
AUTHOR:  TITLE - 1 - 

- 1 - 

 

Exploring the Relation between Technical Debt Principal and 

Interest: An Empirical Approach 

Areti Ampatzoglou1, Nikolaos Mittas2, Angeliki-Agathi Tsintzira3, Apostolos Ampatzoglou3, 

Elvira-Maria Arvanitou3, Alexander Chatzigeorgiou3, Paris Avgeriou1, Lefteris Angelis4 

1  Department of Computer Science, Institute for Mathematics, Computer Science and AI, University of Groningen, Netherlands  

2  Department of Chemistry, International Hellenic University, Kavala, Greece  

3 Department of Applied Informatics, University of Macedonia, Greece 
4  School of Informatics, Aristotle University of Thessaloniki, Greece 

areti.ampatzoglou@rug.nl; nmittas@chem.ihu.gr; angeliki.agathi.tsintzira@gmail.com; a.ampatzoglou@uom.edu.gr; 

earvanitoy@gmail.com; achat@uom.edu.gr; paris@cs.rug.nl; lef@csd.auth.gr; 

Context: The cornerstones of technical debt (TD) are two concepts borrowed from economics: principal and interest. Although 

in economics the two terms are related, in TD there is no study on this direction so as to validate the strength of the metaphor.  

Objective: We study the relation between Principal and Interest, and subsequently dig further into the ‘ingredients’ of each 

concept (since they are multi-faceted). In particular, we investigate if artifacts with similar levels of TD Principal exhibit a similar 

amount of TD Interest, and vice-versa. 

Method: To achieve this goal, we performed an empirical study, analyzing the dataset using the Mantel test. Through the Mantel 

test, we examined the relation between TD Principal and Interest, and identified aspects that are able to denote proximity of 

artifacts, with respect to TD. Next, through Linear Mixed Effects (LME) modelling we studied the generalizability of the results.  

Results: The results of the study suggest that TD Principal and Interest are related, in the sense that classes with similar levels 

of TD Principal tend to have similar levels of Interest. Additionally, we have reached the conclusion that aggregated measures 

of TD Principal or Interest are more capable of identifying proximate artifacts, compared to isolated metrics. Finally, we have 

provided empirical evidence on the fact that improving certain quality properties (e.g., size and coupling) should be prioritized 

while ranking refactoring opportunities in the sense that high values of these properties are in most of the cases related to artifacts 

with higher levels of TD Principal. 

Conclusions: The findings shed light on the relations between the two concepts, and can be useful for both researchers and 

practitioners: the former can get a deeper understanding of the concepts, whereas the latter can use our findings to guide their 

TD management processes such as prioritization and repayment. 

1. INTRODUCTION

Technical Debt (TD), originally introduced in 1992 [11], is a metaphor that represents the impact of shortcuts taken 

during development, usually to meet business goals, such as limited time or budget [19] on maintainability. The 

cornerstones of the TD metaphor are two terms borrowed from the concept of debt in finance: principal and interest. 

TD Principal is the effort required to eliminate inefficiencies in the current design or implementation of a software 

system [3]; typical examples of such inefficiencies are code and design smells. On the contrary, TD Interest is the 

additional development effort required to modify the software (adding new features or fixing bugs), due to the 

presence of such inefficiencies [3]. The assessment of principal and interest depends on the type of TD (e.g., code, 

design, testing TD). The scope of this work is limited to TD on the source code, which is the most studied type of 

TD in the literature [2], the most supported by tools [2], and one of the most important in industry [5]. For simplicity, 

in the rest of the paper when we refer to TD, we imply code TD. For assessing TD Principal and TD Interest: 

• On the one hand, principal of TD is relatively straightforward to quantify: one needs to specify the relevant 

types of code inefficiencies (e.g. understandability issues, violations of coding practices) and subsequently 

identify them in code, usually through automated analysis tools. In most approaches, principal is subsequently 

quantified by summing up the estimated effort to fix each individual inefficiency. As an example, SonarQube 

[3], [21] calculates TD Principal as the sum of the time required to fix code smells, which map to different 

aspects of TD Principal (e.g., Coding Standards, Understandability)—for more details see Section 3.1.  

• On the other hand, quantifying TD Interest is more difficult, since an accurate calculation would require com-

paring the current version of a system with a zero-TD version, with respect to their difference in maintenance 

effort [1]. Of course, such a debt-free version does not exist and would be unrealistic to create in a real-world 
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setting. In most cases, TD interest is quantified indirectly using proxies for the two core aspects of TD Interest: 

(a) maintainability (e.g. complexity, coupling, cohesion, size) reflecting the difficulty to make changes; and (b) 

actual maintenance effort, based on historical data (e.g. LOC modified per revision)– see Section 3.2. 

In economics, TD Interest and TD Principal are related through the interest rate: interest is calculated as a percent-

age of a loan (principal), paid to the lender periodically for the privilege of using that money. However, in the 

technical debt literature, the term interest rate has not and cannot be defined: according to Schmid [35], it is not 

possible to relate principal directly to an interest rate for a given interest period. That is because the actual interest 

rate depends on the specific maintenance activities performed and these cannot be determined a priori. To the best 

of our knowledge, there is currently no approach to relate TD Principal and Interest. Clarifying the relation between 

principal and interest would further validate the strength of the TD metaphor in software development and mainte-

nance. More importantly, this relation can be practically used in estimating TD indices, but also managing individual 

TD items.  For example, if a certain aspect of TD Principal, such as a specific type of code smell, incurs more 

interest compared to others, then it should be ranked higher through: preventing the associated code smells, priori-

tizing the refactorings of those smells, and eventually repaying them with refactoring applications.  

According to Eisenberg [12], Lockheed Martin is monitoring TD, by using an excel sheet, in which class names are 

colored based on their perceived levels of technical debt. Such an approach serves two purposes: (a) ranking of 

classes with respect to their levels of TD, and (b) grouping classes into groups of similar TD. In this paper, we build 

upon the rationale of such an approach for TD monitoring, by investigating if artifacts with similar levels of TD 

Principal have similar levels of TD Interest. More specifically, we investigate if there is a relation: (a) between TD 

Principal and TD Interest; and (b) between the aspects of TD Principal and TD Interest. To achieve the aforemen-

tioned goals and by taking into consideration the multifaceted nature of the examined concepts, we employ the 

Mantel test [24]. The main benefit of using the Mantel test, compared to a traditional correlation analysis, is that it 

offers the opportunity to study the relationship of concepts that can be decomposed into aspects (in our case TD 

principal and interest), in a hierarchical manner. Since this study focuses on exploring the relations between TD 

concepts and their aspects, we believe that the Mantel test is more appropriate than traditional correlation, which 

would be able to accurately answer only goal (a). More details for the Mantel test are provided in Section 4.4.1. In 

addition, we have performed Linear Mixed Equation (LME) modelling to investigate the extent to which the ob-

tained results are not affected by the random effect of project selection, but they are due to the examined factors and 

parameters; this supports the generalizability of the results. The main findings of the study validate the relation 

between TD Principal and TD Interest (illustrating that classes with similar levels of TD Principal tend to have 

similar levels of TD Interest), and that certain quality properties (e.g., coupling and size) should be prioritized while 

ranking refactoring opportunities. 

The rest of the paper is organized as follows: Section 2 provides an overview of related work, in Section 3, we 

present the background information that is required for understanding underlying concepts. In Section 4, the case 

study design is overviewed. The results are presented in Section 5, and discussed in Section 6. Threats to validity 

are presented in Section 7, whereas Section 8 concludes the paper.  

2 RELATED WORK 

The goal of this section is to present: (a) works aiming to connect TD Principal to TD Interest—see Section 2.1; and 

(b) studies that focus on the quantification of TD Interest—see Section 2.2. We note that we do not discuss works 

on calculating TD Principal, since it is considered a straightforward task: According to Alves et al. [2], the principal 

is related to the effort / cost to eliminate the debt from a given system or artifact. Current software analysis tools 

offer estimates of TD Principal based on counts of detectable violations (e.g., SonarQube, CAST, Squore, etc.).  

2.1 Relation between TD Principal and Interest 

In the literature, we have identified five studies that aim at exploring the relation between TD Principal and Interest. 

Table 1 outlines the studies, by presenting the TD Principal / Interest assessors, and the main conclusion of each 

study. Next, we present these studies in detail, and compare them against our study. 

Table 1. TD Principal – TD Interest Relation 

Ref. TD Principal Assessor TD Interest Assessor Main Outcome 

[10] 
Modularity anomalies as 

index of TD 
Maintainability (expressed as stabil-

ity) as a main characteristic related to 

Improvement of modularity is related to im-

portant benefits in terms of stability, and lead to 
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Ref. TD Principal Assessor TD Interest Assessor Main Outcome 

TD interest the reduction of TD interest 

[16] 
Architecture roots (flawed 

structures) 

Coupling and Cohesion (indicating 

higher maintenance effort) 
TD items incur high maintenance penalties 

[18] SQALE method Structural proxies (quality metrics) 
Some quality metrics are positively related and 

others are negatively related to TD principal 

[23] 
Coupling between compo-

nents 
Defect-related activity 

Highly-coupled components are more prone to 

defects, and costlier to maintain 

[41] Modularity Violations  
Defect Proneness 

Change Proneness 

Classes with more modularity violations and 

code smells, are more defect- and change-prone 

Zazworka et al. [41], compare the similarities and differences among four approaches for TD identification, namely 

modularity violations, grime buildup, code smells and automatic static analysis. Given the fact that there are plenty 

of tools that can automatically detect a number of source code anomalies, the study considers four main techniques 

for TD detection, selected primarily by the criterion of authors’ previous experience. The study aims at investigating 

if these approaches result in pointing out the same set of problematic issues. Moreover, the authors explore the 

extent to which the four techniques point to instances with high TD Interest. Since interest (i.e., the probable future 

cost of not fixing the debt) is regarded as difficult to detect and measure, the authors select to use two interest 

indicators, i.e., defect-proneness and change-proneness. The selection of the proxies has been made among a number 

of interest indicators, based on their correlation with problematic code manifestation and future maintenance cost. 

The authors conduct a case study, where they implement the four techniques on Apache Hadoop software. Their 

results show that: (a) different techniques identify different TD issues, (b) classes identified with high TD, with the 

use of modularity violations and code smells, seem to be more defect-prone, while modularity violations are strongly 

related to change-prone classes. Zazworka et al. [41] use four different approaches to TD identification and focus 

on defect-proneness and change-proneness as TD interest indicators, as their goal is the comparison among the 

different methodologies. In our work, as mentioned earlier, we opt to focus on one TD principal estimation meth-

odology, while we propose a more detailed approach of TD interest estimation, based on well-established maintain-

ability metrics.  

