write additional tests. A remediation function maps 

effort to each action, for example, 20 minutes per 

uncovered line of code. Finally, for each artifact, the 

remediation index relating to all the characteristics of the 

Quality Model is obtained by adding all remediation 

indices linked to all quality requirements. The resulting 

SQALE Quality Index is considered to represent the 

principal of the TD for the assessed source code.   

3.2  Interest Estimation 

In this section we discuss the way we calculate interest in 

the proposed approach. In particular, in Section 3.2.1 we 

present the theoretical background of the approach, 

                                                                 
1 https://docs.sonarqube.org/display/SONAR/Documentation  

https://docs.sonarqube.org/display/SONAR/Documentation
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whereas in Section 3.2.2, we present the metrics and the 

method that we have used for its instantiation at the source 

code level, also known as code TD.  

3.2.1 FITTED  Interest Theory 

Assuming the optimal and actual systems of Figure 2, in 

the common case, maintaining the optimum system 

requires less effort than maintaining the actual system. As 

shown in the figure, adding a new feature A to the optimum 

system needs a certain effort, noted as Effort(optimum), 

whereas adding the same feature to the actual system 

necessitates a larger effort, noted as Effort(actual). The 

difference between these two efforts represents the interest 

that is accumulated during this maintenance activity, i.e., 

the addition of feature A.  

 
Figure 2: Increased maintenance effort for TD item 

However, since the evolution of the software cannot be 

predicted, it is not possible to foresee what kind of 

modifications will be made in a system during future 

releases. Hence, we base our assessment of future 

maintenance effort on historic data, by considering past 

effort spent on maintenance activities. More specifically, 

although many measures can be used for the calculation of 

past effort, we have selected to use the average number of 

lines of code added between sequential releases. Added 

lines of code indicate the amount of effort required for the 

addition of new functionality and in a way the effort needed 

for changing existing modules. Supposing that an average 

of k lines of code are added in the transition from one 

version to another, then we can accept that adding k lines to 

a high design quality system (as denoted by the assigned 

fitness function value) is easier than making the same 

addition to a lower design quality system. At this point we 

suppose that maintenance effort is dependent on the design 

quality, as in (1): 

ueFitnessValcEffortm            (1) 

where c is an arbitrary constant. Based on the 

abovementioned approach, the fitness value for both the 

optimum and the actual systems can be calculated and 

therefore we can capture the proportion of the theoretical 

over the actual effort, as in (2): 

 
 

 
 

 
 
 

 actualEffort
actualueFitnessVal

optimumueFitnessVal
optimumEffort

actualueFitnessValc

optimumueFitnessValc

actualEffort

optimumEffort

mm

m

m









    (2) 

Hence, if past maintenance effort (i.e., the number (k) of 

added lines) is used to define the actual maintenance effort, 

then the optimum effort can be directly obtained. 

Consequently, the amount of interest accumulated between 

any two sequential versions can be calculated as the 

distance between the optimum and the actual effort and is 

given by (3) and (4).  

 
  










actualueFitnessVal

optimumueFitnessVal
kEffortInterest 1       (3) 

 
  








 1

actualueFitnessVal

optimumueFitnessVal
kEffortInterest       (4) 

Since the optimum value for each one of the applied 

metrics could be either the minimum or the maximum 

value, interest is given by the actual effort (k) multiplied by 

1 minus the ratio of the optimum fitness value to the actual 

fitness value, if the optimum value is the maximum one—

as in (3). Otherwise, if the optimum value is the minimum 

one, interest is given by the actual effort (k) multiplied by 1 

minus the ratio of the actual fitness value to the optimum 

fitness value—as in (4).  

3.2.2 Interest in Source Code Debt 

Given the fact that interest is closely related to the system’s 

maintainability [19], our analysis concentrates on the 

estimation of interest, based on well-known maintainability 

models. Maintainability models are sets of low-level 

metrics that quantify design-time quality attributes, such as 

inheritance, cohesion, coupling, complexity and size, which 

are somehow aggregated in one maintainability index. 

Therefore, given the relation between maintainability and 

interest, in this study we define the fitness value used for 

the estimation of the interest, using the set of metrics that 

are accurate maintainability predictors. Riaz et al. [20], in 

their systematic review have studied all existing 

maintainability models, and reported on their accuracy. 

Based on the results of that systematic literature review, a 

list of ten metrics stand out as successful maintainability 

predictors (see Table 1)—and this is the set of metrics that 

we use in our study. Table 1 depicts these metrics and the 

quality attribute to which they refer, as presented by 

Arvanitou et al. [21]. Nevertheless, we need to note that in 
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our case no aggregation function is used for these metrics, 

since it is out of the scope of this paper. 

