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Nowadays, agriculture is facing problems on labour shortage due to urbanization [1], seasonal work, low
wages and poor working conditions [2], stigmatization of agricultural work [3], and aging [4]. This
phenomenon was accelerated after the COVID-19 pandemic [5]. Moreover, environmental concerns
regarding agriculture keep rising due to the impact to climate change [6] and air [7], water [8] and soil
pollution [9]. Due to the aforementioned, there are also concerning issues on food safety and security and
their impact on the society [10,11]. Thus, there is a need to transitioning to more resilient systems in
agricultural production.

A potential solution to the labour shortage problem can be the use of smart farming technologies such as
robots and extended reality (XR) in the context of Agriculture 5.0 [12]. Agricultural robots can be defined
as mechatronic devices that consist of sensors, actuators and software for data collection, analysis and
task execution which can be performed without human intervention [13]. There are ground and aerial
robots that have been developed for research and commercial purposes which cover a broad range of
applications in the agricultural sector. Specifically, there are ground robots of different locomotion types
based on legs wheels and tracks. These robots have different sensors and actuators that are used for crop
scouting, seeding, transplanting, weeding (mechanical, chemical and thermal), fertilizing, harvesting and
pruning [14-18]. Similarly, aerial robots or unmanned aerial systems (UAS) or drones as they are
commonly referred, are of different types such as fixed wing, helicopter or multi-rotor systems [19]. They
are used mainly for crop scouting and mapping, crop protection, seeding, fertilization and pollination
[16,20-23]. Both ground and aerial robots can be used in heterogeneous and homogeneous swarms
depending on the task for increased efficiency [24,25].

Indeed, agricultural robots can significantly increase productivity. Robots can increase strawberry harvest
efficiency by 10% while reducing the mean non-productive time by 60% [26]. A precision spraying robot
can reduce pesticides by 40% and decrease worker exposure in pesticides by 45% [27]. An automatic intra-
row, weeding co-robot system can reduce hand labour by up to 58% [28]. UAS can save up to 4 seasonal
labour days in high disease pressure conditions in grapevines [29]. A co-robot can increase grapevine
harvesting efficiency by up to 50% while lowering labour costs by 22.5% [30].

Accordingly, XR can provide significant solutions in mitigating labour shortage and environmental
concerns in agriculture. XR is an umbrella term for virtual reality (VR), mixed reality (MR) and augmented
reality (AR) applications. It can be used for education, training, decision and action purposes in the context
of agriculture by utilizing different viewing (e.g., head mount displays, portable devices) and controlling
devices (e.g., voice, handheld controller, wearable devices) [31]. Specifically, VR environments
constructed by UAS data can be used for teleoperation of ground robots [32]. Also, VR can be used for
training personnel for greenhouses [33]. The use of VR exhibited strong preference from viticulture
stakeholders to enhance their understanding in precision farming [34]. Coupled use of VR with Al in a
simulated agricultural environment can for instance offer a practical application of theoretical knowledge
to university students and enhance their decision-making processes [35]. Moreover, VR can enable the
use of robot for tomato harvesting through teleoperation [36]. In the same manner, AR can be used for
crop disease identification, crop information overlay, internet of things (loT) data visualization and
autonomous machines monitoring [37]. AR can assist users for precision soil sampling [38]. Additionally,
MR although being at a very early stage, can be used for interacting with physical controls like for
controlling robots [39] or irrigation equipment [40].
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However, the successful use of robots and XR in agriculture is highly affected by the way farmers and
agricultural workers interact and collaborate. So, Human — Robot Interaction (HRI) has emerged as a
research topic to address this need [41]. Efficient HRI must consider different aspects like safety,
ergonomics, awareness and productivity [42]. HRI can present significant benefits compared to traditional
methods of conducting agricultural operations. For example, HRI can be used for significantly optimizing
the avocado [43] and grape harvesting processes [44] through human robot collaboration and leading to
higher harvest productivity. Also, HRI can be used for teleoperation of robots resulting to less health risks
for agricultural workers [45].

From the abovementioned, it is clear that the use of HRI through the coupling of XR technologies with
robots is an emerging topic. Thus, the main aim of this review article is to map applications of robotics
and XR in agriculture as well as to assess them in terms of types and use along with their HRI aspects.

2. Materials and Methods
2.1 Prisma Methodology

Relevant information on agricultural robotics and XR was identified through research articles that were
retrieved through the Web of Science and Scopus databases. The main aim was the identification of the
robotic and XR configurations. For this purpose, queries were inserted to the search engines to identify
relevant research articles (Table 2) in December 16, 2024.

Table 1. Query used in the Scopus and Web of Science databases to identify relevant publications.

Database Query

Scopus TITLE ("Agribot*" OR "*ROBOT*" OR "COBOT*" OR "Extended Reality" OR "Virtual
Reality" OR "Augmented Reality" OR "Mixed Reality" ) AND TITLE ( "Agricultur*" OR
"Crop*" OR "Orchard" OR "Vineyard*" OR "Greenhouse*" ) AND PUBYEAR > 2020
AND PUBYEAR < 2025 AND ( LIMIT-TO ( OA, "all" ) ) AND ( LIMIT-TO ( DOCTYPE, "ar"
) OR LIMIT-TO ( DOCTYPE, "cp" ) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) )

Web of Science  TI=("Agribot*" OR "*ROBOT*" OR "COBOT*" OR "Extended Reality" OR "Virtual
Reality" OR "Augmented Reality" OR "Mixed Reality") AND TI=("Agricultur*" OR
"Crop*" OR "Orchard" OR "Vineyard*" OR "Greenhouse*")

2.2 Results Filtering

To focus on contemporary research publications, the selected research articles were published from 2020
until 2024. The literature review followed the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) methodology to map the relevant research articles and to ensure a systematic and
transparent approach. PRISMA is an evidence-based minimum set of items for reporting in systematic
reviews and meta-analyses. PRISMA primarily focuses on the reporting of reviews evaluating the effects
of interventions but can also be used as a basis for reporting systematic reviews with objectives other
than evaluating interventions (e.g. evaluating aetiology, prevalence, diagnosis or prognosis) [46].

The aforementioned queries yielded 726 research articles. As a result, the first outcomes were filtered to
exclude articles that, based on the title and abstract were unrelated to the study's goal. Thus, 438 of these
items met the aforementioned criteria and hence were omitted. With the remaining 288 scientific articles
available, the manual selection of articles was expanded in one more round to exclude research articles
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for which there was no access to the full text and those that were outside this study’s scope based on the
entire text. Thus, the final number of suitable articles that were evaluated in depth for this study were

210 (Figure 1).
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Figure 1. The PRISMA workflow diagram of the research articles search.

2.3 Classification

The selected articles were categorized into three generic categories consisting of subcategories based on
relevant research to robotics [14,47-49], XR [31,50,51] and HRI [41,42,52]. Additionally, the selected
articles were categorized based on crop types, namely arable crops, orchards, vegetables and vineyards
[16] while a subcategory for greenhouses was also included due to the specific characteristics which
robotic solutions exhibit [53,54]. Similarly, the agricultural operations were identified for assessing the
different solutions based on the scientific literature [14,47—-49]. The final selection of studies was
subjected to qualitative and statistical analysis to extract key insights into existing agricultural robotics

and XR applications.

Table 2. Technical Aspect keywords used in Literature Review.

Category

Subcategory

Crop Type

Arable Crops

Orchards

Vege

tables

Vineyards

Gree

nhouses

Operations

Navigation

Planting and Sowing
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Category Subcategory
Harvesting and Picking
Mechanical weeding
Spraying
Fertilization
Crop scouting
Pruning
Irrigation
Pollination
Soil preparation
Robotics Type

Locomotion Type
Active monitoring for guiding the end-effector
End-effector types
XR Type
Interaction devices

Display devices

XR application types
HRI Collaboration levels

Safety

2.4 Analysis

The statistical analysis included the number of research studies published annually and per type. In
addition, frequency analysis was performed for the robotic aspects (focus, locomotion, active monitoring,
and end-effector types), XR (type, display device, interaction device, and application) and HRI (type,
collaboration level and safety feature). Finally, simple tabulated correspondence analysis with biplot
graphs was performed among the different areas by using the statistical software Statgraphics 19
(StatPoint Technologies Inc., Warrenton, VA, USA). The main aim for the correspondence analysis was to
identify the relations between the different categories as well as the variance that can be explained by
the two-dimensional visualization of the selected data.

3. Results and Discussion
3.1 Cumulative number of research studies

According to the results (see Appendix 1), the number of articles relevant to the topic of this study were
increasing from 2020 until 2024 with a small decrease in 2023 (Figure 2). This indicated the importance of
developing relevant integrated systems to address agricultural challenges like labour shortage and
suggests that this trend will further increase the following years. These results are in accordance with
other surveys on robotics and XR which presented similar trends [31,47].
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Figure 2. Number of research articles relevant to agricultural robotics and XR from 2020 until 2024.

3.2 Frequency Analysis
3.2.1 Crop Types

As presented in Figure 3, most robotic applications were integrated in vegetable crops (36%), followed
closely by orchards at 34%, then vineyards at 16%, and finally arable crops at 14%. These proportions have
evolved annually, indicating a gradual decrease in the share of arable crops and vineyards over time, with
a corresponding rise in orchard crops. This suggests a notable shift of robotic applications toward higher-
value or more profitable crop types. This can be justified by the increased production cost and value
compared to arable crops and vineyards along with the fact that they have more labour demanding
operations compared to arable crops [48,55-57]. Also, high-value crop growers are more prone to adopt
more expensive smart farming solutions [58—60].
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Figure 3. (a) Frequency of research articles per crop type and (b) frequency of research articles applications per crop
type and year.

