Applying the Single Responsibility Principle in Industry:
Modularity Benefits and Trade-offs

Apostolos Ampatzoglou, Angeliki-Agathi Tsintzira, Elvira-Maria Arvanitou, Alexander Chatzigeorgiou, loannis Stamelos,
Alexandru Moga, Robert Heb, Oliviu Matei, Nikolaos Tsiridis, Dionisis Kehagias

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Holisun, Baia Mare, Romania
Open Technology Services, Thessaloniki, Greece
Information and Technology Institute, Center for Research and Technology, Thessaloniki, Greece

apostolos.ampatzoglou@gmail.com, angeliki.agathi.tsintzira@gmail.com, earvanitoy@gmail.com, achat@uom.gr,
stamelos@csd.auth.gr, alexandru.moga@holisun.com, robert.neb@holisun.com, oliviu.matei@holisun.com,
ntsiridis@gmail.com, diok@iti.gr

ABSTRACT

Refactoring is a prevalent technique that can be applied for im-
proving software structural quality. Refactorings can be applied at
different levels of granularity to resolve ‘bad smells’ that can be
identified in various artifacts (e.g., methods, classes, packages). A
fundamental software engineering principle that can be applied at
various levels of granularity is the Single Responsibility Principle
(SRP), whose violation leads to the creation of lengthy, complex
and non-cohesive artifacts; incurring smells like Long Method,
God Class, and Large Package. Such artifacts, apart from being
large in size tend to implement more than one functionalities,
leading to decreased cohesion, and increased coupling. In this pa-
per, we study the effect of applying refactorings that lead to con-
formance to the SRP, at all three levels of granularity to identify
possible differences between them. To study these differences, we
performed an industrial case study on two large-scale software
systems (more than 1,500 classes). Since SRP is by definition re-
lated to modularity, as a success measure for the refactoring we
use coupling and cohesion metrics. The results of the study can
prove beneficial for both researchers and practitioners, since vari-
ous implications can be drawn.

CCS CONCEPTS

Software and its engineering — Software creation and manage-
ment — {Software development techniques — Object-oriented
development}

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EASE '19, April 15-17, 2019, Copenhagen, Denmark

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04...$15.00
https://doi.org/10.1145/3319008.3320125

KEYWORDS
Refactorings, industrial case study, modularity, software metrics

ACM Reference Format

A Ampatzoglou, A. A. Tsintzira, E. M. Arvanitou, A. Chatzigeorgiou, I.
Stamelos, A. Moga, R. Heb, O. Matei, N. Tsiridis, and D. Kehagias,
“Benefits of Applying the Single Responsibility Principle to Repay Tech-
nical Debt: An Industrial Case Study”, In Proceedings of 23" Conference
on the Evaluation and Assessment in Software Engineering (EASE’ 19),
Copenhagen, Denmark, 15-17April 2019.

1 Introduction

According to the seminal book of Hans van Vliet, software design
should consider four aspects: abstraction, modularity, information
hiding, and complexity [18]. Among those, in this paper we focus
on software modularity, which is defined as the “degree to which
a system or computer program is composed of discrete compo-
nents such that a change to one component has minimal impact on
other components [1]”. According to Martin [14] the levels of
modularity can be assured by applying the Single Responsibility
Principle (SRP). SRP states that every module should have exact-
ly one responsibility, i.e., be related to only one functional re-
quirement, and therefore have only one reason to change. The
term single responsibility has been inspired by the functional
module decomposition, as introduced by Tom De Marco [7]. To
assess if a class conforms to the SRP, one needs to assess its cohe-
sion [14], which is related to the number of diverse functionalities
that a class is responsible for [7]. However, by considering the
inherent reverse relation between coupling and cohesion, proper
application the SRP, shall not only consider the improvement of
artifacts’ cohesion, but also possible trade-offs between coupling
and cohesion (i.e., enhancing one can diminish the other) [18].

