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Abstract 21 

Agriculture is facing a labour shortage problem that affects global food safety and security. Robotic and 22 
extended reality (XR) technologies can prove as potential solutions to this problem. The aim of this study 23 
was to map and assess the way robotics and XR can mitigate labour shortage problem. PRISMA 24 
methodology was followed to identify relevant articles from the last five years, while frequency and 25 
correspondence analyses were used for identifying the corresponding trends. In total 210 relevant 26 
research studies were identified. These were analysed under the scope of crops, operations, robotics, XR 27 
and Human Robot Interaction (HRI). Vegetable crops (36%) followed by orchard crops (34%) were the 28 
most studied crop types. Additionally, the results presented that operation-specific robots (27%) were the 29 
most used robot type, while 68% referred to wheeled robots. Also, the robots did not present any 30 
collaboration level with human in most relevant studies (43%). Collision avoidance was the most 31 
frequently implemented safety feature (36%) in the studies that included this type of information. 32 
Moreover, operations with high demand in accuracy, frequency or labour were connected with robots 33 
that were developed for a single operation. Thus, end-effectors that were specialized in one operation 34 
were more preferable than generic end-effectors. However, not all studies referred to all these topics, 35 
indicating a need for further investigation. Finally, future studies should further explore the use of Mixed 36 
Reality, safety, connectivity and data governance. 37 
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Nowadays, agriculture is facing problems on labour shortage due to urbanization [1], seasonal work, low 41
wages and poor working conditions [2], stigmatization of agricultural work [3], and aging [4]. This 42 
phenomenon was accelerated after the COVID-19 pandemic [5]. Moreover, environmental concerns 43 
regarding agriculture keep rising due to the impact to climate change [6] and air [7], water [8] and soil 44 
pollution [9]. Due to the aforementioned, there are also concerning issues on food safety and security and 45 
their impact on the society [10,11]. Thus, there is a need to transitioning to more resilient systems in 46 
agricultural production. 47 

A potential solution to the labour shortage problem can be the use of smart farming technologies such as 48 
robots and extended reality (XR) in the context of Agriculture 5.0 [12]. Agricultural robots can be defined 49 
as mechatronic devices that consist of sensors, actuators and software for data collection, analysis and 50 
task execution which can be performed without human intervention [13]. There are ground and aerial 51 
robots that have been developed for research and commercial purposes which cover a broad range of 52 
applications in the agricultural sector. Specifically, there are ground robots of different locomotion types 53 
based on legs wheels and tracks. These robots have different sensors and actuators that are used for crop 54 
scouting, seeding, transplanting, weeding (mechanical, chemical and thermal), fertilizing, harvesting and 55 
pruning [14 18]. Similarly, aerial robots or unmanned aerial systems (UAS) or drones as they are 56 
commonly referred, are of different types such as fixed wing, helicopter or multi-rotor systems [19]. They 57 
are used mainly for crop scouting and mapping, crop protection, seeding, fertilization and pollination 58 
[16,20 23]. Both ground and aerial robots can be used in heterogeneous and homogeneous swarms 59 
depending on the task for increased efficiency [24,25]. 60 

Indeed, agricultural robots can significantly increase productivity. Robots can increase strawberry harvest 61 
efficiency  by 10% while reducing the mean non-productive time by 60% [26]. A precision spraying robot 62 
can reduce pesticides by 40% and decrease worker exposure in pesticides by 45% [27]. An automatic intra-63 
row, weeding co-robot system can reduce hand labour by up to 58% [28]. UAS can save up to 4 seasonal 64 
labour days in high disease pressure conditions in grapevines [29]. A co-robot can increase grapevine 65 
harvesting efficiency by up to 50% while lowering labour costs by 22.5% [30].  66 