Moreover, Conejero et al. [10] perform an empirical study aiming to evaluate if modularity anomalies at require-

ments level affect maintainability attributes and therefore increase system’s interest. The study is based on a previ-

ously established framework that uses modularity metrics to identify and quantify modularity anomalies. A set of 

metrics is also used to assess the system’s stability, as a particular maintainability attribute. The authors regard the 

presence of crosscutting concerns in a system as a negative effect on modularity, which in turn is considered as a 

significant index of TD [2]. Modularity violations are expected to raise interest, given the fact that they may affect 

different quality attributes and hence cause negative impact on the system’s quality. The paper attempts to prove the 

relation between modularity anomalies at the early stages of software development, i.e., the requirements level, with 

software maintainability—with regard to stability. Since maintainability is deemed a main contributor to TD Inter-

est, if the aforementioned relation is proven, then modularity violations can be linked to interest escalation. The 

study is performed on three different industrial applications. The results suggest the existence of a relationship 

between the Degree of Crosscutting properties, as a measure of modularity, and the stability of a certain feature. 

Therefore, the authors conclude that improvement of modularity could deliver important benefits in terms of stabil-

ity, enhancing the maintainability of the system and lead to the reduction of TD Interest. Compared to our study, 

Conejero et al. [10] focus on modularity anomalies, as indicator of its quality, while they do not explicitly refer to 

principal. Also, they refer to stability as a maintainability attribute, whereas our work considers: inheritance, cou-

pling, cohesion, complexity and size, as maintainability-related properties. 

Additionally, Kosti et al. [18], explore the correlation between: (a) structural proxies (i.e., quality metrics); and (b) 

monetized values using the SQALE method, by conducting a case study on a set of 20 OSS projects. The results of 

the study suggest that a model of seven structural metrics, quantifying different aspects of quality (i.e., coupling, 

cohesion, complexity, size, and inheritance) can accurately estimate TD principal as appraised by SonarQube. More 

specifically, two coupling metrics (MPC and MOA) and one cohesion metric (LCOM) are positively related to 

technical debt principal, while CIS, NOP and DIT are negatively related to the accumulation of TD. While both the 

study of Kosti et al. [18] and ours use the same maintainability metrics, Kosti et al. do not explicitly refer to a 

connection between these metrics and TD interest. 
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McCormack and Sturtevant [23] address architectural debt by attempting to assess the potential value derived from 

a refactoring effort. To this end, they try to evaluate the relationship between system design decisions, which lead 

to TD, and increased costs of maintenance, which represent the interest to be paid. More specifically, the authors 

analyze how components with higher levels of coupling can be associated with higher maintenance costs. Firstly, 

based on their prior work, the authors apply a technique, namely Design Structure Matrix to analyze the system’s 

architecture, capture the dependencies and calculate the coupling between components. This allows them to divide 

the components into groups, according to their levels of coupling, and then to characterize the system as a Core-

Periphery one—if it possesses a large, dominant, cyclic group of components, namely the Core—or as a Hierarchical 

one—if it has small cyclic groups or no cyclic groups at all. In the empirical study, the authors analyze two large 

projects of similar size, one of them classified as a Core-Periphery system and the second as a Hierarchical one. The 

descriptive analysis supports the hypothesis that, for both systems, high-coupling components are more probable to 

experience defects and hence to be related with higher defect-related activity. The authors also perform a predictive 

analysis, by creating two statistical models, one to predict the probability of a component to experience a defect and 

another one to predict the volume of defect-related activity. Number of lines of code in a file and its cyclomatic 

complexity are used as control variables and are proven to be positive and statistically significant for both systems 

and both models. However, models with predictor variables added show a strong relation between components with 

high coupling and: (a) the likelihood of experiencing a defect, as well as (b) the defect-related activity. The authors 

also introduce a financial analysis, where they calculate a cost per line of code per year, by component category, to 

maintain each system. The analysis indicates that tightly coupled components cost more to maintain than loosely 

coupled ones. Finally, the study suggests that repaying architectural TD by reducing coupling and lowering mainte-

nance costs may be valuable; however, managers should also consider the cost of these refactorings. In comparison 

to our study, the work of McCormack and Sturtevant [23] uses architectural design flaws that lead to tightly-coupled 

components as a TD proxy, and assumes that maintenance costs represent TD interest; our work focus on source 

code issues to identify TD principal and adopt a set of maintainability metrics as TD interest proxies, so as to provide 

a more thorough analysis of the relationship between the two terms.  

Furthermore, Kazman et al. [16] focus on architectural TD in terms of flawed architecture structures, termed as 

architecture roots [39]: these are considered technical debt items that incur high maintenance penalties as identified 

through coupling and cohesion. They validate their methodology by conducting a case study with an industrial 

partner. However, Kazman et al. [16], do not differentiate between TD Interest and TD principal, and therefore it is 

not evident if they consider maintenance penalties as principal or interest, since the term debt is used collectively in 

that study.  

Compared to related work, our study has a clear focus on identifying the relationship between TD Principal and 

TD Interest. To this end, it adopts well-validated valuation approaches, and provides an in-depth statistical analy-

sis of the aforementioned relationship, based on the Mantel test and LME. 

2.2 Quantification of TD Interest 

In this section we present papers that deal with TD Interest calculation. In Table 2, we summarize studies that 

quantify TD interest, including those already presented in Section 2.1. In particular, in Table 2, we note how TD 

interest is assessed, if the study acknowledges the relation of TD Interest to maintainability, if it uses historical data 

(from software repositories) for TD interest calculation and whether they propose explicit metrics for assessing 

interest. We remind that maintainability and the use of historical data to calculate maintenance effort are the two 

core aspects of TD interest. 

Table 2. TD Interest Assessment 

Ref. TD Interest Assessor Maintainability History Metrics 

[7] 
The extra effort needed to maintain a system due to the accumulation of 

TD in terms of wasted software development time 
x   

[10] 
Maintainability (expressed in terms of stability) as a main characteristic re-

lated to TD interest 
x x  

[16] Coupling and Cohesion indicate higher maintenance effort  x  

[18] Structural proxies (i.e., quality metrics)  x x 

[23] Defect related activity x x x 
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Ref. TD Interest Assessor Maintainability History Metrics 

[28] 

Effort spent on maintenance activities based on historical data  

Effort needed to rebuild a system 

Level of software quality 

x x x 

[41] Defect Proneness and Change-proneness x x  

Concerning the studies already discussed in Section 2.1, Conejero et al. [10] acknowledge that “maintainability is 

one of the main characteristics contributing to Technical Debt interest”, and decide to capture it through the quality 

property of stability which is one of the most important maintainability attributes. Specifically, Conejero et al. [10] 

measure stability by calculating the number of use cases changed in each release of the three systems they study. 

They define as a change in a use case: (i) a modification of the feature that the use case addresses, or (ii) a modifi-

cation, addition, or deletion in the system that affects the particular feature. Similarly, Zazworka et al. [41] recognize 

that defect-proneness and change-proneness—the two proxies they use for TD Interest—are connected to future 

maintenance costs. The authors use historical data on the number of times a class is involved in fixing bugs, that were 

injected, resolved, or alive in a version, to measure defect-proneness. They also use data on the number of changes affect-

ing the class divided by the total number of changes in the repository, to calculate change-proneness.  

Moreover, McCormack and Sturtevant [23], as mentioned earlier, aim at analyzing the relationship between design 

decisions and maintenance costs, generally deemed to represent TD Interest. The authors approach maintenance 

costs through maintenance effort, i.e., effort spent on defect related activities: a metric computed through bug-

tracking and version control systems represents the development activity that aims at defect correction. On the other 

hand, Kazman et al. [16] focus on the relationship between architecture roots, i.e., flawed structures, and the penal-

ties they incur in terms of higher maintenance costs.  They retrieve data concerning the number of defects fixed, the 

number of changes associated with architecture roots that were fixed, and the number of lines of code committed to 

fix the defects and to make the changes during the prior year. They then estimate the cost of refactorings to calculate 

the penalty in terms of maintenance cost. However, as mentioned before, Kazman et al. [16] do not refer to this as 

TD interest. Finally, Kosti et al. [18] have used structural quality metrics, that are used to assess maintainability 

(coupling, cohesion, complexity, inheritance, and size metrics), as proxies of TD interest. 

In addition to the five studies of Section 2.1, we have identified two more studies that attempt to estimate interest 

and relate it to maintainability. The first one is by Nugroho et al. [28], who use SIG/TUV’s software quality assess-

ment method for TD measurement. Particularly, they perform source code analysis that involves metrics, such as 

lines of code (LOC), code duplication, McCabe’s cyclomatic complexity, parameter counts, and dependency counts, 

to map the system’s quality properties to a five-star rating system, and calculate the Repair Effort, i.e., the effort 

needed to reach the ideal quality level, which represents the amount of the system’s TD. With regard to the system’s 

TD Interest, which is defined as “the extra maintenance cost spent for not achieving the ideal quality level”, the 

authors estimate it as a function of: (a) the effort spent on maintenance activities within a year, calculated based on 

historical data, as a percentage of number of LOC estimated to change yearly for maintenance reasons; (b) an esti-

mate of the effort needed to rebuild a system using a particular technology, determined by the total size of the system 

(measured in LOC or Function Points) and a language productivity factor; (c) a factor used to account for the level 

of quality, assuming that the higher the quality level, the less the maintenance effort.  

Besker et al. [7], attempted to quantify TD Interest in terms of wasted software development time through an em-

pirical study, based on the admission that interest is defined as the extra effort needed to maintain a system due to 

the accumulation of TD. They perform a web-based survey answered by 258 software stakeholders and they conduct 

interviews consisted of unstructured, semi-structured and fully structured questions with development teams within 

seven software companies. The results of the study show that, according to the respondents, 36% of all software 

development time is on average wasted because of paying the interest of TD. The study also reveals that the system 

age influences the wasted time, however there is no linear correlation between the two. Moreover, Architectural 

Design and Requirement TD seem to cause the most negative effect on software development, whereas there is no 

significant differentiation on how a stakeholder’s role affects the perception of wasted time. Finally, the respondents 

estimate that a significant percentage of wasted time is spent on understanding and measuring TD issues. 

The state of the art in quantifying TD Interest is based on maintainability and change proneness (either due to de-

fects or new features). Furthermore, the metrics used as proxies for TD Interest are either structural ones, or rely 

on historical data. We adopt the same strategy and use both types of metrics. 
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3 BACKGROUND INFORMATION 

In this section, we present background information. Section 3.1 describes the estimation of TD Principal using 

SonarQube (based on SQALE), while Section 3.2 presents our approach for assessing TD Interest.  

3.1 TD Principal Calculation 

For the purpose of this study, we have decided to estimate principal at the source code level, based on the compu-

tations provided by a widely used platform, namely SonarQube [3], [21]. SonarQube can assess the quality of soft-

ware relying on quality measures and issues, such as coding rule violations. The platform algorithm was originally 

based upon an adopted version of the SQALE method proposed by Letouzey and Ilkiewicz [20], in which a reme-

diation index is obtained for the requirements of an applicable Quality Model. For example, for a requirement stating 

that all files should have at least 70% code coverage, the corresponding remediation action is to write additional 

tests; a remediation function maps effort to each action. Finally, for each artifact, the remediation index relating to 

all the characteristics of the model is obtained by adding all remediation indices linked to all quality requirements. 

