

1
2
3
4 1 **Applications of Robotics and Extended Reality in Agriculture: A review**
5
6 2 Evangelos Anastasiou^{1,2}, Georgios Ntakos¹, Eirini Kanakari¹, Stella Bitsika¹, Marilena Gemtou¹, Manolis
7 3 Katsaragakis³, Dimitrios Soudris³, Christina Volioti⁴, Elvira-Maria Arvanitou⁴, Maria-Theodora Folina⁴,
8 4 Thodoris Maikantis⁴, Elisavet-Persefoni Kanidou⁴, Maria Fountouli⁴, Apostolos Ampatzoglou⁴, Nikolaos
9 5 Tsiogkas⁵, Andrés Villa-Henriksen⁶, Søren Marcus Pedersen⁷, Tseganesh Wubale Tamirat⁷, Annalisa
10 6 Milella⁸, Soussana Simopoulou⁹, Gregory Mygdakos⁹, Spyros Fountas¹
11
12
13 7 ¹Department of Natural Resources Development and Agricultural Engineering, Agricultural University of
14 8 Athens, Iera Odos 75, 11855 Athens, Greece
15
16 9 ²Laboratory of Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124
17 10 Thessaloniki, Greece
18
19 11 ³Microprocessors and Digital Systems Laboratory, ECE, National Technical University of Athens, Greece
20
21 12 ⁴Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
22
23 13 ⁵Department of Computer Science, KU Leuven, Leuven, Belgium
24
25 14 ⁶Danish Technological Institute, Agro Food Park 15, Skejby, DK-8200 Aarhus N, Denmark
26
27 15 ⁷Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, 1958,
28 16 Frederiksberg C, Copenhagen, Denmark
29
30 17 ⁸Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA),
31 18 National Research Council of Italy (CNR), 70126, Bari, Italy
32
33 19 ⁹AgroApps PC, Koritsas 34, 55133 Thessaloniki, Greece
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 21 **Abstract**
59
60
61
62
63
64
65 Agriculture is facing a labour shortage problem that affects global food safety and security. Robotic and
66 extended reality (XR) technologies can prove as potential solutions to this problem. The aim of this study
67 was to map and assess the way robotics and XR can mitigate labour shortage problem. PRISMA
68 methodology was followed to identify relevant articles from the last five years, while frequency and
69 correspondence analyses were used for identifying the corresponding trends. In total 210 relevant
70 research studies were identified. These were analysed under the scope of crops, operations, robotics, XR
71 and Human Robot Interaction (HRI). Vegetable crops (36%) followed by orchard crops (34%) were the
72 most studied crop types. Additionally, the results presented that operation-specific robots (27%) were the
73 most used robot type, while 68% referred to wheeled robots. Also, the robots did not present any
74 collaboration level with human in most relevant studies (43%). Collision avoidance was the most
75 frequently implemented safety feature (36%) in the studies that included this type of information.
76 Moreover, operations with high demand in accuracy, frequency or labour were connected with robots
77 that were developed for a single operation. Thus, end-effectors that were specialized in one operation
78 were more preferable than generic end-effectors. However, not all studies referred to all these topics,
79 indicating a need for further investigation. Finally, future studies should further explore the use of Mixed
80 Reality, safety, connectivity and data governance.

38 **Keywords:** XR, robotics, Agriculture 5.0, labour shortage, smart farming, human robot interaction

39
40 **1. Introduction**
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 41 Nowadays, agriculture is facing problems on labour shortage due to urbanization [1], seasonal work, low
5 42 wages and poor working conditions [2], stigmatization of agricultural work [3], and aging [4]. This
6 43 phenomenon was accelerated after the COVID-19 pandemic [5]. Moreover, environmental concerns
7 44 regarding agriculture keep rising due to the impact to climate change [6] and air [7], water [8] and soil
8 45 pollution [9]. Due to the aforementioned, there are also concerning issues on food safety and security and
9 46 their impact on the society [10,11]. Thus, there is a need to transitioning to more resilient systems in
10 47 agricultural production.
11
12

13
14 48 A potential solution to the labour shortage problem can be the use of smart farming technologies such as
15 49 robots and extended reality (XR) in the context of Agriculture 5.0 [12]. Agricultural robots can be defined
16 50 as mechatronic devices that consist of sensors, actuators and software for data collection, analysis and
17 51 task execution which can be performed without human intervention [13]. There are ground and aerial
18 52 robots that have been developed for research and commercial purposes which cover a broad range of
19 53 applications in the agricultural sector. Specifically, there are ground robots of different locomotion types
20 54 based on legs wheels and tracks. These robots have different sensors and actuators that are used for crop
21 55 scouting, seeding, transplanting, weeding (mechanical, chemical and thermal), fertilizing, harvesting and
22 56 pruning [14–18]. Similarly, aerial robots or unmanned aerial systems (UAS) or drones as they are
23 57 commonly referred, are of different types such as fixed wing, helicopter or multi-rotor systems [19]. They
24 58 are used mainly for crop scouting and mapping, crop protection, seeding, fertilization and pollination
25 59 [16,20–23]. Both ground and aerial robots can be used in heterogeneous and homogeneous swarms
26 60 depending on the task for increased efficiency [24,25].
27
28

29
30 61 Indeed, agricultural robots can significantly increase productivity. Robots can increase strawberry harvest
31 62 efficiency by 10% while reducing the mean non-productive time by 60% [26]. A precision spraying robot
32 63 can reduce pesticides by 40% and decrease worker exposure in pesticides by 45% [27]. An automatic intra-
33 64 row, weeding co-robot system can reduce hand labour by up to 58% [28]. UAS can save up to 4 seasonal
34 65 labour days in high disease pressure conditions in grapevines [29]. A co-robot can increase grapevine
35 66 harvesting efficiency by up to 50% while lowering labour costs by 22.5% [30].
36
37

38
39 67 Accordingly, XR can provide significant solutions in mitigating labour shortage and environmental
40 68 concerns in agriculture. XR is an umbrella term for virtual reality (VR), mixed reality (MR) and augmented
41 69 reality (AR) applications. It can be used for education, training, decision and action purposes in the context
42 70 of agriculture by utilizing different viewing (e.g., head mount displays, portable devices) and controlling
43 71 devices (e.g., voice, handheld controller, wearable devices) [31]. Specifically, VR environments
44 72 constructed by UAS data can be used for teleoperation of ground robots [32]. Also, VR can be used for
45 73 training personnel for greenhouses [33]. The use of VR exhibited strong preference from viticulture
46 74 stakeholders to enhance their understanding in precision farming [34]. Coupled use of VR with AI in a
47 75 simulated agricultural environment can for instance offer a practical application of theoretical knowledge
48 76 to university students and enhance their decision-making processes [35]. Moreover, VR can enable the
49 77 use of robot for tomato harvesting through teleoperation [36]. In the same manner, AR can be used for
50 78 crop disease identification, crop information overlay, internet of things (IoT) data visualization and
51 79 autonomous machines monitoring [37]. AR can assist users for precision soil sampling [38]. Additionally,
52 80 MR although being at a very early stage, can be used for interacting with physical controls like for
53 81 controlling robots [39] or irrigation equipment [40].
54
55

56
57
58
59
60
61
62
63
64
65

1
2
3
4 82 However, the successful use of robots and XR in agriculture is highly affected by the way farmers and
5 83 agricultural workers interact and collaborate. So, Human – Robot Interaction (HRI) has emerged as a
6 84 research topic to address this need [41]. Efficient HRI must consider different aspects like safety,
7 85 ergonomics, awareness and productivity [42]. HRI can present significant benefits compared to traditional
8 86 methods of conducting agricultural operations. For example, HRI can be used for significantly optimizing
9 87 the avocado [43] and grape harvesting processes [44] through human robot collaboration and leading to
10 88 higher harvest productivity. Also, HRI can be used for teleoperation of robots resulting to less health risks
11 89 for agricultural workers [45].
12
13

14
15 90 From the abovementioned, it is clear that the use of HRI through the coupling of XR technologies with
16 91 robots is an emerging topic. Thus, the main aim of this review article is to map applications of robotics
17 92 and XR in agriculture as well as to assess them in terms of types and use along with their HRI aspects.
18
19

20 93 **2. Materials and Methods**

21 94 **2.1 Prisma Methodology**

22
23 95 Relevant information on agricultural robotics and XR was identified through research articles that were
24 96 retrieved through the Web of Science and Scopus databases. The main aim was the identification of the
25 97 robotic and XR configurations. For this purpose, queries were inserted to the search engines to identify
26 98 relevant research articles (Table 2) in December 16, 2024.
27
28

29 99 Table 1. Query used in the Scopus and Web of Science databases to identify relevant publications.
30
31

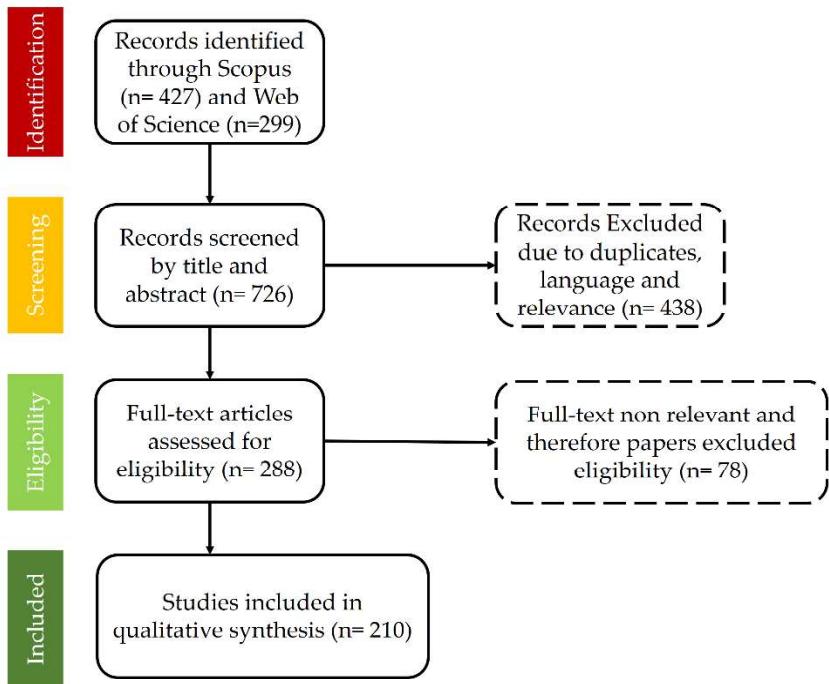
32 Database	33 Query
33 Scopus	34 TITLE ("Agribot*" OR "*ROBOT*" OR "COBOT*" OR "Extended Reality" OR "Virtual 35 Reality" OR "Augmented Reality" OR "Mixed Reality") AND TITLE ("Agricultur*" OR 36 "Crop*" OR "Orchard" OR "Vineyard*" OR "Greenhouse*") AND PUBYEAR > 2020 37 AND PUBYEAR < 2025 AND (LIMIT-TO (OA , "all")) AND (LIMIT-TO (DOCTYPE , "ar" 38) OR LIMIT-TO (DOCTYPE , "cp")) AND (LIMIT-TO (LANGUAGE , "English"))
39 Web of Science	40 TI=("Agribot*" OR "*ROBOT*" OR "COBOT*" OR "Extended Reality" OR "Virtual 41 Reality" OR "Augmented Reality" OR "Mixed Reality") AND TI=("Agricultur*" OR "Crop*" OR "Orchard" OR "Vineyard*" OR "Greenhouse*")

42 100 **2.2 Results Filtering** 43

44 101 To focus on contemporary research publications, the selected research articles were published from 2020
45 until 2024. The literature review followed the PRISMA (Preferred Reporting Items for Systematic Reviews
46 and Meta-Analyses) methodology to map the relevant research articles and to ensure a systematic and
47 transparent approach. PRISMA is an evidence-based minimum set of items for reporting in systematic
48 reviews and meta-analyses. PRISMA primarily focuses on the reporting of reviews evaluating the effects
49 of interventions but can also be used as a basis for reporting systematic reviews with objectives other
50 than evaluating interventions (e.g. evaluating aetiology, prevalence, diagnosis or prognosis) [46].
51
52

53 109 The aforementioned queries yielded 726 research articles. As a result, the first outcomes were filtered to
54 110 exclude articles that, based on the title and abstract were unrelated to the study's goal. Thus, 438 of these
55 111 items met the aforementioned criteria and hence were omitted. With the remaining 288 scientific articles
56 112 available, the manual selection of articles was expanded in one more round to exclude research articles
57
58
59
60
61
62
63
64
65

1
2
3
4 113 for which there was no access to the full text and those that were outside this study's scope based on the
5 entire text. Thus, the final number of suitable articles that were evaluated in depth for this study were
6 114 210 (Figure 1).
7 115



31 116
32
33 117 Figure 1. The PRISMA workflow diagram of the research articles search.
34
35 118
36
37 119 **2.3 Classification**
38
39 120 The selected articles were categorized into three generic categories consisting of subcategories based on
40 121 relevant research to robotics [14,47–49], XR [31,50,51] and HRI [41,42,52]. Additionally, the selected
41 122 articles were categorized based on crop types, namely arable crops, orchards, vegetables and vineyards
42 123 [16] while a subcategory for greenhouses was also included due to the specific characteristics which
43 124 robotic solutions exhibit [53,54]. Similarly, the agricultural operations were identified for assessing the
44 125 different solutions based on the scientific literature [14,47–49]. The final selection of studies was
45 126 subjected to qualitative and statistical analysis to extract key insights into existing agricultural robotics
46 127 and XR applications.
47
48 127
49
50 128 Table 2. Technical Aspect keywords used in Literature Review.