Accordingly, XR can provide significant solutions in mitigating labour shortage and environmental 67 
concerns in agriculture. XR is an umbrella term for virtual reality (VR), mixed reality (MR) and augmented 68 
reality (AR) applications. It can be used for education, training, decision and action purposes in the context 69 
of agriculture by utilizing different viewing (e.g., head mount displays, portable devices) and controlling 70 
devices (e.g., voice, handheld controller, wearable devices) [31]. Specifically, VR environments 71 
constructed by UAS data can be used for teleoperation of ground robots [32]. Also, VR can be used for 72 
training personnel for greenhouses [33]. The use of VR exhibited strong preference from viticulture 73 
stakeholders to enhance their understanding in precision farming [34]. Coupled use of VR with AI in a 74 
simulated agricultural environment can for instance offer a practical application of theoretical knowledge 75 
to university students and enhance their decision-making processes [35]. Moreover, VR can enable the 76 
use of robot for tomato harvesting through teleoperation [36]. In the same manner, AR can be used for 77 
crop disease identification, crop information overlay, internet of things (IoT) data visualization and 78 
autonomous machines monitoring [37]. AR can assist users for precision soil sampling [38]. Additionally, 79 
MR although being at a very early stage, can be used for interacting with physical controls like for 80 
controlling robots [39] or irrigation equipment [40].  81 
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However, the successful use of robots and XR in agriculture is highly affected by the way farmers and 82
agricultural workers interact and collaborate. So, Human  Robot Interaction (HRI) has emerged as a 83 
research topic to address this need [41]. Efficient HRI must consider different aspects like safety, 84 
ergonomics, awareness and productivity [42]. HRI can present significant benefits compared to traditional 85 
methods of conducting agricultural operations. For example, HRI can be used for significantly optimizing 86 
the avocado [43] and grape harvesting processes [44] through human robot collaboration and leading to 87 
higher harvest productivity. Also, HRI can be used for teleoperation of robots resulting to less health risks 88 
for agricultural workers [45].  89 

From the abovementioned, it is clear that the use of HRI through the coupling of XR technologies with 90 
robots is an emerging topic. Thus, the main aim of this review article is to map applications of robotics 91 
and XR in agriculture as well as to assess them in terms of types and use along with their HRI aspects.   92 

2. Materials and Methods 93 

2.1 Prisma Methodology 94 

Relevant information on agricultural robotics and XR was identified through research articles that were 95 
retrieved through the Web of Science and Scopus databases. The main aim was the identification of the 96 
robotic and XR configurations. For this purpose, queries were inserted to the search engines to identify 97 
relevant research articles (Table 2) in December 16, 2024. 98 

Table 1. Query used in the Scopus and Web of Science databases to identify relevant publications. 99 

Database Query 
Scopus TITLE ("Agribot*" OR "*ROBOT*" OR "COBOT*" OR "Extended Reality" OR "Virtual 

Reality" OR "Augmented Reality" OR "Mixed Reality" ) AND TITLE ( "Agricultur*" OR 
"Crop*" OR "Orchard" OR "Vineyard*" OR "Greenhouse*" ) AND PUBYEAR > 2020 
AND PUBYEAR < 2025 AND ( LIMIT-TO ( OA , "all" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" 
) OR LIMIT-TO ( DOCTYPE , "cp" ) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) ) 

Web of Science TI=("Agribot*" OR "*ROBOT*" OR "COBOT*" OR "Extended Reality" OR "Virtual 
Reality" OR "Augmented Reality" OR "Mixed Reality") AND TI=("Agricultur*" OR 
"Crop*" OR "Orchard" OR "Vineyard*" OR "Greenhouse*") 

 100 

2.2 Results Filtering 101 

To focus on contemporary research publications, the selected research articles were published from 2020 102 
until 2024. The literature review followed the PRISMA (Preferred Reporting Items for Systematic Reviews 103 
and Meta-Analyses) methodology to map the relevant research articles and to ensure a systematic and 104 
transparent approach. PRISMA is an evidence-based minimum set of items for reporting in systematic 105 
reviews and meta-analyses. PRISMA primarily focuses on the reporting of reviews evaluating the effects 106 
of interventions but can also be used as a basis for reporting systematic reviews with objectives other 107 
than evaluating interventions (e.g. evaluating aetiology, prevalence, diagnosis or prognosis) [46]. 108 

The aforementioned queries yielded 726 research articles. As a result, the first outcomes were filtered to 109 
exclude articles that, based on the title and abstract were unrelated to the study's goal. Thus, 438 of these 110 
items met the aforementioned criteria and hence were omitted. With the remaining 288 scientific articles 111 
available, the manual selection of articles was expanded in one more round to exclude research articles 112 
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for which ther113
entire text. Thus, the final number of suitable articles that were evaluated in depth for this study were 114 
210 (Figure 1). 115 