The resulting SQALE Index is considered to represent TD Principal of the source code.  

Table 3. Default metrics-tags provided by SonarQube 

Aspect TD    

Principal 

Code Smell 

Tags 
Description 

Aspect 

TD    

Principal 

Code Smell 

Tags 
Description 

U
n

d
er

st
a

n
d

a
b

il
it

y
 

brain-over-

load 

There is too much to keep in your head 

at one time 

S
ec

u
ri

ty
 /

 R
u

n
ti

m
e
 

Cwe 
Relates to a rule in the Common Weak-

ness Enumeration. 

confusing 

Will take maintainers longer to under-

stand than is really justified by what the 

code actually does 

Bug 
Something is wrong and it will probably 

affect production 

P
o

o
rl

y
 W

ri
tt

en
 C

o
d

e 
  
  

  
  

  
  

  
  

  
  

  
  
  

  
  

  
  

  

clumsy  

Extra steps are used to accomplish 

something that could be done more 

clearly and concisely 

owasp-.* 
Relates to rules in the OWASP Top-10 

security standards 

bad-practice 
The code likely works as designed, but 

the way it was designed is widely recog-

nized as being a bad idea 

unpredicta-

ble 

The code may work fine under current 

conditions, but may fail erratically if 

conditions change  

design 
There is something questionable about 

the design of the code 
Suspicious 

It's not guaranteed that this is a bug, but 

it looks suspiciously like one  

lock-in  Use of environment-specific features Security Relates to applications’ security 

unused Unused code Pitfall 
Nothing is wrong yet, but something 

could go wrong in the future 

C
o

d
in

g
 

S
ta

n
d

a
rd

s 

Cert Relates to rules in a CERT standard 

C
o

d
in

g
 

S
ta

n
d

a
rd

s 

Misra Relates to rules in MISRA standards 

Convention Coding convention violation sans-top25-.* 
Relates to the SANS Top 25 Coding Er-

rors, which are security-related 

SonarQube calculates TD Principal by identifying code smells (as the corresponding Quality Model requirements) 

and calculating their remediation. For identifying the existence of code smells, SonarQube version 7.9 (for Java) 

relies on 562 rules (e.g., “Method overrides should not change contracts”, “Package declaration should match 

source file directory”, “Parameters should be passed in the correct order”, “Unused labels should be removed”). 

SonarQube rules are associated with (by default) nineteen tags (see Table 31); however, the user is given the chance 

to create custom tags at will. Since the number of tags is quite high, it is expected to lead to a sparse table in the 

data collection phase, we decided to group the tags into 4 categories. We call these categories Aspects of TD Prin-

cipal: (a) Understandability, (b) Poorly Written Code, (c) Security/Runtime, and (d) Coding Standards (see Table 

3). We note that some tags could potentially belong to different tag categories, as well as, additional tag categories 

 

1 From the nineteen default tags of SonarQube, we deleted user-experience, since it does not relate to software maintainability. 

https://sonarqube.com/coding_rules#tags=brain-overload
https://sonarqube.com/coding_rules#tags=brain-overload
https://sonarqube.com/coding_rules#tags=confusing
https://sonarqube.com/coding_rules#tags=clumsy
https://sonarqube.com/coding_rules#tags=owasp-a1%2Cowasp-a2%2Cowasp-a3%2C%2Cowasp-a4%2Cowasp-a5%2Cowasp-a6%2Cowasp-a7%2Cowasp-a8%2Cowasp-a9%2Cowasp-a10
https://sonarqube.com/coding_rules#tags=unpredictable
https://sonarqube.com/coding_rules#tags=unpredictable
https://sonarqube.com/coding_rules#tags=lock-in
https://sonarqube.com/coding_rules#tags=sans-top25-risky%2Csans-top25-porous%2Csans-top25-insecure
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could have been created. For instance, groups could have also been created by inspecting the effects of a specific 

code smell, instead of the cause of the smell (e.g., clumsy code is a poorly written code, which has a negative effect 

on understandability). However, in our study we have selected not to consider cause-effect relations, in the sense 

that such a taxonomy would not uniquely categorize all tags. Thus, we have built the classification schema only 

based on the root of the smell and not on the affected categories. To eliminate (as much as possible) the objectivity 

of this categorization, each one of the senior researchers of the study proposed a classification of his own, and after 

some negotiation rounds (similar to the Delphi technique) they have reached a consensus on the Aspects of TD 

Principal, as well as the mapping of Code Smell Tags to them. Nevertheless, since this decision is still objective a 

relevant threat to construct validity has been identified. Moreover, we acknowledge that SonarQube is not a perfect 

solution for measuring TD principal, as a perfect solution does not exist; we expand on the limitations of using 

SonarQube in the Threats to Validity Section. 

3.2 TD Interest Calculation  

In this study, we calculate interest using the FITTED framework, as it has been proposed [4], [6], [8] and empirically 

validated in our previous work [6], [37]. The validation was performed in an industrial setting and contrasted the 

scores for TD Principal and TD Interest with the perception of software engineers. The results suggested a rank 

correlation for 0.83 for TD Principal and 0.73 for TD Interest. We only recap the basic notions of the FITTED 

framework here and refer to the aforementioned works for further details.  

Assuming that a system has an actual implementation, and a hypothetical optimal implementation (in terms of 

maintainability—i.e., ease to maintain), maintaining the optimal system would require less effort than maintaining 

the actual system (see Figure 1). Despite the fact that a system can by no means be characterized as globally optimal, 

based solely on the optimization of some structural characteristics, there is a plethora of studies aiming at software 

optimization, guided by the application of software refactorings (e.g., [14][29][30])2. As shown in Figure 1, adding 

a new feature A to the optimal system would need a certain effort, noted as Effort(optimum), whereas adding the same 

feature to the actual system necessitates a larger effort, noted as Effort(actual). The difference between these two 

efforts represents the TD Interest that is accumulated during this maintenance activity. 

 
Fig. 1: Increased Maintenance Effort for TD items 

According to FITTED [8], maintenance effort is inversely related to the maintainability of the system—see Eq. (1). 

Although the relation between effort and maintainability is not necessarily (or by definition) linear, several studies 

model maintenance effort (through regression modeling) as a polynomial of maintainability indicators (e.g., [38], 

[42]), achieving satisfactory prediction accuracy. In particular, van Koten and Grey [38] propose a linear model3, 

whereas Zhou et al. [42] propose a multivariate adaptive regression spline model4. Despite the differences in the 

 

2 The relevant research area is termed search-based software engineering. 
3 𝑒𝑓𝑓𝑜𝑟𝑡 =  𝑐0 + ∑ 𝑤𝑖𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖 
4 𝑒𝑓𝑓𝑜𝑟𝑡 =  𝑐0 + ∑ 𝑤𝑖 ∏(𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖 − 𝑡𝑖) 
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modelling of the solutions, both studies suggest that there can be a linear relation between maintenance effort and 

maintainability.  

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎
1

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (1) 

Given Eq. (1), the maintenance effort for the optimal system (which is unknown), can be estimated as the product 

of the maintenance effort for the actual system and the ratio of the maintainability of the actual over the maintaina-

bility of the optimal system (we call this ratio Maintainability Level) [8]—see Eq. (2).  

𝐸𝑓𝑓𝑜𝑟𝑡𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙

=  

𝑎
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝑎
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑐𝑡𝑢𝑎𝑙

=  
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑐𝑡𝑢𝑎𝑙

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑝𝑡𝑖𝑚𝑢𝑚

= 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙 (2) 

Finally, based on its definition in Figure 1, TD Interest can be calculated using the difference between the actual 

and the optimal effort, as follows [8]—see Eq. (3): 

𝑇𝐷 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = 𝛥𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐸𝑓𝑓𝑜𝑟𝑡(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝐸𝑓𝑓𝑜𝑟𝑡(𝑜𝑝𝑡𝑖𝑚𝑢𝑚)

= 𝐸𝑓𝑓𝑜𝑟𝑡(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝐸𝑓𝑓𝑜𝑟𝑡(𝑎𝑐𝑡𝑢𝑎𝑙) × (𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙)

= 𝐸𝑓𝑓𝑜𝑟𝑡(𝑎𝑐𝑡𝑢𝑎𝑙) × (1 − 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙) 

(3) 

In practice, the above calculation is multiplied by the constant value of Unit Cost of Maintenance (e.g. $ or € per 

hour), but that is irrelevant for this study (although it is calculated), since the Mantel test employed in this study 

considers distance matrices. Therefore, as aspects of TD Interest, we consider (a) the Maintainability Level; and 

(b) the actual Maintenance Effort of the system under study. The former is related to structural properties of the 

corresponding system while the latter can be estimated using historical information, as elaborated below. 

Maintainability Level. Although no single function can capture all aspects of quality, for the sake of simplicity, 

we assume that the optimal system is the one that optimizes a certain fitness function assessing the quality of soft-

ware (e.g., in terms of complexity, cohesion, coupling, etc.). Thus, to calculate the maintainability level, we first 

identify a set of similar artifacts (e.g., classes, packages, systems—see [6]), we then calculate the optimal value of 

the metric score within the set of  similar (in terms of lines of code, number of methods, cognitive complexity, etc.) 

artifacts. The maintainability optimal artifact is an artificial one that is assigned the “best” metric scores, among the 

similar artifacts: i.e., the metric score of lowest complexity, highest cohesion, lowest coupling, etc. For example, 

given five similar artifacts with complexity scores: 2, 5, 3, 8, 11; the artificial optimal artifact would be assigned a 

complexity score of 2. Then we calculate the average ratio of the metric score of the artifact under study, compared 

to the optimal value. Maintainability, although not associated to a universally accepted definition, is widely accepted 

as the ease of making changes into a system [15]. The set of metrics that we have selected to use in our study for 

quantifying maintainability (see Table 4) belong to well-known metric suites [9], [22]. The metrics selection was 

based on a secondary study by Riaz et al. [32], which reported on a systematic literature review (SLR) aimed at 

summarizing software metrics that can be used as maintainability predictors. 

In particular, Riaz et al. [32] have performed a quality assessment of maintainability models, through a quantitative 

checklist, in order to identify studies of high-quality score, i.e., studies that provide reliable evidence. More specif-

ically, the checklist was comprised of 19 questions and each model was assessed for each criterion by a three-point 

scale: yes, no, or partially, with associated scores of 1, 0, and 0.5 respectively. The range of the total score of each 

study was between 0 and 19. All studies that have scored 7 or below were excluded from the list of selected studies, 

whereas among the studies with the highest scores were those of van Koten and Gray [38], and Zhou and Leung 

[42]. Both studies (i.e., [38], [42]) have used the same definition of maintainability and they have been based on 

two metric suites proposed by Li and Henry [22] and Chidamber et al. [9], i.e., two well-known object-oriented set 

of metrics. The employed suites contain metrics that can be calculated at the source-code level, and can be used to 

assess well-known quality properties, such as inheritance, coupling, cohesion, complexity and size. We note that 

according to Riaz et al. [32], another study (performed by Misra [27]) scored equally to the previously mentioned 
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ones. However, Misra was using metrics coming from multiple suites (2 out of the 4 are already considered), and 

we preferred to select those that were common in the studies.  