3.2.2 Operations

Regarding the operations for which robots are used in field environments, navigation emerged as the
most frequently referenced robotic task at 27%, followed by crop scouting at 19%, harvesting and picking
at 16% and spraying at 15%. Mechanical weeding (6%), irrigation (4%), planting and sowing (4%) and
fertilization (4%) occupy mid-level shares, while pruning (2%), soil preparation (2%), and pollination (1%)
each hold smaller proportions. The bar chart shows that navigation, harvesting and picking, spraying and
crop scouting are dominant robotic tasks over time from 2020 to 2024 (Figure 4). From the above results,
navigation is the most frequently referred operation due to the fact that robots must be able to operate
autonomously in the field to conduct the different treatments [61]. Similarly, crop scouting is considered
as a core operation because it enables other agricultural operations such as harvest, pest control,
irrigation and fertilization [62,63]. From the rest of the operations, harvesting and picking is considered a
laborious task and the importance of automating this process is significant due to the challenges that
agriculture is currently facing like ageing, urbanization and labour shortage [49,56]. Accordingly, spraying
operation is mainly utilized for crop protection in conjunction with pesticide application. Inappropriate
application can result to health problems to farm workers among others and thus automation through
robotics can mitigate these risks [16,20].
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Figure 4. (a) Frequency of agricultural operations and (b) frequency of agricultural operations for safety and year.

3.2.3 Robotics

Operation-specific robots dominated in the research articles at 27% of the total, followed by monitoring
robots (19%) and multi-purpose robots (18%), while greenhouse robots (14%), robotic implements (11%)
and autonomous tractors (10%) and UAS (1%) had smaller shares (Figure 5a). As presented in Figure 5b
for the locomotion of robots, wheeled robots made up the largest portion at 68%, followed by tracked
robots (13%) and on-rails robots at about 7%. Pulled/carried robots (6%), aerial (3%), and legged (3%)
robots account for smaller shares. Regarding the sensors used for actuation of the robots, as presented
in Figure 5c, imaging sensors represented the largest segment at 52%, followed by at 29%, proximity
sensors at 11%, and tracking sensors at 8%. As presented in Figure 5d, sensors and cameras constitute the
largest share at 29%, followed by spraying systems at 25% and grippers at 24%. Cutting tools exhibited a
smaller share at 12%, while cultivators (4%), fertilization (2%), drilling and planting (2%), vacuum or
suction end effectors (1%), and laser tools (1%) occupy smaller portions.
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Figure 5. (a) Frequency of robots per type; (b) Frequency of robots per locomotion type; (c) Frequency of active
monitoring sensor type for robots; (d) Frequency of end-effectors per type.

Operation specific robots were focused on conducting one operation only, like fertilization (e.g., [46]),
chemical weeding (e.g., [47], harvesting (e.g., [48]), blossom thinning (e.g., [49]). This type of robots is less
complicated than the multi-purpose robots regarding their design and software needs. However, they are
more expensive than multi-purpose robots [47]. Monitoring robots utilize various sensors such as multi-
or hyperspectral, RGB or RGB-D cameras, LiDAR, which are important for detecting weeds (e.g., [68]),
diseases and insects (e.g., [69]), and crop growth parameters (e.g., [70]). The data collected by these
sensors enables data-driven crop management decisions. Accordingly, the multi-purpose robots are
versatile and have been developed for conducting different operations. These robots integrate different
systems (e.g., for sowing, pruning and harvesting [71]). They are appropriate for farmers because most
field operations have a short time window and cost less than purchasing robots for each operation [47].
Regarding greenhouse robots, this type is adapted for conducting operations (e.g., monitoring [72],
harvest [73]) in greenhouse environments which are characterized by high complexity due to plant
distances and environmental conditions (e.g., illumination) [54]. This can explain the low rate of research
articles compared to the other types. Autonomous tractors correspond to conventional tractors that have
been upgraded with retrofitted systems and devices that allow autonomous operation. Autonomous
tractors have the advantage of using already available conventional implements [74] although they may
have high cost for implementation [75]. UAS are mainly used for crop monitoring due to the fact that they
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can quickly cover large areas. Although, they can be used for various other agricultural operations (e.g.,
spraying, fertilization, sowing) besides crop monitoring their use is limited due to legislation and payload
restrictions [76—78]. Examples of the robots identified in this review can be seen in Figure 6.
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Figure 6. Examples of robots found in the assessed research articles. (a) wheeled fertilization robot [64]; (b) wheeled
chemical weeding robot [65]; (c) robotic implement for harvesting [66]; (d) blossom thinning robotic implement [67];
(e) wheeled multi-purpose robot [71] ; (f) wheeled robot for pests and disease detection [69]; (g) wheeled robot for
crop growth monitoring [70]; (h) greenhouse robotic harvester on rails with cutting end effectors[73]; (i) robotic
implement for mechanical weeding [79]; track type spraying robot [80].

Regarding locomotion of robots, wheeled type robots are considered to provide many advantages such
as simplicity, stability, energy efficiency and ease of use. This explains the high percentage of wheeled
robots. Additionally, tracked robots present greater manoeuvrability, higher traction and lower ground
pressure making them ideal for high-slope fields although they are more complicated than wheeled robots
regarding locomotion [81]. Rail robots imply additional costs for infrastructure and are mainly used in
greenhouses [53]. Moreover, legged robots present higher agility in rough terrain and high slopes but they
can achieve higher compaction compared with wheeled and tracked robots [82,83].

Imaging sensors are ideal for collecting data rich information and enable actuation based on spectral,
geometrical and morphological data [16]. Imaging sensors in robotic integrations can be used for crop
monitoring (e.g., [84,85]), pest detection (e.g., [86]), weeding (e.g., [87,88]), harvesting (e.g., [89]),
spraying (e.g., [90]) and pruning (e.g., [91]) among other operations. Also, they can be used along with
other sensors (e.g., LIDAR) for more accurate actuation (e.g., [92]). This justifies the high rate of this
segment. Regarding the 3D scanning sensors, which ranked second, they are not affected by light
conditions and consequently are not facing illumination-derived problems that can lead to inaccurate
operations (e.g., harvesting [93]) therefore they are integrated in many robotic applications, although
they present complicated data processing pipelines [94]. The rest of the sensor types, namely tracking
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and proximity sensors presented limited use due to the limited information they can offer. Therefore,
these sensors are mainly being used for actuation. More specifically, tracking sensors can be used for
tracking crop rows to adjust robot navigation and operation in the field (e.g., [95]), while proximity sensors
can adjust the distance from the target (e.g., for spraying application [96]).

Regarding the end effector types, sensors and cameras are important for providing accurate positioning
for the operation of robotic arms. These can be coupled with other end-effector types (e.g., grippers [97],
spraying [98]) or used solely for crop scouting purposes (e.g., [69]). As mentioned above, different end
effectors have been developed according to the needs of each agricultural operation. Thus, spraying based
end-effectors have been developed for precision spraying (e.g., [86]), grippers (e.g., [99]) and vacuum
suction end-effectors for harvesting (e.g., [100]), cutting tools for pruning (e.g., [101]), and sowing
implements (e.g., [71]). It is worth highlighting that the different end-effectors may result in different
results in operation efficiency (e.g., harvesting) depending not only on the type but on the crop and
operation time as well [102].

3.24 XR

It is worth noticing that from the total of 210 articles only 19 (9%) exhibited use of XR. Specifically, mixed
reality (MR) was the most common XR type at 74%, followed by augmented reality (AR) at 21%, and virtual
reality (VR) at 5% (Figure 7a). Regarding the interaction devices, which can be used to non-XR application
included in the analysis, they were referenced in only 58 articles (28%). As presented in Figure 6b, eight
different devices were used with monitor devices that occupy the largest share at 51%, followed by
handheld controllers at 20%. Eye-tracking devices had a share of 10%, while hand-tracking devices
accounted for 8% and the rest of the devices having lower rates (hand tracking systems, gesture-based,
wearables, and spatial tracking systems) (Figure 7b). Additionally, handheld devices accounted for the
vast majority at 89%, with monitors making up the remaining 11% regarding the display devices from 53
articles (25%) that were included for this analysis.

Handheld controllers
20.0%

. | Hand tracking systems
7.5%

5% %

j eye-tracking devices
10.0%

- haptic feedback devices
2.5%
3 spatial tracking systems
Gesture-Based i i i 5.0%
Devices devices
2.5% 1.3%

(a) (b)

Figure 7. (a) Frequency of XR use type and (b) Frequency of interaction devices per type.

MR
74%

MR overlays digital information on physical objects and enables the interaction of digital systems with the
physical world. This technology can be used for teleoperation of robots (e.g., for plant-lowering [103],
harvesting [104] and fertilization [20]). Thus, MR offers an enhanced interaction compared to AR which
only is used for overlaying information on physical objects and thus can be used for monitoring (see e.g.,
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[20,88]). Finally, VR is used as a simulation tool where all actions are taking place in a digital environment.
For example, this can be used for simulating human grasping to develop robotic grippers [105].

The results on the interaction devices indicate that there can be many devices for interacting with the
robots at the different XR environments. Monitors with integrated controllers can play a significant role
because they not only visualize all information to the operators of the robots but they can simultaneously
be used for control. Also, separate handheld controllers can be used for that purpose. This technology is
mature and is already being used for many years. Also, recent technological advances allowed the
development of other types of controllers that can be used for human-robot interaction like hand tracking
(e.g., [67]), gesture (e.g., [101]), eye-tracking (e.g., [103]), wearables (e.g., [106]), haptic feedback (e.g.,
[105]) and spatial tracking (e.g., [107]) controllers. These technologies can identify movements of the
human body and transform them into actions. However, they are limited by the fact that human operators
cannot memorize a lot of different body movements for control as well as to the technological complexity
of developing these solutions [31,108].

Regarding the display devices, the results indicated that monitors are the main device for display of
information. This can be explained by the fact that they offer less attention and posture shifts while being
richer in information although handheld devices offer better mobility [109].

3.2.5 HRI

Regarding the HRI component of the reviewed articles that are related to the collaboration levels of the
robots with the human workers, the most frequent level was “No Collaboration” at 43%, followed by
“Cooperation”, “Sequential Collaboration” and “Coexistence” each of them having a share at 11%. Smaller
shares exhibited for “Shared Control” (9%), “Physical Collaboration” (6%), “Full Collaboration” (6%), and
“Synchronized Collaboration” (3%). The “No Collaboration” segment presented the most frequent type
across all years (Figure 8a).