Category	Subcategory
Crop Type	Arable Crops Orchards Vegetables Vineyards Greenhouses
Operations	Navigation Planting and Sowing

Category	Subcategory
	Harvesting and Picking
	Mechanical weeding
	Spraying
	Fertilization
	Crop scouting
	Pruning
	Irrigation
	Pollination
	Soil preparation
Robotics	Type
	Locomotion Type
	Active monitoring for guiding the end-effector
	End-effector types
XR	Type
	Interaction devices
	Display devices
	XR application types
HRI	Collaboration levels
	Safety

2.4 Analysis

The statistical analysis included the number of research studies published annually and per type. In addition, frequency analysis was performed for the robotic aspects (focus, locomotion, active monitoring, and end-effector types), XR (type, display device, interaction device, and application) and HRI (type, collaboration level and safety feature). Finally, simple tabulated correspondence analysis with biplot graphs was performed among the different areas by using the statistical software Statgraphics 19 (StatPoint Technologies Inc., Warrenton, VA, USA). The main aim for the correspondence analysis was to identify the relations between the different categories as well as the variance that can be explained by the two-dimensional visualization of the selected data.

3. Results and Discussion

3.1 Cumulative number of research studies

According to the results (see Appendix 1), the number of articles relevant to the topic of this study were increasing from 2020 until 2024 with a small decrease in 2023 (Figure 2). This indicated the importance of developing relevant integrated systems to address agricultural challenges like labour shortage and suggests that this trend will further increase the following years. These results are in accordance with other surveys on robotics and XR which presented similar trends [31,47].

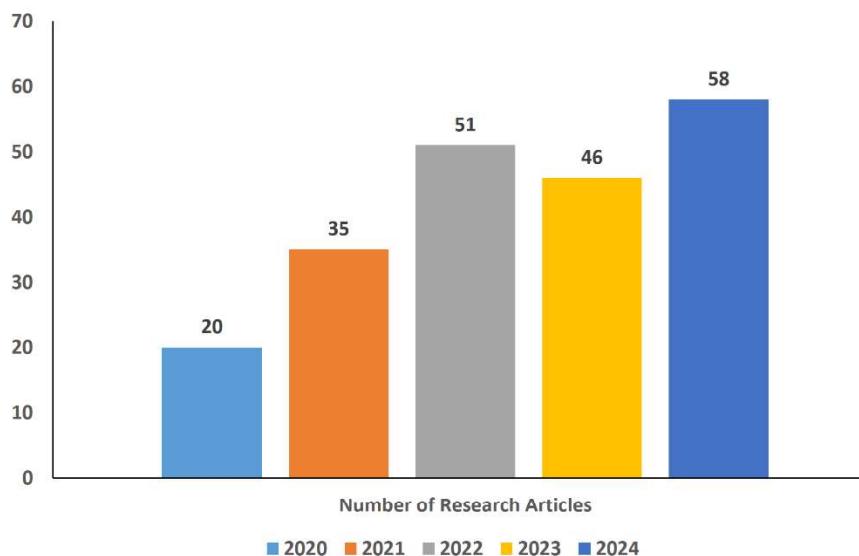
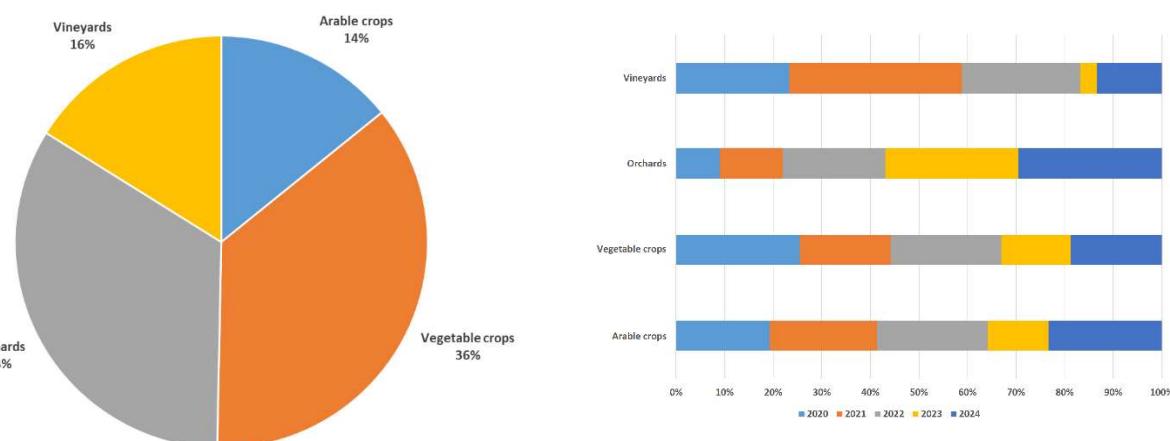
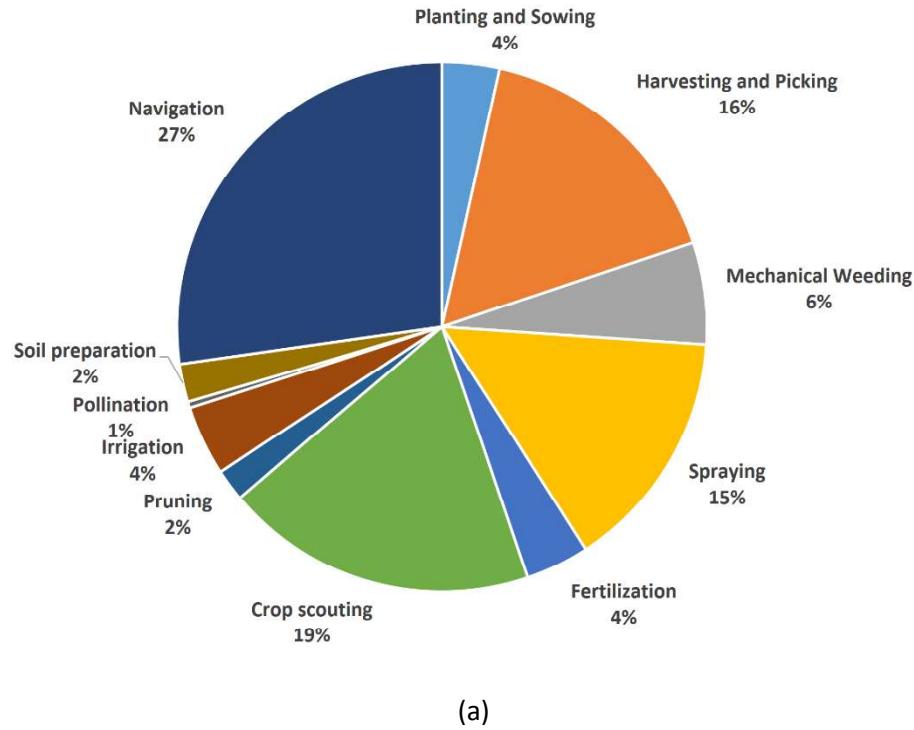
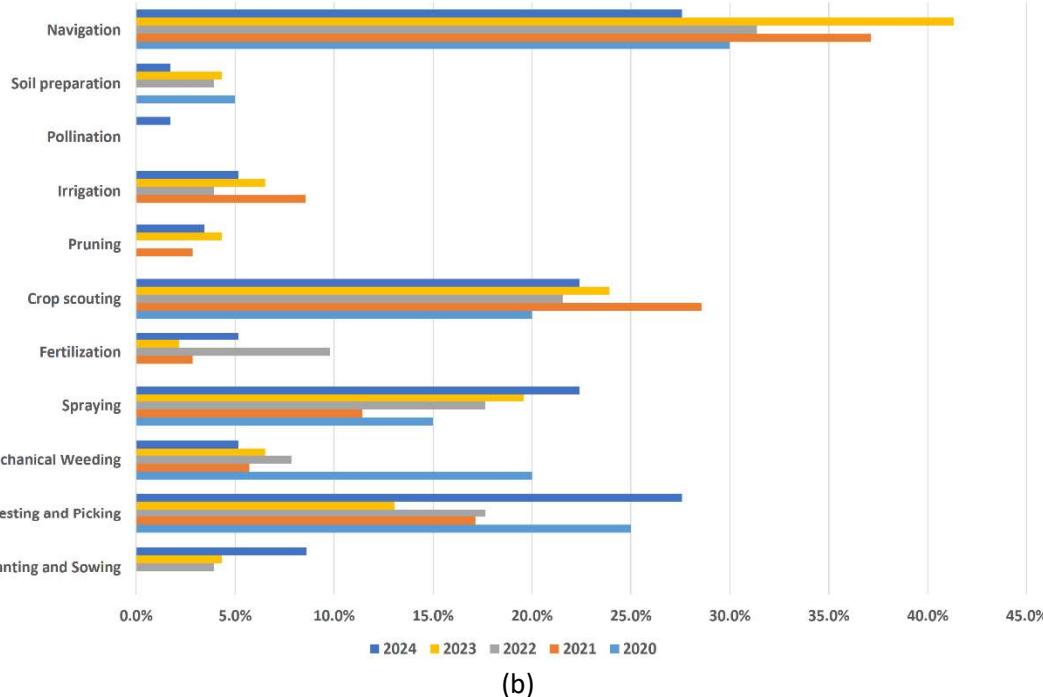


Figure 2. Number of research articles relevant to agricultural robotics and XR from 2020 until 2024.