Table 4. Maintainability Properties and Metrics 

Property Metric Description 

Inheritance (Inh) 
DIT Depth of Inheritance Tree: Inheritance level number, 0 for the root class. 

NOCC Number of Children Classes: Number of direct sub-classes that the class has.  

Coupling (Cpl) 

MPC Message Passing Coupling: Number of send statements defined in the class.  

RFC 
Response for a Class: Number of local methods plus the number of methods called by 

class methods.  

DAC Data Abstraction Coupling: Number of abstract types defined in the class. 

Cohesion (Coh) LCOM Lack of Cohesion of Methods: Number of disjoint sets of methods in the class. 

Complexity (Com) 

CC Cyclomatic Complexity: Average cyclomatic complexity of methods in the class. 

WMPC 
Weighted Method per Class: Weighted sum of methods. Each method of the class is as-

signed to a weight equal to 1. 

Size (Size) 
SIZE1 Lines of Code: Number of semicolons in the class. 

SIZE2 Number of Properties: Number of attributes and methods in the class 

Maintenance Effort: Since the evolution of the software cannot be predicted, it is not possible to foresee what kind 

of modifications will be made in a system during future releases. Hence, we base our assessment of future mainte-

nance effort on historical data, by considering past effort spent on maintenance activities. More specifically, as 

maintenance effort we assume the average lines of code added/deleted/modified between all pairs of successive 

versions of a system. This strategy has been used in a variety of studies e.g., [10], [16], [18], [23], [28], and [41]. 

4 CASE STUDY DESIGN 

Case study is an observational method that is used for studying phenomena in a real-life context [34]. This case 

study has been designed and is presented according to the guidelines of Runeson et al. [34].  

4.1 Research Objectives and Research Questions  

The goal of the paper, as mentioned in Section 1, is to investigate the relation between TD Principal and Interest, 

as well as the relation between the Aspects of TD Principal (see Section 3.1) and the Aspects of TD Interest (see 

Section 3.2). An overview of the aspects of TD Principal and TD Interest, is presented in Figure 2. We note that the 

calculation of each aspect at a higher level, is an aggregation of the lower level: 

• We remind that TD Principal has four aspects that correspond to the categories of code smell tags. As explained 

in Section 3.1 TD Principal is calculated as the sum of TD Principal due to Understandability, Security/Runtime 

Issues, TD Principal due to Poorly Written Code, and TD Principal due to the Violation of Coding Standards. 

• TD Interest on the other hand has two aspects (at the second level): Maintainability Level (ratio of maintaina-

bility of actual vs. optimal case) and Maintenance effort. The aggregation formula from the 2nd to the 1st level is 

provided in Section 3.2 (see Eq. 3). Maintainability is further decomposed into five structural properties, while 

Maintenance effort constitutes historical change. We consider these five structural properties and the historical 

changes as aspects of TD interest at the third level. The function for aggregating the 3rd level aspects to Main-

tainability Level is the average of the distance from optimal, as explained in Section 3.2. 
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Fig. 2: Aspects of TD Principal and TD Interest 

Based on this overview, and the goal of this study (i.e., to explore the relation between TD Principal and TD Interest, 

as well as their aspects), we have formulated three research questions.  

RQ1: Is TD Principal related with TD Interest? 

This research question aims to explore if source code artifacts with a similar level of TD Principal are presenting 

similar levels of TD Interest. The existence of such a relation, would suggest that interest-related information could 

be subsumed by principal-related information, and therefore TD management, based only on TD Principal would 

make sense. With respect to Figure 2 this research question explores the relation of the 1st level of TD Principal 

with the 1st level of the TD Interest hierarchy. 

RQ2: Which Aspects of TD Interest are more related to TD Principal? 

Given the fact that TD Interest calculation considers two 2nd level aspects (maintainability level and maintenance 

effort), we first explore if any one of these two aspects of TD Interest is more related to TD Principal (RQ2.1). The 

answer to this RQ can shed light into the importance of the constituents of TD Interest, and guide researchers in 

their future attempts to quantify interest. Next, we focus on the maintainability level aspect of TD Interest and 

investigate which of the 3rd level aspects (i.e., coupling, cohesion, complexity, size, or inheritance) are more related 

to TD Principal (RQ2.2). We note that we are not performing a similar analysis for the historical change data (i.e., 

we do not further split this concept), since no actionable outcome can be reached by such an investigation: you 

cannot change the history of a project. In contrast, structural properties that appear to be of more interest can be 

improved or prioritized; for instance, in case cohesion ends up being an important property, classes that suffer from 

low cohesion can be refactored (e.g., split method, split class, etc.). With respect to Figure 2 this research question 

focuses on the relation between the 1st level of TD Principal and the 2nd and 3rd Level of TD Interest. 

RQ3: Which Aspects of TD Principal are more related to TD Interest? 

The third research question deals with comparing different Aspects of TD Principal (of the 2nd level), with respect 

to the interest that they are expected to incur. In this research question, we investigate if and which of the Aspects 

of TD Principal are related to the highest interest. This question becomes extremely relevant for preventing, prior-

itizing, and repaying specific aspects of TD Principal within the same technical debt item. For example, if it turns 

out that understandability issues are producing more interest compared to poorly written code issues, then the issues 

of the aspect should be prioritized. With respect to Figure 2 this research question focuses on the 2nd level of TD 

Principal and the 1st level of TD Interest. 
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4.2 Case Selection and Unit Analysis 

The study of this paper is characterized as multiple, embedded case study [34], in which the cases are the OSS 

projects and the units of analysis are their classes. The reason for using OSS systems is the vast amount of available 

data in OSS repositories, in terms of versions and classes. To obtain data from high-quality projects (see Table 5) 

that evolve over a period of time, we require that the software systems: 

• Are popular OSS project of the Apache community. This ensures that the investigated projects are recognized 

as important by the OSS community, i.e., there is substantial system functionality and substantial development 

activity in terms of bug-fixing and adding requirements. 

• Are written in Java. We include this criterion because of the employed metric calculation tools. 

• Contain more than 70 classes. This ensures that we will not include “toy examples” in our dataset. After data 

collection, a manual inspection of the projects has been performed to guarantee that the classes are not trivial. 

• Have more than 5000 commits. We have included this for similar reasons to the first criterion. Although the 

selected number of versions is ad/hoc, it is set to a relatively high value, in order to guarantee high activity and 

evolution of the project. Also, this number of revisions provides an adequate set of repeated measures as input 

to the statistical analysis. 

Table 5. OSS Projects Selected for the Case Study 

Name Short Description #classes 

Apache XML Graphics  

(XMLGraph) 

Apache XML Graphics Commons is a library that consists of several reusa-

ble components used by Apache Batik and Apache FOP 
109 

Commons Math (ComMath) It is a library for mathematics and statistics components 901 

Commons Collection 

(ComColection) 

The Apache Commons Collections package contains types that extend and 

augment the Java Collections Framework. 
307 

Commons Net (ComNet) 
Apache Commons Net library implements the client side of many basic In-

ternet protocols. 
148 

Commons IO (ComIO) Commons IO is a library to assist with developing IO functionality. 113 

Commons Jelly 

(ComJelly) 
Jelly is a tool for turning XML into executable code.  73 

Http Components – Core 

(HTTPCore) 

Http Core is a set of HTTP transport components, used to build client and 

server services. 
368 

Http Components – Client 

(HTTPClient) 

Http Components is responsible for creating and maintaining a toolset of 

Java components. 
294 

Apache Struts (Struts) Struts is an MVC framework for creating modern Java web applications. 622 

Xerces 2 Java (Xerces2Java) Xerces2 is a library for parsing, validating and manipulating XML files 665 

4.3 Data Collection and Pre-Processing  

For the quantification of TD Principal, we used the SonarQube API to obtain the TD Principal metric for each one 

of the classes of the projects under analysis. Next, for each row in the dataset we recorded the number of instances 

of issues in each Tag Category, which are concentrated in the class (5 variables). Regarding TD Interest, we used 

the TDM toolkit5 of the SDK4ED platform6, developed in the context of the SDK4ED project7. On the completion 

of data collection, each class (unit of analysis) was characterized by 12 variables—10 maintainability metrics, 

maintenance history, and TD Interest. The pre-processing was completed by the deletion of rows that contained 

missing values. Missing values can be found in cases a maintainability metric cannot be calculated: e.g., CC cannot 

be calculated for abstract methods, or LCOM cannot be calculated for interfaces. 

 

 

5  https://github.com/AngelikiTsintzira/Technical-Debt-Management-Toolbox  
6  http://sdk4ed.se.uom.gr/   
7  https://sdk4ed.eu/  

https://github.com/AngelikiTsintzira/Technical-Debt-Management-Toolbox
http://sdk4ed.se.uom.gr/
https://sdk4ed.eu/
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4.4 Data Analysis Methodology 

Since the main objective of the study is to examine whether classes that present similar levels of TD Principal, also 

produce a similar amount of TD Interest, classical approaches such as correlation analysis are not able to provide 

straightforward answers. Although traditional correlation coefficients can be used to explore the nature and strength 

of the pairwise relationship between variables of a multivariate dataset, they can only assess which subset of soft-

ware metrics is associated to the TD Principal at the lowest level of the quality hierarchy. The current approach 

focuses on the similarity (dissimilarity) of classes to examine the association between TD Principal and TD Interest, 

by considering that TD Principal and TD Interest are multifaceted concepts that can be assessed through various 

aspects (see Section 3 and Figure 2) synthesizing in turn, multidimensional spaces of metrics. Through this ap-

proach, we believe that researchers and practitioners will be able to acquire significant knowledge in a more straight-

forward and intuitive manner, since the interpretation of the results resembles the way of human decision-making 

by comparing similar cases (i.e., classes), as in case-based reasoning (CBR) process.  