More specifically, in order to assess the optimum design, 

our analysis consists of the following steps. Firstly, classes 

of high similarity level with the investigated class are found 

(see Section 3.4). The identification and comparison of a 

class with structurally similar ones or the calculation of the 

fitness function is crucial, in the sense that the 

maintainability of a class of tens of LoC cannot be 

comparable with one with hundreds of LoCs. Secondly, the 

optimum value for each one of the aforementioned metrics 

is identified, the difference between the actual and the 

optimum fitness values is calculated and the average 

distance between the actual and optimum design is 

assessed. Subsequently, the interest is calculated as 

described above, in equations (3) and (4). Finally, taking 

into account the number of LoC that can be added in a unit 

of time (according to past data) and the developer’s hourly 

rate, interest is estimated in terms of money. 

Table 1: Object-Oriented Metrics 

Metric Description 
Quality  

Attribute 

DIT 
Depth of Inheritance Tree: Inheritance 

level number, 0 for the root class. 
inheritance 

NOCC 
Number of Children Classes: Number 

of direct sub-classes that the class has.  
inheritance 

MPC 

Message Passing Coupling: Number 

of send statements defined in the 
class.  

coupling 

RFC 

Response For a Class: Number of 

local methods plus the number of 

methods called by class methods.  

coupling 

LCOM 

Lack of Cohesion of Methods: 

Number of disjoint sets of methods (a 

set of methods that do not interact 
with each other), in the class. 

cohesion 

DAC 
Data Abstraction Coupling: Number 

of abstract types defined in the class. 
coupling 

WMPC 

Weighted Method per Class: Average 

cyclomatic complexity of all methods 
in the class. 

complexity 

NOM 
Number of Methods: Number of 

methods in the class. 
size 

SIZE1 
Lines of Code: Number of semicolons 

in the class. 
size 

SIZE2 
Number of Properties: Number of 

attributes and methods in the class 
size 

3.3  Breaking Point  

According to the abovementioned analysis, an estimate of 

the interest in USD can be achieved, based on the 

difference between theoretical effort (maintenance 

performed on the optimum system) and the actual effort, on 

past data concerning the time required for the addition of 

lines of code, and the per hour cost of a developer’s work. 

Therefore, given the principal, as it comes from 

SonarQube, and knowing the interest accumulated in one 

version of the software, the ratio of the principal over the 

interest gives the number of versions after which the 

company will reach the breaking point, as shown in (5). 

 
 $
$

_
Interest

incipalPr
BPTD                       (5) 

3.4 Tool Support 

To boost the applicability of the aforementioned 

methodology, and moreover to validate the FITTED 

framework, we created a desktop application, developed in 

Java, called Breaking Point Calculator (BPC). The 

procedure is separated into two phases, the analysis phase 

and the computation phase. During the analysis phase, the 

source code of the project is analyzed and the metrics 

needed for the calculation of the results are retrieved. Each 

project is analyzed with the aid of two software tools, 

SonarQube and Percerons Client: 

 SonarQube is used for the extraction of five metrics 

which are used as a factor of similarity and technical 

debt principal. The metrics used for identifying 

similar classes are depicted in Table 2, accompanied 

by their description. The analysis of a project by 

SonarQube can take several hours, thus it takes place 

on our server in UoM (University of Macedonia) 

where it is installed. After the analysis is complete the 

metrics are stored in SonarQube database, which we 

access to retrieve them.  

 Percerons Client is a toolset2 developed to support 

empirical software engineering research. Percerons is 

able to calculate metrics for every class contained in a 

.JAR file and produces a .CSV output [22]. Percerons 

Client is used to extract the object-oriented metrics for 

each class, on every version of the investigated 

project. The output document is parsed by BPC and 

the metrics of each class are stored into a database.  

Table 2: Similarity Metrics 

Metric Description 

Classes 
Number of classes (including nested classes, 

interfaces, enums and annotations). 

Complexity 
The complexity calculated based on the 

number of paths through the code. 

                                                                 
2 http://www.percerons.com  

http://www.percerons.com/
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Metric Description 

Functions Number of functions. 

NCLOC 

Number of physical lines that contain at least 

one character which is neither a whitespace 

nor a tabulation nor part of a comment. 

Sqale Index Effort needed to fix all maintainability issues. 

Statements Number of statements. 

Once the analysis phase is completed, we proceed with the 

computation of the breaking point, by selecting the project 

under investigation, along with the computation scope, i.e., 

whether we want to perform the computation on “class” or 

“package” level. Classes and packages selected for our 

scope are being referred to as artifacts. The goal of the 

computation phase is the calculation of the breaking point. 