1
2
3
4
5 161 Figure 3. (a) Frequency of research articles per crop type and (b) frequency of research articles applications per crop
6 162 type and year.
7
8
9
10 163
11 164 **3.2.2 Operations**
12
13 165 Regarding the operations for which robots are used in field environments, navigation emerged as the
14 166 most frequently referenced robotic task at 27%, followed by crop scouting at 19%, harvesting and picking
15 167 at 16% and spraying at 15%. Mechanical weeding (6%), irrigation (4%), planting and sowing (4%) and
16 168 fertilization (4%) occupy mid-level shares, while pruning (2%), soil preparation (2%), and pollination (1%)
17 169 each hold smaller proportions. The bar chart shows that navigation, harvesting and picking, spraying and
18 170 crop scouting are dominant robotic tasks over time from 2020 to 2024 (Figure 4). From the above results,
19 171 navigation is the most frequently referred operation due to the fact that robots must be able to operate
20 172 autonomously in the field to conduct the different treatments [61]. Similarly, crop scouting is considered
21 173 as a core operation because it enables other agricultural operations such as harvest, pest control,
22 174 irrigation and fertilization [62,63]. From the rest of the operations, harvesting and picking is considered a
23 175 laborious task and the importance of automating this process is significant due to the challenges that
24 176 agriculture is currently facing like ageing, urbanization and labour shortage [49,56]. Accordingly, spraying
25 177 operation is mainly utilized for crop protection in conjunction with pesticide application. Inappropriate
26 178 application can result to health problems to farm workers among others and thus automation through
27 179 robotics can mitigate these risks [16,20].
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



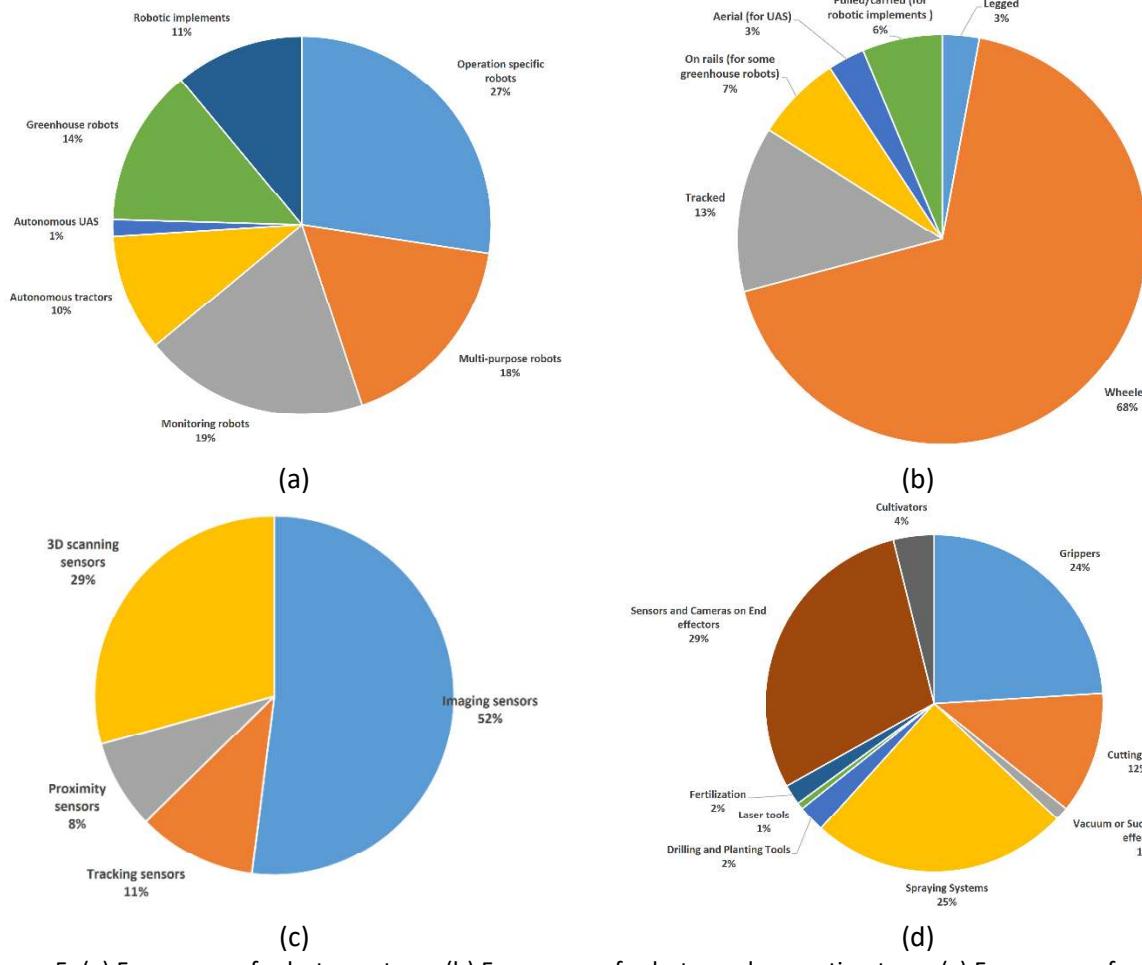


(b)

Figure 4. (a) Frequency of agricultural operations and (b) frequency of agricultural operations for safety and year.

3.2.3 Robotics

Operation-specific robots dominated in the research articles at 27% of the total, followed by monitoring robots (19%) and multi-purpose robots (18%), while greenhouse robots (14%), robotic implements (11%) and autonomous tractors (10%) and UAS (1%) had smaller shares (Figure 5a). As presented in Figure 5b for the locomotion of robots, wheeled robots made up the largest portion at 68%, followed by tracked robots (13%) and on-rails robots at about 7%. Pulled/carried robots (6%), aerial (3%), and legged (3%) robots account for smaller shares. Regarding the sensors used for actuation of the robots, as presented in Figure 5c, imaging sensors represented the largest segment at 52%, followed by at 29%, proximity sensors at 11%, and tracking sensors at 8%. As presented in Figure 5d, sensors and cameras constitute the largest share at 29%, followed by spraying systems at 25% and grippers at 24%. Cutting tools exhibited a smaller share at 12%, while cultivators (4%), fertilization (2%), drilling and planting (2%), vacuum or suction end effectors (1%), and laser tools (1%) occupy smaller portions.



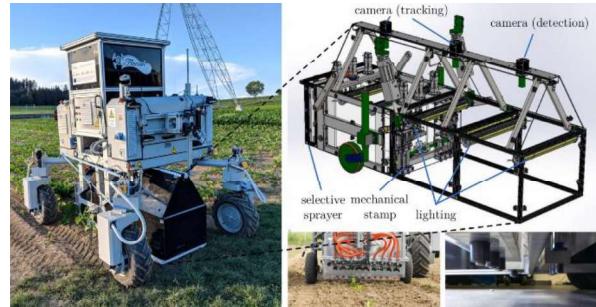
194 Figure 5. (a) Frequency of robots per type; (b) Frequency of robots per locomotion type; (c) Frequency of active
 195 monitoring sensor type for robots; (d) Frequency of end-effectors per type.

196 Operation specific robots were focused on conducting one operation only, like fertilization (e.g., [46]),
 197 chemical weeding (e.g., [47]), harvesting (e.g., [48]), blossom thinning (e.g., [49]). This type of robots is less
 198 complicated than the multi-purpose robots regarding their design and software needs. However, they are
 199 more expensive than multi-purpose robots [47]. Monitoring robots utilize various sensors such as multi-
 200 or hyperspectral, RGB or RGB-D cameras, LiDAR, which are important for detecting weeds (e.g., [68]),
 201 diseases and insects (e.g., [69]), and crop growth parameters (e.g., [70]). The data collected by these
 202 sensors enables data-driven crop management decisions. Accordingly, the multi-purpose robots are
 203 versatile and have been developed for conducting different operations. These robots integrate different
 204 systems (e.g., for sowing, pruning and harvesting [71]). They are appropriate for farmers because most
 205 field operations have a short time window and cost less than purchasing robots for each operation [47].
 206 Regarding greenhouse robots, this type is adapted for conducting operations (e.g., monitoring [72],
 207 harvest [73]) in greenhouse environments which are characterized by high complexity due to plant
 208 distances and environmental conditions (e.g., illumination) [54]. This can explain the low rate of research
 209 articles compared to the other types. Autonomous tractors correspond to conventional tractors that have
 210 been upgraded with retrofitted systems and devices that allow autonomous operation. Autonomous
 211 tractors have the advantage of using already available conventional implements [74] although they may
 212 have high cost for implementation [75]. UAS are mainly used for crop monitoring due to the fact that they

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

213 can quickly cover large areas. Although, they can be used for various other agricultural operations (e.g.,
214 spraying, fertilization, sowing) besides crop monitoring their use is limited due to legislation and payload
215 restrictions [76–78]. Examples of the robots identified in this review can be seen in Figure 6.

(a)



(b)

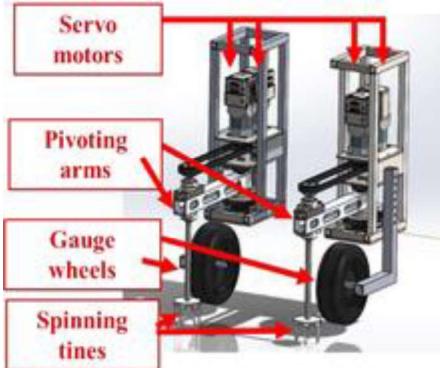
(c)

(d)

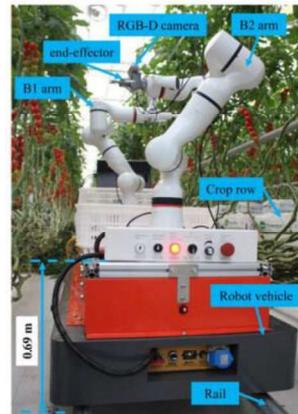
(e)

(f)

(g)



(i)



(h)

(j)

Figure 6. Examples of robots found in the assessed research articles. (a) wheeled fertilization robot [64]; (b) wheeled chemical weeding robot [65]; (c) robotic implement for harvesting [66]; (d) blossom thinning robotic implement [67]; (e) wheeled multi-purpose robot [71]; (f) wheeled robot for pests and disease detection [69]; (g) wheeled robot for crop growth monitoring [70]; (h) greenhouse robotic harvester on rails with cutting end effectors[73]; (i) robotic implement for mechanical weeding [79]; track type spraying robot [80].

Regarding locomotion of robots, wheeled type robots are considered to provide many advantages such as simplicity, stability, energy efficiency and ease of use. This explains the high percentage of wheeled robots. Additionally, tracked robots present greater manoeuvrability, higher traction and lower ground pressure making them ideal for high-slope fields although they are more complicated than wheeled robots regarding locomotion [81]. Rail robots imply additional costs for infrastructure and are mainly used in greenhouses [53]. Moreover, legged robots present higher agility in rough terrain and high slopes but they can achieve higher compaction compared with wheeled and tracked robots [82,83].

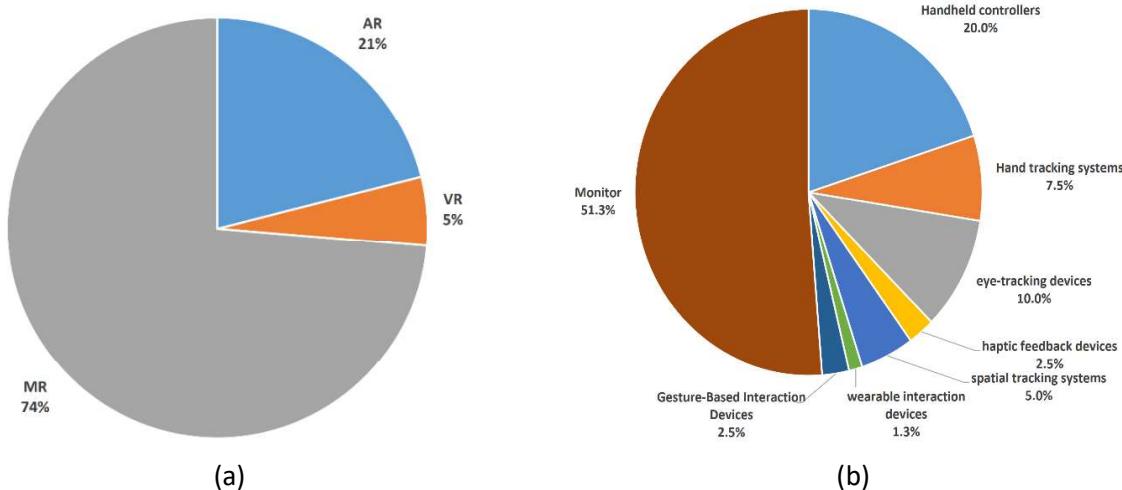
Imaging sensors are ideal for collecting data rich information and enable actuation based on spectral, geometrical and morphological data [16]. Imaging sensors in robotic integrations can be used for crop monitoring (e.g., [84,85]), pest detection (e.g., [86]), weeding (e.g., [87,88]), harvesting (e.g., [89]), spraying (e.g., [90]) and pruning (e.g., [91]) among other operations. Also, they can be used along with other sensors (e.g., LiDAR) for more accurate actuation (e.g., [92]). This justifies the high rate of this segment. Regarding the 3D scanning sensors, which ranked second, they are not affected by light conditions and consequently are not facing illumination-derived problems that can lead to inaccurate operations (e.g., harvesting [93]) therefore they are integrated in many robotic applications, although they present complicated data processing pipelines [94]. The rest of the sensor types, namely tracking

1
2
3
4 237 and proximity sensors presented limited use due to the limited information they can offer. Therefore,
5 238 these sensors are mainly being used for actuation. More specifically, tracking sensors can be used for
6 239 tracking crop rows to adjust robot navigation and operation in the field (e.g., [95]), while proximity sensors
7 240 can adjust the distance from the target (e.g., for spraying application [96]).
8
9