4.4.1 Mantel Test 

To this regard, we make use of a multivariate statistical methodology, namely the Mantel test [24] that has been 

extensively applied in many scientific areas such as: health, ecology, biology, population genetics. The rationale of 

the approach is to evaluate the association between the corresponding positions of all pairs of observations from 

two dissimilarity matrices computed by either univariate or multivariate data. The procedure is further augmented 

with a randomization mechanism based on the permutation of the rows and columns of one of the two dissimilarity 

matrices, to test the null hypothesis that the two dissimilarity matrices are uncorrelated. We have also to point out 

that the Mantel test has been used in software engineering: (a) to evaluate the difference between perspectives in 

the determination of the relative importance of impact analysis issues of software [33]; and (b) for the calibration 

of the analogy-based software cost estimation model [17]. An outline of the approach that we have used for applying 

the Mantel test, in our study, is described below:  

1. Each analysis element (i.e., box in Figure 2) is represented by either a vector or a matrix, in which the rows 

correspond to the 𝑛 classes of each project and columns comprise the metrics representing a specific element 

(see Table 6). A simple concept is represented by a column vector (Table 6), e.g. TD Principal, the measurements 

can be represented in the following form 𝑇𝐷Principal
𝑇 = (𝑇𝐷Principal𝑐1

, … , 𝑇𝐷Principal𝑐𝑛
)

𝑇

. Regarding multifac-

eted concepts, e.g. the quality property of Size evaluated by two metrics (Lines of Code and Number of Proper-

ties, 3rd Level, Table 6), the measurements can be compiled in the form of a tabular matrix 

[

𝑆𝐼𝑍𝐸1𝑐1
𝑆𝐼𝑍𝐸2𝑐1

⋮ ⋮
𝑆𝐼𝑍𝐸1𝑐𝑛

𝑆𝐼𝑍𝐸2𝑐𝑛

] 

where 𝑆𝐼𝑍𝐸1𝑐𝑖
 and 𝑆𝐼𝑍𝐸2𝑐𝑖

 represent the measurements of 𝑖 class regarding the two metrics Lines of Code and 

Number of Properties, respectively. The followed approach provides us the ability to capture a relation between 

sets of metrics that quantify two concepts that can be either simple or multifaceted; whereas traditional univariate 

correlation analysis would be able to indicate the relationship between pairs of scalar metrics. 

Table 6. Analysis Element Representation 

Level Concept Element Representation Metrics 

1 TD Principal TD Principal Vector Total TD Principal 

1 TD Interest TD Interest Vector Total TD Interest 

2 TD Principal Types of TD      

Principal Issues 

Matrix TD Principal due to Understandability Issues 

TD Principal due to Security/Runtime Issues 

TD Principal due to Poorly Written Code 

TD Principal due to the Violation of Coding Standards 

2 TD Interest Maintainability 

Level 

Matrix Coupling, Cohesion, Complexity, Size 

Inheritance 

2 TD Interest Maintenance Effort Vector Average Number of Lines Changed between Commits 

3 TD Interest Coupling Matrix Message Passing Coupling 
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Level Concept Element Representation Metrics 

Response for a Class 

Data Abstraction Coupling 

3 TD Interest Cohesion Vector Lack of Cohesion of Methods 

3 TD Interest Complexity Matrix Cyclomatic Complexity, Weighted Method per Class 

3 TD Interest Size Matrix Lines of Code, Number of Properties 

3 TD Interest Inheritance Matrix Depth of Inheritance Tree, Number of Children Classes 

2. From each analysis element we calculate a distance matrix for each pair (𝑖, 𝑗) of 𝑛 classes for a given project. 

For the case of TD Principal and TD Interest (first levels of hierarchies), the first step of the method involves 

the evaluation of two distance matrices, Distance(TDprincipal) and Distance(TDinterest) representing the distances 

between the pair of classes (𝑖, 𝑗) of the two vectors (1st Level, Table 6). In the case of a multifaceted TD concept 

(e.g. quality property of Size, 3rd Level, Table 6), the distance matrix is evaluated based on the measurements of 

all the associated metrics (see Table 6). We note that dissimilarities between each pair of classes are evaluated 

on the standardized measurements ([0,1]) to be immune to metrics’ range. For example, the investigation of the 

relation between TD Principal (1st Level) and the element of Size, described by two metrics (Lines of Code and 

Number of Properties) is based on distance matrices evaluated through the following formulae: 

𝑎𝑖𝑗 = √(𝑇𝐷Principal𝑐𝑖
− 𝑇𝐷Principal𝑐𝑗

)
2

   (2) 

𝑏𝑖𝑗 = √(𝑆𝐼𝑍𝐸1𝑐𝑖
− 𝑆𝐼𝑍𝐸1𝑐𝑗

)
2

+ (𝑆𝐼𝑍𝐸2𝑐𝑖
− 𝑆𝐼𝑍𝐸2𝑐𝑗

)
2

  (3) 

Table 7. Distance-Matrix Example for TD Principal (1st Level) and Size Element of TD Interest 

Distance 

(TDPrincipal) 

Classes 

𝐶1 𝐶2 … 𝐶𝑛 

Classes 

𝐶1 0 𝛼12 … 𝛼1𝑛 

𝐶2 𝛼21 0 … 𝛼2𝑛 

… … … … … 

𝐶𝑛 𝛼𝑛1 … … 0 
 

Distance 

(TDInterest-Size) 

Classes 

𝐶1 𝐶2 … 𝐶𝑛 

Classes 

𝐶1 0 𝑏12 … 𝑏1𝑛 

𝐶2 𝑏21 0 … 𝑏2𝑛 

… … … … … 

𝐶𝑛 𝑏𝑛1 … … 0 
 

3. Then, we take separately for each project all possible combinations of analysis elements (i.e., pairs of boxes: one 

from the TD Principal and another from TD Interest hierarchies), and calculate the Mantel’s r correlation coef-

ficient between the corresponding matrices.  

a. for RQ1, we use the vectors of TD Principal and TD Interest of the first level 

b. for RQ2.1, we use the vector of TD Principal, the matrix of Maintainability Level and the vector of 

Maintenance Effort 

c. for RQ2.2, we use the vector of TD Principal, the matrices of Coupling, Cohesion (the only vector), 

Complexity, Size, and Inheritance 

d. for RQ3, we use the vector of TD Interest and the matrix of Types of TD Principal Issues 

We have also to note that due to the symmetrical nature of a distance matrix, only the elements from the upper or 

lower triangle matrix are used. 

4.4.2 Statistical Inferential Process  

After the discovery of similarity patterns, the next critical issue is to investigate whether the observed phenomena 

can be generalized to the population of OSS projects. Given the fact that the case study of the paper is characterized 

as multiple (i.e., using many projects as subjects—see Section 4.2), there is an imperative need to adopt an appro-

priate statistical inferential mechanism in order to derive conclusions regarding the population of OSS projects with 

similar characteristics. Towards this direction, an aggregated dataset comprising the Mantel’s correlation coeffi-

cients evaluated from the classes of each OSS project for paired analysis elements is constructed. For example, for 
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the case of RQ2, the dataset can be expressed via a long-format matrix as presented in Table 8. As we can observe, 

each row of the matrix comprises the Mantel coefficient evaluated from the distance matrices of TD Principal and 

the alternative two aspects of TD Interest (Maintainability Level and Maintenance Effort) for a given project of our 

experimental setup. The question is to examine the potential effects of aspects of TD Interest on TD Principal. 

For this reason, we use the Linear Mixed Effects (LME) modelling statistical technique [31] that is able to model 

simultaneously two types of effects that are (a) the fixed and (b) the random effects. In the terminology of LME 

models, the term “fixed effect” is used to depict factors influencing the mean value of a response variable, whereas 

a “random effect” (i.e. Project in our experimental setup) may have an impact on the variance of the response 

variable. The reason to control the project as a random effect is that our dataset represents OSS projects that are 

selected from an infinite unknown population of projects.  

Regarding RQ2.1, our aim is to examine whether there is a difference between the 2nd Level Aspects of TD Interest 

on how they are related with the TD Principal. We essentially investigate which of the two aspects correlates better 

with TD Principal. This difference can be formally modeled as an effect of the factor “TD Interest Aspects” (with 

two discrete levels, namely Maintainability Level and Maintenance Effort) on the Mantel correlation in the presence 

of the project’s random effect. So, we actually consider the Mantel r as response variable while the type of aspect 

(fixed effect) and the project (random effect) are the two explanatory variables (Table 8). As far as the second goal 

of RQ2 concerns, which is the investigation of whether there are 3rd Level Aspects of TD Interest that are more 

related to TD Principal, a similar approach is followed. In this case, the repeated measures design is represented via 

a matrix, where the examined effect is the 3rd Level Aspect of TD Interest: Inheritance, Coupling, Cohesion, Com-

plexity, and Size) with the same random effect, i.e. the Project. Finally, a similar process has been also applied for 

RQ3. The rest of the repeated measure designs is presented in the Appendix. 

Table 8. Repeated Measures Design (RQ2.1) 

Mantel r TD Principal Aspect of TD Interest Project 

𝑟11 Total TD Principal 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐸𝑓𝑓𝑜𝑟𝑡 Project 1 

𝑟21 Total TD Principal 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐿𝑒𝑣𝑒𝑙  Project 1 

… … … … 

𝑟1𝑛 Total TD Principal 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐸𝑓𝑓𝑜𝑟𝑡 Project n 

𝑟2𝑛 Total TD Principal 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐿𝑒𝑣𝑒𝑙  Project n 

5 RESULTS 

In this section, we provide the answers to the RQs of this study. In Table 11 and Figure 3, we present the descriptive 

statistics for the aspects of TD Interest (second and third level) and TD Principal (second level), respectively.  

 
Fig. 3: Aspects of TD Principal Frequency 

Note: Aspects of the TD Principal are represented as counts of detected issues in all projects. Code Smell Tags that are not 

presented in Figure 3 (compared to Table 3) have zero instances in our dataset. 
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Table 11. Descriptive Statistics for TD Interest and its Aspects 

Metric N M SD Μin Μax 

TD Interest 3599 59.12 114.62 0.92 1698.10 

Aspect of TD Interest Metric N M SD Μin Μax 

Maintenance Effort – Historical Change LOC 3599 46.04 83.90 0.20 1401.00 

Maintenance Difficulty – Inheritance (Inh) DIT 3600 2.17 1.40 1 9 

Maintenance Difficulty – Inheritance (Inh) NOCC  3600 0.76 2.55 0 41 

Maintenance Difficulty – Coupling (Cpl) MPC  3600 41.00 106.17 0 2531 

Maintenance Difficulty – Coupling (Cpl) RFC  3600 31.68 41.43 0 532 

Maintenance Difficulty – Coupling (Cpl) DAC  3600 0.29 1.05 0 20 

Maintenance Difficulty – Cohesion (Coh) LCOM  3389 75.27 356.25 0 8759 

Maintenance Difficulty – Complexity (Com) CC  2790 1.51 1.27 1 22.57 

Maintenance Difficulty – Complexity (Com) WMPC  3600 9.17 14.45 0 276 

Maintenance Difficulty – Size (Size) SIZE1  3600 56.50 91.80 1 1361 

Maintenance Difficulty – Size (Size) SIZE2  3600 11.12 17.16 0 238 

Note-1: N refers to the number of classes in which the metric was calculated (e.g., CC cannot be calculated for inter-

faces / abstract classes). M, SD, Min Max stand for: mean, standard deviation, minimum and maximum of the metric 

Note-2: The range of values for all the metrics that represent the aspects of TD Interest is [0, +∞) and TD Interest itself 

is measured in euros, using as Unit Cost of Maintenance the 1.8324 dollars per line of code (see [8]) 

5.1  Relation between TD Principal and Interest (RQ1) 

Mantel’s correlation coefficients (𝑟) for each pair of TD Principal and TD Interest, as evaluated from the classes of 

each OSS project, are summarized in Figure 4 ranging from weak (𝑟𝑚𝑖𝑛 = 0.271, ComNet) to very strong (𝑟𝑚𝑎𝑥 =
0.820, ComIO) correlation. The y-axis of Figure 4, demarcates the regions of “no”, “weak”, “moderate”, “strong”, 

or “very strong” relation [43], whereas the x-axis does not have a specific conceptual interpretation: it is just used 

for spreading projects in the full-width of the graph, to facilitate readability. Based on the evaluation of coefficients 

and their corresponding 𝑝-values, we can observe that there is noted a statistically significant correlation between 

the distance matrices of TD Principal and TD Interest for the whole set of the examined projects implying that 

classes with similar levels of TD principal have similar levels of TD interest. Based on the scales presented in Figure 

4, for 80% of the projects the relation between TD Principal and TD Interest is at least moderate. 