 116 

Figure 1. The PRISMA workflow diagram of the research articles search. 117 

 118 

2.3 Classification 119 

The selected articles were categorized into three  generic categories consisting of subcategories based on 120 
relevant research to robotics [14,47 49], XR [31,50,51] and HRI [41,42,52].  Additionally, the selected 121 
articles were categorized based on crop types, namely arable crops, orchards, vegetables and vineyards 122 
[16] while a subcategory for greenhouses was also included due to the specific characteristics which 123 
robotic solutions exhibit [53,54].  Similarly, the agricultural operations were identified for assessing the 124 
different solutions based on the scientific literature [14,47 49]. The final selection of studies was 125 
subjected to qualitative and statistical analysis to extract key insights into existing agricultural robotics 126 
and XR applications. 127 

Table 2. Technical Aspect keywords used in Literature Review. 128 

Category Subcategory 
Crop Type Arable Crops 

Orchards 
Vegetables 
Vineyards 
Greenhouses 

Operations Navigation 
Planting and Sowing 
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Category Subcategory 
Harvesting and Picking 
Mechanical weeding 
Spraying 
Fertilization 
Crop scouting 
Pruning 
Irrigation 
Pollination 
Soil preparation 

Robotics Type 
Locomotion Type 
Active monitoring for guiding the end-effector 
End-effector types 

XR Type 
Interaction devices 
Display devices 
XR application types 

HRI Collaboration levels 
Safety 

 129 

2.4 Analysis 130 

The statistical analysis included the number of research studies published annually and per type. In 131 
addition, frequency analysis was performed for the robotic aspects (focus, locomotion, active monitoring, 132 
and end-effector types), XR (type, display device, interaction device, and application) and HRI (type, 133 
collaboration level and safety feature). Finally, simple tabulated correspondence analysis with biplot 134 
graphs was performed among the different areas by using the statistical software Statgraphics 19 135 
(StatPoint Technologies Inc., Warrenton, VA, USA). The main aim for the correspondence analysis was to 136 
identify the relations between the different categories as well as the variance that can be explained by 137 
the two-dimensional visualization of the selected data. 138 

 139 

3. Results and Discussion 140 

3.1 Cumulative number of research studies 141 

According to the results (see Appendix 1), the number of articles relevant to the topic of this study were 142 
increasing from 2020 until 2024 with a small decrease in 2023 (Figure 2). This indicated the importance of 143 
developing relevant integrated systems to address agricultural challenges like labour shortage and 144 
suggests that this trend will further increase the following years. These results are in accordance with 145 
other surveys on robotics and XR which presented similar trends [31,47]. 146 
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147

Figure 2. Number of research articles relevant to agricultural robotics and XR from 2020 until 2024.148

149

3.2 Frequency Analysis150

3.2.1 Crop Types151

As presented in Figure 3, most robotic applications were integrated in vegetable crops (36%), followed 152
closely by orchards at 34%, then vineyards at 16%, and finally arable crops at 14%. These proportions have 153
evolved annually, indicating a gradual decrease in the share of arable crops and vineyards over time, with 154
a corresponding rise in orchard crops. This suggests a notable shift of robotic applications toward higher-155
value or more profitable crop types. This can be justified by the increased production cost and value 156
compared to arable crops and vineyards along with the fact that they have more labour demanding 157
operations compared to arable crops [48,55 57]. Also, high-value crop growers are more prone to adopt 158
more expensive smart farming solutions [58 60]. 159

160
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(a) (b)
Figure 3. (a) Frequency of research articles per crop type and (b) frequency of research articles applications per crop 161 
type and year. 162 

 163 

3.2.2 Operations 164 

Regarding the operations for which robots are used in field environments, navigation emerged as the 165 
most frequently referenced robotic task at 27%, followed by crop scouting at 19%, harvesting and picking 166 
at 16% and spraying at 15%. Mechanical weeding (6%), irrigation (4%), planting and sowing (4%) and 167 
fertilization (4%) occupy mid-level shares, while pruning (2%), soil preparation (2%), and pollination (1%) 168 
each hold smaller proportions. The bar chart shows that navigation, harvesting and picking, spraying and 169 
crop scouting are dominant robotic tasks over time from 2020 to 2024 (Figure 4). From the above results, 170 
navigation is the most frequently referred operation due to the fact that robots must be able to operate 171 
autonomously in the field to conduct the different treatments [61]. Similarly, crop scouting is considered 172 
as a core operation because it enables other agricultural operations such as harvest, pest control, 173 
irrigation and fertilization [62,63]. From the rest of the operations, harvesting and picking is considered a 174 
laborious task and the importance of automating this process is significant due to the challenges that 175 
agriculture is currently facing like ageing, urbanization and labour shortage [49,56]. Accordingly, spraying 176 
operation is mainly utilized for crop protection in conjunction with pesticide application. Inappropriate 177 
application can result to health problems to farm workers among others and thus automation through 178 
robotics can mitigate these risks [16,20]. 179 
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(b) 
Figure 4. (a) Frequency of agricultural operations and (b) frequency of agricultural operations for safety and year. 180 