10 241 Regarding the end effector types, sensors and cameras are important for providing accurate positioning
11 242 for the operation of robotic arms. These can be coupled with other end-effector types (e.g., grippers [97],
12 243 spraying [98]) or used solely for crop scouting purposes (e.g., [69]). As mentioned above, different end
13 244 effectors have been developed according to the needs of each agricultural operation. Thus, spraying based
14 245 end-effectors have been developed for precision spraying (e.g., [86]), grippers (e.g., [99]) and vacuum
15 246 suction end-effectors for harvesting (e.g., [100]), cutting tools for pruning (e.g., [101]), and sowing
16 247 implements (e.g., [71]). It is worth highlighting that the different end-effectors may result in different
17 248 results in operation efficiency (e.g., harvesting) depending not only on the type but on the crop and
18 249 operation time as well [102].
19
20
21

22 250 3.2.4 XR 23

24 251 It is worth noticing that from the total of 210 articles only 19 (9%) exhibited use of XR. Specifically, mixed
25 252 reality (MR) was the most common XR type at 74%, followed by augmented reality (AR) at 21%, and virtual
26 253 reality (VR) at 5% (Figure 7a). Regarding the interaction devices, which can be used to non-XR application
27 254 included in the analysis, they were referenced in only 58 articles (28%). As presented in Figure 6b, eight
28 255 different devices were used with monitor devices that occupy the largest share at 51%, followed by
29 256 handheld controllers at 20%. Eye-tracking devices had a share of 10%, while hand-tracking devices
30 257 accounted for 8% and the rest of the devices having lower rates (hand tracking systems, gesture-based,
31 258 wearables, and spatial tracking systems) (Figure 7b). Additionally, handheld devices accounted for the
32 259 vast majority at 89%, with monitors making up the remaining 11% regarding the display devices from 53
33 260 articles (25%) that were included for this analysis.
34
35
36
37



54 261 Figure 7. (a) Frequency of XR use type and (b) Frequency of interaction devices per type.
55

56 262 MR overlays digital information on physical objects and enables the interaction of digital systems with the
57 263 physical world. This technology can be used for teleoperation of robots (e.g., for plant-lowering [103],
58 264 harvesting [104] and fertilization [20]). Thus, MR offers an enhanced interaction compared to AR which
59 265 only is used for overlaying information on physical objects and thus can be used for monitoring (see e.g.,
60
61
62
63
64
65

[20,88]). Finally, VR is used as a simulation tool where all actions are taking place in a digital environment. For example, this can be used for simulating human grasping to develop robotic grippers [105].

The results on the interaction devices indicate that there can be many devices for interacting with the robots at the different XR environments. Monitors with integrated controllers can play a significant role because they not only visualize all information to the operators of the robots but they can simultaneously be used for control. Also, separate handheld controllers can be used for that purpose. This technology is mature and is already being used for many years. Also, recent technological advances allowed the development of other types of controllers that can be used for human-robot interaction like hand tracking (e.g., [67]), gesture (e.g., [101]), eye-tracking (e.g., [103]), wearables (e.g., [106]), haptic feedback (e.g., [105]) and spatial tracking (e.g., [107]) controllers. These technologies can identify movements of the human body and transform them into actions. However, they are limited by the fact that human operators cannot memorize a lot of different body movements for control as well as to the technological complexity of developing these solutions [31,108].

Regarding the display devices, the results indicated that monitors are the main device for display of information. This can be explained by the fact that they offer less attention and posture shifts while being richer in information although handheld devices offer better mobility [109].

3.2.5 HRI

Regarding the HRI component of the reviewed articles that are related to the collaboration levels of the robots with the human workers, the most frequent level was “No Collaboration” at 43%, followed by “Cooperation”, “Sequential Collaboration” and “Coexistence” each of them having a share at 11%. Smaller shares exhibited for “Shared Control” (9%), “Physical Collaboration” (6%), “Full Collaboration” (6%), and “Synchronized Collaboration” (3%). The “No Collaboration” segment presented the most frequent type across all years (Figure 8a).

Regarding the safety features of robots, it was referred in 51 articles (24%). According to the analysis collision avoidance emerged as the most prevalent safety feature at 36% and proximity detection following at 22%. Meanwhile, safe speed control (19%) and emergency stop systems (13%) exhibited moderate rates. Redundancy and fail-safe features (5%), safety fencing (4%), and cybersecurity and data safety (1%) had the smallest rates (Figure 8b). It is worth noting that in 21 of these articles there was reference to more than one safety features.

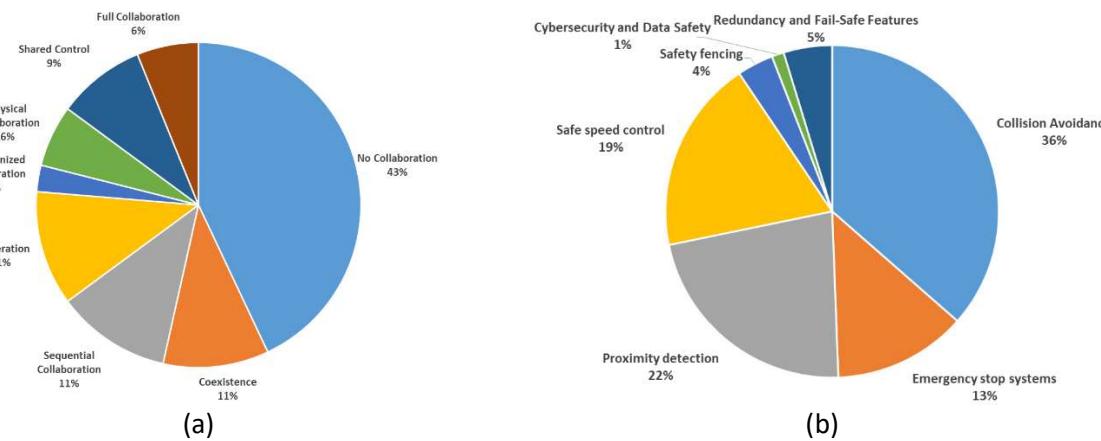


Figure 8. (a) Frequency of collaboration level type; (b) Frequency of safety feature type.

1
2
3
4 296 Most of the articles presented robots with no level of collaboration with human workers because the aim
5 297 was to showcase applications in agricultural environments to replace human workers to mitigate labour
6 298 shortage in agriculture (e.g., [84,92,97,110–114]. However, some studies presented levels of limited
7 299 collaboration, namely “Cooperation” (e.g., [107,115]), “Sequential Collaboration” (e.g., [116]) and
8 300 “Coexistence” (e.g., [117]). This can be explained by the fact that these types of collaboration aim to
9 301 lighten the mental and physical workload and provide safety to human workers [118]. The limited shares
10 302 that “Shared Control” (e.g., [88,115,119]), “Physical Collaboration” (e.g., [68,120,121]), “Full
11 303 Collaboration” (e.g., [122]) , and “Synchronized Collaboration” (e.g., [123]) levels exhibited can be
12 304 explained by the fact that these levels demand higher-level automation processes, like anticipation of
13 305 human behaviour [124].
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

306 Although there was limited presentation of the safety systems in the research articles that were analysed,
307 it can be concluded that agricultural robots may include more than one safety system (e.g.,
308 [20,84,92,95,125–127]. These systems can refer to collision avoidance, proximity detection, emergency
309 stop, safe speed control, safety fencing, and fail-safe. These were developed for protecting human
310 workers from accidents as well as for preventing operation failures and therefore incidents that can cause
311 bigger problems to crop production [128,129]. Also, the features of cyber security and data safety are
312 gaining momentum for being incorporated into the safety systems of robots due to the potential problems
313 that cyber-attacks can cause [130,131]. The limited reference to this type of system can be explained by
314 the fact that focus was on the development and not on commercialization. Commercial robots must
315 integrate safety features according to the corresponding standards (e.g., ISO 10218, ISO 18497) [132,133].
316
317

3.3 Correspondence Analysis

3.3.1 Robot types and Operations

319 As presented in Figure 9, operation-specific robots were strongly connected with spraying, monitoring
320 robots with crop scouting, and greenhouse robots with harvesting and picking and spraying. This can be
321 explained by the fact that these operations are highly demanding in accuracy and labour under the specific
322 environments, and therefore it is recommended to develop a robot that conducts one operation
323 [53,134,135]. Multipurpose robots presented significant correspondence with mechanical weeding and
324 limited correspondence with pruning and fertilization. These can be justified by the fact that these
325 operations do not present high repetitiveness during a crop season, and there is a need for more versatile
326 robots [55]. It is worth mentioning that the two dimensions of the analysis explain more than 76 % of the
327 variance between the selected categories, indicating that a small portion of the insights are missing from
328 the two-dimensional plot.

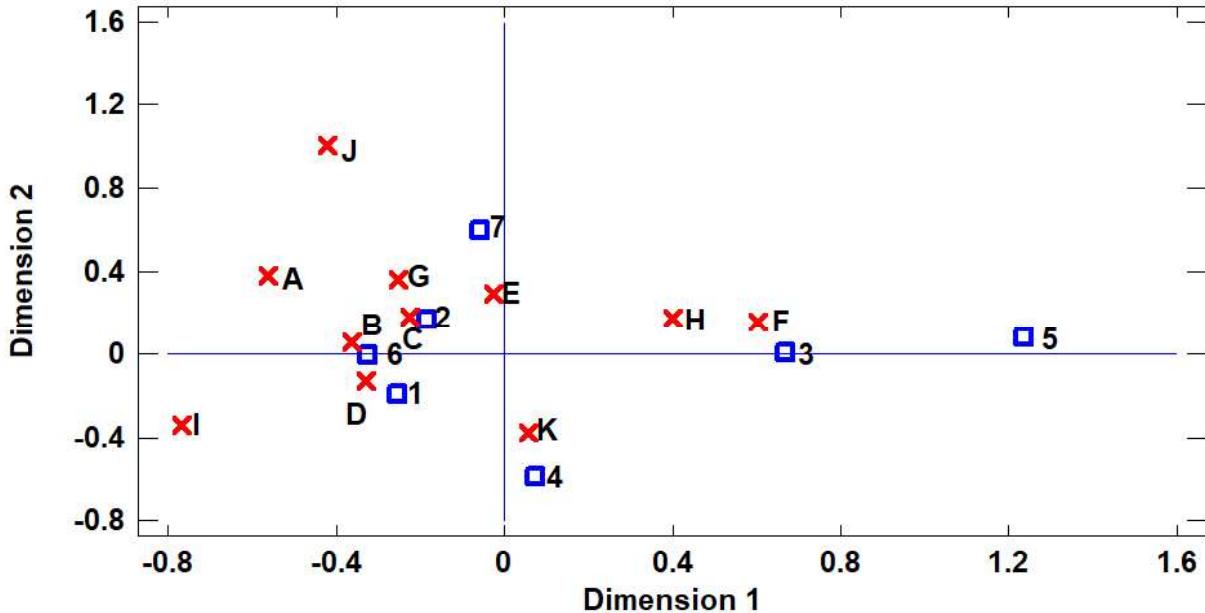
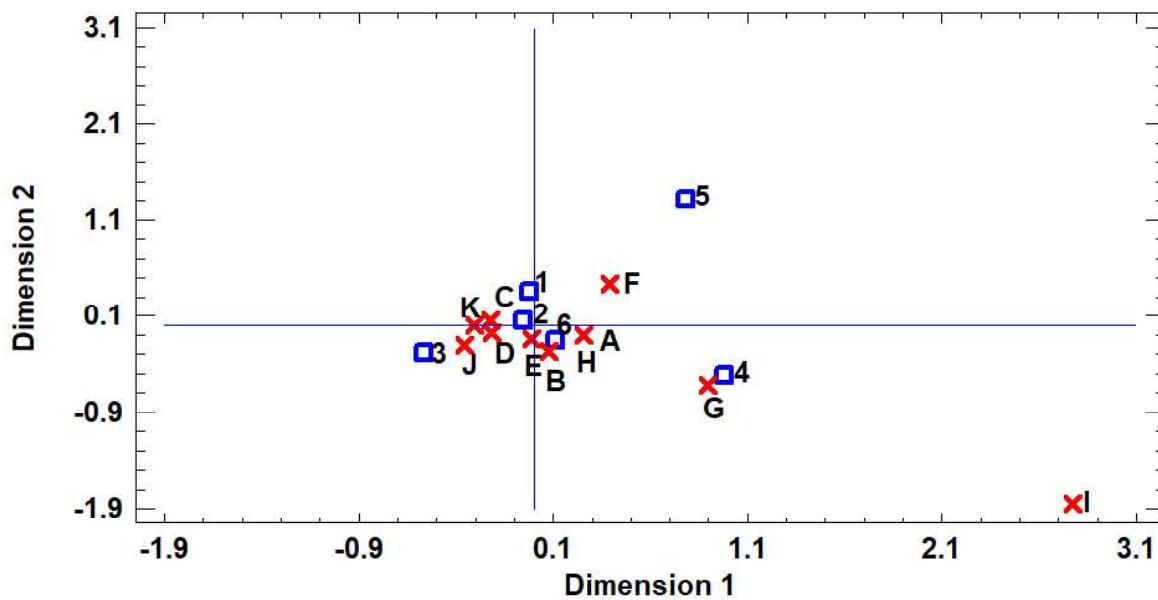