 
Fig. 4: Mantel’s coefficients between Principal and Interest 

In the second step of the analysis, an LME model is fitted to investigate the strength of the observed association to 

the population of OSS projects. The parameter of the LME model fitted on the accumulated results demonstrates a 

mean value of 0.540 signifying a moderate correlation between TD Principal and TD Interest aspects.  
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Classes with similar levels of TD Principal tend to have similar levels of TD Interest. The strength of this relation 

is at least moderate and statistically significant. 

5.2  Relation between TD Principal and Aspects of TD Interest (RQ2) 

Comparing 2nd-level Aspects of TD Interest (RQ2.1). Given the relation between principal and interest, we further 

drill down to investigate if either of the second-level aspects of interest, Maintainability Level (structure) or Mainte-

nance Effort (history) presents a higher effect on this relation. Figure 5 presents the distributions of the correlation 

coefficients between TD Principal and the two aspects of TD Interest (Maintainability Level and Maintenance Ef-

fort), in which each asterisk denotes the sample coefficient for an examined project of the case study. The 𝑝-values 

of the tests revealed statistically significant correlations for all pairwise comparisons between TD Principal and 

both aspects of TD Interest. Regarding the strength of the association for the Historical aspect of TD Interest (i.e.,  

Maintenance Effort), the coefficients range, again, from weak (𝑟𝑚𝑖𝑛 = 0.160, for Xerces2Java) to strong (𝑟𝑚𝑎𝑥 =
0.700, for ComJelly), whereas the results are similar for the Structural aspect of TD Interest (𝑟𝑚𝑖𝑛 = 0.230, for 

ComIO,𝑟𝑚𝑎𝑥 = 0.610, for ComJelly).  

 
Fig. 5: Distributions of coefficients: TD Principal and Aspects of TD Interest (Maintainability Level / Maintenance Effort) 

To investigate the effect of the Aspects of TD Interest on the evaluated correlation coefficients, we fitted again, an 

LME model. The model did not reveal a statistically significant main effect of the Aspects of TD Interest on the 

examined coefficients (𝐹 = 0.415, 𝑝 = 0.536) denoting that the two aspects are correlated to TD Principal to the 

same extent. The parameter estimates for the population mean values of correlation are 0.384 and 0.418 for Main-

tainability Level and Maintenance Effort aspects, respectively. Given the fact that both aspects of interest have 

merit, and do not differ significantly, it is important to investigate if the aggregated measure of TD Interest is more 

related to TD Principal compared to the association of the two aspects (in isolation) to TD Principal. The results 

suggest that TD Principal seems to present a higher correlation to the aggregated TD Interest metric (1st level of the 

TD Interest hierarchy) compared to the aspects of TD Interest (second level of hierarchy).   

To investigate the generalizability of the aforementioned results, we fitted an LME model incorporating the fixed 

effect of the factor Hierarchy Level (1st Level/2nd Level). Based on the results of the previous model (i.e. insignifi-

cant differences between the two Aspects of TD Interest), we have to clarify that the category Second Level aggre-

gates the correlation coefficients evaluated from both Maintainability Level and Maintenance Effort aspects of TD 

Interest. The model revealed a statistically significant main effect of the factor Hierarchy Level on the mean values 

of the correlation coefficients (𝐹 = 5.927, 𝑝 = 0.025).  

Table 12. LME - Main Effect of Factor Hierarchy Level of TD Interest 

 b SE Df t p 

First Level 0.540 0.053 19 10.248 < 0.001 

Second Level -0.139 0.057 19 -2.435 0.025 

Note: b, SE, df, t, p stands for parameter estimations, standard error of the estimates, degrees of freedom, t-statistic and p-

value, respectively. The reference category for factor Hierarchy Level of TD Interest is First Level.  

Interpreting the parameter estimates of the LME model (see Table 12), the aggregated measure of TD Interest pre-

sents a higher mean correlation value to TD Principal compared to the two aspects in isolation. The negative sign 
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of the parameter estimate for the Second Level of TD Hierarchy implies that the mean correlation coefficient is 

0.139 lower than the corresponding value evaluated from the First Level of TD Hierarchy (0.540). For the rest of 

this study, we do not perform any analysis on the 2nd level of TD Interest. 

The aggregated measure for TD Interest seems to be a more representative metric for capturing the divergence of 

classes in terms of their TD principal compared to the individual Historical or Structural metrics    

Comparing 3rd-level Aspects of TD Interest (RQ2.2). In this sub-section we investigate whether there are certain 

structural aspects of TD Interest (3rd level of the TD Interest hierarchy), that are more related to TD Principal (RQ2.2). 

The main motivation for this, as explained in Section 2.2, is the fact that structural properties are directly linked to 

actionable results; e.g., a tentative importance of lack of cohesion, can underline the importance of conforming to 

the Single Responsibility Principle [25].  

 
Fig. 6: Distributions of Mantel’s coefficients between TD Principal and Maintainability Predictors 

Figure 6 summarizes the Mantel’s correlation coefficients (𝑟) evaluated from the classes of each OSS project based 

on the dissimilarities for each pair of TD Principal and maintainability metrics (Inh: Inheritance, Com: Complexity, 

Coh: Cohesion, Cpl: Coupling). The results suggest that the strength is heavily dependent on the type of maintain-

ability predictor, ranging from statistically significant very weak correlation (e.g. for Inh predictor, 𝑟𝑚𝑖𝑛 = 0.06, 

ComMath) to strong correlation (e.g. for Size predictor, 𝑟𝑚𝑎𝑥 = 0.671, HTTPClient). Generally, Size seems to be 

the most related maintainability predictor of TD Interest to TD Principal. In contrast, Inheritance presented low 

coefficients that are statistically significant for 4 out of 10 cases. 

Table 13. LME - Main Effect of Aspect of TD Interest 

 b SE df t p 

Intercept 0.061 0.062 30 0.988 0.331 

Complexity 0.306 0.063 30 4.844 < 0.001 

Cohesion 0.297 0.063 30 4.705 < 0.001 

Coupling 0.381 0.063 30 6.021 < 0.001 

Size 0.439 0.063 30 6.947 < 0.001 

Note: b, SE, df, t, p stands for parameter estimations, standard error of the estimates, degrees of freedom, t-statistic and p-

value, respectively. The reference category for factor maintainability predictor of TD Interest is Inh 

The findings of the LME for the accumulated results present a statistically significant coefficient, demonstrating a 

significant main effect of the maintainability predictors on the response variable, 𝐹 = 13.061 and 𝑝 < 0.001. The 

parameter estimates of the model (Table 13) reveal that the mean value of correlation between TD Principal and 

Inheritance (reference category of the FITTED model) is very weak 0.061 (𝑟𝐼𝑛ℎ = 𝑏𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 0.061) and signifi-

cantly lower than the corresponding population mean values of Coupling (𝑟𝐶𝑝𝑙 = 𝑏𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑏𝐶𝑝𝐼 = 0.061 +

0.381 = 0.442), Cohesion (𝑟𝐶𝑜ℎ = 𝑏𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑏𝐶𝑜ℎ = 0.061 + 0.297 = 0.359), Complexity (𝑟𝐶𝑜𝑚 =

𝑏𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑏𝐶𝑜𝑚 = 0.061 + 0.306 = 0.367), and Size (𝑟𝑆𝑖𝑧𝑒 = 𝑏𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑏𝑆𝑖𝑧𝑒 = 0.061 + 0.439 = 0.500).  
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The post-hoc analysis through Tukey’s HSD test signifies statistically significant differences (𝑝 <  0.001) in all 

pairs between Inheritance and the other four quality properties (Figure 7—cases in which the error bar does not 

cross the vertical dashed line on 0.0). Regarding the Size, there is a statistically significant difference with Com-

plexity (𝑝 =  0.030) and Cohesion (𝑝 =  0.017), but no difference compared to Coupling (𝑝 =  0.702). Therefore, 

we consider the strength of the relation of Coupling to TD Principal, similar to the strength of the relation between 

Size and TD Principal. Finally, the rest pairwise comparisons do not indicate statistically significant differences.  

 
Fig. 7: Post-hoc analysis for LME model (main effect of Maintainability Predictors of TD Interest) 

Size and Coupling are the maintainability-related properties that are most closely related to TD Principal, fol-

lowed by Cohesion and Complexity. 

5.3 Relation between Aspects of TD Principal and TD Interest (RQ3) 

In this section, we present the results on the relation between aspects of TD Principal and TD Interest (RQ3). We 

remind that the aspects of TD Principal correspond to the four tag categories (Understandability, Poorly Written 

Code, Security/Runtime, and Coding Standards), that group the nineteen tags of code smells (see Section 3.1). 

Subsequently we evaluate the correlation of those four aspects to the first level of the TD Interest Hierarchy. TD 

Principal aspects present statistically significant correlations to TD Interest for the majority of the examined projects 

(37 out of 40 cases—see Figure 8) ranging from weak (𝑟𝑚𝑖𝑛 = 0.137, ComCollections) to strong (𝑟𝑚𝑖𝑛 = 0.699, 

ComJelly). Regarding the LME model incorporating the factor aspects of TD Principal, the findings did not reveal 

a statistically significant main effect on the examined coefficients (𝐹 = 1.126, 𝑝 = 0.356).  

 
Fig. 8: Distributions of Mantel’s coefficients between Tag Categories of code smells and TD Interest 

All four categories of code smells (aspects of TD Principal) present a moderate relation to TD Interest.  
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6 DISCUSSION 

In this section we discuss the main findings of this paper, first interpreting the obtained results, and then providing 

useful implications for researchers and practitioners. 

Interpretation of results. The goal of this study is to explore the relation between TD Principal and Interest, as well 

as the relation between the aspects of both concepts. First, we have been able to provide empirical evidence on the 

existence of a relation between principal and interest. Therefore, although no causal effect can be assumed between 

principal and interest, we have provided the first well-based indications on the existence of a relation between 

interest and principal: classes with similar levels of TD Principal tend to produce similar levels of TD Interest. We 

note that identifying the form of the relationship (linear or any other type) would require a different kind of analysis. 