Lack of modularity can lead to the existence of various smells,
based on the artifact that it is applied to: Long Methods (that are
resolved through the Extract Method refactoring [4]), God Classes
(that are resolved through the Extract Class refactoring [9]), and

mailto:earvanitoy@gmail.com
mailto:stamelos@csd.auth.gr
mailto:alexandru.moga@holisun.com
mailto:robert.heb@holisun.com
mailto:oliviu.matei@holisun.com
mailto:ntsiridis@gmail.com
mailto:diok@iti.gr
mailto:permissions@acm.org
https://doi.org/10.1145/3319008.3320125

EASE’ 19, April 2019, Copenhagen, Denmark

Large Packages (that are resolved through the Move Class refac-
toring [16]). All the aforementioned smells, follow the same pat-
tern: there is a large in size artifact that among others, is related to
more than one responsibilities. The solution would be to split this
artifact into smaller ones, maintaining the external behavior of the
system. For the majority of the cases, the presence of the smell is
resolved by examining the cohesion of the long artifact, and create
new ones with better levels of cohesion. Although the benefit of
applying these refactorings in terms of cohesion is safeguarded by
the nature of the proposed approaches (i.e., cohesion-based opti-
mizations), the effect on modularity remains vague, since if cou-
pling substantially deteriorates, then modularity might be harmed.

Driven by the above setting, in this paper we investigate the effect
of applying the Single Responsibility Principle on software modu-
larity at three levels of granularity: (a) method-, (b) class-, and (c)
package-level. Additionally, by considering that quality trade-offs
rarely occur in small-scale applications, we preferred to perform a
case study on real-world artifacts, retrieved from an industrial set-
ting. In particular, we have studied two systems with long evolu-
tion history and large size, and manually performed refactorings at
all three levels. Then we compare: (a) the effect of the refactor-
ings on modularity, regardless of the level of granularity, (b) the
effect of the refactorings on modularity, given the level of granu-
larity, and (c) the trade-offs between coupling and cohesion when
applying the refactoring, in all levels of granularity.

The rest of the paper is organized as follows: Section 2 provides
brief background information on coupling, cohesion, the metrics
that have been used for measuring them, and the tools that we
have opted for getting refactoring suggestions. Section 3 presents
the case study design. In Section 4 we present the results of the
industrial case study, which we discuss in Section 5, in which we
also conclude the paper.

2 Background Information and Used Tools

In a typical Object-Oriented (OO) system, methods and attributes
are grouped together in classes, based on their functional similari-
ty. In order for a class to be modular, methods that belong to the
same class are expected to highly interact with the attributes of the
class (high-cohesion), whereas dependencies to methods belong-
ing to different classes should be limited (low-coupling). For ex-
ample, in Figure 1(a), we can observe (through an artificial exam-
ple) that in class C1 there are two groups of pairs of methods and
attributes: (a) method m1 uses attributes al and a2, and (b)
method m2 uses a3 and a4, whereas method m3 uses a4. Thus,
based on SRP, class C1 needs to be slit. It should be noted that
class C1 is coupled to class C2 because of method invocations
(one coupling relationship). After the application of SRP (see Fig-
ure 1(b)), we split class C1 into two new classes: (a) Cla—ml
method with a1 and a2 attributes, and (b) C1b—m2 method
with a3 and a4 attributes and m3 method. By assessing the
modularity of the system, we can observe that the lack of cohesion
after the application of SRP becomes zero, whereas the coupling
increases (two coupling relationships). Therefore, the assessment

Ampatzoglou et al.

of modularity cannot be conclusive, since there is a trade-off be-
tween the two quality properties that comprise it. We note, that
since the goal of this example is to only demonstrate SRP, we do
not continue the narration on how C2 could be split.

Class C1 Class C2

(a) Design-before the application SRP

ml

m2

/

m3 [m3

2] [2] 2]
2] [2] 2]
DO OO

Class Cla Class C2

| ml
m

m2

!

m3

®® 6

Class C1b

[m2]
()