Figure 9. Correspondence plot between robot type and operations. (where 1: Operation specific robots; 2: Multi-purpose robots; 3: Monitoring robots; 4: Autonomous tractors; 5: Autonomous UAS; 6: Greenhouse robots; 7: Robotic implements; A: Planting and Sowing; B: Harvesting and Picking; C: Mechanical Weeding; D: Spraying; E: Fertilization; F: Crop-scouting; G: Pruning; H: Irrigation; I: Pollination; J: Soil preparation; K: Navigation)

3.3.2 Robot locomotion and Operations

Regarding the correspondence between locomotion of agricultural robots and operations (Figure 10), it is evident that wheeled, pulled/carried, and legged-type robots presented strong correspondence with most of the operations except pollination and pruning. This can be explained by the fact that these systems can offer increased mobility [81]. Moreover, tracked robots presented strong correspondence with navigation, soil preparation, spraying, and mechanical weeding. Tracked systems can offer lower compaction and better traction on flat fields as well as on fields with high slopes, which are needed for these operations [81]. On rails robots presented strong correspondence with pruning. This can be justified by the fact that the studies included in the analysis were relevant to pruning of greenhouse crops (e.g., [91,136]). Finally, aerial systems did not present any strong correspondence with any operation. The reason for this is that aerial robots had limited occurrence in the analysis (e.g., [77,137–139]). This can be explained by the fact that many don't consider UAS as robots and therefore were underrepresented in the reviewing searching process [140]. Moreover, the two dimensions of the analysis explain more than 74 % of the variance between the selected categories, indicating that a small portion of the insights are missing from the two-dimensional plot like in the previous case.



351 Figure 10. Correspondence plot between track type based robots and agricultural operations. (where 1: Legged; 2:
 352 Wheeled; 3: Tracked; 4: On rails; 5: Aerial; 6: Pulled/Carried; A: Planting and Sowing; B: Harvesting and Picking; C:
 353 Mechanical Weeding; D: Spraying; E: Fertilization; F: Crop-scouting; G: Pruning; H: Irrigation; I: Pollination; J: Soil
 354 preparation; K: Navigation)

355 3.3.3 End-effectors and Operations

356 As presented in Figure 11, there was strong correspondence between spraying end-effectors with
 357 spraying operations, sensors and cameras end-effectors with navigation and crop scouting, cultivation
 358 tools with soil preparation, and cutting tools with mechanical weeding. These results are logical
 359 considering the specialized use of these end-effectors for the corresponding operations. Additionally,
 360 correspondence was presented for gripper-type end-effectors with irrigation and harvesting and picking
 361 operations. The correspondence of gripper with irrigation can be justified by the limited number of studies
 362 that were included in the analysis [141–143] while many others presented the use of grippers for
 363 harvesting and picking operations (e.g., [66,71,89,92,93,95,107,144,145]. Based on the aforementioned,
 364 it is evident that there is specialization among the end-effector types and the operations. This can be
 365 justified by the fact that the different agricultural operations exhibit different requirements, and therefore
 366 a generic solution cannot be applied due to more complicated hardware and software designs [49].
 367 Regarding the variance, the two dimensions of the analysis explain only 61 % of the variance between the
 368 selected categories, indicating that additional dimensions should also be considered to better identify
 369 insights between end-effectors and operations.

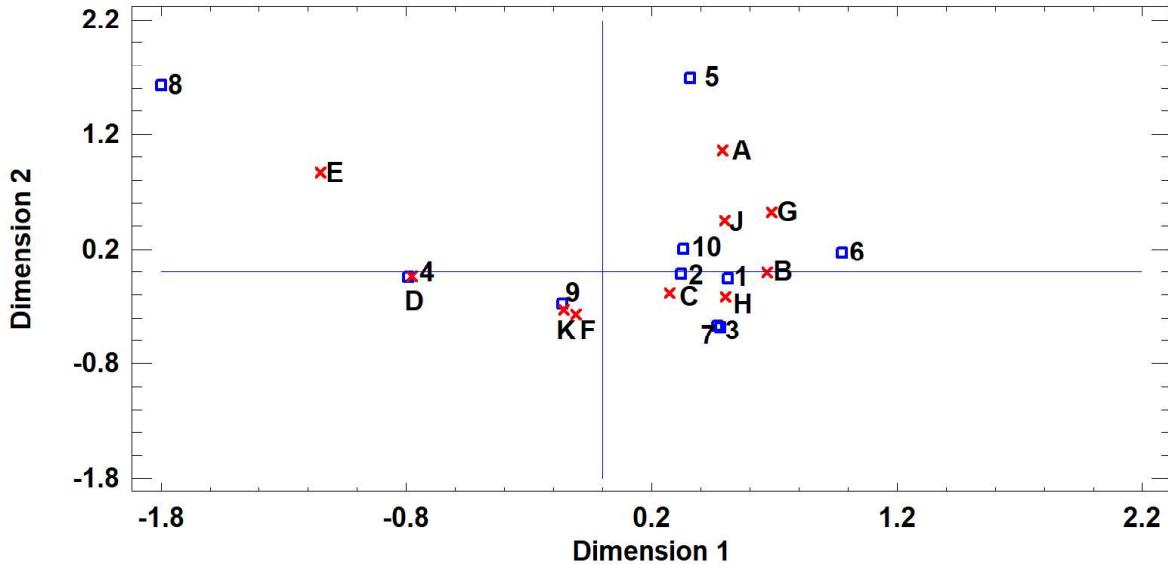


Figure 11. Correspondence plot between end-effector type and agricultural operations. (where 1: Grippers; 2: Cutting tools; 3: Vacuum or Suction-based End-effectors; 4: Spraying Systems; 5: Drilling and Planting Tools; 6: Harvesting Tools; 7: Laser Tools; 8: Fertilization; 9: Sensors and Cameras on End effectors; 10: Cultivators; A: Planting and Sowing; B: Harvesting and Picking; C: Mechanical Weeding; D: Spraying; E: Fertilization; F: Crop-scouting; G: Pruning; H: Irrigation; I: Pollination; J: Soil preparation; K: Navigation)

3.3.2 HRI and Operations

Regarding the correspondence analysis between HRI and operations, the results presented strong correspondence between full collaboration with pruning, no collaboration and coexistence with navigation, and physical collaboration with harvesting and picking (Figure 12). Pruning can be considered a very complicated process, the automation of which began recently. Therefore, a lot of processes like working under different environments, accuracy, and trajectory planning must be improved to realize full automation [146]. The results regarding the navigation indicate that fully autonomous robots are preferable while there is no need for interaction with humans during this task. As stated by other authors, autonomous navigation is considered very mature and a key operation for the automation of all agricultural operations [147,148]. Regarding harvesting and picking and the corresponding HRI level, this can be justified by the fact that although this task has been significantly automated, this technology can be considered relatively immature while there is big uncertainty and variation in agriculture. Therefore, physical collaboration of robots with humans can be considered as an intermediate step until full automation of this process is realized [149]. Finally, the two dimensions of the analysis explain more than 68 % of the variance between the selected categories, indicating that additional dimensions should also be considered to better identify insights between HRI and operations.

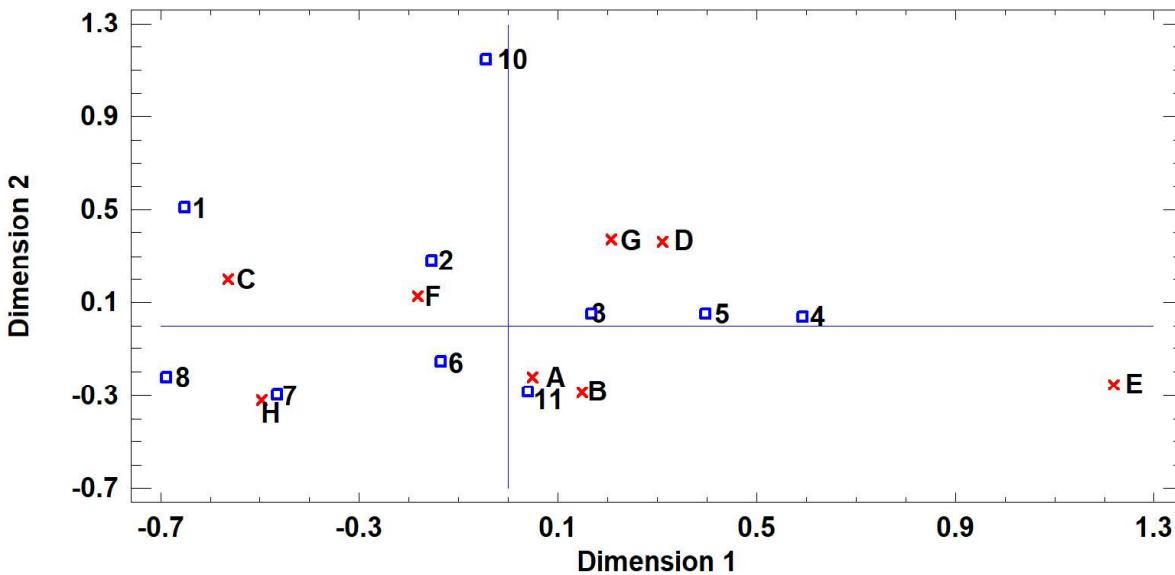


Figure 12. Correspondence plot between collaboration level and agricultural operations. (where 1: Planting and Sowing; 2: Harvesting and Picking; 3: Mechanical Weeding; 4: Spraying; 5: Fertilization; 6: Crop-scouting; 7: Pruning; 8: Irrigation; 9: Pollination; 10: Soil preparation; 11: Navigation; A: No Collaboration; B: Coexistence; C: Sequential Collaboration; D: Cooperation; E: Synchronized Collaboration; F: Physical Collaboration; G: Shared Control; H:Full Collaboration)

3.4 Study Limitations

The main limitations of this study include the five-year period that was selected for analysis and the application of the research queries only to titles. These restriction were selected to limit the results to contemporary and highly focused research on the topics of robotics and XR in agriculture due to the fact that these topics are gaining high attention and new research is presented in high frequency [31,47,51,82,108,109,150,151]. Also, many studies did not take into account all the topics addressed in this study. This had as a result that not all studies could be used in the correspondence analysis, leading to potential inaccuracy of the results with the current trends.

4. Conclusions

Robotics and XR in agriculture are gaining increasing attention in recent years. The coupled use of these technologies can significantly contribute to the mitigation of existing problems in agriculture like labour shortage and ageing. In this manuscript, 210 research articles were analysed under the scope of robotics and XR as well as HRI. According to the results, operation-specific and wheeled robots presented the highest frequency. Moreover, camera types were the mainly used devices both for active monitoring as well as end-effectors. Also, MR was the prevalent XR type used in the studies, with monitors being the main devices for interaction and display with the robots. The prevalent HRI level was no collaboration, and collision avoidance was the main safety feature that was included in the limited number of studies that referred to these components.

1
2
3
4 418 Regarding the correspondence analysis, operations with high demand in accuracy or frequency or labour
5 (e.g., harvesting and picking, spraying and crop scouting) were connected with robots that were
6 developed for a single operation or a specific environment, whereas multipurpose robots were connected
7 with operations that have lower complexity and repetitiveness during a crop season. Also, most
8 operations demand high mobility, and therefore wheeled, legged or pulled-carried robots are preferable,
9 while tracked robots were connected with operations with high frequency (e.g., spraying) or need for
10 better traction (e.g., soil preparation, navigation, mechanical weeding). It is worth noticing that UAS were
11 underrepresented in the study due to the query limitations. Moreover, end-effectors were specialized for
12 each operation (e.g., spraying end-effectors with spraying operations, sensors and cameras end-effectors
13 with navigation and crop scouting, cultivation tools with soil preparation) indicating that generic end-
14 effector technologies are not preferred for agriculture. Additionally, full automation is more prevalent in
15 operations of low complexity (e.g., navigation) while more complicated operations like pruning, and
16 harvesting and picking still demand collaboration between humans and robots to be performed.
17
18 429

19 430
20 431 Future studies should focus on the development of agricultural robots that exhibit a higher level of
21 automation and can be applied to various operations to limit cost as well as in homogeneous and
22 heterogeneous robotic fleets. Also, the use of MR should be further investigated along with the use of
23 other interaction devices for control (e.g., voice control). Finally, safety features like cyber security,
24 connectivity and data governance types should also be studied to further improve automation of
25 agricultural robots as well as HRI.
26
27 436

28 437
29 31
30 438 **Funding**
31
32 439

33 The research has been partially funded by the European Union project AgRibot: 'Harnessing Robotics,
34 XR/AR, and 5G for a New Era of Safe, Sustainable, and Smart Agriculture', under the Grant Agreement No:
35 101183158.
36
37

38 442 **CRediT authorship contribution statement**
39
40 443

Evangelos Anastasiou: Writing – review & editing, Writing – original draft, Visualization, Methodology,
41 Investigation, Formal analysis, Data curation, Conceptualization, Supervision; **Georgios Ntakos:** Writing –
42 original draft, Methodology, Investigation, Data curation; **Eirini Kanakari:** Writing – original draft,
43 Visualization, Investigation, Data curation; **Stella Bitsika:** Investigation, Data curation; **Marilena Gemtou:**
44 Writing – review & editing, Investigation, Data curation; **Manolis Katsaragakis:** Investigation, Data
45 curation; **Dimitrios Soudris:** Investigation, Data curation; **Elvira-Maria Arvanitou:** Investigation, Data
46 curation; **Maria-Theodora Folina:** Investigation, Data curation; **Thodoris Maikantis:** Investigation, Data
47 curation; **Elisavet-Persefoni Kanidou:** Investigation, Data curation; **Maria Fountouli:** Investigation, Data
48 curation; **Christina Volioti:** Investigation, Data curation; **Apostolos Ampatzoglou:** Investigation, Data
49 curation; **Nikolaos Tsiovas:** Investigation, Data curation; **Andrés Villa-Henriksen:** Investigation, Data
50 curation; **Søren Marcus Pedersen:** Investigation, Data curation; **Tseganesh Wubale Tamirat:**
51 Investigation, Data curation; **Annalisa Milella:** Investigation, Data curation; **Soussana Simopoulou:**
52 Investigation, Data curation; Project Administration; **Gregory Mygdakos:** Investigation, Data curation;
53 Project Administration; **Spyros Fountas:** Writing – review & editing, Conceptualization, Supervision
54
55 456

56 457 **Declaration of generative AI and AI-assisted technologies in the writing process**
57
58
59 457
60
61
62
63
64
65

1
2
3
4 458 During the preparation of this work the author(s) used QuillBot in order to improve the readability and
5 language of the manuscript. After using this tool/service, the authors reviewed and edited the content as
6 needed and take full responsibility for the content of the published article.
7
8
9 461
10
11 462 **References**
12
13 463 [1] F. Eshetu, J. Haji, M. Ketema, A. Mehare, Rural Out-migration and Its Impact on Crop Production
14 Efficiency of Producers in Southern Ethiopia, *Int. J. Rural Manag.* 20 (2024) 233–254.
15 <https://doi.org/10.1177/09730052231187187>.
16 466 [2] R. King, A. Lulle, E. Melossi, New perspectives on the agriculture–migration nexus, *J. Rural Stud.* 85
17 (2021) 52–58. <https://doi.org/10.1016/j.jrurstud.2021.05.004>.
18
19 468 [3] C. Proctor, N. Hopkins, Stressors and Coping Strategies in Rural Farmers: A Qualitative Study, *J.
20 Agromedicine* 28 (2023) 415–424. <https://doi.org/10.1080/1059924X.2023.2173691>.
21 470 [4] J. Liu, S. Du, Z. Fu, The Impact of Rural Population Aging on Farmers' Cleaner Production Behavior:
22 Evidence from Five Provinces of the North China Plain, *Sustainability* 13 (2021) 12199.
23 <https://doi.org/10.3390/su132112199>.
24
25 473 [5] R. Sharma, A. Shishodia, S. Kamble, A. Gunasekaran, A. Belhadi, Agriculture supply chain risks and
26 COVID-19: mitigation strategies and implications for the practitioners, *Int. J. Logist. Res. Appl.* 27
27 (2024) 2351–2377. <https://doi.org/10.1080/13675567.2020.1830049>.
28 476 [6] M. Gemtou, K. Kakkavou, E. Anastasiou, S. Fountas, S.M. Pedersen, G. Isakhanyan, K.T. Erekalo, S.
29 Pazos-Vidal, Farmers' Transition to Climate-Smart Agriculture: A Systematic Review of the Decision-
30 Making Factors Affecting Adoption, *Sustainability* 16 (2024) 2828.
31 <https://doi.org/10.3390/su16072828>.
32
33 480 [7] F. Borghi, A. Spinazzè, N. De Nardis, S. Straccini, S. Rovelli, G. Fanti, D. Oxoli, A. Cattaneo, D.M. Cavallo,
34 M.A. Brovelli, Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A
35 Systematic Review, *Environments* 10 (2023) 208. <https://doi.org/10.3390/environments10120208>.
36
37 483 [8] N. Kumar, A. Kumar, B.M. Marwein, D.K. Verma, A. Kumar, D. Ramamoorthy, AGRICULTURAL
38 ACTIVITIES CAUSING WATER POLLUTION AND ITS MITIGATION – A REVIEW, *International journal of
39 modern agriculture*, 10(1) (2021) 590-609 .
40
41 486 [9] A. Rashid, B.J. Schutte, A. Ulery, M.K. Deyholos, S. Sanogo, E.A. Lehnhoff, L. Beck, Heavy Metal
42 Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health, *Agronomy* 13
43 (2023) 1521. <https://doi.org/10.3390/agronomy13061521>.
44
45 489 [10] M.O. Alabi, O. Ngwenyama, Food security and disruptions of the global food supply chains during
46 COVID-19: building smarter food supply chains for post COVID-19 era, *Br. Food J.* 125 (2022) 167–185.
47 <https://doi.org/10.1108/BFJ-03-2021-0333>.
48
49 492 [11] E. Karan, S. Asgari, Resilience of food, energy, and water systems to a sudden labor shortage, *Environ.
50 Syst. Decis.* 41 (2021) 63–81. <https://doi.org/10.1007/s10669-020-09793-w>.
51
52 494 [12] S. Fountas, B. Espejo-García, A. Kasimati, M. Gemtou, H. Panoutsopoulos, E. Anastasiou, Agriculture
53 5.0: Cutting-Edge Technologies, Trends, and Challenges, *IT Prof.* 26 (2024) 40–47.
54 <https://doi.org/10.1109/MITP.2024.3358972>.
55
56 497 [13] T. Martin, P. Gasselin, N. Hostiou, G. Feron, L. Laurens, F. Purseigle, G. Ollivier, Robots and
57 transformations of work in farm: a systematic review of the literature and a research agenda, *Agron.
58 Sustain. Dev.* 42 (2022) 66. <https://doi.org/10.1007/s13593-022-00796-2>.
59
60
61
62
63
64
65

1
2
3
4 502 [15] Q. Yang, X. Du, Z. Wang, Z. Meng, Z. Ma, Q. Zhang, A review of core agricultural robot technologies
5 503 for crop productions, *Comput. Electron. Agric.* 206 (2023) 107701.
6 504 <https://doi.org/10.1016/j.compag.2023.107701>.
7 505 [16] E. Anastasiou, S. Fountas, M. Voulgaraki, V. Psiroukis, M. Koutsiaras, O. Kriezi, E. Lazarou, A.
8 506 Vatsanidou, L. Fu, F.D. Bartolo, J. Barreiro-Hurle, M. Gómez-Barbero, Precision farming technologies
9 507 for crop protection: A meta-analysis, *Smart Agric. Technol.* 5 (2023) 100323.
10 508 <https://doi.org/10.1016/j.atech.2023.100323>.
11 509 [17] G. Reina, A. Milella, R. Rouveure, M. Nielsen, R. Worst, M.R. Blas, Ambient awareness for agricultural
12 510 robotic vehicles, *Biosyst. Eng.* 146 (2016) 114–132.
13 511 <https://doi.org/10.1016/j.biosystemseng.2015.12.010>.
14 512 [18] R. Verbiest, K. Ruyzen, T. Vanwalleghem, E. Demeester, K. Kellens, Automation and robotics in the
15 513 cultivation of pome fruit: Where do we stand today?, *J. Field Robot.* 38 (2021) 513–531.
16 514 <https://doi.org/10.1002/rob.22000>.
17 515 [19] J. del Cerro, C. Cruz Ulloa, A. Barrientos, J. de León Rivas, Unmanned Aerial Vehicles in Agriculture: A
18 516 Survey, *Agronomy* 11 (2021) 203. <https://doi.org/10.3390/agronomy11020203>.
19 517 [20] A. García-Munguía, P. Guerra-Ávila, E. Islas, O. Vázquez-Martínez, A. García-Munguía, A Review of
20 518 Drone Technology and Operation Processes in Agricultural Crop Spraying, *Drones* 8 (2024) 674.
21 519 <https://doi.org/10.3390/drones8110674>.
22 520 [21] T. Hiraguri, H. Shimizu, T. Kimura, T. Matsuda, K. Maruta, Y. Takemura, T. Ohya, T. Takanashi,
23 521 Autonomous Drone-Based Pollination System Using AI Classifier to Replace Bees for Greenhouse
24 522 Tomato Cultivation, *IEEE Access* PP (2023) 1–1. <https://doi.org/10.1109/ACCESS.2023.3312151>.
25 523 [22] R. Guebsi, S. Mami, K. Chokmani, Drones in Precision Agriculture: A Comprehensive Review of
26 524 Applications, Technologies, and Challenges, *Drones* 8 (2024) 686.
27 525 <https://doi.org/10.3390/drones8110686>.
28 526 [23] E. Anastasiou, A.T. Balafoutis, S. Fountas, Trends in Remote Sensing Technologies in Olive Cultivation,
29 527 *Smart Agric. Technol.* 3 (2023) 100103. <https://doi.org/10.1016/j.atech.2022.100103>.
30 528 [24] C. Lytridis, V.G. Kaburlasos, T. Pachidis, M. Manios, E. Vrochidou, T. Kalampokas, S. Chatzistamatis, An
31 529 Overview of Cooperative Robotics in Agriculture, *Agronomy* 11 (2021) 1818.
32 530 <https://doi.org/10.3390/agronomy11091818>.
33 531 [25] D. Albiero, A. Pontin Garcia, C. Kiyoshi Umez, R. Leme de Paulo, Swarm robots in mechanized
34 532 agricultural operations: A review about challenges for research, *Comput. Electron. Agric.* 193 (2022)
35 533 106608. <https://doi.org/10.1016/j.compag.2021.106608>.
36 534 [26] C. Peng, S. Vougioukas, D. Slaughter, Z. Fei, R. Arikapudi, A strawberry harvest-aiding system with
37 535 crop-transport collaborative robots: Design, development, and field evaluation, *J. Field Robot.* 39
38 536 (2022) 1231–1257. <https://doi.org/10.1002/rob.22106>.
39 537 [27] Y. Bouhaja, H. Bamoumen, I. Derdak, S. Sheikh, M.E.H. El Azhari, H. El Hafdaoui, Mobile robot for leaf
40 538 disease detection and precise spraying: Convolutional neural networks integration and path planning,
41 539 *Sci. Afr.* 28 (2025) e02717. <https://doi.org/10.1016/j.sciaf.2025.e02717>.
42 540 [28] M. Pérez-Ruiz, D.C. Slaughter, F.A. Fathallah, C.J. Gliever, B.J. Miller, Co-robotic intra-row weed
43 541 control system, *Biosyst. Eng.* 126 (2014) 45–55.
44 542 <https://doi.org/10.1016/j.biosystemseng.2014.07.009>.
45 543 [29] E. Maritan, E. Anastasiou, V. Psiroukis, J. Lowenberg-DeBoer, S. Fountas, K. Behrendt, An
46 544 agroecological assessment of uncrewed aerial vehicle spraying in Greek viticulture, *Smart Agric.*
47 545 *Technol.* 10 (2025) 100837. <https://doi.org/10.1016/j.atech.2025.100837>.
48 546 [30] M.N. Conejero, H. Montes, J.M. Bengochea-Guevara, L. Garrido-Rey, D. Andújar, A. Ribeiro, A
49 547 collaborative robotic fleet for yield mapping and manual fruit harvesting assistance, *Comput.*
50 548 *Electron. Agric.* 235 (2025) 110351. <https://doi.org/10.1016/j.compag.2025.110351>.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 549 [31] E. Anastasiou, A.T. Balafoutis, S. Fountas, Applications of extended reality (XR) in agriculture, livestock
5 550 farming, and aquaculture: A review, *Smart Agric. Technol.* 3 (2023) 100105.
6 551 <https://doi.org/10.1016/j.atech.2022.100105>.