To this end, we retrieve all the artifacts for each version of 

the project selected, along with the similarity and object-

oriented metrics that characterize each one. For every 

artifact under study, we detect the most similar ones by 

using the aforementioned similarity metrics. Thereafter, we 

calculate the optimal artifact by selecting the best values 

among the grouped artifacts.  

 
Figure 3: Breaking Point Calculator  

On the completion of this phase, we are able to proceed 

with the calculation of the fitness value, the principal, the 

interest and the breaking point. To sum up, by the time the 

computation phase is completed, the following information 

can be extracted for any artifact from any available project 

version: 

1. The five most similar artifacts to the investigated one, 

along with the values of the similarity metrics and the 

similarity rate. 

2. The values of the object-oriented metrics for the most 

similar artifacts and the investigated one. 

3. The values of the quality metrics for the optimum 

artifact. 

4. The principal in USD. 

5. The interest in USD. 

6. The breaking point in versions. 

Finally we are producing overview reports for the project in 

.CSV documents in order to get a more comprehensive 

picture of it, as well as to enable the comparison of multiple 

artifacts. Some screenshots of the tool are provided in 

Figure 3. 

4 CASE STUDY DESIGN 

To validate the proposed framework and its ability to 

estimate the TD-BP, we performed an industrial case study 

in a small-medium enterprise (SME) in Greece, which is 

active in the domain of mobile applications. The company 

wants to keep its anonymity, thus all records in the dataset 

have been anonymized, and no personalized information 

can be provided, either about the company and its projects, 

or the case study participants. The case study is designed 

according to the guidelines by Runeson et al. [23]. In the 

next sections we present the four parts of our research 

design, i.e., objective and research question (see Section 

4.1), case selection and units of analysis (see Section 4.2), 

data collection (see Section 4.3), and analysis (see Section 

4.4). 

4.1 Objective and Research Question 

The goal of the case study is to validate the FITTED 

approach, regarding its ability to assess the breaking point 

in an industrial environment. Therefore, our study focuses 

in the estimation of the accuracy of the framework in 

assessing the breaking point. To this end, we derived the 

following research question: 

RQ: Is the calculated breaking point metric correlated with 

the effort required for maintenance activities? 

This Research Question aims at validating the proposed 

instantiation method of FITTED, and in particular it 

assesses if the TD-BP is correlated with maintenance 

efforts. 

4.2 Case Selection and Units of Analysis 

To collect data for our case study, we executed the 

Breaking Point Calculator Tool on the source code of two 

projects of the collaborating SME: (a) a lottery engine, and 

(b) an online betting system. Since both systems are 

medium scale and a manual inspection of the code might be 

required from the participants, we preferred to scope our 

analysis at high-level packages. An additional reason for 

this decision is that by scaling up the level of granularity 

for our reporting, we come closer to the architectural debt 

notation that has higher impact than code TD, since larger 

amount of TD and interest are expected to occur. 
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Therefore, the units of our analysis are 18 packages, 

contained in these two different android application 

projects. The projects have been developed in different 

context and under dissimilar circumstances; hence they are 

expected to have different levels of accumulated TD and 

interest. Moreover, prerequisites for the selection of the 

projects were that the projects contained adequate number 

of versions and that the developers would be available to 

answer a short questionnaire concerning the development 

of the projects.  

4.3 Data Collection 

To answer the aforementioned research question, we 

performed a three phase analysis:  

 TD Estimation. We applied the Breaking Point Tool 

on the source code of the two applications, as 

described in Section 3.4, and obtained data on 8 

versions of the two projects. From this analysis, we 

recorded three main variables: interest (I), normalized 

principal per LoC (NrP), and breaking point (TD-BP). 

 Extraction of Control Variables. We compiled a list 

of packages, in a random ordering, and asked the 

developers to assign a Likert-scale score (1-5) to each 

one of these packages, with respect to the effort 

required to maintain them, and the extent to which 

they consider them sustainable (i.e., need to 

completely re-write them, due to heavy maintenance 

effort). The data extraction method for this phase was 

a questionnaire-based approach. 

 Discussion and Interpretation of Obtained Results. 
During this phase we conducted a focus group with all 

developers (i.e., case study participants) and discussed 

their rationale for ranking specific packages with high 

sustainability scores, and others with a lower one. 

4.4 Data Analysis 

To answer the research question, we performed a Spearman 

Rank correlation, between the TD estimated and the control 

variable. The reason for performing a non-parametric test is 

that the dataset was not normally distributed, whereas the 

reason for performing rank correlation instead of actual 

values correlation is that we are not interested in the 

predictive power of the metrics (i.e., how well they can 

predict the values of the sustainability), but on the 

consistency of the proposed metric. According to the 1061-

1998 IEEE Standard for Software Metrics [24], consistency 

assesses whether there is consistency between the ranks of 

the quality characteristic and the ranks of the metric under 

study. Consistency determines if a metric can accurately 

rank artifacts in terms of quality. The criterion is quantified 

by the coefficient of rank correlation. 

 

5 RESULTS 

In this section we present the results of the empirical study, 

through presenting some demographics and subsequently 

answering the research question.  

5.1 Study Demographics 

In Table 3, we present the average descriptive statistics for 

the TD estimation variables and the average number of 

lines per class per version, between versions (a proxy of 

maintenance effort per version).  

Table 3: Dataset Descriptive Statistics 

 TD Estimator Min Max Mean Std. Dev 

NrP 0,138 1,163 0,690 0,302 

I 0,188 179,616 28,228 55,721 

TD-BP 0,085 366,279 49,602 88,572 

AVG(LoC) 0,250 281,889 21,296 65,785 

Furthermore, in Figure 4, we present the distribution of 

participants’ responses with respect to the control variable, 

i.e., the sustainability of each examined packages. Finally, 

in Figure 5, we present the evolution of the three TD 

estimators. In order to fit all estimators in the same graph 

(since they have different range of values), we normalize 

all of them against their value in the first of the examined 

versions (for that version all values equal 1), and then plot 

in a line chart their evolution. 

Based on the results of Figure 4, we observe that the 

majority of the examined packages have been assigned an 

average sustainability, whereas the packages with high 

sustainability are more than those with low sustainability. 

Another observation that can be made, based on the 

evolution analysis of TD estimators (see Figure 5) is that 

Principal is a more stable metric [14], i.e., provides less 

fluctuations, compared to interest (ranges from 100%-

400% of the value of the first version) and the breaking 

point (ranges from 75% - 138% of the first version). Also, 

we can observe that the interest which increased a lot in the 

2nd examined version is then decreasing along time, 

suggesting an improvement in the structural quality of the 

software. When developers were asked if they could 

explain the reason behind the enhancement of quality along 

evolution, one of them replied that: “the quality of the code 

is a top priority for us. We are trying to structure our code 

in a modular manner, applying well-known patterns for 

that, like Model-View-Presenter (MVP)3”. 

 

                                                                 
3  MVP is a well-known pattern for mobile web development that is conceptually 

relevant to MVC. Online reference. 

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter
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Figure 4: Control Variable Demographics 

 
Figure 5: TD Estimators Evolution 

5.2 Answering the Research Question 

As mentioned in Section 4.4, the research question is 

answered using correlation analysis. The results of the 

analysis are presented in Table 4. In the table, statistically 

significant correlations are denoted with grey cell shading. 

Table 4: Spearman Rho: Assessment Power 

Statistical Measure  NrP I TD-BP 

Correlation Coefficient -0,010 -0,747 ,773 

Sig. (2-tailed) 0,970 0,000 ,000 

N 18 18 18 

The results of the correlation analysis suggest that both 

interest and normalized principal are negatively correlated 

with software artifacts sustainability which is considered an 

intuitive outcome. However, only the relation between 

interest and sustainability is strong and statistically 

significant. By assessing the correlation between TD 

breaking point and sustainability, we can observe that the 

relation is statistically significant and the strongest among 

the three examined TD estimators. This outcome, suggests 

that the compound metric that we have proposed in this 

study is effective. This is an interesting finding in the sense 

that although principal in isolation is not correlated to 

sustainability, its inclusion in the calculation of TD-BP has 

increased its assessing power. The main reasons that the 

developers used for explaining high and low values of 

sustainability are summarized below: 

 High Sustainability: 

1. “Provision of limited functionality” 

2. “Only shows some data that never change” 

3. “Presents a static user interface as well” 

4. “Low coupling class which manipulates small 

amount of data” 

5. “Obeys to the Single responsibility” 

6. “Used to present static details about the app” 

 Low Sustainability 

1. “High Coupling” 

2. “Handles feed from different data sources. Needs 

extra effort to be maintained” 

3. “Fundamental class of the app which handles many 

data and has many responsibilities” 

6 DISCUSSION 

In this section, we interpret the case study results and 

discuss their implications for researchers and practitioners. 

6.1 Explanation of Obtained Results 

According to the results of the study interest (as calculated 

by the proposed approach) appears to be more sensitive 

than principal (as calculated by SonarQube) in the sense 

that it exhibits more fluctuations over the course of the 

project’s evolution. This could be attributed to the fact that 

principal depends on the number of rule violations that 

SonarQube identifies, and these violations do not change 

drastically from one version to the other. On the other hand, 

interest as calculated by the proposed FITTED approach, 

takes indirectly into account many structural characteristics 

of software, as the ‘optimum’ design is assessed by 

identifying structurally similar classes. For example, even a 

change in the control flow structure of a method will be 

reflected on interest, whereas it could go unnoticed by the 

principal calculation. Thus, interest calculation is subject 

even to minor changes in the code leading to a more 

sensitive measure. 

Considering the results of the correlation analysis between 

principal, interest, breaking point and software artifacts 

sustainability, it appears that the consideration of the 

structural characteristics on top of the TD issues identified 

by SonarQube has been successful. In other words, the 

combination of interest (which has a statistically significant 

correlation to sustainability) and principal for the extraction 

of the TD breaking point, leads to even stronger, and 
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statistically significant correlation between the breaking 

point and sustainability.  

It should be noted that in this study sustainability is related 

to the difficulty of performing maintenance or conversely 

the need to completely re-write software modules. A 

module has low sustainability if it undergoes frequent and 

extensive maintenance and at the same time its TD hinders 

maintenance. According to the responses of the study 

typical symptoms of a poor design, such as high coupling 

and violation of the single responsibility principle 

contribute to low sustainability. The fact that the proposed 

TD breaking point captures to a sufficient extent the notion 

of sustainability as perceived by the developers implies that 

TD issues combined with structural properties of the code 

can serve as a valid indicator of maintainability.   

6.2 Implications for Researchers 

Considering the need to assess the sustainability of 

software modules in an objective and accurate manner, the 

promising results regarding the correlation between TD-BP 

and sustainability should be checked against more projects. 

Given that the case study has been executed on two projects 

from the mobile domain, extension of the study to projects 

with different characteristics in terms of application 

domain, programming language and development process 

can be very valuable for tuning the calculation of the 

breaking point. It should be noted that the proposed 

application of FITTED targets code TD; however, the 

underlying theory can be extended to other levels such as 

architecture. Considering the architectural TD has a larger 

impact on system maintainability than code TD, obtaining 

the interest of an architectural element based on the notion 

of ‘distance’ to similar, ‘optimum’ elements can remove 

the existing barriers of effectively calculating a pragmatic 

TD measure.  

6.3 Implications for Practitioners 

The results of the study and the developers’ feedback on 

the causes of low and high sustainability indicate that the 

adoption of rather ‘classic’ well-known practices (such as 

the use of patterns, conformance to the Single 

Responsibility Principle, low coupling and high cohesion) 

can improve sustainability. FITTED confirms that 

addressing code and design inefficiencies can move the 

breaking point, i.e. the time at which increased 

maintenance costs exceed any short-term benefits, further 

away to the future.  

The proposed toolset in this study and especially the 

consideration of structurally similar modules that exhibit a 

higher quality can be of help to novice software engineers. 

Assessing principal, interest and breaking point in a relative 

manner that is by comparing a software module to that of 

peers can yield feasible opportunities for improvement. 

Moreover, the proposed toolset offers a viable way of 

continuous monitoring of TD critical levels, so as to act as 

a Quality Gate in the context of contemporary continuous 

integration practices. 

7 THREATS TO VALIDITY 

The results regarding the correlation between interest and 

breaking point and sustainability are subject to external 

validity threats meaning that they cannot be generalized to 

other application domains, programming languages or 

project sizes. Furthermore, TD principal estimation with 

the use of SonarQube has to be reported as a possible 

validity threat. Since the tool does not consider architecture 

when calculating TD principal, this may impact the 

precision of the estimation.  Moreover, it should be noted 

that the developers in the study might have perceived the 

concept of sustainability in different ways. Since 

sustainability is one of the main variables in the analysis, 

construct validity threats arise, although an attempt to 

clarify the concept prior to the collection of results has been 

made.  

8 CONCLUSION 

Principal and Interest are key concepts in the Technical 

Debt literature as they provide a monetary representation of 

detectable inefficiencies. However, their value has to be 

demonstrated by proving their correlation to external 

software qualities. In this paper we demonstrate the 

feasibility of instantiating a theoretical framework which 

allows the calculation of the breaking point, which is a time 

stamp in which the accumulated interest becomes larger 

than the principal. The results of a validation in an 

industrial setting are very promising since they suggest that 

breaking point is strongly correlated to experts’ opinion on 

the sustainability of modules. 
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