Thus, the existence of a relation similar to the one of economics still needs investigation, probably through a differ-

ent study setup that can assess causality.  

We have also unveiled a relation between TD Principal and 4 (out of 5) 3rd level aspects of TD Interest (namely: 

size, coupling, cohesion, and complexity). This relation appears to be stronger for size and coupling, and less strong 

for cohesion and complexity: 

• Size: The relation between TD Principal and size (i.e., classes of similar size tend to have similar TD Principal) 

is intuitive in the sense that the more lines of code exist in the system, the more rules are expected to be violated. 

However, in most cases, this is not an actionable result as refactoring only for the sake of reducing size is very 

rarely done. In contrast, the size of software presents a linear growth over time; thus, it is of paramount im-

portance that new code inserted into the system has as few rule violations (TD principal) as possible. Never-

theless, this observation provides two interesting implications: (a) TD Principal normalization (by size) makes 

sense for comparing classes of different sizes; and (b) the identification of design hotspots (in terms of TD 

Principal) should not be performed at a system-wide, but between similar (in terms of size) neighborhoods of 

classes; in the sense that artifacts of different size will not be directly comparable. 

• Coupling, Cohesion and Complexity: The relation of TD Principal with these three quality attributes (Aspects 

of TD Interest—i.e., classes with similar TD Principal tend to have similar levels in these three quality proper-

ties), is indirect: we conjecture that developers who pay attention to software design (e.g., improved modularity, 

or low complexity) are also careful not to violate source code programming rules. The fact that coupling is 

more strongly related to TD Principal compared to cohesion and complexity denotes that a property reflecting 

the design rather than the implementation, is more important for maintenance. We remind that coupling, as 

calculated in this study (i.e., MPC, RFC, and DAC), can be calculated from design level artifacts (e.g., UML 

class or sequence diagrams); whereas complexity (CC—count of iteration and selection statements) and cohe-

sion (LCOM—attributes used in method bodies) can only be captured by parsing source code artifacts. 

Finally, regarding the specific aspects of TD Principal, the results suggest that the four aspects do not differ statis-

tically significantly, in terms of the TD Interest that they are associated with. We would expect that TD interest (in 

the way that it is assessed in this study) as a structural property, is conceptually closer to two of the TD Principal 

aspects: code understandability and design practice violations. However, the other two TD Principal aspects (coding 

standards and run-time and security violations) seem equally related to TD interest. This is not intuitive especially 

for the relation between run-time and security violations and TD interest; a study investigating a possible causality 

between the two would be particularly interesting. 

Implications to Researchers and Practitioners. Regarding practitioners, there has always been demand for an ac-

curate calculation of interest to drive the prioritization of repaying TD. While there are relatively mature ways to 

calculate TD principal (mostly through source code analysis), TD interest is more elusive as it depends on knowing 

future changes. The establishment of a relation between TD principal and interest, implies that TD principal can be 

safely used for TD prioritization: paying back the TD items with the highest principal will very likely also reduce 

the TD interest paid in the system. In practice, prioritization of TD items is required whenever a development team 

receives an intractable number of refactoring suggestions from a TDM tool (which is the usual case when large rule-

sets are applied on large software systems). Despite the fact that practitioners could either prioritize based on TD 

Principal or TD Interest; in fact, they have long been prioritizing TD items with large principal. Our results provide 

empirical evidence that this is a sound practice, since the amount of TD Principal is related to the amount of TD 

Interest, in the sense that classes with similar levels of TD Principal tend to have similar levels of TD Interest. 

However, this observation does not downgrade the significance of TD Interest assessment: we have also provided 

evidence that especially for TD repayment, emphasis should be placed on improving specific quality properties (i.e., 
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coupling and size), which have proven to be linked to the concentration of more TD Principal. Additionally, based 

on the findings of this study, some interesting future work opportunities have been identified. Therefore, we encour-

age researchers to: 

• Study of causality. The establishment of a correlation between TD interest and principal and their various as-

pects, begs the question whether causality also exists between them. This is especially interesting for third-level 

aspects of interest and second level aspect of principal. Does complexity, for example, cause understandability 

rules violations? Does low cohesion and high coupling cause poorly written code? Such a causal study could 

be designed and performed through a controlled experiment, in which the researchers would control the amount 

of TD Principal in several variations of a system, and seek the actual maintenance time (TD Interest) for differ-

ent amounts and types of TD Principal. The necessity (and difficulty) of targeting causation, instead of corre-

lation has been discussed in detail in Dagstuhl 2014 on "Software Development Analytics" [44][45].  

• Replicate and Generalize. The results of this study have been obtained by studying well-known and high-

quality Java projects. Therefore, there is a need to replicate the case study in other languages and projects of 

different levels of quality, so as to ensure the generalizability of our results. Similarly, the results need to be 

confirmed in different programming paradigms (other than object-oriented). We note that such a study, suppos-

ing that both extensions are made, would require the addition of two new factors (programming language and 

paradigm) and an inferential analysis that would target the exploration of the effect of these two factors in the 

identified relations 

• Extend the concepts of TD Principal and TD Interest to other types of TD. By considering that this study 

limits the calculation of TD to code, we believe that an interesting extension would be towards other types of 

TD, such as architecture, requirements or documentation TD. For instance, requirements debt could concern 

costs such as the delay of developing features, whereas architecture debt could involve the impossibility to 

evolve the system, or the effect on other quality attributes or even on the social aspects of the organization. 

Nevertheless, given the level of abstraction of these concepts, we see this research work more qualitative (e.g. 

involving experts) than quantitative.  

7 THREATS TO VALIDITY 

In this section, we discuss potential threats to the validity of our case study: construct validity, reliability, and exter-

nal validity [34]. Internal validity is not considered, since causal relations are not in its scope. 

7.1 Construct Validity 

Construct validity is related to the way in which the selected phenomena are observed and measured. In this study 

the investigated concepts are TD Principal and TD Interest. On the one hand TD Principal is quantified through 

SonarQube. SonarQube is the most frequently used tool for measuring TD Principal [3], [21], in the sense that is 

the most widely used in research and practice. Although SonarQube is an established tool, it focuses on code TD, 

neglecting other types of TD, like architecture debt, requirements debt, etc. According to Martini et al. currently in 

industry static analyzers (such as SonarQube) are used to analyze the source code in search of TD. Only in few 

cases out of the respondents in their survey (15 companies) practitioners built their own metrics tools for checking 

(language-specific) rules or patterns that can warn the developers of the presence of TD [26]. In a similar discussion, 

Yli-Huumo et al. [40] discuss SonarQube as the mostly used tool for TDM in the eight development teams that they 

have involved in their case study. Despite the identified limitations, especially in the level of Architectural Technical 

Debt (ATD), SonarQube is considered as extremely useful for code TD identification, monitoring, measurement 

and prioritization. Additionally, although SonarQube could be configured to provide more accurate results (e.g., 

change remediation times), such a practice is not prominent in the literature, where researchers do not perform any 

re-configuration of the tool [13], and [36]. 

On the other hand, in the literature there is no established way to measure TD Interest. This is due to the fact that an 

accurate measurement of interest would require the simultaneous maintenance of two software solutions: an optimal 

and an actual one, and the anticipation of future maintenance activities. Besides the inability to forecast future 

changes, such an approach is unrealistic for two reasons: (a) there is no way to define a universally accepted optimal 

system, and (b) it is cost inefficient to maintain two real systems just aiming to accurately measure technical debt 

interest. According to industrial practitioners, acknowledge that there are no indicators that show the amount of 

interest paid or predicted if the refactoring. Research prototype tools for interest assessment are not employed in 

practice yet and should be integrated to provide overall indicators to provide help to the stakeholders to estimate 



 

21 

 

and prioritize TD. Thus, the TD research community shall intensify their work on introducing such tools and indi-

cators [26]. Therefore, as the current state-of-the-art stands TD Interest can only be assessed through proxies. In this 

study, we selected metrics that assess maintainability as a proxy of interest. More specifically, we selected ten object-

oriented metrics (grouped in 5 categories/aspects of TD Interest) measured at source code, although, in literature, 

maintainability has been linked to various metrics. Metrics’ selection was based on empirical evidence in the liter-

ature suggesting that a combination of these metrics is the optimal maintainability predictor [32]. The model for 

synthesizing the aforementioned values in a unified value for TD Interest relies on solid mathematical calculations, 

given the assumption that maintenance effort is inversely proportional (linearly) to maintainability. This assumption, 

although it cannot be validated without a controlled experiment, relies on previous studies [38], [42] and is consid-

ered as intuitive by the authors of this paper. 

Additionally, we need to note that both TD Principal and TD Interest are measured at source code level. However, 

TD is a wider concept that represents inefficiencies at the whole software development lifecycle, and therefore the 

source code analysis is not comprehensively studying the phenomenon. Thus, our results are not representative of 

TD holistically as a phenomenon, but only of a subset of it. Nevertheless, code TD is the most studied type of 

technical debt in the state-of-research [2] and one of the most important in the industry [5]. Finally, with respect to 

RQ3, we note that the results heavily rely on the classification schema that we have proposed for Aspects of TD 

Principal. Although the schema has not been validated and relies on the expert opinion of the senior researchers of 

this study, it is developed in a systematic way. Thus, also given the fact that such an endeavor could not be conclu-

sive, we believe that it serves the goal of this study, since it is explicitly presented and acknowledges all of its 

inherent limitations. 

7.2 Reliability 

With regard to reliability, we consider any possible researchers’ bias, during the data collection and data analysis 

process. The design of the study, concerning data collection, does not contain threats, since all data are automatically 

extracted by tools, without any subjective configuration. Moreover, with respect to the data analysis process, to 

mitigate any potential threats to reliability, three researchers were involved in the process, aiming at double checking 

the work performed and thus reducing the chances of reliability threats. Furthermore, the detailed case study proto-

col presented in Section 4 enables the repetition of the study, as well as the provision of a replication package8. 

However, we need to note that the clustering of code smells under specific tag categories is subjective and could 

have been differently performed. Nevertheless, we believe that the clustering is intuitive and forms a well-justified 

decision. 

7.3 External Validity 

Concerning external validity, a potential threat to generalization is the possibility that performing the study on dif-

ferent projects of different languages might affect the retrieved correlations. However, we believe that the selected 

projects, given their size and complexity, represent a realistic real-world system. Additionally, the results of the 

study are not applicable to non-object-oriented systems, in the sense that TD Interest in such systems could not be 

assessed through properties such as inheritance, coupling and cohesion, which are applicable only in OO software 

modules. Finally, we note that since the interpretation of the results is based solely on the understanding of the 

authors on the TD concepts, and not through an additional qualitative study with industrial stakeholders, they cannot 

be generalized to an industrial context, without additional validation. 

8 CONCLUSIONS 

This study aims to investigate the interrelation between TD Principal and TD Interest from two perspectives: (a) to 

understand the underlying relations between the two concepts, and (b) to provide a way for efficient TD manage-

ment. To achieve these goals, we have performed a case study on 3600 classes retrieved from 10 Apache projects. 

The concepts of TD Principal and TD Interest have been decomposed to multiple aspects that assess different views 

of the concepts. Given the hierarchical structure of the concepts (TD Principal and TD Interest) the Mantel test has 

been used for the examination of their relation and Linear Mixed Effects models for assessing the generalizability 

of the obtained results. The results of the analysis suggested that TD Principal is related to TD Interest, and that TD 

Principal is more closely related to the interest aspects of size and coupling, followed by cohesion and complexity. 

Regarding TD Principal aspects, the one that appears to be more strongly interrelated to higher levels of interest is 

code smells, whereas by further focusing on code smells, we have collected evidence that smells that hinder source 
 

8 https://se.uom.gr/wp-content/uploads/interest-principal-empirical-relation/replication.zip  

https://se.uom.gr/wp-content/uploads/interest-principal-empirical-relation/replication.zip
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code understandability are the ones that are more urgent to resolve in the sense that they are related to higher levels 

of TD Interest. Given the aforementioned outcomes, various implications for researchers and practitioners have 

been drawn. In particular, regarding practitioners we have suggested a strategy for technical debt prevention, repay-

ment, and prioritization, based on technical debt interest amount. 

ACKNOWLEDGMENT 

Work reported in this paper has received funding from the European Union Horizon 2020 research and innovation 

programme under grant agreement No. 780572 (project: SDK4ED). 

REFERENCES 

[1] E. Allman, “Managing technical debt”, Communication, ACM, 55 (5), pp. 50-55, May 2012. 

[2] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman, “Identification and management 

of technical debt: A systematic mapping study”, Information and Software Technology, Elsevier, vol 70, pp. 100-121, 2016. 

[3] Ar. Ampatzoglou, Ap. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The financial aspect of managing technical debt: 

A systematic literature review”, Information and Software Technology, Elsevier, vol. 64, pp. 52–73, Aug. 2015. 

[4] Ar. Ampatzoglou, Ap. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou, “Establishing a framework for managing interest 

in technical debt”, 5th International Symposium on Business Modeling and Software Design (BMSD 2015), Italy, 2015. 

[5] Ar. Ampatzoglou, Ap. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, P. Abrahamsson, A. Martini, U. Zdun and K. Systa, 

“The Perception of Technical Debt in the Embedded Systems Domain: An Industrial Case Study”, 8th International Work-

shop on Managing Technical Debt (MTD’ 16), IEEE, Raleigh, NC, USA, Oct. 2016. 

[6] Ar. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, Ap. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “A framework 

for managing interest in technical debt: an industrial validation”, Proceedings of the 2018 International Conference on 

Technical Debt (TechDebt 2018), ACM, Gothenburg, Sweeden, pp. 115-124, May 2018. 

[7] T. Besker, A. Martini, and J. Bosch, “The Pricey Bill of Technical Debt: When and by Whom will it be Paid?”, 33rd IEEE 

International Conference on Software Maintenance and Evolution (ICSME), IEEE, Shangai, China, pp. 13-23, Sept. 2017. 

[8] A. Chatzigeorgiou, Ap. Ampatzoglou, Ar. Ampatzoglou, and T. Amanatidis, “Estimating the breaking point for technical 

debt”, 7th International Workshop on Managing Technical Debt (MTD’ 15), IEEE, Bremen, Germany, pp.53-56, Oct. 2015. 

[9] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial Use of Metrics for Object Oriented Software: An Exploratory 

Analysis”, Transactions on Software Engineering, IEEE Computer Society, 24 (8), pp. 629-639, Aug. 1998. 

[10] J. M. Conejero, R. Rodríguez-Echeverría, J. Hernández, P. J. Clemente, C. Ortiz-Caraballo, E. Jurado, and F. Sánchez-

Figueroa, “Early evaluation of technical debt impact on maintainability”, Journal of Systems and Software, Elsevier, 142, 

pp. 92-114, 2018. 

[11] W. Cunningham, “The WyCash Portfolio Management System”, 7th International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA ’92), 1992 

[12] R. J. Eisenberg “A threshold-based approach to technical debt”, ACM SIGSOFT Software Engineering Notes, 37 (2), pp. 1 

- 6, ACM, 2012. 

[13] M. García-Valls, J. Escribano-Barreno, and J. García-Muñoz. “An extensible collaborative framework for monitoring soft-

ware quality in critical systems”, Information and Software Technology, Elsevier, 107, pp. 3-17, 2019. 

[14] M. Harman, “The current state and future of search-based software engineering.”, In Future of Software Engineering 

(FOSE'07), pp. 342-357. IEEE, 2007. 

[15] ISO/IEC 9126-1:2001, Software engineering - Product quality (Part 1: Quality model), Geneva, Switzerland, 2001. 

[16] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and A. Shapochka, “A case study in locating the 

architectural roots of technical debt”, 37th International Conference on Software Engineering (ICSE), IEEE/ACM vol. 2, 

pp. 179-188, Florence, Italy, May 2015. 

[17] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery, “Analogy-X: Providing statistical inference to analogy-based software 

cost estimation”, Transactions on Software Engineering, IEEE, 34(4), pp. 471-484, 23 May 2008. 

[18] M. V. Kosti, A. Ampatzoglou, A. Chatzigeorgiou, G. Pallas, I. Stamelos, and L. Angelis, “Technical Debt Principal Assess-

ment Through Structural Metrics”, 43rd Euromicro Conference on Software Engineering and Advanced Applications 

(SEAA), Vienna, Austria, 2017. 

[19] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice”, Software, IEEE, 29 (6), 

pp. 18-21, 2012. 

[20] J. L. Letouzey and M. Ilkiewicz, “Managing Technical Debt with the SQALE Method”, Software, IEEE 29 (6), pp. 44–51, 

2012. 

[21] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its management”, Journal of Systems 

and Software, Elsevier, v. 101, pp. 193-220, March 2015. 

[22] W. Li and S. Henry, “Object-oriented metric that predict maintainability”, Journal of Systems and Software, Elsevier, 23 

(2), pp. 111-122, November 1993. 



 

23 

 

[23] A. MacCormack, and D. J. Sturtevant, “Technical debt and system architecture: The impact of coupling on defect-related 

activity”, Journal of Systems and Software, Elsevier, 120, pp. 170-182. 2016. 

[24] N. Mantel, “The detection of disease clustering and a generalized regression approach”, Cancer research, 27 (2), pp.209-

220, 1967. 

[25] R. Martin, “Agile Software Development, Principles, Patterns, and Practices”, Prentice Hall PTR, 3rd edition, 2003. 

[26] A. Martini, T. Besker, and J. Bosch, “Technical debt tracking: Current state of practice: A survey and multiple case study 

in 15 large organizations” Science of Computer Programming, Elsevier, 163, pp. 42-61, 2018. 

[27] S. H. Misra, “Modeling design/coding factors that drive maintainability of software systems”, Software Quality Journal, 

Springer 13(3), pp. 297-320, 2005. 

[28] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical debt and interest”, 2nd International Workshop on 

Managing Technical Debt (MTD’ 11), ACM, pp. 1 - 8, Hawaii, USA, May 2011. 

[29] M. O’ Keeffe and M. O. Cinnéide, “Search-based refactoring for software maintenance”, Journal of Systems and Soft-

ware 81, no. 4 (2008): 502-516. 

[30] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code refactoring using search-based software 

engineering: An industrial case study’, ACM Transactions on Software Engineering and Methodology (TOSEM) 25(3), pp.  

1-53, 2016. 

[31] J. Pinheiro and D. Bates, “Mixed-effects models in s and s-plus”, Springer Science and Business, 2006.  

[32] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software maintainability prediction and metrics”, 3rd Inter-

national Symposium on Empirical Software Engineering and Measurement, IEEE, Florida, USA, pp. 367-377, 2009. 

[33] P. Rovegård, L. Angelis, and C. Wohlin, “An empirical study on views of importance of change impact analysis issues”, 

Transactions on Software Engineering, IEEE, 34(4), pp. 516-530, 2008. 

[34] P. Runeson, M. Host, A. Rainer and B. Regnell, “Case Study Research in Software Engineering: Guidelines and Examples”, 

Wiley, 2012. 

[35] K. Schmid, “On the limits of the technical debt metaphor some guidance on going beyond”, 4th International Workshop 

on Managing Technical Debt (MTD ‘13), IEEE Computer Society, pp. 63 - 66, San Francisco, USA, 18 - 26 May 2013. 

[36] M. Schnappinger, M.H. Osman, A. Pretschner, and A. Fietzke, “Learning a classifier for prediction of maintainability based 

on static analysis tools” Proceedings of the 27th International Conference on Program Comprehension, IEEE Press, pp. 

243-248, 2019. 

[37] A. A. Tsintzira, Ar. Ampatzoglou, O. Matei, Ap. Ampatzoglou, A. Chatzigeorgiou, and R. Heb, “Technical Debt Quantifi-

cation through Metrics: An Industrial Validation”, 15th China-Europe International Symposium on Software Engineering 

Education (CEISEE’ 19), IEEE TEMS, Lisbon-Caparica, Portugal, May 2019.  

[38] C. van Koten and A. Gray, “An application of Bayesian network for predicting object-oriented software maintainability” 

Information and Software Technology, Elsevier, 48 (1), pp. 59-67, 2006. 

[39] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and quantifying architectural debt”, 38th International 

Conference on Software Engineering (ICSE), IEEE/ACM, pp. 488-498, Austin, TX, USA, May 2016. 

[40] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development teams manage technical debt?–An empirical 

study” Journal of Systems and Software, Elsevier, 120, pp. 195-218, 2016. 

[41] N. Zazworka, A. Vetró, C. Izurieta, S. Wong, Y.Cai, C. Seaman and F. Shull, “Comparing four approaches for technical 

debt identification", Software Quality Journal, Springer, 22 (3), pp. 403 – 426, Sept. 2014. 

[42] Y. Zhou and H. Leung, “Predicting Object-Oriented Software Maintainability using Multivariate Adaptive Regression 

Splines”, Journal of Systems and Software, Elsevier, 80 (8), pp. 1349-1361, 2007. 

[43] J. D. Evans, “Straightforward Statistics for the Behavioral Sciences”, Brooks / Cole Publishing, Pacific Grove, Califor-

nia, USA, 1996. 

[44] M. Di Penta, “Combining quantitative and qualitative methods (when mining software data)”, Perspectives on Data Sci-

ence for Software Engineering, Morgan Kaufmann, pp. 205-211, 2016. 

[45] T. Menzies, “Correlation is not causation (or, when not to scream “Eureka!”)”, Perspectives on Data Science for Software 

Engineering, Morgan Kaufmann, pp. 327-330, 2016. 

 