Regarding the safety features of robots, it was referred in 51 articles (24%). According to the analysis
collision avoidance emerged as the most prevalent safety feature at 36% and proximity detection
following at 22%. Meanwhile, safe speed control (19%) and emergency stop systems (13%) exhibited
moderate rates. Redundancy and fail-safe features (5%), safety fencing (4%), and cyber security and data
safety (1%) had the smallest rates (Figure 8b). It is worth noting that in 21 of these articles there was
reference to more than one safety features.

Full Collaborat il-
ull Col :%ma on Cybersecurity and Data Safety Redundancy andg;:ﬂ Safe Features

Shared Control

9%
Physical
Collaboration
6%
Synchronized
Collaboration
3%

Safety fencing
4%

Collision Avoidance

Safe speed control
36%

19%

Mo Collaboration

Cooperation /
11% '

Sequential Proximity detection
Collaboration

11% Coexistence 22% Emergency stop systems
11% 13%

(a) (b)

Figure 8. (a) Frequency of collaboration level type; (b) Frequency of safety feature type.
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Most of the articles presented robots with no level of collaboration with human workers because the aim
was to showcase applications in agricultural environments to replace human workers to mitigate labour
shortage in agriculture (e.g., [84,92,97,110-114]. However, some studies presented levels of limited
collaboration, namely “Cooperation” (e.g., [107,115]), “Sequential Collaboration” (e.g., [116]) and
“Coexistence” (e.g., [117]). This can be explained by the fact that these types of collaboration aim to
lighten the mental and physical workload and provide safety to human workers [118]. The limited shares
that “Shared Control” (e.g., [88,115,119]), “Physical Collaboration” (e.g., [68,120,121]), “Full
Collaboration” (e.g., [122]) , and “Synchronized Collaboration” (e.g., [123]) levels exhibited can be
explained by the fact that these levels demand higher-level automation processes, like anticipation of
human behaviour [124].

Although there was limited presentation of the safety systems in the research articles that were analysed,
it can be concluded that agricultural robots may include more than one safety system (e.g.,
[20,84,92,95,125-127]. These systems can refer to collision avoidance, proximity detection, emergency
stop, safe speed control, safety fencing, and fail-safe. These were developed for protecting human
workers from accidents as well as for preventing operation failures and therefore incidents that can cause
bigger problems to crop production [128,129]. Also, the features of cyber security and data safety are
gaining momentum for being incorporated into the safety systems of robots due to the potential problems
that cyber-attacks can cause [130,131]. The limited reference to this type of system can be explained by
the fact that focus was on the development and not on commercialization. Commercial robots must
integrate safety features according to the corresponding standards (e.g., ISO 10218, ISO 18497) [132,133].

3.3 Correspondence Analysis
3.3.1 Robot types and Operations

As presented in Figure 9, operation-specific robots were strongly connected with spraying, monitoring
robots with crop scouting, and greenhouse robots with harvesting and picking and spraying. This can be
explained by the fact that these operations are highly demanding in accuracy and labour under the specific
environments, and therefore it is recommended to develop a robot that conducts one operation
[53,134,135]. Multipurpose robots presented significant correspondence with mechanical weeding and
limited correspondence with pruning and fertilization. These can be justified by the fact that these
operations do not present high repetitiveness during a crop season, and there is a need for more versatile
robots [55]. It is worth mentioning that the two dimensions of the analysis explain more than 76 % of the
variance between the selected categories, indicating that a small portion of the insights are missing from
the two-dimensional plot.
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Figure 9. Correspondence plot between robot type and operations. (where 1: Operation specific robots; 2: Multi-
purpose robots; 3: Monitoring robots; 4: Autonomous tractors; 5: Autonomous UAS; 6: Greenhouse robots; 7:
Robotic implements; A: Planting and Sowing; B: Harvesting and Picking; C: Mechanical Weeding; D: Spraying; E:
Fertilization; F: Crop-scouting; G: Pruning; H: Irrigation; I: Pollination; J: Soil preparation; K: Navigation)

3.3.2 Robot locomotion and Operations

Regarding the correspondence between locomotion of agricultural robots and operations (Figure 10), it is
evident that wheeled, pulled/carried, and legged-type robots presented strong correspondence with most
of the operations except pollination and pruning. This can be explained by the fact that these systems can
offer increased mobility [81]. Moreover, tracked robots presented strong correspondence with
navigation, soil preparation, spraying, and mechanical weeding. Tracked systems can offer lower
compaction and better traction on flat fields as well as on fields with high slopes, which are needed for
these operations [81]. On rails robots presented strong correspondence with pruning. This can be justified
by the fact that the studies included in the analysis were relevant to pruning of greenhouse crops (e.g.,
[91,136]). Finally, aerial systems did not present any strong correspondence with any operation. The
reason for this is that aerial robots had limited occurrence in the analysis (e.g., [77,137-139]). This can be
explained by the fact that many don’t consider UAS as robots and therefore were underrepresented in
the reviewing searching process [140]. Moreover, the two dimensions of the analysis explain more than
74 % of the variance between the selected categories, indicating that a small portion of the insights are
missing from the two-dimensional plot like in the previous case.
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Figure 10. Correspondence plot between track type based robots and agricultural operations. (where 1: Legged; 2:
Wheeled; 3: Tracked; 4: On rails; 5: Aerial; 6: Pulled/Carried; A: Planting and Sowing; B: Harvesting and Picking; C:
Mechanical Weeding; D: Spraying; E: Fertilization; F: Crop-scouting; G: Pruning; H: Irrigation; I: Pollination; J: Soil
preparation; K: Navigation)

3.3.3 End-effectors and Operations

As presented in Figure 11, there was strong correspondence between spraying end-effectors with
spraying operations, sensors and cameras end-effectors with navigation and crop scouting, cultivation
tools with soil preparation, and cutting tools with mechanical weeding. These results are logical
considering the specialized use of these end-effectors for the corresponding operations. Additionally,
correspondence was presented for gripper-type end-effectors with irrigation and harvesting and picking
operations. The correspondence of gripper with irrigation can be justified by the limited number of studies
that were included in the analysis [141-143] while many others presented the use of grippers for
harvesting and picking operations (e.g., [66,71,89,92,93,95,107,144,145]. Based on the aforementioned,
it is evident that there is specialization among the end-effector types and the operations. This can be
justified by the fact that the different agricultural operations exhibit different requirements, and therefore
a generic solution cannot be applied due to more complicated hardware and software designs [49].
Regarding the variance, the two dimensions of the analysis explain only 61 % of the variance between the
selected categories, indicating that additional dimensions should also be considered to better identify
insights between end-effectors and operations.
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Figure 11. Correspondence plot between end-effector type and agricultural operations. (where 1: Grippers; 2:
Cutting tools; 3: Vacuum or Suction-based End-effectors; 4: Spraying Systems; 5: Drilling and Planting Tools; 6:
Harvesting Tools; 7: Laser Tools; 8: Fertilization; 9: Sensors and Cameras on End effectors; 10: Cultivators; A: Planting
and Sowing; B: Harvesting and Picking; C: Mechanical Weeding; D: Spraying; E: Fertilization; F: Crop-scouting; G:
Pruning; H: Irrigation; I: Pollination; J: Soil preparation; K: Navigation)

3.3.2 HRI and Operations

Regarding the correspondence analysis between HRI and operations, the results presented strong
correspondence between full collaboration with pruning, no collaboration and coexistence with
navigation, and physical collaboration with harvesting and picking (Figure 12). Pruning can be considered
a very complicated process, the automation of which began recently. Therefore, a lot of processes like
working under different environments, accuracy, and trajectory planning must be improved to realize full
automation [146]. The results regarding the navigation indicate that fully autonomous robots are
preferable while there is no need for interaction with humans during this task. As stated by other authors,
autonomous navigation is considered very mature and a key operation for the automation of all
agricultural operations [147,148]. Regarding harvesting and picking and the corresponding HRI level, this
can be justified by the fact that although this task has been significantly automated, this technology can
be considered relatively immature while there is big uncertainty and variation in agriculture. Therefore,
physical collaboration of robots with humans can be considered as an intermediate step until full
automation of this process is realized [149]. Finally, the two dimensions of the analysis explain more than
68 % of the variance between the selected categories, indicating that additional dimensions should also
be considered to better identify insights between HRI and operations.
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Figure 12. Correspondence plot between collaboration level and agricultural operations. (where 1: Planting and
Sowing; 2: Harvesting and Picking; 3: Mechanical Weeding; 4: Spraying; 5: Fertilization; 6: Crop-scouting; 7: Pruning;
8: Irrigation; 9: Pollination; 10: Soil preparation; 11: Navigation; A: No Collaboration; B: Coexistence; C: Sequential
Collaboration; D: Cooperation; E: Synchronized Collaboration; F: Physical Collaboration; G: Shared Control; H:Full
Collaboration)

3.4 Study Limitations

The main limitations of this study include the five-year period that was selected for analysis and the
application of the research queries only to titles. These restriction were selected to limit the results to
contemporary and highly focused research on the topics of robotics and XR in agriculture due to the fact
that these topics are gaining high attention and new research is presented in high frequency
[31,47,51,82,108,109,150,151]. Also, many studies did not take into account all the topics addressed in
this study. This had as a result that not all studies could be used in the correspondence analysis, leading
to potential inaccuracy of the results with the current trends.