(b) Design-after the application SRP

Figure 1. Modularity Example

The measurement of coupling and cohesion is differentiated,
based on the artifact that is being examined: At the package / ar-
chitecture level, we employ the metrics presented by Skiada et al.
[17], namely Average Coupling Afferent (ACa), which represents
the average afferent coupling of packages. Afferent coupling is
the number of outgoing dependencies of a package to other pack-
ages; and Cohesion among Package Classes (CaPC), which as-
sesses how closely two classes that belong to the same package
collaborate with each other. The metric is inspired by reversing
the calculation of Lack of Cohesion of Methods [6]: we compute
the total number of pairs of classes that belong to one package,
and then we investigate the percentage of these pairs that are co-
herent (i.e., they are coupled to each other). At the class level we
use: Message Passing Coupling (MPC), which measures the
number of method calls defined in methods of a class to methods
in other classes, and therefore the dependency of local methods to
methods implemented by other classes [12]; and Lack of Cohe-
sion-5 (LCOMS5), which measures the degree to which methods
and fields within a class are related to one another, providing one
or more components [11]. At the method level, we use the trans-
formation presented by Charalampidou et al. [5] to develop meth-
od-level metrics from LCOM5 and MPC. Finally, modularity is
obtained by dividing coupling by cohesion: when lack of cohesion

Applying the Single Responsibility Principle in the Industry:
Modularity Benefits and Trade-offs

is measured, we reversed them (1-metric score) to obtain
cohesion (all metrics are bounded to 1).

Regarding the identification of refactoring opportunities, we have
used three different tools, described as follows:

e Method-level refactoring: We used the SEMI tool developed
by the University of Groningen [4].

o Class-level refactoring: We used jDeodorant, developed by the
University of Macedonia and Concordia University [9].

o Architecture-level refactoring: We used the MCR tool, devel-
oped by the University of Western Macedonia.

All tools have been used with their initial configuration for refac-
torings opportunities identification. The tools calculate the select-
ed metrics before and after the application of the change. The only
exception is jDeodorant that does not calculate LCOM5 at class
level; thus, we used a NetBeans plug-in for this calculation.

3 Case Study Design

To investigate the effect of applying the Single Responsibility
Principle on modularity, we performed an industrial case study in
two small-medium enterprises (SMEs), one in Greece and one in
Romania. The Greek SME is active in enterprise applications,
whereas the Romanian one in Augmented Reality systems for
Smart Manufacturing. The case study is designed according to the
guidelines by Runeson et al. [15].

Objective and Research Question. This study aims to compare:
(goal-a) the effect of the refactorings on modularity, and (goal-b)
the trade-offs between coupling and cohesion. (Goal-a) is exam-
ined by first not considering the level of granularity of the artifact,
in which the refactoring takes place, and (Goal-b) by taking this
parameter into account. To this end, we derived three questions:

RQ1: What is the effect of applying the SRP on modularity?

RQz: Is the effect of applying the SRP on modularity, different
based on the granularity of the artifact?

RQs: Are the trade-offs between coupling and cohesion different
based on the granularity of the artifact?

RQ: and RQ: are related to goal-a, whereas RQs is related to
goal-b. We preferred not to split goal-b to two research questions,
due to space limitations. Achieving goal-a is expected to shed
light on the effect of the refactoring on modularity as a whole,
whereas in goal-b, we aim digging further into the two quality
properties that comprise modularity.

Case Selection and Units of Analysis. To collect data for our case
study, we executed the three tools mentioned in Section 2 on the
source code of two projects (written in Java) of the collaborating
SMEs, as described below:

o YDATA (developed by OTS) deals with customer management
and billing of the national water supplier. It consists of 651
classes (45K lines of code) that have been developed and main-
tained for 384 commits between 2015 and 2017. YDATA can

EASE’ 19, April 2019, Copenhagen, Denmark

be decomposed into 6 main sub-systems, each one managing
the following entities: (a) Hydrometers, (b) Bills, (c) Users, (d)
Consumption Statements, (e) Payments, and (f) Alerts to Users.

e MaQuali (developed by Holisun—HS) is a software applica-
tion for the handling of quality management systems (ISO
9001) along with business processes. It consists of 990 classes
(152K lines of code) that have been developed between 2009
and 2018. The system consists of 6 main modules, managing
the following entities: (a) fiches of progress, (b) actions to be
taken, (c) documents involved in ISO quality control, (d) plan-
ning, (e) useful information, and (f) milestones.

Regarding the identification of refactorings we used the complete
code base, and considered the most urgent ones based on the sug-
gestions of the tools (usually in terms of severity). Therefore, the
units of our analysis are 131 artifacts (packages, classes, and
methods) that are selected based on the aforementioned strategy.
As observed in Table I, the dataset can be split into 6 distinct da-
tasets, based on the company from which data have been retrieved
and the level of granularity at which refactoring is applied.

TABLE I. UNITS OF ANALYSIS

Dataset | Company Level
DsS1 HS Packages
DS2 oTS Packages
DS3 HS Classes
DS4 OTS Classes
DS5 HS Methods
DS6 OTS Methods

Data Collection. To answer the stated research questions, the next
steps are followed:

o identify refactoring opportunities (see Section 2 for tools)

o identify the artifacts that need refactoring

o for these artifacts calculate coupling and cohesion (cou-
Plingpesore aNd couplingpesore)

o apply the refactorings

o for the resulting artifacts calculate coupling and cohesion
(couplingatter and couplingaster)

e Finally, we calculate modularitypesore and modular-
ityareer the application of the change by dividing cohesion
to coupling.

Our dataset consists of 131 rows and 9 columns as follows:

[V1] company: OTS / HS

[V2] level: architecture / design / implementation

[V3-V5] cohesion metrics: cohbefore, CONatter, CONdite

[\VV6-V8] coupling metrics: coupbefore, COUPafter, COUPdiff

[V9-V11] modularity metrics: modsefore, MOdafter, Modaift

Data Analysis. As part of data analysis, we first present some de-
mographics on the before and after variables of the quality

http://www.cs.rug.nl/search/uploads/Resources/lm_tool.zip
https://marketplace.eclipse.org/content/jdeodorant
https://github.com/AngelikiTsintzira/Move-Class-Refactoring-Tool

EASE’ 19, April 2019, Copenhagen, Denmark

properties of interest (coupling, cohesion, and modularity). Then,
we perform independent sample t-tests for investigating possible
differences between the two industrial codebases, and if their re-
sults can be treated as one dataset. For answering the aforemen-
tioned research questions we are using the analysis strategy pre-
sented in Table I, which includes visualization techniques and
hypothesis testing. We note that V1 is used only for demographic
reasons, and V2 is used for splitting purposes in RQ2 and RQs.

TABLE Il. ANALYSIS STRATEGY

RQ Dataset Variables Analysis
V11 Pie chart
RQ: Complete -
V9, V10 Paired-Sample t-test
DS1 +Ds2 Vi1 Pie chart
RQ: DS3 + DS4
DS5 + DS6 V9, V10 Paired-Sample t-test
DS1 + DS2 V5, V8 Pie chart
RQs; DS3 + DS4
DS5+Dsg | V3-V4 and V6-V7 Paired-Sample t-test
4 Results

In this section we present the results of our industrial study. In
Table 111 we present the descriptive statistics of our sample. Addi-
tionally, a hypothesis testing has been performed, so as to investi-
gate if the mean values presented in Table 1l are statistically dif-
ferent between the two companies. The results of the analysis
suggested that the mean values do not differ significantly, and that
therefore the sample can be used as a whole, without a need for
reliability and generalization assessment [2]. We note that in this
section we do not provide any interpretation of results, since they
are thoroughly discussed in Section 5.

TABLE Ill. DESCRIPTIVE STATISTICS

Metric Min Max Mean SDev.
cohesion_before 0.000 0,980 0,173 0,337

cohesion_after 0.000 0,954 0,142 0,275
coupling_before 0.045 | 36,500 15,112 14,654
coupling_after 0,042 | 36,000 14,773 14,379
268,000 5,241 20,934
200,000 | 5,4772 16,840

modularity_before 0,000

modularity_after 0,000

Effect of Refactorings on Modularity. As a first step of investi-
gating the effect of applying SRP-driven refactorings on artifacts’
modularity (regardless of granularity), we treat the complete da-
taset as a whole (RQu). The overview presented in Figure 2, sug-
gests that in 80% of the cases the refactoring has a positive effect
on artifacts’ modularity. However, the performed hypothesis test-
ing (paired-sample t-test) suggested that this result is not statisti-
cally significant, i.e., the differences in the mean values of modu-
larity before and after the application of the refactoring are
not statistically significant. A possible interpretation of this obser-

Ampatzoglou et al.

vation is the fact that in 28% of the cases the improvement was
marginal (e.g., 0.001), especially in architecture level (packages).

u positive

negative '+ neutral
Figure 2. Effect on Modularity (no distinction of granularity)

As a next step, we treat each level of granularity separately and
repeat the analysis. The obtained results are presented in Figure 3
and Table IV. The results suggest the SRP-driven refactoring is
having a positive influence (that is statistically significant) at all
levels of granularity. However, the expected benefit at the archi-
tecture level in absolute numbers is lower. Nevertheless, based on
Figure 3 we can observe that at the architecture level, we are only
having positive and limited neutral effects on modularity.

—~

(b) Class Level

11.11%

(a) Method Level

—~

® positive ® negative * neutral

(c) Architecture Level
Figure 3. Effect on Modularity in different levels of granularity

TABLE IV. HYPOTHESIS TESTING FOR MODULARITY

Level Before | After | Improvement | t-value sig.
Method 0.45 1.03 128.89% -3.331 0.00
Class 0.66 151 128.79% -2.297 0.03
Architecture 1.64 2.34 42.68% -2.546 0.01

SRP-driven refactoring approaches are in most of the cases im-
proving the modularity of the software. The improvement is more
evident in terms of actual impact at the method and class level.
However, at the architecture level the frequency of cases when the
refactoring is beneficial is higher compared to the other levels,
and there are no cases that the refactoring is harmful.

Applying the Single Responsibility Principle in the Industry:
Modularity Benefits and Trade-offs

Trade-offs between Coupling and Cohesion. To investigate the
trade-offs between coupling and cohesion when refactoring, we
have followed the same process as before. The results are present-
ed in Table V and Figure 4. We note that all tools that have been
used for identifying refactoring opportunities are optimizing one
of the two quality properties (directly affected): method and class
level refactorings are extracted based on cohesion, whereas at the
architecture level the optimization is performed based on cou-
pling. Therefore, while studying trade-offs, by construction, the
used tools guarantee the improvement of one quality property, and
the levels of the other one (indirectly affected) is being investigat-
ed. We report the findings for each level of granularity separately:

o Method level: We can observe that there is a marginal trade-off
between the quality properties in terms of mean values; howev-
er, the results on the deterioration of coupling are marginal and
not statistically significant. Regarding the frequency of im-
provement and deterioration, in Figure 4a, we can observe that
the sample is balanced.

e Class level: This is the only level at which substantial trade-offs
are evident (i.e., benefit in cohesion and deterioration of cou-
pling in Table V when extracting a class from a God one). Fig-
ure 4b, suggests that the count of cases in which coupling dete-
riorates is higher compared to the times it improves.

o Architecture-level: Finally, with respect to architecture no
trade-offs are evident. More specifically, coupling is always
improving (see Figure 4c) and the difference between coupling
scores before and after is statistically significant. However,
with respect to indirectly affected quality property (i.e., cohe-
sion) the difference is not statistically significant, although the
effect is positive in average. This observation is due to the fact
that in 75% of cases that coupling is improving, there is no ef-
fect on cohesion (grey area in Figure 4c).

EASE’ 19, April 2019, Copenhagen, Denmark

- >
o o

(b) Class Level

=

® positive

'+ neutral

® positive

® neutral negative

(c) Architecture Level

® negative

Figure 4. Trade-offs between Coupling and Cohesion

Applying the SRP improves the quality property (coupling or co-
hesion) that drives the refactoring, at a statistically significant lev-
el. Regarding trade-offs, at the architecture level we observed that
both quality properties are improved; whereas at the method and
class level trade-offs take place. Nevertheless, trade-offs at class
level are more impactful.

TABLE V. HYPOTHESIS TESTING FOR TRADE-OFFS
Level Metric | Before | After | Improvement| t-value | sig.

Cou 0.191 | 0.192 -0.52% 0.074 | 0.94
Method

LCoh | 0.933 | 0.888 4.82% 4.041 | 0.00

Cou 0.230 | 0.486 -111.30% -4.641 | 0.00
Class

LCoh | 0.876 | 0.515 41.21% 11.653 | 0.00

Cou 26.000 | 25.239 2.93% 3.244 | 0.00
Architecture

Coh 0.103 | 0.115 11.65% -1.783 | 0.07

Coupling Cohesion

5

.56

(a) Method Level

5 Discussion / Conclusions

In this paper we examined the effect of applying the SRP (at vari-
ous level of granularity) on software artifacts’ modularity. To
achieve this goal, we performed an industrial case study on two
software development companies, exploring 131 software artifacts.

Interpretation of the results. Based on the empirical evidence that
we have been able to deliver, we suggest that the application of
the Single Responsibility Principle is beneficial concerning the
modularity of the two industrial systems. Detailed findings are
presented and interpreted below:

o Indifferent impact of SRP regardless of the level of granularity.
The results of the study suggest that the effect of SRP-driven
refactorings on modularity is not statistically significant, when
not discriminating among the different levels of granularity.
This finding is expected in the sense that the level of magnitude
for each refactoring is different, and the effect on quality varies
across difference scales. Such findings are common in the soft-
ware engineering literature: e.g., Feitosa et al. [8], investigated
the impact of patterns on quality, and the results appeared to be
controversial without discriminating per pattern type.

o Effect of Refactorings on Modularity per level. The findings of
this study can be interpreted based on two data-sources: (a) the
frequency of cases in which the refactoring is beneficial, and
(b) the effect size—the absolute value of the change in the
modularity metric. Regarding the frequency of beneficial refac-
torings, we can observe that as the level of granularity of the re-
factorings increases (i.e., from method to architecture) the more
probable it is to obtain a benefit. However, the effect size is de-
creasing. This observation can be explained by the fact that re-

EASE’ 19, April 2019, Copenhagen, Denmark

factorings at the architecture level are expected to be more im-
pactful [13]; however, according to Arvanitou et al. [3] the met-
rics at the architecture level are more stable (i.e., their values
are not easily fluctuating in successive releases). In other words,
applying the SRP at architecture artifacts has a more definite
impact, but it is more unlikely to sense the change by metrics.

o Refactoring Trade-offs. The findings regarding trade-offs sug-
gested that coupling and cohesion are inversely related proper-
ties, that are very sparse to optimize simultaneously. Therefore,
we have delivered evidence on the existence of trade-offs at
class level, and identified marginal trade-offs at method level.
The case study has not revealed any trade-offs at the architec-
ture level. This finding occurs due to the fact that while opti-
mizing coupling at the package level, the cohesion of the sys-
tem remains unaffected (neither positive nor negative impact).
A possible interpretation of this observation is that the calcula-
tion of the metric (pct. of intra-package dependencies) remains
unaffected by moving one class from one package to another,
because usually the number of classes within a package is large.

o Differences and Similarities among Artifacts. The findings of
the study suggest that the results at the method and the class
level are similar to each other, and substantially differ from
those at the architecture level. This is considered an expected
outcome in the sense that methods and classes are very close in
terms of granularity, compared to architecture artifacts which
are substantially larger and their investigation goes to a com-
pletely different scale. The results imply that allocation of in-
structions to methods and of methods to classes pertain to de-
sign, while the allocation of classes to packages pertains to ar-
chitecture, and the two processes differ substantially.

Implications to Researchers and Practitioners. The outcomes of
this work provides useful insights on the application of SRP. Re-
garding researchers interesting future work opportunities are:

¢ Need for more studies on the class and method level. The fact
that class- and method-level refactorings produce trade-offs
between coupling and cohesion, suggest that there is a need
for further improvement in these areas, which would lead to
the development of methodologies that treat the problem as a
multi-criteria one, since the optimization only in terms of co-
hesion might deteriorate coupling. Our results suggest that the
need is more intense at the level of classes. One promising
line of research is that of Search-Based Software Engineering
(SBSE) [10] which treats the allocation of code, methods, and
classes as a search-space optimization problem.

e Replication. The study needs to be replicated with other pro-
gramming languages, tools for refactoring identification and a
larger dataset. This would strengthen the generalizability of
the suggested results, which at this stage is limited to Java,
three tools, and two industrial projects. It would be equally in-
teresting to investigate trade-offs between the qualities affect-
ed by the application of SRP using a wider set of metrics.

Concerning practitioners, the findings of this study guide software
engineers in the possible problems that might occur unintentional-
ly, when refactoring a source code, based on tool suggestions,
without having an in-depth knowledge of the consequences of the
refactoring process. Therefore, all decisions shall be thoroughly
considered, by treating suggestions with caution and by paying
special attention to possible trade-offs between refactoring oppor-
tunities. In the context of continuous integration which gradually

Ampatzoglou et al.

becomes the norm, the observed trade-offs call for the use of ap-
propriate monitoring tools that will be able to pinpoint artifacts
which are adversely affected by an attempted refactoring. Howev-
er, the results suggest that refactorings at the architecture level
appear to be safer than those at the source code level, since they
are having a larger probability to increase one quality property,
without affecting the other.

ACKNOWLEDGMENTS

Work reported in this paper was financially supported by the ac-
tion "Strengthening Human Resources Research Potential via
Doctorate Research" of the Operational Program "Human Re-
sources Development Program, Education and Lifelong Learning,
2014-2020”, implemented from State Scholarship Foundation
(IKY) and co-financed by the European Social Fund and the
Greek public (National Strategic Reference Framework (NSRF)
2014-2020).

REFERENCES

[1] 25010-2011 ISO/IEC Systems and software engineering — Systems and Soft-
ware Quality Requirements and Evaluation (SQuaRE) — System and Software
Quality Models, 2011.

[2] 1061-1998: IEEE Standard for a Software Quality Metrics Methodology, IEEE
Standards, IEEE Computer Society, reaffirmed December 2009.

[3] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “Soft-
ware Metrics Fluctuation: A property for assisting the metrics selection pro-
cess”, Information and Software Technology, Elsevier, 72 (4), 2016.

[4] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A.Gkortzis, and P.
Avgeriou, “ldentifying Extract Method Refactoring Opportunities Based on
Functional Relevance”, Transactions on Software Engineering, IEEE, 43, 2017.

[5] S. Charalampidou, E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, P.
Avgeriou, and |. Stamelos, “Structural Quality Metrics as Indicators of the
Long Method Bad Smell: An Empirical Study”, 44" Conference on Software
Engineering and Advanced Applications (SEAA’ 18), IEEE, August 2018.

[6] S.R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented De-
sign”, Transactions on Software Engineering, IEEE, 20 (6), 1994.

[7] T. De Marco, Structured Analysis and System Specification. Yourdon, 1979.

[8] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa, “What can
violations of Good Practices tell about the Relationship between GoF patterns
and Run-Time Quality Attributes”, Information and Software Technology,
Elsevier, 2019.

[9] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Identification
and application of Extract Class refactorings in object-oriented systems”, Jour-
nal of Systems and Software, Elsevier, 85 (10), pp. 2241-2260, 2012.

[10] M. Harman, B. F. Jones, “Search-based software engineering”, Information and
Software Technology, Elsevier 43(14), pp. 833-839, 2001.

[11] B. Henderson-Sellers, “Object-Oriented Metrics Measures of Complexity”,
Prentice-Hall, 1996.

[12] W. Li, and S. Henry, "Object-oriented metrics that predict maintainability",
Journal of Systems and Software, Elsevier, 23 (2), pp. 111-122, 1993.

[13] Z Li, P Liang, P Avgeriou, N Guelfi, and A. Ampatzoglou, “An Empirical In-
vestigation of Modularity Metrics for Indicating Architectural Technical Debt”,
10" International Conference on the Quality of Software Architectures
(QoSA'14), ACM, 2014.

[14] R. C. Martin “Agile software development: principles, patterns and practices”,

Prentice Hall, 2003.

P. Runeson, M. Host, A. Rainer, and B. Regnell, “Case Study Research in

Software Engineering: Guidelines and Examples”, John Wiley and Sons, 2012,

[16] S. M. A. Shah, J. Dietrich, C. McCartin, “Making Smart Moves to Untangle
Programs™, 16" European Conference on Software Maintenance and Reengi-
neering (CSMR 2012), Szeged, Hungary, IEEE, 27-30 March 2012.

[17] P. Skiada, A. Ampatzoglou, E. M. Arvanitou, A. Chatzigeorgiou, and I. Sta-
melos “Exploring the Relationship between Software Modularity and Technical
Debt”, 44" Conference on Software Engineering and Advanced Applications
(SEAA’ 18), IEEE, August 2018.

[18] H. van Vliet, “Software Engineering: Principles and Practice”, John Wiley and
Sons, 2008.

[15

il