 181 

3.2.3 Robotics 182 

Operation-specific robots dominated in the research articles at 27% of the total, followed by monitoring 183 
robots (19%) and multi-purpose robots (18%), while greenhouse robots (14%), robotic implements (11%) 184 
and autonomous tractors (10%) and UAS (1%) had smaller shares (Figure 5a). As presented in Figure 5b 185 
for the locomotion of robots, wheeled robots made up the largest portion at 68%, followed by tracked 186 
robots (13%) and on-rails robots at about 7%. Pulled/carried robots (6%), aerial (3%), and legged (3%) 187 
robots account for smaller shares. Regarding the sensors used for actuation of the robots, as presented 188 
in Figure 5c, imaging sensors represented the largest segment at 52%, followed by at 29%, proximity 189 
sensors at 11%, and tracking sensors at 8%. As presented in Figure 5d, sensors and cameras constitute the 190 
largest share at 29%, followed by spraying systems at 25% and grippers at 24%. Cutting tools exhibited a 191 
smaller share at 12%, while cultivators (4%), fertilization (2%), drilling and planting (2%), vacuum or 192 
suction end effectors (1%), and laser tools (1%) occupy smaller portions. 193 
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(a) (b) 

  
(c) (d) 

Figure 5. (a) Frequency of robots per type; (b) Frequency of robots per locomotion type; (c) Frequency of active 194 
monitoring sensor type for robots; (d) Frequency of end-effectors per type. 195 

Operation specific robots were focused on conducting one operation only, like fertilization (e.g., [46]), 196 
chemical weeding (e.g., [47], harvesting (e.g., [48]), blossom thinning (e.g., [49]). This type of robots is less 197 
complicated than the multi-purpose robots regarding their design and software needs. However, they are 198 
more expensive than multi-purpose robots [47]. Monitoring robots utilize various sensors such as multi- 199 
or hyperspectral, RGB or RGB-D cameras, LiDAR, which are important for detecting weeds (e.g., [68]), 200 
diseases and insects (e.g., [69]), and crop growth parameters (e.g., [70]). The data collected by these 201 
sensors enables data-driven crop management decisions. Accordingly, the multi-purpose robots are 202 
versatile and have been developed for conducting different operations. These robots integrate different 203 
systems (e.g., for sowing, pruning and harvesting [71]). They are appropriate for farmers because most 204 
field operations have a short time window and cost less than purchasing robots for each operation [47]. 205 
Regarding greenhouse robots, this type is adapted for conducting operations (e.g., monitoring [72], 206 
harvest [73]) in greenhouse environments which are characterized by high complexity due to plant 207 
distances and environmental conditions (e.g., illumination) [54]. This can explain the low rate of research 208 
articles compared to the other types. Autonomous tractors correspond to conventional tractors that have 209 
been upgraded with retrofitted systems and devices that allow autonomous operation. Autonomous 210 
tractors have the advantage of using already available conventional implements [74] although they may 211 
have high cost for implementation [75]. UAS are mainly used for crop monitoring due to the fact that they 212 
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can quickly cover large areas. Although, they can be used for various other agricultural operations (e.g., 213
spraying, fertilization, sowing) besides crop monitoring their use is limited due to legislation and payload 214 
restrictions [76 78]. Examples of the robots identified in this review can be seen in Figure 6. 215 
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(g) (h) 

  
(i) (j) 

Figure 6. Examples of robots found in the assessed research articles. (a) wheeled fertilization robot [64]; (b) wheeled 216 
chemical weeding robot [65]; (c) robotic implement for harvesting [66]; (d) blossom thinning robotic implement [67]; 217 
(e) wheeled multi-purpose robot [71] ; (f) wheeled robot for pests and disease detection [69]; (g) wheeled robot for 218 
crop growth monitoring [70]; (h) greenhouse robotic harvester on rails with cutting end effectors[73]; (i) robotic 219 
implement for mechanical weeding [79]; track type spraying robot [80]. 220 