7 552 [32] T. Liu, B. Zhang, Q. Tan, J. Zhou, S. Yu, Q. Zhu, Y. Bian, Immersive human-machine teleoperation
8 553 framework for precision agriculture: Integrating UAV-based digital mapping and virtual reality control,
9 554 *Comput. Electron. Agric.* 226 (2024) 109444. <https://doi.org/10.1016/j.compag.2024.109444>.

10 555 [33] D.W. Carruth, C. Hudson, A.A.A. Fox, S. Deb, User Interface for an Immersive Virtual Reality
11 556 Greenhouse for Training Precision Agriculture, in: J.Y.C. Chen, G. Fragomeni (Eds.), *Virtual Augment.*
12 557 *Mix. Real. Ind. Everyday Life Appl.*, Springer International Publishing, Cham, 2020: pp. 35–46.
13 558 https://doi.org/10.1007/978-3-030-49698-2_3.

14 559 [34] O. Spyrou, M. Ariza-Sentís, S. Vélez, Enhancing Education in Agriculture via XR-Based Digital Twins: A
15 560 Novel Approach for the Next Generation, *Appl. Syst. Innov.* 8 (2025) 38.
16 561 <https://doi.org/10.3390/asi8020038>.

17 562 [35] I. Bernetti, T. Borghini, I. Capecchi, Integrating Virtual Reality and Artificial Intelligence in Agricultural
18 563 Planning: Insights from the V.A.I.F.A.R.M. Application, in: L.T. De Paolis, P. Arpaia, M. Sacco (Eds.), *Ext.*
19 564 *Real.*, Springer Nature Switzerland, Cham, 2024: pp. 342–350. https://doi.org/10.1007/978-3-031-71707-9_28.

20 565 [36] D. Udekwe, H. Seyyedhasani, Human robot interaction for agricultural Tele-Operation, using virtual
21 566 Reality: A feasibility study, *Comput. Electron. Agric.* 228 (2025) 109702.
22 567 <https://doi.org/10.1016/j.compag.2024.109702>.

23 568 [37] W. Hurst, F.R. Mendoza, B. Tekinerdogan, Augmented Reality in Precision Farming: Concepts and
24 569 Applications, *Smart Cities* 4 (2021) 1454–1468. <https://doi.org/10.3390/smartcities4040077>.

25 570 [38] J. Huuskonen, T. Oksanen, Soil sampling with drones and augmented reality in precision agriculture,
26 571 *Comput. Electron. Agric.* 154 (2018) 25–35. <https://doi.org/10.1016/j.compag.2018.08.039>.

27 572 [39] C. Wittenberg, B. Bauer, N. Schloer, Mixed reality control of a mobile robot via ROS and digital twin,
28 573 in: *Hum. Factors Robots Drones Unmanned Syst., AHFE Open Acces*, 2023.
29 574 <https://doi.org/10.54941/ahfe1003751>.

30 575 [40] Y. Alj, A. Dadda, H. Fahmani, Y. Tace, Towards an approach Integrating Mixed Reality and IoT for Smart
31 576 Agriculture, in: 2022 Int. Conf. Microelectron. ICM, 2022: pp. 229–232.
32 577 <https://doi.org/10.1109/ICM56065.2022.10005505>.

33 578 [41] J.P. Vasconez, G.A. Kantor, F.A. Auat Cheein, Human–robot interaction in agriculture: A survey and
34 579 current challenges, *Biosyst. Eng.* 179 (2019) 35–48.
35 580 <https://doi.org/10.1016/j.biosystemseng.2018.12.005>.

36 581 [42] G. Adamides, Y. Edan, Human–robot collaboration systems in agricultural tasks: A review and
37 582 roadmap, *Comput. Electron. Agric.* 204 (2023) 107541.
38 583 <https://doi.org/10.1016/j.compag.2022.107541>.

39 584 [43] J.P. Vásconez, F.A. Auat Cheein, Workload and production assessment in the avocado harvesting
40 585 process using human–robot collaborative strategies, *Biosyst. Eng.* 223 (2022) 56–77.
41 586 <https://doi.org/10.1016/j.biosystemseng.2022.08.010>.

42 587 [44] Y. Peng, J. Liu, B. Xie, H. Shan, M. He, G. Hou, Y. Jin, Research Progress of Urban Dual-arm Humanoid
43 588 Grape Harvesting Robot, in: 2021 IEEE 11th Annu. Int. Conf. CYBER Technol. Autom. Control Intell.
44 589 Syst. CYBER, 2021: pp. 879–885. <https://doi.org/10.1109/CYBER53097.2021.9588266>.

45 590 [45] D. Udekwe, H. Seyyedhasani, Human robot interaction for agricultural Tele-Operation, using virtual
46 591 Reality: A feasibility study, *Comput. Electron. Agric.* 228 (2025) 109702.
47 592 <https://doi.org/10.1016/j.compag.2024.109702>.

48 593 [46] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and
49 594 meta-analyses: The PRISMA statement, *Int. J. Surg.* 8 (2010) 336–341.
50 595 <https://doi.org/10.1016/j.ijsu.2010.02.007>.

1
2
3
4 597 [47] S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. Hellmann Santos, E. Pekkeriet, Agricultural Robotics
5 598 for Field Operations, *Sensors* 20 (2020) 2672. <https://doi.org/10.3390/s20092672>.
6 599 [48] L.F.P. Oliveira, A.P. Moreira, M.F. Silva, Advances in Agriculture Robotics: A State-of-the-Art Review
7 600 and Challenges Ahead, *Robotics* 10 (2021) 52. <https://doi.org/10.3390/robotics10020052>.
8 601 [49] E. Vrochidou, V.N. Tsakalidou, I. Kalathas, T. Gkrimpizis, T. Pachidis, V.G. Kaburlasos, An Overview of
9 602 End Effectors in Agricultural Robotic Harvesting Systems, *Agriculture* 12 (2022) 1240.
10 603 <https://doi.org/10.3390/agriculture12081240>.
11 604 [50] W. Hurst, F.R. Mendoza, B. Tekinerdogan, Augmented Reality in Precision Farming: Concepts and
12 605 Applications, *Smart Cities* 4 (2021) 1454–1468. <https://doi.org/10.3390/smartcities4040077>.
13 606 [51] M.E. de Oliveira, C.G. Corrêa, Virtual Reality and Augmented reality applications in agriculture: a
14 607 literature review, in: 2020 22nd Symp. Virtual Augment. Real. SVR, 2020: pp. 1–9.
15 608 <https://doi.org/10.1109/SVR51698.2020.00017>.
16 609 [52] S. Bökle, D.S. Paraforos, D. Reiser, H.W. Griepentrog, Conceptual framework of a decentral digital
17 610 farming system for resilient and safe data management, *Smart Agric. Technol.* 2 (2022) 100039.
18 611 <https://doi.org/10.1016/j.atech.2022.100039>.
19 612 [53] G. Bagagiolo, G. Matranga, E. Cavallo, N. Pampuro, Greenhouse Robots: Ultimate Solutions to
20 613 Improve Automation in Protected Cropping Systems—A Review, *Sustainability* 14 (2022) 6436.
21 614 <https://doi.org/10.3390/su14116436>.
22 615 [54] J.A. Sánchez-Molina, F. Rodríguez, J.C. Moreno, J. Sánchez-Hermosilla, A. Giménez, Robotics in
23 616 greenhouses. Scoping review, *Comput. Electron. Agric.* 219 (2024) 108750.
24 617 <https://doi.org/10.1016/j.compag.2024.108750>.
25 618 [55] A. Botta, P. Cavallone, L. Baglieri, G. Colucci, L. Tagliavini, G. Quaglia, A Review of Robots, Perception,
26 619 and Tasks in Precision Agriculture, *Appl. Mech.* 3 (2022) 830–854.
27 620 <https://doi.org/10.3390/applmech3030049>.
28 621 [56] G. Kootstra, X. Wang, P.M. Blok, J. Hemming, E. van Henten, Selective Harvesting Robotics: Current
29 622 Research, Trends, and Future Directions, *Curr. Robot. Rep.* 2 (2021) 95–104.
30 623 <https://doi.org/10.1007/s43154-020-00034-1>.
31 624 [57] Wang Z., Xun Y., Wang Y., Yang Q., Review of smart robots for fruit and vegetable picking in
32 625 agriculture, *Int. J. Agric. Biol. Eng.* 15 (2022) 33–54. <https://doi.org/10.25165/j.ijabe.20221501.7232>.
33 626 [58] H.Y. Osrof, C.L. Tan, G. Angappa, S.F. Yeo, K.H. Tan, Adoption of smart farming technologies in field
34 627 operations: A systematic review and future research agenda, *Technol. Soc.* 75 (2023) 102400.
35 628 <https://doi.org/10.1016/j.techsoc.2023.102400>.
36 629 [59] C. Giua, V.C. Materia, L. Camanzi, Smart farming technologies adoption: Which factors play a role in
37 630 the digital transition?, *Technol. Soc.* 68 (2022) 101869.
38 631 <https://doi.org/10.1016/j.techsoc.2022.101869>.
39 632 [60] E. Anastasiou, S. Fountas, M. Koutsiaras, M. Voulgaraki, A. Vatsanidou, J. Barreiro-Hurle, F.D. Bartolo,
40 633 M. Gómez-Barbero, Precision farming technologies on crop protection: A stakeholders survey, *Smart
41 634 Agric. Technol.* 5 (2023) 100293. <https://doi.org/10.1016/j.atech.2023.100293>.
42 635 [61] T. Wang, B. Chen, Z. Zhang, H. Li, M. Zhang, Applications of machine vision in agricultural robot
43 636 navigation: A review, *Comput. Electron. Agric.* 198 (2022) 107085.
44 637 <https://doi.org/10.1016/j.compag.2022.107085>.
45 638 [62] S. Fountas, I. Malounas, L. Athanasakos, I. Avgoustakis, B. Espejo-Garcia, AI-Assisted Vision for
46 639 Agricultural Robots, *AgriEngineering* 4 (2022) 674–694.
47 640 <https://doi.org/10.3390/agriengineering4030043>.
48 641 [63] D. Xie, L. Chen, L. Liu, L. Chen, H. Wang, Actuators and Sensors for Application in Agricultural Robots:
49 642 A Review, *Machines* 10 (2022) 913. <https://doi.org/10.3390/machines10100913>.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 643 [64] C. Cruz Ulloa, A. Krus, A. Barrientos, J. Del Cerro, C. Valero, Robotic Fertilisation Using Localisation
5 Systems Based on Point Clouds in Strip-Cropping Fields, *Agronomy* 11 (2020) 11.
6 <https://doi.org/10.3390/agronomy11010011>.
7
8 646 [65] X. Wu, S. Aravecchia, P. Lottes, C. Stachniss, C. Pradalier, Robotic weed control using automated weed
9 and crop classification, *J. Field Robot.* 37 (2020) 322–340. <https://doi.org/10.1002/rob.21938>.
10 648 [66] H. Zhang, X. Li, L. Wang, D. Liu, S. Wang, Construction and Optimization of a Collaborative Harvesting
11 System for Multiple Robotic Arms and an End-Picker in a Trellised Pear Orchard Environment, *Agronomy* 14 (2023) 80. <https://doi.org/10.3390/agronomy14010080>.
12 650
13
14 651 [67] U. Bhattacharai, Q. Zhang, M. Karkee, Design, integration, and field evaluation of a robotic blossom
15 thinning system for tree fruit crops, *J. Field Robot.* 41 (2024) 1366–1385.
16 <https://doi.org/10.1002/rob.22330>.
17 654 [68] D. Patel, M. Gandhi, H. Shankaranarayanan, A.D. Darji, Design of an Autonomous Agriculture Robot
18 for Real-Time Weed Detection Using CNN, in: A.D. Darji, D. Joshi, A. Joshi, R. Sheriff (Eds.), *Adv. VLSI
19 Embed. Syst.*, Springer Nature Singapore, Singapore, 2023: pp. 141–161.
20 656 https://doi.org/10.1007/978-981-19-6780-1_13.
21 657
22 658 [69] S. Cubero, E. Marco-Noales, N. Aleixos, S. Barbé, J. Blasco, RobHortic: A Field Robot to Detect Pests
23 and Diseases in Horticultural Crops by Proximal Sensing, *Agriculture* 10 (2020) 276.
24 660 <https://doi.org/10.3390/agriculture10070276>.
25
26 661 [70] F. Esser, R.A. Rosu, A. Cornelissen, L. Klingbeil, H. Kuhlmann, S. Behnke, Field Robot for High-
27 Throughput and High-Resolution 3D Plant Phenotyping: Towards Efficient and Sustainable Crop
28 Production, *IEEE Robot. Autom. Mag.* 30 (2023) 20–29. <https://doi.org/10.1109/MRA.2023.3321402>.
29 664 [71] T. Otani, A. Itoh, H. Mizukami, M. Murakami, S. Yoshida, K. Terae, T. Tanaka, K. Masaya, S. Aotake, M.
30 665 Funabashi, A. Takanishi, Agricultural Robot under Solar Panels for Sowing, Pruning, and Harvesting in
31 666 a Syneculture Environment, *Agriculture* 13 (2022) 18.
32 667 <https://doi.org/10.3390/agriculture13010018>.
33
34 668 [72] C. Smitt, M. Halstead, T. Zaenker, M. Bennewitz, C. McCool, PATHoBot: A Robot for Glasshouse Crop
35 Phenotyping and Intervention, in: 2021 IEEE Int. Conf. Robot. Autom. ICRA, IEEE, Xi'an, China, 2021: pp. 2324–2330. <https://doi.org/10.1109/ICRA48506.2021.9562047>.
36
37 671 [73] Y. Li, Q. Feng, Y. Zhang, C. Peng, C. Zhao, Intermittent Stop-Move Motion Planning for Dual-Arm
38 Tomato Harvesting Robot in Greenhouse Based on Deep Reinforcement Learning, *Biomimetics* 9
39 (2024) 105. <https://doi.org/10.3390/biomimetics9020105>.
40
41 674 [74] J. Backman, R. Linkolehto, M. Lemsalu, J. Kaivosoja, Building a Robot Tractor Using Commercial
42 Components and Widely Used Standards, *IFAC-Pap.* 55 (2022) 6–11.
43 676 <https://doi.org/10.1016/j.ifacol.2022.11.106>.
44
45 677 [75] J. Choi, B. Lee, H. Jung, Development of a Retrofit Autonomous Maneuvering System for Agricultural
46 Vehicles, in: 2024 IEEE Int. Autom. Veh. Valid. Conf. IAVVC, 2024: pp. 1–4.
47 679 <https://doi.org/10.1109/IAVVC63304.2024.10786403>.
48
49 680 [76] S. Moradi, A. Bokani, J. Hassan, UAV-based Smart Agriculture: a Review of UAV Sensing and
50 Applications, in: 2022 32nd Int. Telecommun. Netw. Appl. Conf. ITNAC, 2022: pp. 181–184.
51 682 <https://doi.org/10.1109/ITNAC55475.2022.9998411>.
52
53 683 [77] C. Geckeler, S.E. Ramos, M.C. Schuman, S. Mintchev, Robotic Volatile Sampling for Early Detection of
54 Plant Stress: Precision Agriculture Beyond Visual Remote Sensing, *IEEE Robot. Autom. Mag.* 30 (2023)
55 685 41–51. <https://doi.org/10.1109/MRA.2023.3315932>.
56
57 686 [78] N. Delavarpour, C. Koparan, J. Nowatzki, S. Bajwa, X. Sun, A Technical Study on UAV Characteristics
58 for Precision Agriculture Applications and Associated Practical Challenges, *Remote Sens.* 13 (2021)
59 688 1204. <https://doi.org/10.3390/rs13061204>.
60 690 [79] J. Gai, L. Tang, B.L. Steward, Automated crop plant detection based on the fusion of color and depth
61 images for robotic weed control, *J. Field Robot.* 37 (2020) 35–52. <https://doi.org/10.1002/rob.21897>.
62
63
64
65

1
2
3
4 691 [80] L. Zhang, X. Zhu, J. Huang, J. Huang, J. Xie, X. Xiao, G. Yin, X. Wang, M. Li, K. Fang, BDS/IMU Integrated
5 692 Auto-Navigation System of Orchard Spraying Robot, *Appl. Sci.* 12 (2022) 8173.
6 693 <https://doi.org/10.3390/app12168173>.
7 694 [81] R. Vidoni, M. Bietresato, A. Gasparetto, F. Mazzetto, Evaluation and stability comparison of different
8 695 vehicle configurations for robotic agricultural operations on side-slopes, *Biosyst. Eng.* 129 (2015) 197–
9 696 211. <https://doi.org/10.1016/j.biosystemseng.2014.10.003>.
10 697 [82] L.F.P. Oliveira, A.P. Moreira, M.F. Silva, Advances in Agriculture Robotics: A State-of-the-Art Review
11 698 and Challenges Ahead, *Robotics* 10 (2021) 52. <https://doi.org/10.3390/robotics10020052>.
12 699 [83] Z. Zhang, W. He, F. Wu, L. Quesada, L. Xiang, Development of a bionic hexapod robot with adaptive
13 700 gait and clearance for enhanced agricultural field scouting, *Front. Robot. AI* 11 (2024) 1426269.
14 701 <https://doi.org/10.3389/frobt.2024.1426269>.
15 702 [84] R. Xu, C. Li, A modular agricultural robotic system (MARS) for precision farming: Concept and
16 703 implementation, *J. Field Robot.* 39 (2022) 387–409. <https://doi.org/10.1002/rob.22056>.
17 704 [85] K. Tsiakas, A. Papadimitriou, E.M. Pechlivani, D. Giakoumis, N. Frangakis, A. Gasteratos, D. Tzovaras,
18 705 An Autonomous Navigation Framework for Holonomic Mobile Robots in Confined Agricultural
19 706 Environments, *Robotics* 12 (2023) 146. <https://doi.org/10.3390/robotics12060146>.
20 707 [86] J. Fusic S, S. T, J. Giri, E. Makki, R. Sitharthan, S. Murugesan, A. Bhowmik, *Momordica charantia* leaf
21 708 disease detection and treatment using agricultural mobile robot, *AIP Adv.* 14 (2024) 045214.
22 709 <https://doi.org/10.1063/5.0190928>.
23 710 [87] E.L. Kehayov, G.B. Ivanov, G.G. Komitov, 3D MODEL OF THE MECHANICAL PART OF A WEED
24 711 RECOGNITION SYSTEM IN AN AGRICULTURAL ROBOT IN 3D EXPERIENCE ENVIRONMENT, *Environ.*
25 712 *Technol. Resour. Proc. Int. Sci. Pract. Conf.* 3 (2023) 135–138.
26 713 <https://doi.org/10.17770/etr2023vol3.7289>.
27 714 [88] F. Visentin, S. Cremasco, M. Sozzi, L. Signorini, M. Signorini, F. Marinello, R. Muradore, A mixed-
28 715 autonomous robotic platform for intra-row and inter-row weed removal for precision agriculture,
29 716 *Comput. Electron. Agric.* 214 (2023) 108270. <https://doi.org/10.1016/j.compag.2023.108270>.
30 717 [89] V. Raja, B. Bhaskaran, K.K.G. Nagaraj, J.G. Sampathkumar, S.R. Senthilkumar, Agricultural harvesting
31 718 using integrated robot system, *Indones. J. Electr. Eng. Comput. Sci.* 25 (2022) 152.
32 719 <https://doi.org/10.11591/ijeecs.v25.i1.pp152-158>.
33 720 [90] M. Lippi, M. Santilli, R.F. Carpio, J. Maiolini, E. Garone, V. Cristofori, A. Gasparri, An autonomous
34 721 spraying robot architecture for sucker management in large-scale hazelnut orchards, *J. Field Robot.*
35 722 41 (2024) 2114–2132. <https://doi.org/10.1002/rob.22217>.
36 723 [91] Y. Ma, Q. Feng, Y. Sun, X. Guo, W. Zhang, B. Wang, L. Chen, Optimized Design of Robotic Arm for
37 724 Tomato Branch Pruning in Greenhouses, *Agriculture* 14 (2024) 359.
38 725 <https://doi.org/10.3390/agriculture14030359>.
39 726 [92] Y. Pan, K. Hu, H. Cao, H. Kang, X. Wang, A novel perception and semantic mapping method for robot
40 727 autonomy in orchards, *Comput. Electron. Agric.* 219 (2024) 108769.
41 728 <https://doi.org/10.1016/j.compag.2024.108769>.
42 729 [93] L. Liu, Q. Yang, W. He, X. Yang, Q. Zhou, M.M. Addy, Design and Experiment of Nighttime Greenhouse
43 730 Tomato Harvesting Robot, *J. Eng. Technol. Sci.* 56 (2024) 340–352.
44 731 <https://doi.org/10.5614/j.eng.technol.sci.2024.56.3.3>.
45 732 [94] S. Debnath, M. Paul, T. Debnath, Applications of LiDAR in Agriculture and Future Research Directions,
46 733 *J. Imaging* 9 (2023) 57. <https://doi.org/10.3390/jimaging9030057>.
47 734 [95] J. Han, L. Liu, H. Zeng, Design and Implementation of Intelligent Agricultural Picking Mobile Robot
48 735 Based on Color Sensor, *J. Phys. Conf. Ser.* 1757 (2021) 012157. <https://doi.org/10.1088/1742-6596/1757/1/012157>.
49 736 [96] University Tun Hussein Onn Malaysia (UTHM) Pagoh Campus, S. Mashori, M.A. Aizad Azmi, Panasonic
50 737 Appliances Air-Conditioning Malaysia Sdn. Bhd., N. Sahari, University Tun Hussein Onn Malaysia
51 738 <https://doi.org/10.1088/1742-6596/1757/1/012157>.
52 739
53 740
54 741
55 742
56 743
57 744
58 745
59 746
60 747
61 748
62 749
63 750
64 751
65 752

1
2
3
4 739 (UTHM) Pagoh Campus, N.A. Jalaludin, University Tun Hussein Onn Malaysia (UTHM) Pagoh Campus,
5 740 S.S. Yi, University Tun Hussein Onn Malaysia (UTHM), R. Norjali, University Tun Hussein Onn Malaysia
6 741 (UTHM) Pagoh Campus, M.H. Mohd Yusof, Pertubuhan Peladang Kawasan Simpang Renggam,
7 742 Development of Pesticide Sprayer Robot Prototype for Chilli Farm Agricultural Application, *Int. J.
8 743 Integr. Eng.* 15 (2023). <https://doi.org/10.30880/ijie.2023.15.03.023>.

9 744 [97] P. Fan, C. Zheng, J. Sun, D. Chen, G. Lang, Y. Li, Enhanced Real-Time Target Detection for Picking Robots
10 745 Using Lightweight CenterNet in Complex Orchard Environments, *Agriculture* 14 (2024) 1059.
11 746 <https://doi.org/10.3390/agriculture14071059>.

12 747 [98] N. Hu, D. Su, S. Wang, P. Nyamsuren, Y. Qiao, Y. Jiang, Y. