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ABSTRACT

Technical debt management entails the quantification of
principal and interest. In our previous work we had
introduced a framework for calculating the Technical Debt
Breaking Point (TD-BP), which is a point in time where the
accumulated interest becomes larger than the principal;
thus the debt of the company is no longer sustainable after
this point in time. In this paper, we instantiate this
framework and validate its ability to assess the breaking
point of source code modules in an industrial setting. The
results of the validation suggest that the calculated TD-BP
is strongly correlated to experts’ opinion on the
sustainability of modules, and that it can accurately rank
components, based on their maintenance difficulty.
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* Social and professional topics — Professional topics;
Management of computing and information systems; Quality
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1 INTRODUCTION

In the last years, the technical debt research community has
been spending increasingly large effort on the different
activities of Technical Debt Management (TDM). To a
large extent, this research is focusing on issues related to
cost and benefit analysis of software quality management
[3]. An overview of TDM research is presented in, among
others, two literature reviews [4, 5]. Although research on
TDM has been intense in the last years, the community still
faces major challenges, two of which are the focus of this
paper: (a) a sound estimation of the amount of TD (i.e., the
quantification of interest and principal [5]), and (b) the
monitoring of the TD amount, as it increases due to the
accumulation of interest [6].

In our previous work [6, 7], we begun to address these
challenges, by defining a theoretical framework, named
FITTED, that can be used for the long-term management of
Technical Debt. FITTED considers that interest
accumulating during software evolution, can potentially
outgrow the amount required for repaying the principal of
TD. Therefore, it is critical for project managers to be able
to estimate the point in time where the accumulated interest
will be equal to the TD principal. This point in time is
called the “breaking point” (TD-BP), in the sense that
any benefit deriving from the decision to take on technical
debt is being neutralized after that point, i.e. the cost
becomes higher than the benefit [8].

The aim of this paper is twofold: (a) we instantiate the
FITTED framework by providing details on the calculation
of principal and interest, and (b) we validate the proposed
instantiation of the FITTED framework in an industrial
setting. We note that both the instantiation of the
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framework and its subsequent validation are at the source
code level; instantiation could also take place for technical
debt at other levels but that is out of the scope of this paper.
The instantiation of the framework is supported by a
software tool which can extract data on: (a) the principal of
technical debt, (b) the interest accumulated in every version
of the system, and (c) the occurrence of the breaking point
for every version of the system.

The wvalidation of the framework was conducted in
collaboration with a software development company.
Specifically the tool was applied on two of their current
software development projects, and its results were
analyzed together with two software engineers. Compared
to the state-of-research (see Section 2.1), this is the first
automated approach that calculates the Breaking Point of
Technical Debt and validates it within an industrial setting.
The rest of the paper is structured as follows: In Section 2,
the FITTED framework is presented. In Section 3, we
present our approach for validating FITTED, and in Section
4, we explain the design of our study. Next, we present the
results of our analysis, in Section 5, and we discuss them,
in Section 6. In Section 7 we refer to the threats to validity,
and finally, in Section 8, we present our conclusions and
future work.

2 BACKGROUND INFORMATION

2.1 Interest Theories in Technical Debt
Management

Section 2.1 presents the results of several studies that have
investigated interest in Technical Debt Management
(TDM). Ampatzoglou et al. [S] and Li et al. [4] have
suggested that interest is the most frequently financial term
used in TDM research. It should be mentioned here that in
economic theory, the level of interest rate (not interest per
se) is the main subject of research, since interest is
calculated upon interest rate. Nevertheless, in Technical
Debt Management, interest is estimated according to a
variety of proposed theories, presented later in this section
and it is not calculated based on interest rate, which is a
term not clearly defined in TD literature.