Regarding locomotion of robots, wheeled type robots are considered to provide many advantages such 221 
as simplicity, stability, energy efficiency and ease of use. This explains the high percentage of wheeled 222 
robots. Additionally, tracked robots present greater manoeuvrability, higher traction and lower ground 223 
pressure making them ideal for high-slope fields although they are more complicated than wheeled robots 224 
regarding locomotion [81]. Rail robots imply additional costs for infrastructure and are mainly used in 225 
greenhouses [53]. Moreover, legged robots present higher agility in rough terrain and high slopes but they 226 
can achieve higher compaction compared with wheeled and tracked robots [82,83].  227 

Imaging sensors are ideal for collecting data rich information and enable actuation based on spectral, 228 
geometrical and morphological data [16]. Imaging sensors in robotic integrations can be used for crop 229 
monitoring (e.g., [84,85]), pest detection (e.g., [86]), weeding (e.g., [87,88]), harvesting (e.g., [89]), 230 
spraying (e.g., [90]) and pruning (e.g., [91]) among other operations. Also, they can be used along with 231 
other sensors (e.g., LiDAR) for more accurate actuation (e.g., [92]). This justifies the high rate of this 232 
segment. Regarding the 3D scanning sensors, which ranked second, they are not affected by light 233 
conditions and consequently are not facing illumination-derived problems that can lead to inaccurate 234 
operations  (e.g., harvesting [93]) therefore they are integrated in many robotic applications, although 235 
they present complicated data processing pipelines [94]. The rest of the sensor types, namely tracking 236 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



and proximity sensors presented limited use due to the limited information they can offer. Therefore, 237
these sensors are mainly being used for actuation. More specifically, tracking sensors can be used for 238 
tracking crop rows to adjust robot navigation and operation in the field (e.g., [95]), while proximity sensors 239 
can adjust the distance from the target (e.g., for spraying application [96]). 240 

Regarding the end effector types, sensors and cameras are important for providing accurate positioning 241 
for the operation of robotic arms. These can be coupled with other end-effector types (e.g., grippers [97], 242 
spraying [98]) or used solely for crop scouting purposes (e.g., [69]). As mentioned above, different end 243 
effectors have been developed according to the needs of each agricultural operation. Thus, spraying based 244 
end-effectors have been developed for precision spraying (e.g., [86]), grippers (e.g.,  [99]) and vacuum 245 
suction end-effectors for harvesting (e.g., [100]), cutting tools for pruning (e.g., [101]), and sowing 246 
implements (e.g., [71]). It is worth highlighting that the different end-effectors may result in different 247 
results in operation efficiency (e.g., harvesting) depending not only on the type but on the crop and 248 
operation time as well [102]. 249 

3.2.4 XR  250 

It is worth noticing that from the total of 210 articles only 19 (9%) exhibited use of XR. Specifically, mixed 251 
reality (MR) was the most common XR type at 74%, followed by augmented reality (AR) at 21%, and virtual 252 
reality (VR) at 5% (Figure 7a). Regarding the interaction devices, which can be used to non-XR application 253 
included in the analysis, they were referenced in only 58 articles (28%). As presented in Figure 6b, eight 254 
different devices were used with monitor devices that occupy the largest share at 51%, followed by 255 
handheld controllers at 20%. Eye-tracking devices had a share of 10%, while hand-tracking devices 256 
accounted for 8% and the rest of the devices having lower rates (hand tracking systems, gesture-based, 257 
wearables, and spatial tracking systems) (Figure 7b). Additionally, handheld devices accounted for the 258 
vast majority at 89%, with monitors making up the remaining 11% regarding the display devices from 53 259 
articles (25%) that were included for this analysis. 260 

  
(a) (b) 

Figure 7. (a) Frequency of XR use type and (b) Frequency of interaction devices per type. 261 

MR overlays digital information on physical objects and enables the interaction of digital systems with the 262 
physical world. This technology can be used for teleoperation of robots (e.g., for plant-lowering [103], 263 
harvesting [104] and fertilization [20]). Thus, MR offers an enhanced interaction compared to AR which 264 
only is used for overlaying information on physical objects and thus can be used for monitoring (see e.g., 265 
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[20,88]). Finally, VR is used as a simulation tool where all actions are taking place in a digital environment. 266
For example, this can be used for simulating human grasping to develop robotic grippers [105].267

The results on the interaction devices indicate that there can be many devices for interacting with the 268
robots at the different XR environments. Monitors with integrated controllers can play a significant role 269
because they not only visualize all information to the operators of the robots but they can simultaneously 270
be used for control. Also, separate handheld controllers can be used for that purpose. This technology is 271
mature and is already being used for many years. Also, recent technological advances allowed the 272
development of other types of controllers that can be used for human-robot interaction like hand tracking273
(e.g., [67]), gesture (e.g., [101]), eye-tracking (e.g., [103]), wearables (e.g., [106]), haptic feedback (e.g., 274
[105]) and spatial tracking (e.g., [107]) controllers. These technologies can identify movements of the 275
human body and transform them into actions. However, they are limited by the fact that human operators 276
cannot memorize a lot of different body movements for control as well as to the technological complexity 277
of developing these solutions [31,108].278

Regarding the display devices, the results indicated that monitors are the main device for display of 279
information. This can be explained by the fact that they offer less attention and posture shifts while being 280
richer in information although handheld devices offer better mobility [109].281

3.2.5 HRI282

Regarding the HRI component of the reviewed articles that are related to the collaboration levels of the 283
284

each of them having a share at 11%. Smaller 285
286
287

across all years (Figure 8a).288

Regarding the safety features of robots, it was referred in 51 articles (24%). According to the analysis289
collision avoidance emerged as the most prevalent safety feature at 36% and proximity detection 290
following at 22%. Meanwhile, safe speed control (19%) and emergency stop systems (13%) exhibited 291
moderate rates. Redundancy and fail-safe features (5%), safety fencing (4%), and cyber security and data 292
safety (1%) had the smallest rates (Figure 8b). It is worth noting that in 21 of these articles there was 293
reference to more than one safety features.294

(a) (b)
Figure 8. (a) Frequency of collaboration level type; (b) Frequency of safety feature type.295
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Most of the articles presented robots with no level of collaboration with human workers because the aim 296
was to showcase applications in agricultural environments to replace human workers to mitigate labour 297 
shortage in agriculture (e.g., [84,92,97,110 114]. However, some studies presented levels of limited 298 

 (e.g., [107,115])  (e.g., [116]) and 299 
 (e.g., [117]). This can be explained by the fact that these types of collaboration aim to 300 

lighten the mental and physical workload and provide safety to human workers [118]. The limited shares 301 
that  (e.g., [88,115,119])  (e.g., [68,120,121])302 

 (e.g., [122])  (e.g., [123]) levels exhibited can be 303 
explained by the fact that these levels demand higher-level automation processes, like anticipation of 304 
human behaviour [124].  305 

Although there was limited presentation of the safety systems in the research articles that were analysed, 306 
it can be concluded that agricultural robots may include more than one safety system (e.g., 307 
[20,84,92,95,125 127]. These systems can refer to collision avoidance, proximity detection, emergency 308 
stop, safe speed control, safety fencing, and fail-safe. These were developed for protecting human 309 
workers from accidents as well as for preventing operation failures and therefore incidents that can cause 310 
bigger problems to crop production [128,129]. Also, the features of cyber security and data safety are 311 
gaining momentum for being incorporated into the safety systems of robots due to the potential problems 312 
that cyber-attacks can cause [130,131].  The limited reference to this type of system can be explained by 313 
the fact that focus was on the development and not on commercialization. Commercial robots must 314 
integrate safety features according to the corresponding standards (e.g., ISO 10218, ISO 18497) [132,133].  315 

 316 

3.3 Correspondence Analysis 317 

3.3.1 Robot types and Operations 318 

As presented in Figure 9, operation-specific robots were strongly connected with spraying, monitoring 319 
robots with crop scouting, and greenhouse robots with harvesting and picking and spraying. This can be 320 
explained by the fact that these operations are highly demanding in accuracy and labour under the specific 321 
environments, and therefore it is recommended to develop a robot that conducts one operation 322 
[53,134,135]. Multipurpose robots presented significant correspondence with mechanical weeding and 323 
limited correspondence with pruning and fertilization. These can be justified by the fact that these 324 
operations do not present high repetitiveness during a crop season, and there is a need for more versatile 325 
robots [55]. It is worth mentioning that the two dimensions of the analysis explain more than 76 % of the 326 
variance between the selected categories, indicating that a small portion of the insights are missing from 327 
the two-dimensional plot. 328 
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 329 