4. Conclusions

Robotics and XR in agriculture are gaining increasing attention in recent years. The coupled use of these
technologies can significantly contribute to the mitigation of existing problems in agriculture like labour
shortage and ageing. In this manuscript, 210 research articles were analysed under the scope of robotics
and XR as well as HRI. According to the results, operation-specific and wheeled robots presented the
highest frequency. Moreover, camera types were the mainly used devices both for active monitoring as
well as end-effectors. Also, MR was the prevalent XR type used in the studies, with monitors being the
main devices for interaction and display with the robots. The prevalent HRI level was no collaboration,
and collision avoidance was the main safety feature that was included in the limited number of studies
that referred to these components.
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Regarding the correspondence analysis, operations with high demand in accuracy or frequency or labour
(e.g., harvesting and picking, spraying and crop scouting) were connected with robots that were
developed for a single operation or a specific environment, whereas multipurpose robots were connected
with operations that have lower complexity and repetitiveness during a crop season. Also, most
operations demand high mobility, and therefore wheeled, legged or pulled-carried robots are preferable,
while tracked robots were connected with operations with high frequency (e.g., spraying) or need for
better traction (e.g., soil preparation, navigation, mechanical weeding). It is worth noticing that UAS were
underrepresented in the study due to the query limitations. Moreover, end-effectors were specialized for
each operation (e.g., spraying end-effectors with spraying operations, sensors and cameras end-effectors
with navigation and crop scouting, cultivation tools with soil preparation) indicating that generic end-
effector technologies are not preferred for agriculture. Additionally, full automation is more prevalent in
operations of low complexity (e.g., navigation) while more complicated operations like pruning, and
harvesting and picking still demand collaboration between humans and robots to be performed.

Future studies should focus on the development of agricultural robots that exhibit a higher level of
automation and can be applied to various operations to limit cost as well as in homogeneous and
heterogeneous robotic fleets. Also, the use of MR should be further investigated along with the use of
other interaction devices for control (e.g., voice control). Finally, safety features like cyber security,
connectivity and data governance types should also be studied to further improve automation of
agricultural robots as well as HRI.

Funding

The research has been partially funded by the European Union project AgRibot: ‘Harnessing Robotics,
XR/AR, and 5G for a New Era of Safe, Sustainable, and Smart Agriculture’, under the Grant Agreement No:
101183158.

CRediT authorship contribution statement

Evangelos Anastasiou: Writing — review & editing, Writing — original draft, Visualization, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization, Supervision; Georgios Ntakos: Writing —
original draft, Methodology, Investigation, Data curation; Eirini Kanakari: Writing — original draft,
Visualization, Investigation, Data curation; Stella Bitsika: Investigation, Data curation; Marilena Gemtou:
Writing — review & editing, Investigation, Data curation; Manolis Katsaragakis: Investigation, Data
curation; Dimitrios Soudris: Investigation, Data curation; Elvira-Maria Arvanitou: Investigation, Data
curation; Maria-Theodora Folina: Investigation, Data curation; Thodoris Maikantis: Investigation, Data
curation; Elisavet-Persefoni Kanidou: Investigation, Data curation; Maria Fountouli: Investigation, Data
curation; Christina Volioti: Investigation, Data curation; Apostolos Ampatzoglou: Investigation, Data
curation; Nikolaos Tsiogkas: Investigation, Data curation; Andrés Villa-Henriksen: Investigation, Data
curation; S¢ren Marcus Pedersen: Investigation, Data curation; Tseganesh Wubale Tamirat:
Investigation, Data curation; Annalisa Milella: Investigation, Data curation; Soussana Simopoulou:
Investigation, Data curation; Project Administration; Gregory Mygdakos: Investigation, Data curation;
Project Administration; Spyros Fountas: Writing — review & editing, Conceptualization, Supervision

Declaration of generative Al and Al-assisted technologies in the writing process



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

458
459
460

461

462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

During the preparation of this work the author(s) used QuillBot in order to improve the readability and
language of the manuscript. After using this tool/service, the authors reviewed and edited the content as
needed and take full responsibility for the content of the published article.

References

[1] F. Eshetu, J. Haji, M. Ketema, A. Mehare, Rural Out-migration and Its Impact on Crop Production
Efficiency of Producers in Southern Ethiopia, Int. J. Rural Manag. 20 (2024) 233-254.
https://doi.org/10.1177/09730052231187187.

[2] R. King, A. Lulle, E. Melossi, New perspectives on the agriculture—migration nexus, J. Rural Stud. 85
(2021) 52-58. https://doi.org/10.1016/j.jrurstud.2021.05.004.

[3] C. Proctor, N. Hopkins, Stressors and Coping Strategies in Rural Farmers: A Qualitative Study, J.
Agromedicine 28 (2023) 415-424. https://doi.org/10.1080/1059924X.2023.2173691.

[4] J. Liu, S. Du, Z. Fu, The Impact of Rural Population Aging on Farmers’ Cleaner Production Behavior:
Evidence from Five Provinces of the North China Plain, Sustainability 13 (2021) 12199.
https://doi.org/10.3390/su132112199.

[5] R. Sharma, A. Shishodia, S. Kamble, A. Gunasekaran, A. Belhadi, Agriculture supply chain risks and
COVID-19: mitigation strategies and implications for the practitioners, Int. J. Logist. Res. Appl. 27
(2024) 2351-2377. https://doi.org/10.1080/13675567.2020.1830049.

[6] M. Gemtou, K. Kakkavou, E. Anastasiou, S. Fountas, S.M. Pedersen, G. Isakhanyan, K.T. Erekalo, S.
Pazos-Vidal, Farmers’ Transition to Climate-Smart Agriculture: A Systematic Review of the Decision-
Making Factors Affecting Adoption, Sustainability 16 (2024) 2828.
https://doi.org/10.3390/su16072828.

[7] F.Borghi, A. Spinazze, N. De Nardis, S. Straccini, S. Rovelli, G. Fanti, D. Oxoli, A. Cattaneo, D.M. Cavallo,
M.A. Brovelli, Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A
Systematic Review, Environments 10 (2023) 208. https://doi.org/10.3390/environments10120208.

[8] N. Kumar, A. Kumar, B.M. Marwein, D.K. Verma, A. Kumar, D. Ramamoorthy, AGRICULTURAL
ACTIVITIES CAUSING WATER POLLUTION AND ITS MITIGATION — A REVIEW, International journal of
modern agriculture, 10(1) (2021) 590-609 .

[9] A. Rashid, B.J. Schutte, A. Ulery, M.K. Deyholos, S. Sanogo, E.A. Lehnhoff, L. Beck, Heavy Metal
Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health, Agronomy 13
(2023) 1521. https://doi.org/10.3390/agronomy13061521.

[10]M.0. Alabi, O. Ngwenyama, Food security and disruptions of the global food supply chains during
COVID-19: building smarter food supply chains for post COVID-19 era, Br. Food J. 125 (2022) 167-185.
https://doi.org/10.1108/BFJ-03-2021-0333.

[11]E. Karan, S. Asgari, Resilience of food, energy, and water systems to a sudden labor shortage, Environ.
Syst. Decis. 41 (2021) 63-81. https://doi.org/10.1007/s10669-020-09793-w.

[12]S. Fountas, B. Espejo-Garcia, A. Kasimati, M. Gemtou, H. Panoutsopoulos, E. Anastasiou, Agriculture
5.0: Cutting-Edge Technologies, Trends, and Challenges, IT Prof. 26 (2024) 40-47.
https://doi.org/10.1109/MITP.2024.3358972.

[13]T. Martin, P. Gasselin, N. Hostiou, G. Feron, L. Laurens, F. Purseigle, G. Ollivier, Robots and
transformations of work in farm: a systematic review of the literature and a research agenda, Agron.
Sustain. Dev. 42 (2022) 66. https://doi.org/10.1007/s13593-022-00796-2.

[14]D. Xie, L. Chen, L. Liu, L. Chen, H. Wang, Actuators and Sensors for Application in Agricultural Robots:
A Review, Machines 10 (2022) 913. https://doi.org/10.3390/machines10100913.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

[15]Q. Yang, X. Du, Z. Wang, Z. Meng, Z. Ma, Q. Zhang, A review of core agricultural robot technologies
for crop productions, Comput. Electron. Agric. 206 (2023) 107701.
https://doi.org/10.1016/j.compag.2023.107701.

[16]E. Anastasiou, S. Fountas, M. Voulgaraki, V. Psiroukis, M. Koutsiaras, O. Kriezi, E. Lazarou, A.
Vatsanidou, L. Fu, F.D. Bartolo, J. Barreiro-Hurle, M. Gdmez-Barbero, Precision farming technologies
for crop protection: A meta-analysis, Smart Agric. Technol. 5 (2023) 100323.
https://doi.org/10.1016/j.atech.2023.100323.

[17]G. Reina, A. Milella, R. Rouveure, M. Nielsen, R. Worst, M.R. Blas, Ambient awareness for agricultural
robotic vehicles, Biosyst. Eng. 146 (2016) 114-132.
https://doi.org/10.1016/j.biosystemseng.2015.12.010.

[18]R. Verbiest, K. Ruysen, T. Vanwalleghem, E. Demeester, K. Kellens, Automation and robotics in the
cultivation of pome fruit: Where do we stand today?, J. Field Robot. 38 (2021) 513-531.
https://doi.org/10.1002/rob.22000.

[19]J. del Cerro, C. Cruz Ulloa, A. Barrientos, J. de Ledn Rivas, Unmanned Aerial Vehicles in Agriculture: A
Survey, Agronomy 11 (2021) 203. https://doi.org/10.3390/agronomy11020203.

[20]A. Garcia-Munguia, P. Guerra-Avila, E. Islas, O. Vazquez-Martinez, A. Garcia-Munguia, A Review of
Drone Technology and Operation Processes in Agricultural Crop Spraying, Drones 8 (2024) 674.
https://doi.org/10.3390/drones8110674.

[21]T. Hiraguri, H. Shimizu, T. Kimura, T. Matsuda, K. Maruta, Y. Takemura, T. Ohya, T. Takanashi,
Autonomous Drone-Based Pollination System Using Al Classifier to Replace Bees for Greenhouse
Tomato Cultivation, IEEE Access PP (2023) 1-1. https://doi.org/10.1109/ACCESS.2023.3312151.

[22]R. Guebsi, S. Mami, K. Chokmani, Drones in Precision Agriculture: A Comprehensive Review of
Applications, Technologies, and Challenges, Drones 8 (2024) 686.
https://doi.org/10.3390/drones8110686.

[23] E. Anastasiou, A.T. Balafoutis, S. Fountas, Trends in Remote Sensing Technologies in Olive Cultivation,
Smart Agric. Technol. 3 (2023) 100103. https://doi.org/10.1016/j.atech.2022.100103.

[24]C. Lytridis, V.G. Kaburlasos, T. Pachidis, M. Manios, E. Vrochidou, T. Kalampokas, S. Chatzistamatis, An
Overview of Cooperative Robotics in  Agriculture, Agronomy 11 (2021) 1818.
https://doi.org/10.3390/agronomy11091818.

[25]D. Albiero, A. Pontin Garcia, C. Kiyoshi Umezu, R. Leme de Paulo, Swarm robots in mechanized
agricultural operations: A review about challenges for research, Comput. Electron. Agric. 193 (2022)
106608. https://doi.org/10.1016/j.compag.2021.106608.

[26]C. Peng, S. Vougioukas, D. Slaughter, Z. Fei, R. Arikapudi, A strawberry harvest-aiding system with
crop-transport collaborative robots: Design, development, and field evaluation, J. Field Robot. 39
(2022) 1231-1257. https://doi.org/10.1002/rob.22106.

[27]Y. Bouhaja, H. Bamoumen, I. Derdak, S. Sheikh, M.E.H. El Azhari, H. El Hafdaoui, Mobile robot for leaf
disease detection and precise spraying: Convolutional neural networks integration and path planning,
Sci. Afr. 28 (2025) e02717. https://doi.org/10.1016/j.sciaf.2025.e02717.

[28] M. Pérez-Ruiz, D.C. Slaughter, F.A. Fathallah, C.J. Gliever, B.J. Miller, Co-robotic intra-row weed
control system, Biosyst. Eng. 126 (2014) 45-55.
https://doi.org/10.1016/j.biosystemseng.2014.07.009.

[29]E. Maritan, E. Anastasiou, V. Psiroukis, J. Lowenberg-DeBoer, S. Fountas, K. Behrendt, An
agroecological assessment of uncrewed aerial vehicle spraying in Greek viticulture, Smart Agric.
Technol. 10 (2025) 100837. https://doi.org/10.1016/j.atech.2025.100837.

[30]M.N. Conejero, H. Montes, J.M. Bengochea-Guevara, L. Garrido-Rey, D. Andujar, A. Ribeiro, A
collaborative robotic fleet for yield mapping and manual fruit harvesting assistance, Comput.
Electron. Agric. 235 (2025) 110351. https://doi.org/10.1016/j.compag.2025.110351.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

[31]E. Anastasiou, A.T. Balafoutis, S. Fountas, Applications of extended reality (XR) in agriculture, livestock
farming, and aquaculture: A review, Smart Agric. Technol. 3 (2023) 100105.
https://doi.org/10.1016/j.atech.2022.100105.

[32]T. Liu, B. Zhang, Q. Tan, J. Zhou, S. Yu, Q. Zhu, Y. Bian, Immersive human-machine teleoperation
framework for precision agriculture: Integrating UAV-based digital mapping and virtual reality control,
Comput. Electron. Agric. 226 (2024) 109444. https://doi.org/10.1016/j.compag.2024.109444.

[33]D.W. Carruth, C. Hudson, A.A.A. Fox, S. Deb, User Interface for an Immersive Virtual Reality
Greenhouse for Training Precision Agriculture, in: J.Y.C. Chen, G. Fragomeni (Eds.), Virtual Augment.
Mix. Real. Ind. Everyday Life Appl., Springer International Publishing, Cham, 2020: pp. 35-46.
https://doi.org/10.1007/978-3-030-49698-2_3.

[34]0. Spyrou, M. Ariza-Sentis, S. Vélez, Enhancing Education in Agriculture via XR-Based Digital Twins: A
Novel Approach for the Next Generation, Appl. Syst. Innov. 8 (2025) 38.
https://doi.org/10.3390/asi8020038.

[35]1. Bernetti, T. Borghini, I. Capecchi, Integrating Virtual Reality and Artificial Intelligence in Agricultural
Planning: Insights from the V.A.l.LF.A.R.M. Application, in: L.T. De Paolis, P. Arpaia, M. Sacco (Eds.), Ext.
Real., Springer Nature Switzerland, Cham, 2024: pp. 342-350. https://doi.org/10.1007/978-3-031-
71707-9_28.

[36]D. Udekwe, H. Seyyedhasani, Human robot interaction for agricultural Tele-Operation, using virtual
Reality: A  feasibility study, Comput. Electron. Agric. 228 (2025) 109702.
https://doi.org/10.1016/j.compag.2024.109702.

[37]W. Hurst, F.R. Mendoza, B. Tekinerdogan, Augmented Reality in Precision Farming: Concepts and
Applications, Smart Cities 4 (2021) 1454-1468. https://doi.org/10.3390/smartcities4040077.

[38]J. Huuskonen, T. Oksanen, Soil sampling with drones and augmented reality in precision agriculture,
Comput. Electron. Agric. 154 (2018) 25-35. https://doi.org/10.1016/j.compag.2018.08.039.

[39]C. Wittenberg, B. Bauer, N. Schloer, Mixed reality control of a mobile robot via ROS and digital twin,
in:. Hum. Factors Robots Drones Unmanned Syst., AHFE Open Acces, 2023.
https://doi.org/10.54941/ahfe1003751.

[40]Y. Alj, A. Dadda, H. Fahmani, Y. Tace, Towards an approach Integrating Mixed Reality and loT for Smart
Agriculture, in: 2022 Int. Conf. Microelectron. ICM, 2022: pp. 229-232.
https://doi.org/10.1109/ICM56065.2022.10005505.

[41]).P. Vasconez, G.A. Kantor, F.A. Auat Cheein, Human—robot interaction in agriculture: A survey and
current challenges, Biosyst. Eng. 179 (2019) 35-48.
https://doi.org/10.1016/j.biosystemseng.2018.12.005.

[42]G. Adamides, Y. Edan, Human—robot collaboration systems in agricultural tasks: A review and
roadmap, Comput. Electron. Agric. 204 (2023) 107541.
https://doi.org/10.1016/j.compag.2022.107541.

[43]).P. Vasconez, F.A. Auat Cheein, Workload and production assessment in the avocado harvesting
process using human-robot collaborative strategies, Biosyst. Eng. 223 (2022) 56-77.
https://doi.org/10.1016/j.biosystemseng.2022.08.010.

[44]Y. Peng, J. Liu, B. Xie, H. Shan, M. He, G. Hou, Y. Jin, Research Progress of Urban Dual-arm Humanoid
Grape Harvesting Robot, in: 2021 IEEE 11th Annu. Int. Conf. CYBER Technol. Autom. Control Intell.
Syst. CYBER, 2021: pp. 879-885. https://doi.org/10.1109/CYBER53097.2021.9588266.

[45]D. Udekwe, H. Seyyedhasani, Human robot interaction for agricultural Tele-Operation, using virtual
Reality: A  feasibility study, Comput. Electron. Agric. 228 (2025) 109702.
https://doi.org/10.1016/j.compag.2024.109702.

[46]D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and
meta-analyses: The  PRISMA  statement, Int.  J. Surg. 8 (2010) 336-341.
https://doi.org/10.1016/j.ijsu.2010.02.007.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

[47]S. Fountas, N. Mylonas, |. Malounas, E. Rodias, C. Hellmann Santos, E. Pekkeriet, Agricultural Robotics
for Field Operations, Sensors 20 (2020) 2672. https://doi.org/10.3390/s20092672.

[48]L.F.P. Oliveira, A.P. Moreira, M.F. Silva, Advances in Agriculture Robotics: A State-of-the-Art Review
and Challenges Ahead, Robotics 10 (2021) 52. https://doi.org/10.3390/robotics10020052.

[49]E. Vrochidou, V.N. Tsakalidou, I. Kalathas, T. Gkrimpizis, T. Pachidis, V.G. Kaburlasos, An Overview of
End Effectors in Agricultural Robotic Harvesting Systems, Agriculture 12 (2022) 1240.
https://doi.org/10.3390/agriculture12081240.

[50]W. Hurst, F.R. Mendoza, B. Tekinerdogan, Augmented Reality in Precision Farming: Concepts and
Applications, Smart Cities 4 (2021) 1454-1468. https://doi.org/10.3390/smartcities4040077.

[51]M.E. de Oliveira, C.G. Corréa, Virtual Reality and Augmented reality applications in agriculture: a
literature review, in: 2020 22nd Symp. Virtual Augment. Real. SVR, 2020: pp. 1-9.
https://doi.org/10.1109/SVR51698.2020.00017.

[52]S. Bokle, D.S. Paraforos, D. Reiser, H.W. Griepentrog, Conceptual framework of a decentral digital
farming system for resilient and safe data management, Smart Agric. Technol. 2 (2022) 100039.
https://doi.org/10.1016/j.atech.2022.100039.

[53]G. Bagagiolo, G. Matranga, E. Cavallo, N. Pampuro, Greenhouse Robots: Ultimate Solutions to
Improve Automation in Protected Cropping Systems—A Review, Sustainability 14 (2022) 6436.
https://doi.org/10.3390/su14116436.

[54]J.A. Sanchez-Molina, F. Rodriguez, J.C. Moreno, J. Sanchez-Hermosilla, A. Giménez, Robotics in
greenhouses.  Scoping  review, Comput. Electron. Agric. 219 (2024) 108750.
https://doi.org/10.1016/j.compag.2024.108750.

[55] A. Botta, P. Cavallone, L. Baglieri, G. Colucci, L. Tagliavini, G. Quaglia, A Review of Robots, Perception,
and Tasks in Precision Agriculture, Appl. Mech. 3 (2022) 830-854.
https://doi.org/10.3390/applmech3030049.

[56]G. Kootstra, X. Wang, P.M. Blok, J. Hemming, E. van Henten, Selective Harvesting Robotics: Current
Research, Trends, and Future Directions, Curr. Robot. Rep. 2 (2021) 95-104.
https://doi.org/10.1007/s43154-020-00034-1.

[57]Wang Z., Xun Y., Wang Y., Yang Q., Review of smart robots for fruit and vegetable picking in
agriculture, Int. J. Agric. Biol. Eng. 15 (2022) 33-54. https://doi.org/10.25165/].ijabe.20221501.7232.

[58]H.Y. Osrof, C.L. Tan, G. Angappa, S.F. Yeo, K.H. Tan, Adoption of smart farming technologies in field
operations: A systematic review and future research agenda, Technol. Soc. 75 (2023) 102400.
https://doi.org/10.1016/j.techsoc.2023.102400.

[59]C. Giua, V.C. Materia, L. Camanzi, Smart farming technologies adoption: Which factors play a role in
the digital transition?, Technol. Soc. 68 (2022) 101869.
https://doi.org/10.1016/j.techsoc.2022.101869.

[60] E. Anastasiou, S. Fountas, M. Koutsiaras, M. Voulgaraki, A. Vatsanidou, J. Barreiro-Hurle, F.D. Bartolo,
M. GAmez-Barbero, Precision farming technologies on crop protection: A stakeholders survey, Smart
Agric. Technol. 5 (2023) 100293. https://doi.org/10.1016/j.atech.2023.100293.

[61]T. Wang, B. Chen, Z. Zhang, H. Li, M. Zhang, Applications of machine vision in agricultural robot
navigation: A review, Comput. Electron. Agric. 198 (2022) 107085.
https://doi.org/10.1016/j.compag.2022.107085.

[62]S. Fountas, I. Malounas, L. Athanasakos, |. Avgoustakis, B. Espejo-Garcia, Al-Assisted Vision for
Agricultural Robots, AgriEngineering 4 (2022) 674-694.
https://doi.org/10.3390/agriengineering4030043.

[63]D. Xie, L. Chen, L. Liu, L. Chen, H. Wang, Actuators and Sensors for Application in Agricultural Robots:
A Review, Machines 10 (2022) 913. https://doi.org/10.3390/machines10100913.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

[64]C. Cruz Ulloa, A. Krus, A. Barrientos, J. Del Cerro, C. Valero, Robotic Fertilisation Using Localisation
Systems Based on Point Clouds in Strip-Cropping Fields, Agronomy 11 (2020) 11.
https://doi.org/10.3390/agronomy11010011.

[65]X. Wu, S. Aravecchia, P. Lottes, C. Stachniss, C. Pradalier, Robotic weed control using automated weed
and crop classification, J. Field Robot. 37 (2020) 322-340. https://doi.org/10.1002/rob.21938.

[66]H. Zhang, X. Li, L. Wang, D. Liu, S. Wang, Construction and Optimization of a Collaborative Harvesting
System for Multiple Robotic Arms and an End-Picker in a Trellised Pear Orchard Environment,
Agronomy 14 (2023) 80. https://doi.org/10.3390/agronomy14010080.

[67]U. Bhattarai, Q. Zhang, M. Karkee, Design, integration, and field evaluation of a robotic blossom
thinning system for tree fruit «crops, J. Field Robot. 41 (2024) 1366-1385.
https://doi.org/10.1002/rob.22330.

[68]D. Patel, M. Gandhi, H. Shankaranarayanan, A.D. Darji, Design of an Autonomous Agriculture Robot
for Real-Time Weed Detection Using CNN, in: A.D. Dariji, D. Joshi, A. Joshi, R. Sheriff (Eds.), Adv. VLSI
Embed. Syst., Springer Nature Singapore, Singapore, 2023: pp. 141-161.
https://doi.org/10.1007/978-981-19-6780-1_13.

[69]S. Cubero, E. Marco-Noales, N. Aleixos, S. Barbé, J. Blasco, RobHortic: A Field Robot to Detect Pests
and Diseases in Horticultural Crops by Proximal Sensing, Agriculture 10 (2020) 276.
https://doi.org/10.3390/agriculture10070276.

[70]F. Esser, R.A. Rosu, A. CorneliBen, L. Klingbeil, H. Kuhlmann, S. Behnke, Field Robot for High-
Throughput and High-Resolution 3D Plant Phenotyping: Towards Efficient and Sustainable Crop
Production, IEEE Robot. Autom. Mag. 30 (2023) 20-29. https://doi.org/10.1109/MRA.2023.3321402.

[71]T. Otani, A. Itoh, H. Mizukami, M. Murakami, S. Yoshida, K. Terae, T. Tanaka, K. Masaya, S. Aotake, M.
Funabashi, A. Takanishi, Agricultural Robot under Solar Panels for Sowing, Pruning, and Harvesting in
a Synecoculture Environment, Agriculture 13 (2022) 18.
https://doi.org/10.3390/agriculture13010018.

[72] C. Smitt, M. Halstead, T. Zaenker, M. Bennewitz, C. McCool, PATHoBot: A Robot for Glasshouse Crop
Phenotyping and Intervention, in: 2021 IEEE Int. Conf. Robot. Autom. ICRA, IEEE, Xi’an, China, 2021:
pp. 2324-2330. https://doi.org/10.1109/ICRA48506.2021.9562047.

[73]Y. Li, Q. Feng, Y. Zhang, C. Peng, C. Zhao, Intermittent Stop-Move Motion Planning for Dual-Arm
Tomato Harvesting Robot in Greenhouse Based on Deep Reinforcement Learning, Biomimetics 9
(2024) 105. https://doi.org/10.3390/biomimetics9020105.

[74]). Backman, R. Linkolehto, M. Lemsalu, J. Kaivosoja, Building a Robot Tractor Using Commercial
Components and Widely Used Standards, IFAC-Pap. 55 (2022) 6-11.
https://doi.org/10.1016/j.ifacol.2022.11.106.

[75]J. Choi, B. Lee, H. Jung, Development of a Retrofit Autonomous Maneuvering System for Agricultural
Vehicles, in: 2024 |IEEE Int. Autom. Veh. Valid. Conf. IAVVC, 2024: pp. 1-4.
https://doi.org/10.1109/1AVVC63304.2024.10786403.

[76]S. Moradi, A. Bokani, J. Hassan, UAV-based Smart Agriculture: a Review of UAV Sensing and
Applications, in: 2022 32nd Int. Telecommun. Netw. Appl. Conf. ITNAC, 2022: pp. 181-184.
https://doi.org/10.1109/ITNAC55475.2022.9998411.

[77]C. Geckeler, S.E. Ramos, M.C. Schuman, S. Mintchev, Robotic Volatile Sampling for Early Detection of
Plant Stress: Precision Agriculture Beyond Visual Remote Sensing, IEEE Robot. Autom. Mag. 30 (2023)
41-51. https://doi.org/10.1109/MRA.2023.3315932.

[78] N. Delavarpour, C. Koparan, J. Nowatzki, S. Bajwa, X. Sun, A Technical Study on UAV Characteristics
for Precision Agriculture Applications and Associated Practical Challenges, Remote Sens. 13 (2021)
1204. https://doi.org/10.3390/rs13061204.

[79]J. Gai, L. Tang, B.L. Steward, Automated crop plant detection based on the fusion of color and depth
images for robotic weed control, J. Field Robot. 37 (2020) 35-52. https://doi.org/10.1002/rob.21897.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

[80]L. Zhang, X. Zhu, J. Huang, J. Huang, J. Xie, X. Xiao, G. Yin, X. Wang, M. Li, K. Fang, BDS/IMU Integrated
Auto-Navigation System of Orchard Spraying Robot, Appl. Sci. 12 (2022) 8173.
https://doi.org/10.3390/app12168173.

[81]R. Vidoni, M. Bietresato, A. Gasparetto, F. Mazzetto, Evaluation and stability comparison of different
vehicle configurations for robotic agricultural operations on side-slopes, Biosyst. Eng. 129 (2015) 197—-
211. https://doi.org/10.1016/j.biosystemseng.2014.10.003.

[82] L.F.P. Oliveira, A.P. Moreira, M.F. Silva, Advances in Agriculture Robotics: A State-of-the-Art Review
and Challenges Ahead, Robotics 10 (2021) 52. https://doi.org/10.3390/robotics10020052.

[83]Z. Zhang, W. He, F. Wu, L. Quesada, L. Xiang, Development of a bionic hexapod robot with adaptive
gait and clearance for enhanced agricultural field scouting, Front. Robot. Al 11 (2024) 1426269.
https://doi.org/10.3389/frobt.2024.1426269.

[84]R. Xu, C. Li, A modular agricultural robotic system (MARS) for precision farming: Concept and
implementation, J. Field Robot. 39 (2022) 387-409. https://doi.org/10.1002/rob.22056.

[85] K. Tsiakas, A. Papadimitriou, E.M. Pechlivani, D. Giakoumis, N. Frangakis, A. Gasteratos, D. Tzovaras,
An Autonomous Navigation Framework for Holonomic Mobile Robots in Confined Agricultural
Environments, Robotics 12 (2023) 146. https://doi.org/10.3390/robotics12060146.

[86]J. Fusic S, S. T, J. Giri, E. Makki, R. Sitharthan, S. Murugesan, A. Bhowmik, Momordica charantia |leaf
disease detection and treatment using agricultural mobile robot, AIP Adv. 14 (2024) 045214.
https://doi.org/10.1063/5.0190928.

[87]E.L. Kehayov, G.B. Ivanov, G.G. Komitov, 3D MODEL OF THE MECHANICAL PART OF A WEED
RECOGNITION SYSTEM IN AN AGRICULTURAL ROBOT IN 3D EXPERIENCE ENVIRONMENT, Environ.
Technol. Resour. Proc. Int. Sci. Pract. Conf. 3 (2023) 135-138.
https://doi.org/10.17770/etr2023vol3.7289.

[88]F. Visentin, S. Cremasco, M. Sozzi, L. Signorini, M. Signorini, F. Marinello, R. Muradore, A mixed-
autonomous robotic platform for intra-row and inter-row weed removal for precision agriculture,
Comput. Electron. Agric. 214 (2023) 108270. https://doi.org/10.1016/j.compag.2023.108270.

[89]V. Raja, B. Bhaskaran, K.K.G. Nagaraj, J.G. Sampathkumar, S.R. Senthilkumar, Agricultural harvesting
using integrated robot system, Indones. J. Electr. Eng. Comput. Sci. 25 (2022) 152.
https://doi.org/10.11591/ijeecs.v25.i1.pp152-158.

[90] M. Lippi, M. Santilli, R.F. Carpio, J. Maiolini, E. Garone, V. Cristofori, A. Gasparri, An autonomous
spraying robot architecture for sucker management in large-scale hazelnut orchards, J. Field Robot.
41 (2024) 2114-2132. https://doi.org/10.1002/rob.22217.

[91]Y. Ma, Q. Feng, Y. Sun, X. Guo, W. Zhang, B. Wang, L. Chen, Optimized Design of Robotic Arm for
Tomato Branch Pruning in Greenhouses, Agriculture 14 (2024) 359.
https://doi.org/10.3390/agriculture14030359.

[92]Y. Pan, K. Hu, H. Cao, H. Kang, X. Wang, A novel perception and semantic mapping method for robot
autonomy in orchards, Comput. Electron. Agric. 219 (2024) 108769.
https://doi.org/10.1016/j.compag.2024.108769.

[93]L. Liu, Q. Yang, W. He, X. Yang, Q. Zhou, M.M. Addy, Design and Experiment of Nighttime Greenhouse
Tomato Harvesting Robot, J. Eng. Technol. Sci. 56 (2024) 340-352.
https://doi.org/10.5614/j.eng.technol.sci.2024.56.3.3.

[94]S. Debnath, M. Paul, T. Debnath, Applications of LiDAR in Agriculture and Future Research Directions,
J. Imaging 9 (2023) 57. https://doi.org/10.3390/jimaging9030057.

[95]J. Han, L. Liu, H. Zeng, Design and Implementation of Intelligent Agricultural Picking Mobile Robot
Based on Color Sensor, J. Phys. Conf. Ser. 1757 (2021) 012157. https://doi.org/10.1088/1742-
6596/1757/1/012157.

[96] University Tun Hussein Onn Malaysia (UTHM) Pagoh Campus, S. Mashori, M.A. Aizad Azmi, Panasonic
Appliances Air-Conditioning Malaysia Sdn. Bhd., N. Sahari, University Tun Hussein Onn Malaysia



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

(UTHM) Pagoh Campus, N.A. Jalaludin, University Tun Hussein Onn Malaysia (UTHM) Pagoh Campus,
S.S. Yi, University Tun Hussein Onn Malaysia (UTHM), R. Norjali, University Tun Hussein Onn Malaysia
(UTHM) Pagoh Campus, M.H. Mohd Yusof, Pertubuhan Peladang Kawasan Simpang Renggam,
Development of Pesticide Sprayer Robot Prototype for Chilli Farm Agricultural Application, Int. J.
Integr. Eng. 15 (2023). https://doi.org/10.30880/ijie.2023.15.03.023.

[97]P. Fan, C. Zheng, J. Sun, D. Chen, G. Lang, Y. Li, Enhanced Real-Time Target Detection for Picking Robots
Using Lightweight CenterNet in Complex Orchard Environments, Agriculture 14 (2024) 1059.
https://doi.org/10.3390/agriculture14071059.

[98]N. Hu, D. Su, S. Wang, P. Nyamsuren, Y. Qiao, Y. Jiang, Y. Cai, LettuceTrack: Detection and tracking of
lettuce for robotic precision spray in agriculture, Front. Plant Sci. 13 (2022) 1003243.
https://doi.org/10.3389/fpls.2022.1003243.

[99]). Waltman, E. Buchanan, D.M. Bulanon, Nighttime Harvesting of OrBot (Orchard RoBot),
AgriEngineering 6 (2024) 1266—-1276. https://doi.org/10.3390/agriengineering6020072.

[100] R. Goulart, D. Jarvis, K.B. Walsh, Evaluation of End Effectors for Robotic Harvesting of Mango Fruit,
Sustainability 15 (2023) 6769. https://doi.org/10.3390/su15086769.

[101] Z.VYu, C. Lu, Y. Zhang, L. Jing, Gesture-Controlled Robotic Arm for Agricultural Harvesting Using a
Data Glove with Bending Sensor and OptiTrack Systems, Micromachines 15 (2024) 918.
https://doi.org/10.3390/mi15070918.

[102] G. Schouterden, R. Verbiest, E. Demeester, K. Kellens, Robotic Cultivation of Pome Fruit: A
Benchmark Study of Manipulation Tools—From Research to Industrial Standards, Agronomy 11
(2021) 1922. https://doi.org/10.3390/agronomy11101922.

[103] B. Zhang, S. Xu, Z. Xiong, H. Qin, X. Ai, T. Yuan, W. Li, Research on Robot Control Technology of
Tomato Plant Lowering in Greenhouses, Agronomy 14 (2024) 1966.
https://doi.org/10.3390/agronomy14091966.

[104] O. Krakhmalev, S. Gataullin, E. Boltachev, S. Korchagin, I. Blagoveshchensky, K. Liang, Robotic
Complex for Harvesting Apple Crops, Robotics 11 (2022) 77.
https://doi.org/10.3390/robotics11040077.

[105] W. Zheng, N. Guo, B. Zhang, J. Zhou, G. Tian, Y. Xiong, Human Grasp Mechanism Understanding,
Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots, Sensors 22
(2022) 5240. https://doi.org/10.3390/s22145240.

[106] A.C. Tagarakis, L. Benos, E. Aivazidou, A. Anagnostis, D. Kateris, D. Bochtis, Wearable Sensors for
Identifying Activity Signatures in Human-Robot Collaborative Agricultural Environments, in: 13th
EFITA Int. Conf., MDPI, 2021: p. 5. https://doi.org/10.3390/engproc2021009005.

[107] H.A.Khan, U. Farooq, S.R. Saleem, U. Rehman, M.N. Tahir, T. Igbal, M.J.M. Cheema, M.A. Aslam,
S. Hussain, Design and development of machine vision robotic arm for vegetable crops in hydroponics,
Smart Agric. Technol. 9 (2024) 100628. https://doi.org/10.1016/j.atech.2024.100628.

[108] M. Bigonah, F. Jamshidi, A. Pant, S. Poudel, S. Reddy Nallapareddy, A. Charmchian Langroudi, D.
Marghitu, A Systematic Review of Extended Reality (XR) Technologies in Agriculture and Related
Sectors (2022-2024), IEEE Access 13 (2025) 49721-49734.
https://doi.org/10.1109/ACCESS.2025.3550891.

[109] G.de M. Costa, M.R. Petry, A.P. Moreira, Augmented Reality for Human—Robot Collaboration and
Cooperation in Industrial Applications: A Systematic Literature Review, Sensors 22 (2022) 2725.
https://doi.org/10.3390/s22072725.

[110] L. Emmi, R. Fernandez, P. Gonzalez-de-Santos, M. Francia, M. Golfarelli, G. Vitali, H. Sandmann,
M. Hustedt, M. Wollweber, Exploiting the Internet Resources for Autonomous Robots in Agriculture,
Agriculture 13 (2023) 1005. https://doi.org/10.3390/agriculture13051005.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

[111] S.Noda, Y. Miyake, Y. Nakano, M. Kogoshi, W. lijima, J. Nakagawa, A Mobile Laboratory Robot for
Various and Precise Measurements of Crops and Soil in Agricultural Fields: Development and Pilot
Study, Agriculture 13 (2023) 1419. https://doi.org/10.3390/agriculture13071419.

[112] M. Campbell, K. Ye, E. Scudiero, K. Karydis, A Portable Agricultural Robot for Continuous Apparent
Soil Electrical Conductivity Measurements to Improve Irrigation Practices, in: 2021 IEEE 17th Int. Conf.
Autom. Sci. Eng. CASE, 2021: pp. 2228-2234. https://doi.org/10.1109/CASE49439.2021.9551401.

[113] T. Fujinaga, T. Nakanishi, Evaluation of Maps Constructed by Crawler-type Agricultural Robot in
Different  Farms, Proc. Int. Conf. Artif. Life Robot. 27 (2022) 756-761.
https://doi.org/10.5954/ICAROB.2022.0527-4.

[114] E. Levintal, K. Lee Kang, L. Larson, E. Winkelman, L. Nackley, N. Weisbrod, J.S. Selker, C.J. Udell,
eGreenhouse: Robotically positioned, low-cost, open-source CO2 analyzer and sensor device for
greenhouse applications, HardwareX 9 (2021) e00193. https://doi.org/10.1016/j.0hx.2021.e00193.

[115] L. Cui, F. Le, X. Xue, T. Sun, Y. Jiao, Design and Experiment of an Agricultural Field Management
Robot and Its Navigation Control System, Agronomy 14 (2024) 654.
https://doi.org/10.3390/agronomy14040654.

[116] C. Tomazzoli, A. Ponza, M. Cristani, F. Olivieri, S. Scannapieco, A Cobot in the Vineyard: Computer
Vision for Smart Chemicals Spraying, Appl. Sci. 14 (2024) 3777.
https://doi.org/10.3390/app14093777.

[117] S.Tiwari, Y. Zheng, M. Pattinson, M. Campo-Cossio, R. Arnau, D. Obregon, A. Ansuategui, C. Tubio,
I. Lluvia, O. Rey, J. Verschoore, V. Adam, J. Reyes, Approach for Autonomous Robot Navigation in
Greenhouse Environment for Integrated Pest Management, in: 2020 IEEEION Position Locat. Navig.
Symp. PLANS, IEEE, Portland, OR, USA, 2020: pp. 1286-1294.
https://doi.org/10.1109/PLANS46316.2020.9109895.

[118] A. Hentout, M. Aouache, A., Maoud,j, I. Akli, Human-robot interaction in industrial collaborative
robotics: a literature review of the decade 2008-2017, Adv. Robot. 33 (2019) 764-799.
https://doi.org/10.1080/01691864.2019.1636714.

[119] T. Zhivkov, E.l. Sklar, D. Botting, S. Pearson, 5G on the Farm: Evaluating Wireless Network
Capabilities and Needs for Agricultural Robotics, Machines 11 (2023) 1064.
https://doi.org/10.3390/machines11121064.

[120] M. Pradel, M. De Fays, C. Seguineau, Comparative Life Cycle Assessment of intra-row and inter-
row weeding practices using autonomous robot systems in French vineyards, Sci. Total Environ. 838
(2022) 156441. https://doi.org/10.1016/j.scitotenv.2022.156441.

[121] L. Tirkler, T. Akkan, L.O. Akkan, Detection of Water Leakage in Drip Irrigation Systems Using
Infrared  Technique in  Smart Agricultural Robots, Sensors 23 (2023) 9244.
https://doi.org/10.3390/s23229244.

[122] C. Peng, S.G. Vougioukas, Deterministic predictive dynamic scheduling for crop-transport co-
robots acting as harvesting aids, Comput. Electron. Agric. 178 (2020) 105702.
https://doi.org/10.1016/j.compag.2020.105702.

[123] W. Yu, S. Song, Design and experimentation of remote driving system for robotic speed sprayer
operating in orchard environment, ETRI J. 45 (2023) 479-491. https://doi.org/10.4218/etrij.2022-
0079.

[124] H. Eberle, S.J. Nasuto, Y. Hayashi, Synchronization-based control for a collaborative robot, R. Soc.
Open Sci. 7 (2020) 201267. https://doi.org/10.1098/rs0s.201267.

[125] R.R.Shamshiri, E. Navas, V. Dworak, F.A. Auat Cheein, C. Weltzien, A modular sensing system with
CANBUS communication for assisted navigation of an agricultural mobile robot, Comput. Electron.
Agric. 223 (2024) 109112. https://doi.org/10.1016/j.compag.2024.109112.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

[126] A. Saddik, R. Latif, F. Taher, A. El Ouardi, M. Elhoseny, Mapping Agricultural Soil in Greenhouse
Using an Autonomous Low-Cost Robot and Precise Monitoring, Sustainability 14 (2022) 15539.
https://doi.org/10.3390/su142315539.

[127] K.Kim, A. Deb, D.J. Cappelleri, P-AgBot: In-Row & Under-Canopy Agricultural Robot for Monitoring
and Physical  Sampling, IEEE Robot.  Autom. Lett. 7 (2022) 7942-7949.
https://doi.org/10.1109/LRA.2022.3187275.

[128] J.M. Shutske, Agricultural Automation & Autonomy: Safety and Risk Assessment Must Be at the
Forefront, J. Agromedicine 28 (2023) 5-10. https://doi.org/10.1080/1059924X.2022.2147625.

[129] G.R. Aby, S.F. Issa, Safety of Automated Agricultural Machineries: A Systematic Literature Review,
Safety 9 (2023) 13. https://doi.org/10.3390/safety9010013.

[130] G. Ali, M.M. Mijwil, B.A. Buruga, M. Abotaleb, |. Adamopoulos, A Survey on Atrtificial Intelligence
in Cybersecurity for Smart Agriculture: State-of-the-Art, Cyber Threats, Artificial Intelligence
Applications, and Ethical Concerns, Mesopotamian J. Comput. Sci. 2024 (2024) 53-103.
https://doi.org/10.58496/MJCSC/2024/007.

[131] A. Botta, S. Rotbei, S. Zinno, G. Ventre, Cyber security of robots: A comprehensive survey, Intell.
Syst. Appl. 18 (2023) 200237. https://doi.org/10.1016/j.iswa.2023.200237.

[132] B. Belzile, T. Wanang-Siyapdjie, S. Karimi, R.G. Braga, |. lordanova, D. St-Onge, From Safety
Standards to Safe Operation with Mobile Robotic Systems Deployment, (2025).
https://doi.org/10.48550/arXiv.2502.20693.

[133] M. de Koning, T. Machado, A. Ahonen, N. Strokina, M. Dianatfar, F. De Rosa, T. Minav, R.
Ghabcheloo, A comprehensive approach to safety for highly automated off-road machinery under
Regulation 2023/1230, Saf. Sci. 175 (2024) 106517. https://doi.org/10.1016/j.ssci.2024.106517.

[134] X. Xiao, Y. Wang, Y. Jiang, Review of Research Advances in Fruit and Vegetable Harvesting Robots,
J. Electr. Eng. Technol. 19 (2024) 773-789. https://doi.org/10.1007/s42835-023-01596-8.

[135] K. Lochan, A. Khan, I. Elsayed, B. Suthar, L. Seneviratne, I. Hussain, Advancements in Precision
Spraying of Agricultural Robots: A Comprehensive Review, IEEE Access 12 (2024) 129447-129483.
https://doi.org/10.1109/ACCESS.2024.3450904.

[136] Z.Kamarianakis, S. Perdikakis, I.N. Daliakopoulos, D.M. Papadimitriou, S. Panagiotakis, Design and
Implementation of a Low-Cost, Linear Robotic Camera System, Targeting Greenhouse Plant Growth
Monitoring, Future Internet 16 (2024) 145. https://doi.org/10.3390/fi16050145.

[137] G.S. Berger, M. Teixeira, A. Cantieri, J. Lima, A.l. Pereira, A. Valente, G.G.R. de Castro, M.F. Pinto,
Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring System in a Precision
Agriculture Scenario, Agriculture 13 (2023) 239. https://doi.org/10.3390/agriculture13020239.

[138] V. Thomopoulos, D. Bitas, K.-N. Papastavros, D. Tsipianitis, A. Kavga, Development of an
Integrated loT-Based Greenhouse Control Three-Device Robotic System, Agronomy 11 (2021) 405.
https://doi.org/10.3390/agronomy11020405.

[139] Q. Li, THE DESIGN OF GROUND AIR DUAL PURPOSE AGRICULTURAL INFORMATION ACQUISITION
ROBOT, INMATEH Agric. Eng. (2020) 259-268. https://doi.org/10.35633/inmateh-62-27.

[140] R.Sparrow, M. Howard, Robots in agriculture: prospects, impacts, ethics, and policy, Precis. Agric.
22 (2021) 818-833. https://doi.org/10.1007/s11119-020-09757-9.

[141] H.Zhao, Z.Tang, Z. Li, Y. Dong, Y. Si, M. Lu, G. Panoutsos, Real-Time Object Detection and Robotic
Manipulation for Agriculture Using a YOLO-Based Learning Approach, in: 2024 IEEE Int. Conf. Ind.
Technol. ICIT, IEEE, Bristol, United Kingdom, 2024. pp. 1-6.
https://doi.org/10.1109/1CIT58233.2024.10540740.

[142] C. Lauretti, C. Tamantini, L. Zollo, A New DMP Scaling Method for Robot Learning by
Demonstration and Application to the Agricultural Domain, IEEE Access 12 (2024) 7661-7673.
https://doi.org/10.1109/ACCESS.2023.3349093.



O JoyUdbd WM

DO NGOG OTOTOTE D DB BB DDA DWWWWWWWWWWNNNRNNNNNNN R R RRRRRRP R
R WNRFROWOVWO-JOTREWNRPOWOW®®JIOAURWNROWGWOWJNOEWNRFROWOW®OW-JANT®WNREOW®-TI0 U N WNRF O W

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

[143] T.A. Ciarfuglia, I. Marian Motoi, L. Saraceni, D. Nardi, Pseudo-label Generation for Agricultural
Robotics Applications, in: 2022 IEEECVF Conf. Comput. Vis. Pattern Recognit. Workshop CVPRW, IEEE,
New Orleans, LA, USA, 2022: pp. 1685-1693. https://doi.org/10.1109/CVPRW56347.2022.00175.

[144] S. Woo, D.D. Uyeh, J. Kim, Y. Kim, S. Kang, K.C. Kim, S.Y. Lee, Y. Ha, W.S. Lee, Analyses of Work
Efficiency of a Strawberry-Harvesting Robot in an Automated Greenhouse, Agronomy 10 (2020) 1751.
https://doi.org/10.3390/agronomy10111751.

[145] J.P.L. Ribeiro, P.D. Gaspar, V.N.G.J. Soares, J.M.L.P. Caldeira, Computational Simulation of an
Agricultural Robotic Rover for Weed Control and Fallen Fruit Collection—Algorithms for Image
Detection and Recognition and Systems Control, Regulation, and Command, Electronics 11 (2022)
790. https://doi.org/10.3390/electronics11050790.

[146] H.Zeng, ). Yang, N.Yang, J. Huang, H. Long, Y. Chen, A Review of the Research Progress of Pruning
Robots, in: 2022 IEEE 2nd Int. Conf. Data Sci. Comput. Appl. ICDSCA, 2022: pp. 1069-1073.
https://doi.org/10.1109/ICDSCA56264.2022.9988192.

[147] B. Xie, Y. Jin, M. Faheem, W. Gao, J. Liu, H. Jiang, L. Cai, Y. Li, Research progress of autonomous
navigation technology for multi-agricultural scenes, Comput. Electron. Agric. 211 (2023) 107963.
https://doi.org/10.1016/j.compag.2023.107963.

[148] T. Wang, B. Chen, Z. Zhang, H. Li, M. Zhang, Applications of machine vision in agricultural robot
navigation: A review, Comput. Electron. Agric. 198 (2022) 107085.
https://doi.org/10.1016/j.compag.2022.107085.

[149] G. Kootstra, X. Wang, P.M. Blok, J. Hemming, E. van Henten, Selective Harvesting Robotics:
Current Research, Trends, and Future Directions, Curr. Robot. Rep. 2 (2021) 95-104.
https://doi.org/10.1007/s43154-020-00034-1.

[150] M. Bergerman, J. Billingsley, J. Reid, E. van Henten, Robotics in Agriculture and Forestry, in: B.
Siciliano, O. Khatib (Eds.), Springer Handb. Robot., Springer International Publishing, Cham, 2016: pp.
1463-1492. https://doi.org/10.1007/978-3-319-32552-1_56.

[151] A. Fast-Berglund, L. Gong, D. Li, Testing and validating Extended Reality (xR) technologies in
manufacturing, Procedia Manuf. 25 (2018) 31-38. https://doi.org/10.1016/j.promfg.2018.06.054.