Ampatzoglou et al. [6] suggest that in literature, interest is
described either as the extra effort during maintenance (in
approximately 31% of primary studies), or as the extra
maintenance cost (in 51% if primary studies). Therefore, as
software economics mainly refer to cost as a function of
effort, we can presume that in 82% of primary studies
interest is defined as the extra cost/effort occurring during
maintenance, because of the accumulated technical debt. In
the rest of the literature, interest is approached through
more high-level definitions—as in [10] and [18]-or through
references to economic theory, i.e., it is defined as the
increase rate of the amount of TD [11], or through software
engineering concepts, i.e., it is defined as a change in a
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design-time quality attribute—e.g., [12] and [13]. Moreover,
it is observed that almost 28% of primary studies recognize
the effect of interest probability. Two of these studies [14,
15] approach TDM with a financial risk management
theory and define interest probability as the standard
deviation of interest rate, i.e., they consider it as the
probability of TD to occur.

Additionally, in Ampatzoglou et al. [6] it is suggested that
almost 21% of studies refer to the evolution of interest
along time. Under this perspective, interest is characterized
either as compound or continuously increasing. On the
other hand, Chin et al. [16] suggest that there is one type of
interest which is simple. In particular, they propose that the
cost of the organization to restrict TD neither increases nor
decreases, but it is stable across time. Finally, only 17% of
the studies suggest a specific methodology for measuring
interest. In most of the cases, the estimation is performed
by using historical data, documentation, and maintenance.

2.2 FITTED: A Framework for Managing
Interest in Technical Debt

To develop a theory on managing technical debt interest,
we borrowed the rationale of the economic interest theories
on the equilibrium achievement. More particularly, we
adopt the idea of the breaking point at the money market,
where money supply is equal to money demand. As long as
accumulated interest is lower than the principal, the benefit
derived by the initial decision to save effort is more than
the cost generated by the extra effort to maintain the
software. On the other hand, when the accumulation of
interest overcomes the principal, then the cost needed for
the system’s maintenance becomes more than the money
saved when technical debt incurred. Consequently, the
point where the accumulated interest is equal to the
principal (breaking point) is very critical in technical debt
management and can help project managers in their
decision making. Under this perspective, we map principal
to money supply — since it represents the amount of money
available — and the accumulated amount of interest with
money demand — since it embodies the extra amount of
money that will be necessary for future maintenance
activities caused by the TD.

Figure 1 represents the FITTED Interest Theory: the
horizontal axis depicts time, while the vertical axis stands
for money amount. The blue curve X(I) denotes the
increasing cumulative interest, as the software develops.
We consider cumulative interest as continuously increasing,
because it consists of the accumulation of interest in every
successive version of the project and because TD interest is
compound [6]. Principal, on the other hand, is represented
by the green line P and is also considered as increasing, in
the sense that the introduction of new functionality to the
software generates new TD items. Concerning principal,
we have to point out that in our original analysis of the
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FITTED framework [6], we have defined it as an amount of
effort saved once while taking on technical debt and
considered it stable throughout software evolution.
However, as software grows, technical debt keeps
accumulating. Therefore, in this study we take into account
the development of principal and we calculate it during
software development, so that we are able to reach a more
accurate assessment of the version where breaking point
occurs.
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Figure 1: FITTED Interest Theory

As described by the figure, until time stamp to, interest is
lower than the principal and taking on technical debt can be
perceived as beneficial for the project. After time point to,
interest accumulates and becomes larger than the principal
and extra maintenance costs exceed the initial money
saving. Therefore, the equilibrium point E, denotes the
point in time to where the complete amount of money
saved by incurring TD (i.e., the principal) equals the money
spent on extra maintenance activities caused by the
incurred TD [8]. If the development team proceeds with
some repayment activity, e.g. at timestamp t., accumulated
interest increases, because of the addition of the repayment
effort, and line = (I) shifts upwards to = (I) “. However,
the slope of the line decreases, since lower maintenance
activities are expected in the future due to the repayment.
On the other hand, principal decreases at time stamp tr,
because of the repayment activity, and then follows the
course of line P°. Consequently, the equilibrium point
moves to the right E ", and the benefit period increases to
time stamp to”~ [8].

3 PROPOSED APPROACH

In order to instantiate the aforementioned approach, we
need to describe the way that the two components of TD-
BP can be calculated. To this end, in Section 3.1 we
describe the employed way for calculating principal at
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source code level, whereas in Section 3.2, we present the
proposed approach for assessing interest on source code
artifacts.

3.1 Principal Estimation

As proposed in literature, TD principal can be calculated as
a function of three variables [17]. The first variable is the
number of problems that must be fixed, the second one is
the time required to fix each one of these problems, and the
third one is the cost for fixing each problem. Regarding the
number of must-fix problems. In our previous work [7] we
have presumed that there is an actual design quality for any
object-oriented software, which can be estimated by a
proper fitness function. Under this perspective, the ‘spread’
between the optimal and the actual design, as it can be
derived by the difference in their fitness function values,
can be mapped to the principal, i.e., the effort needed to
convert the actual system to the correspondent optimum
one. This notion of ‘distance’ is depicted in Figure 2, as
Effort..

For the purpose of this study, we have decided to estimate
principal, based on the computation of a widely used OSS
platform, SonarQube—formerly known as Sonar, which is
a state-of-the-art tool for calculating TD principal.
According to its documentation!, SonarQube aims at the
continuous evaluation of software quality. SonarQube can
assess the quality of software on a plentitude of
programming languages, generating documentation on
quality measures and issues, such as coding rule violations.
The analysis has been performed according to the
platform’s  default format, without any further
configuration. The platform algorithm is based upon an
adopted version of the SQALE method proposed by
Letouzey [18], in which a remediation index is obtained for
requirements of an applicable Quality Model. For example,
for a requirement stating that all files should have at least
70% code coverage, the corresponding remediation action
is to write additional tests. A remediation function maps
effort to each action, for example, 20 minutes per
uncovered line of code. Finally, for each artifact, the
remediation index relating to all the characteristics of the
Quality Model is obtained by adding all remediation
indices linked to all quality requirements. The resulting
SQALE Quality Index is considered to represent the
principal of the TD for the assessed source code.

3.2 Interest Estimation

In this section we discuss the way we calculate interest in
the proposed approach. In particular, in Section 3.2.1 we
present the theoretical background of the approach,

! https://docs.sonarqube.org/display/SONAR/Documentation



https://docs.sonarqube.org/display/SONAR/Documentation

TechDebt 2018, May 2018, Gothenburg, Sweden

whereas in Section 3.2.2, we present the metrics and the
method that we have used for its instantiation at the source
code level, also known as code TD.

3.2.1 FITTED Interest Theory

Assuming the optimal and actual systems of Figure 2, in
the common case, maintaining the optimum system
requires less effort than maintaining the actual system. As
shown in the figure, adding a new feature A to the optimum
system needs a certain effort, noted as Effort optimum),
whereas adding the same feature to the actual system
necessitates a larger effort, noted as Effort (actua1). The
difference between these two efforts represents the interest
that is accumulated during this maintenance activity, i.e.,
the addition of feature A.
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Figure 2: Increased maintenance effort for TD item

However, since the evolution of the software cannot be
predicted, it is not possible to foresee what kind of
modifications will be made in a system during future
releases. Hence, we base our assessment of future
maintenance effort on historic data, by considering past
effort spent on maintenance activities. More specifically,
although many measures can be used for the calculation of
past effort, we have selected to use the average number of
lines of code added between sequential releases. Added
lines of code indicate the amount of effort required for the
addition of new functionality and in a way the effort needed
for changing existing modules. Supposing that an average
of k lines of code are added in the transition from one
version to another, then we can accept that adding k lines to
a high design quality system (as denoted by the assigned
fitness function value) is easier than making the same
addition to a lower design quality system. At this point we
suppose that maintenance effort is dependent on the design
quality, as in (1):

Effort, = c- FitnessVale (1)
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where c is an arbitrary constant. Based on the
abovementioned approach, the fitness value for both the
optimum and the actual systems can be calculated and
therefore we can capture the proportion of the theoretical
over the actual effort, as in (2):

Effory, (optimun) _ c- Fitness Valle(optimun) N

Effort,(actual) c-FitnessValelactual) 2)
. FitnessVale{optimum)
Effort, (optimun)= FitnessValdactua) - Effort,(actual)

Hence, if past maintenance effort (i.e., the number (k) of
added lines) is used to define the actual maintenance effort,
then the optimum effort can be directly obtained.
Consequently, the amount of interest accumulated between
any two sequential versions can be calculated as the
distance between the optimum and the actual effort and is
given by (3) and (4).

Interest= AEffort=k-|1- FitnessValdoptimur) 3)
Fitness Valle(actuaa

Fi .
Interest = AEffort = k [ itness Value(optimum) B IJ 4)

FitnessValue(actual )

Since the optimum value for each one of the applied
metrics could be either the minimum or the maximum
value, interest is given by the actual effort (k) multiplied by
1 minus the ratio of the optimum fitness value to the actual
fitness value, if the optimum value is the maximum one—
as in (3). Otherwise, if the optimum value is the minimum
one, interest is given by the actual effort (k) multiplied by 1
minus the ratio of the actual fitness value to the optimum
fitness value—as in (4).

3.2.2 Interest in Source Code Debt

Given the fact that interest is closely related to the system’s
maintainability [19], our analysis concentrates on the
estimation of interest, based on well-known maintainability
models. Maintainability models are sets of low-level
metrics that quantify design-time quality attributes, such as
inheritance, cohesion, coupling, complexity and size, which
are somehow aggregated in one maintainability index.
Therefore, given the relation between maintainability and
interest, in this study we define the fitness value used for
the estimation of the interest, using the set of metrics that
are accurate maintainability predictors. Riaz et al. [20], in
their systematic review have studied all existing
maintainability models, and reported on their accuracy.
Based on the results of that systematic literature review, a
list of ten metrics stand out as successful maintainability
predictors (see Table 1)—and this is the set of metrics that
we use in our study. Table 1 depicts these metrics and the
quality attribute to which they refer, as presented by
Arvanitou et al. [21]. Nevertheless, we need to note that in
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our case no aggregation function is used for these metrics,
since it is out of the scope of this paper.

More specifically, in order to assess the optimum design,
our analysis consists of the following steps. Firstly, classes
of high similarity level with the investigated class are found
(see Section 3.4). The identification and comparison of a
class with structurally similar ones or the calculation of the
fitness function is crucial, in the sense that the
maintainability of a class of tens of LoC cannot be
comparable with one with hundreds of LoCs. Secondly, the
optimum value for each one of the aforementioned metrics
is identified, the difference between the actual and the
optimum fitness values is calculated and the average
distance between the actual and optimum design is
assessed. Subsequently, the interest is calculated as
described above, in equations (3) and (4). Finally, taking
into account the number of LoC that can be added in a unit
of time (according to past data) and the developer’s hourly
rate, interest is estimated in terms of money.

Table 1: Object-Oriented Metrics

Quality

Metric Attribute

Description

Depth of Inheritance Tree: Inheritance

DIT level number, 0 for the root class.

inheritance

Number of Children Classes: Number

NoOCcC of direct sub-classes that the class has.

inheritance

Message Passing Coupling: Number
MPC of send statements defined in the
class.

coupling

Response For a Class: Number of
RFC local methods plus the number of
methods called by class methods.

coupling

Lack of Cohesion of Methods:
Number of disjoint sets of methods (a
set of methods that do not interact
with each other), in the class.

LCOM cohesion

Data Abstraction Coupling: Number

DAC of abstract types defined in the class.

coupling

Weighted Method per Class: Average
cyclomatic complexity of all methods
in the class.

WMPC complexity

Number of Methods: Number of

NOM methods in the class.

size

Lines of Code: Number of semicolons .
SIZE1 . size
in the class.

Number of Properties: Number of

SIZE2 attributes and methods in the class

size

3.3 Breaking Point

According to the abovementioned analysis, an estimate of

the interest in USD can be achieved, based on the
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difference between theoretical effort (maintenance
performed on the optimum system) and the actual effort, on
past data concerning the time required for the addition of
lines of code, and the per hour cost of a developer’s work.
Therefore, given the principal, as it comes from
SonarQube, and knowing the interest accumulated in one
version of the software, the ratio of the principal over the
interest gives the number of versions after which the
company will reach the breaking point, as shown in (5).

7D BPe Principal($) 5)
- Interest($)

3.4 Tool Support

To boost the applicability of the aforementioned
methodology, and moreover to validate the FITTED
framework, we created a desktop application, developed in
Java, called Breaking Point Calculator (BPC). The
procedure is separated into two phases, the analysis phase
and the computation phase. During the analysis phase, the
source code of the project is analyzed and the metrics
needed for the calculation of the results are retrieved. Each
project is analyzed with the aid of two software tools,
SonarQube and Percerons Client:

o SonarQube is used for the extraction of five metrics
which are used as a factor of similarity and technical
debt principal. The metrics used for identifying
similar classes are depicted in Table 2, accompanied
by their description. The analysis of a project by
SonarQube can take several hours, thus it takes place
on our server in UoM (University of Macedonia)
where it is installed. After the analysis is complete the
metrics are stored in SonarQube database, which we
access to retrieve them.

e Percerons Client is a toolset? developed to support
empirical software engineering research. Percerons is
able to calculate metrics for every class contained in a
JAR file and produces a .CSV output [22]. Percerons
Client is used to extract the object-oriented metrics for
each class, on every version of the investigated
project. The output document is parsed by BPC and
the metrics of each class are stored into a database.

Table 2: Similarity Metrics

Metric Description
Number of classes (including nested classes,
Classes . -
interfaces, enums and annotations).
Complexit The complexity calculated based on the
P Y| number of paths through the code.

2 http://www.percerons.com
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Metric Description

Functions | Number of functions.

Number of physical lines that contain at least
one character which is neither a whitespace
nor a tabulation nor part of a comment.

NCLOC

Sqale Index | Effort needed to fix all maintainability issues.

Statements | Number of statements.

Once the analysis phase is completed, we proceed with the
computation of the breaking point, by selecting the project
under investigation, along with the computation scope, i.e.,
whether we want to perform the computation on “class” or
“package” level. Classes and packages selected for our
scope are being referred to as artifacts. The goal of the
computation phase is the calculation of the breaking point.
To this end, we retrieve all the artifacts for each version of
the project selected, along with the similarity and object-
oriented metrics that characterize each one. For every
artifact under study, we detect the most similar ones by
using the aforementioned similarity metrics. Thereafter, we
calculate the optimal artifact by selecting the best values
among the grouped artifacts.

e |
Rt

(e PRPP—

Figure 3: Breaking Point Calculator

On the completion of this phase, we are able to proceed
with the calculation of the fitness value, the principal, the
interest and the breaking point. To sum up, by the time the
computation phase is completed, the following information
can be extracted for any artifact from any available project
version:

1. The five most similar artifacts to the investigated one,
along with the values of the similarity metrics and the
similarity rate.

2. The values of the object-oriented metrics for the most
similar artifacts and the investigated one.

A. Ampatzoglou et al.

3. The values of the quality metrics for the optimum
artifact.

4. The principal in USD.

5. The interest in USD.

6. The breaking point in versions.
Finally we are producing overview reports for the project in
.CSV documents in order to get a more comprehensive
picture of it, as well as to enable the comparison of multiple
artifacts. Some screenshots of the tool are provided in
Figure 3.

4 CASE STUDY DESIGN

To validate the proposed framework and its ability to
estimate the TD-BP, we performed an industrial case study
in a small-medium enterprise (SME) in Greece, which is
active in the domain of mobile applications. The company
wants to keep its anonymity, thus all records in the dataset
have been anonymized, and no personalized information
can be provided, either about the company and its projects,
or the case study participants. The case study is designed
according to the guidelines by Runeson et al. [23]. In the
next sections we present the four parts of our research
design, i.e., objective and research question (see Section
4.1), case selection and units of analysis (see Section 4.2),
data collection (see Section 4.3), and analysis (see Section
4.4).

4.1 Objective and Research Question

The goal of the case study is to validate the FITTED
approach, regarding its ability to assess the breaking point
in an industrial environment. Therefore, our study focuses
in the estimation of the accuracy of the framework in
assessing the breaking point. To this end, we derived the
following research question:

RQ: Is the calculated breaking point metric correlated with

the effort required for maintenance activities?

This Research Question aims at validating the proposed
instantiation method of FITTED, and in particular it
assesses if the TD-BP is correlated with maintenance
efforts.

4.2 Case Selection and Units of Analysis

To collect data for our case study, we executed the
Breaking Point Calculator Tool on the source code of two
projects of the collaborating SME: (a) a lottery engine, and
(b) an online betting system. Since both systems are
medium scale and a manual inspection of the code might be
required from the participants, we preferred to scope our
analysis at high-level packages. An additional reason for
this decision is that by scaling up the level of granularity
for our reporting, we come closer to the architectural debt
notation that has higher impact than code TD, since larger
amount of TD and interest are expected to occur.
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Therefore, the units of our analysis are 18 packages,
contained in these two different android application
projects. The projects have been developed in different
context and under dissimilar circumstances; hence they are
expected to have different levels of accumulated TD and
interest. Moreover, prerequisites for the selection of the
projects were that the projects contained adequate number
of versions and that the developers would be available to
answer a short questionnaire concerning the development
of the projects.

4.3 Data Collection

To answer the aforementioned research question, we
performed a three phase analysis:

e TD Estimation. We applied the Breaking Point Tool
on the source code of the two applications, as
described in Section 3.4, and obtained data on 8
versions of the two projects. From this analysis, we
recorded three main variables: interest (1), normalized
principal per LoC (NrP), and breaking point (TD-BP).

o Extraction of Control Variables. We compiled a list
of packages, in a random ordering, and asked the
developers to assign a Likert-scale score (1-5) to each
one of these packages, with respect to the effort
required to maintain them, and the extent to which
they consider them sustainable (i.e., need to
completely re-write them, due to heavy maintenance
effort). The data extraction method for this phase was
a questionnaire-based approach.

e Discussion and Interpretation of Obtained Results.
During this phase we conducted a focus group with all
developers (i.e., case study participants) and discussed
their rationale for ranking specific packages with high
sustainability scores, and others with a lower one.

4.4 Data Analysis

To answer the research question, we performed a Spearman
Rank correlation, between the TD estimated and the control
variable. The reason for performing a non-parametric test is
that the dataset was not normally distributed, whereas the
reason for performing rank correlation instead of actual
values correlation is that we are not interested in the
predictive power of the metrics (i.e., how well they can
predict the values of the sustainability), but on the
consistency of the proposed metric. According to the 1061-
1998 IEEE Standard for Software Metrics [24], consistency
assesses whether there is consistency between the ranks of
the quality characteristic and the ranks of the metric under
study. Consistency determines if a metric can accurately
rank artifacts in terms of quality. The criterion is quantified
by the coefficient of rank correlation.
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5 RESULTS

In this section we present the results of the empirical study,
through presenting some demographics and subsequently
answering the research question.

5.1 Study Demographics

In Table 3, we present the average descriptive statistics for
the TD estimation variables and the average number of
lines per class per version, between versions (a proxy of
maintenance effort per version).

Table 3: Dataset Descriptive Statistics

TD Estimator | Min Max Mean | Std. Dev
NrP 0,138 1,163 0,690 0,302
I 0,188 | 179,616 | 28,228 55,721
TD-BP 0,085 | 366,279 | 49,602 88,572
AVG(LoC) 0,250 | 281,889 | 21,296 65,785

Furthermore, in Figure 4, we present the distribution of
participants’ responses with respect to the control variable,
i.e., the sustainability of each examined packages. Finally,
in Figure 5, we present the evolution of the three TD
estimators. In order to fit all estimators in the same graph
(since they have different range of values), we normalize
all of them against their value in the first of the examined
versions (for that version all values equal 1), and then plot
in a line chart their evolution.

Based on the results of Figure 4, we observe that the
majority of the examined packages have been assigned an
average sustainability, whereas the packages with high
sustainability are more than those with low sustainability.
Another observation that can be made, based on the
evolution analysis of TD estimators (see Figure 5) is that
Principal is a more stable metric [14], i.e., provides less
fluctuations, compared to interest (ranges from 100%-
400% of the value of the first version) and the breaking
point (ranges from 75% - 138% of the first version). Also,
we can observe that the interest which increased a lot in the
2" examined version is then decreasing along time,
suggesting an improvement in the structural quality of the
software. When developers were asked if they could
explain the reason behind the enhancement of quality along
evolution, one of them replied that: “the quality of the code
is a top priority for us. We are trying to structure our code
in a modular manner, applying well-known patterns for
that, like Model-View-Presenter (MVP).

3 MVP is a well-known pattern for mobile web development that is conceptually
relevant to MVC. Online reference.


https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter
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5.2 Answering the Research Question

As mentioned in Section 4.4, the research question is
answered using correlation analysis. The results of the
analysis are presented in Table 4. In the table, statistically
significant correlations are denoted with grey cell shading.

Table 4: Spearman Rho: Assessment Power

Statistical Measure NrP I TD-BP
Correlation Coefficient -0,010 -0,747 773
Sig. (2-tailed) 0,970 0,000 ,000
N 18 18 18

The results of the correlation analysis suggest that both
interest and normalized principal are negatively correlated
with software artifacts sustainability which is considered an
intuitive outcome. However, only the relation between
interest and sustainability is strong and statistically
significant. By assessing the correlation between TD
breaking point and sustainability, we can observe that the
relation is statistically significant and the strongest among
the three examined TD estimators. This outcome, suggests
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that the compound metric that we have proposed in this
study is effective. This is an interesting finding in the sense
that although principal in isolation is not correlated to
sustainability, its inclusion in the calculation of TD-BP has
increased its assessing power. The main reasons that the
developers used for explaining high and low values of
sustainability are summarized below:

o High Sustainability:
1. “Provision of limited functionality”
2. “Only shows some data that never change”
3. “Presents a static user interface as well”
4. “Low coupling class which manipulates small
amount of data”
5. “Obeys to the Single responsibility”
6. “Used to present static details about the app”
o Low Sustainability
1. “High Coupling”
2. “Handles feed from different data sources. Needs
extra effort to be maintained”
3. “Fundamental class of the app which handles many
data and has many responsibilities”

6 DISCUSSION

In this section, we interpret the case study results and
discuss their implications for researchers and practitioners.

6.1 Explanation of Obtained Results

According to the results of the study interest (as calculated
by the proposed approach) appears to be more sensitive
than principal (as calculated by SonarQube) in the sense
that it exhibits more fluctuations over the course of the
project’s evolution. This could be attributed to the fact that
principal depends on the number of rule violations that
SonarQube identifies, and these violations do not change
drastically from one version to the other. On the other hand,
interest as calculated by the proposed FITTED approach,
takes indirectly into account many structural characteristics
of software, as the ‘optimum’ design is assessed by
identifying structurally similar classes. For example, even a
change in the control flow structure of a method will be
reflected on interest, whereas it could go unnoticed by the
principal calculation. Thus, interest calculation is subject
even to minor changes in the code leading to a more
sensitive measure.

Considering the results of the correlation analysis between
principal, interest, breaking point and software artifacts
sustainability, it appears that the consideration of the
structural characteristics on top of the TD issues identified
by SonarQube has been successful. In other words, the
combination of interest (which has a statistically significant
correlation to sustainability) and principal for the extraction
of the TD breaking point, leads to even stronger, and
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statistically significant correlation between the breaking
point and sustainability.

It should be noted that in this study sustainability is related
to the difficulty of performing maintenance or conversely
the need to completely re-write software modules. A
module has low sustainability if it undergoes frequent and
extensive maintenance and at the same time its TD hinders
maintenance. According to the responses of the study
typical symptoms of a poor design, such as high coupling
and violation of the single responsibility principle
contribute to low sustainability. The fact that the proposed
TD breaking point captures to a sufficient extent the notion
of sustainability as perceived by the developers implies that
TD issues combined with structural properties of the code
can serve as a valid indicator of maintainability.

6.2 Implications for Researchers

Considering the need to assess the sustainability of
software modules in an objective and accurate manner, the
promising results regarding the correlation between TD-BP
and sustainability should be checked against more projects.
Given that the case study has been executed on two projects
from the mobile domain, extension of the study to projects
with different characteristics in terms of application
domain, programming language and development process
can be very valuable for tuning the calculation of the
breaking point. It should be noted that the proposed
application of FITTED targets code TD; however, the
underlying theory can be extended to other levels such as
architecture. Considering the architectural TD has a larger
impact on system maintainability than code TD, obtaining
the interest of an architectural element based on the notion
of ‘distance’ to similar, ‘optimum’ elements can remove
the existing barriers of effectively calculating a pragmatic
TD measure.

6.3 Implications for Practitioners

The results of the study and the developers’ feedback on
the causes of low and high sustainability indicate that the
adoption of rather ‘classic’ well-known practices (such as
the use of patterns, conformance to the Single
Responsibility Principle, low coupling and high cohesion)
can improve sustainability. FITTED confirms that
addressing code and design inefficiencies can move the
breaking point, i.e. the time at which increased
maintenance costs exceed any short-term benefits, further
away to the future.

The proposed toolset in this study and especially the
consideration of structurally similar modules that exhibit a
higher quality can be of help to novice software engineers.
Assessing principal, interest and breaking point in a relative
manner that is by comparing a software module to that of
peers can yield feasible opportunities for improvement.
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Moreover, the proposed toolset offers a viable way of
continuous monitoring of TD critical levels, so as to act as
a Quality Gate in the context of contemporary continuous
integration practices.

7 THREATS TO VALIDITY

The results regarding the correlation between interest and
breaking point and sustainability are subject to external
validity threats meaning that they cannot be generalized to
other application domains, programming languages or
project sizes. Furthermore, TD principal estimation with
the use of SonarQube has to be reported as a possible
validity threat. Since the tool does not consider architecture
when calculating TD principal, this may impact the
precision of the estimation. Moreover, it should be noted
that the developers in the study might have perceived the
concept of sustainability in different ways. Since
sustainability is one of the main variables in the analysis,
construct validity threats arise, although an attempt to
clarify the concept prior to the collection of results has been
made.

8 CONCLUSION

Principal and Interest are key concepts in the Technical
Debt literature as they provide a monetary representation of
detectable inefficiencies. However, their value has to be
demonstrated by proving their correlation to external
software qualities. In this paper we demonstrate the
feasibility of instantiating a theoretical framework which
allows the calculation of the breaking point, which is a time
stamp in which the accumulated interest becomes larger
than the principal. The results of a validation in an
industrial setting are very promising since they suggest that
breaking point is strongly correlated to experts’ opinion on
the sustainability of modules.
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