Figure 9. Correspondence plot between robot type and operations. (where 1: Operation specific robots; 2: Multi-330 
purpose robots; 3: Monitoring robots; 4: Autonomous tractors; 5: Autonomous UAS; 6: Greenhouse robots; 7: 331 
Robotic implements; A: Planting and Sowing; B: Harvesting and Picking; C: Mechanical Weeding; D: Spraying; E: 332 
Fertilization; F: Crop-scouting; G: Pruning; H: Irrigation; I: Pollination; J: Soil preparation; K: Navigation) 333 

3.3.2 Robot locomotion and Operations 334 

Regarding the correspondence between locomotion of agricultural robots and operations (Figure 10), it is 335 
evident that wheeled, pulled/carried, and legged-type robots presented strong correspondence with most 336 
of the operations except pollination and pruning. This can be explained by the fact that these systems can 337 
offer increased mobility [81]. Moreover, tracked robots presented strong correspondence with 338 
navigation, soil preparation, spraying, and mechanical weeding. Tracked systems can offer lower 339 
compaction and better traction on flat fields as well as on fields with high slopes, which are needed for 340 
these operations [81]. On rails robots presented strong correspondence with pruning. This can be justified 341 
by the fact that the studies included in the analysis were relevant to pruning of greenhouse crops (e.g., 342 
[91,136]). Finally, aerial systems did not present any strong correspondence with any operation. The 343 
reason for this is that aerial robots had limited occurrence in the analysis (e.g., [77,137 139]). This can be 344 

S as robots and therefore were underrepresented in 345 
the reviewing searching process [140]. Moreover, the two dimensions of the analysis explain more than 346 
74 % of the variance between the selected categories, indicating that a small portion of the insights are 347 
missing from the two-dimensional plot like in the previous case. 348 
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349

 350 

Figure 10. Correspondence plot between track type based robots and agricultural operations. (where 1: Legged; 2: 351 
Wheeled; 3: Tracked; 4: On rails; 5: Aerial; 6: Pulled/Carried; A: Planting and Sowing; B: Harvesting and Picking; C: 352 
Mechanical Weeding; D: Spraying; E: Fertilization; F: Crop-scouting; G: Pruning; H: Irrigation; I: Pollination; J: Soil 353 
preparation; K: Navigation) 354 

3.3.3 End-effectors and Operations 355 

As presented in Figure 11, there was strong correspondence between spraying end-effectors with 356 
spraying operations, sensors and cameras end-effectors with navigation and crop scouting, cultivation 357 
tools with soil preparation, and cutting tools with mechanical weeding. These results are logical 358 
considering the specialized use of these end-effectors for the corresponding operations. Additionally, 359 
correspondence was presented for gripper-type end-effectors with irrigation and harvesting and picking 360 
operations. The correspondence of gripper with irrigation can be justified by the limited number of studies 361 
that were included in the analysis [141 143] while many others presented the use of grippers for 362 
harvesting and picking operations (e.g., [66,71,89,92,93,95,107,144,145].  Based on the aforementioned, 363 
it is evident that there is specialization among the end-effector types and the operations. This can be 364 
justified by the fact that the different agricultural operations exhibit different requirements, and therefore 365 
a generic solution cannot be applied due to more complicated hardware and software designs [49]. 366 
Regarding the variance, the two dimensions of the analysis explain only 61 % of the variance between the 367 
selected categories, indicating that additional dimensions should also be considered to better identify 368 
insights between end-effectors and operations. 369 
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 370 

Figure 11. Correspondence plot between end-effector type and agricultural operations. (where 1: Grippers; 2: 371 
Cutting tools; 3: Vacuum or Suction-based End-effectors; 4: Spraying Systems; 5: Drilling and Planting Tools; 6: 372 
Harvesting Tools; 7: Laser Tools; 8: Fertilization; 9: Sensors and Cameras on End effectors; 10: Cultivators; A: Planting 373 
and Sowing; B: Harvesting and Picking; C: Mechanical Weeding; D: Spraying; E: Fertilization; F: Crop-scouting; G: 374 
Pruning; H: Irrigation; I: Pollination; J: Soil preparation; K: Navigation) 375 

 376 

3.3.2 HRI and Operations 377 

Regarding the correspondence analysis between HRI and operations, the results presented strong 378 
correspondence between full collaboration with pruning, no collaboration and coexistence with 379 
navigation, and physical collaboration with harvesting and picking (Figure 12). Pruning can be considered 380 
a very complicated process, the automation of which began recently. Therefore, a lot of processes like 381 
working under different environments, accuracy, and trajectory planning must be improved to realize full 382 
automation [146]. The results regarding the navigation indicate that fully autonomous robots are 383 
preferable while there is no need for interaction with humans during this task. As stated by other authors, 384 
autonomous navigation is considered very mature and a key operation for the automation of all 385 
agricultural operations [147,148]. Regarding harvesting and picking and the corresponding HRI level, this 386 
can be justified by the fact that although this task has been significantly automated, this technology can 387 
be considered relatively immature while there is big uncertainty and variation in agriculture. Therefore, 388 
physical collaboration of robots with humans can be considered as an intermediate step until full 389 
automation of this process is realized [149]. Finally, the two dimensions of the analysis explain more than 390 
68 % of the variance between the selected categories, indicating that additional dimensions should also 391 
be considered to better identify insights between HRI and operations. 392 
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 393 

Figure 12. Correspondence plot between collaboration level and agricultural operations. (where 1: Planting and 394 
Sowing; 2: Harvesting and Picking; 3: Mechanical Weeding; 4: Spraying; 5: Fertilization; 6: Crop-scouting; 7: Pruning; 395 
8: Irrigation; 9: Pollination; 10: Soil preparation; 11: Navigation; A: No Collaboration; B: Coexistence; C: Sequential 396 
Collaboration; D: Cooperation; E: Synchronized Collaboration; F: Physical Collaboration; G: Shared Control; H:Full 397 
Collaboration) 398 

 399 

3.4 Study Limitations 400 

The main limitations of this study include the five-year period that was selected for analysis and the 401 
application of the research queries only to titles. These restriction were selected to limit the results to 402 
contemporary and highly focused research on the topics of robotics and XR in agriculture due to the fact 403 
that these topics are gaining high attention and new research is presented in high frequency 404 
[31,47,51,82,108,109,150,151]. Also, many studies did not take into account all the topics addressed in 405 
this study. This had as a result that not all studies could be used in the correspondence analysis, leading 406 
to potential inaccuracy of the results with the current trends. 407 

4. Conclusions 408 

Robotics and XR in agriculture are gaining increasing attention in recent years. The coupled use of these 409 
technologies can significantly contribute to the mitigation of existing problems in agriculture like labour 410 
shortage and ageing.  In this manuscript, 210 research articles were analysed under the scope of robotics 411 
and XR as well as HRI. According to the results, operation-specific and wheeled robots presented the 412 
highest frequency. Moreover, camera types were the mainly used devices both for active monitoring as 413 
well as end-effectors. Also, MR was the prevalent XR type used in the studies, with monitors being the 414 
main devices for interaction and display with the robots. The prevalent HRI level was no collaboration, 415 
and collision avoidance was the main safety feature that was included in the limited number of studies 416 
that referred to these components.  417 
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Regarding the correspondence analysis, operations with high demand in accuracy or frequency or labour 418
(e.g., harvesting and picking, spraying and crop scouting) were connected with robots that were 419 
developed for a single operation or a specific environment, whereas multipurpose robots were connected 420 
with operations that have lower complexity and repetitiveness during a crop season. Also, most 421 
operations demand high mobility, and therefore wheeled, legged or pulled-carried robots are preferable, 422 
while tracked robots were connected with operations with high frequency (e.g., spraying) or need for 423 
better traction (e.g., soil preparation, navigation, mechanical weeding). It is worth noticing that UAS were 424 
underrepresented in the study due to the query limitations. Moreover, end-effectors were specialized for 425 
each operation (e.g., spraying end-effectors with spraying operations, sensors and cameras end-effectors 426 
with navigation and crop scouting, cultivation tools with soil preparation) indicating that generic end-427 
effector technologies are not preferred for agriculture. Additionally, full automation is more prevalent in 428 
operations of low complexity (e.g., navigation) while more complicated operations like pruning, and 429 
harvesting and picking still demand collaboration between humans and robots to be performed. 430 

Future studies should focus on the development of agricultural robots that exhibit a higher level of 431 
automation and can be applied to various operations to limit cost as well as in homogeneous and 432 
heterogeneous robotic fleets. Also, the use of MR should be further investigated along with the use of 433 
other interaction devices for control (e.g., voice control). Finally, safety features like cyber security, 434 
connectivity and data governance types should also be studied to further improve automation of 435 
agricultural robots as well as HRI. 436 
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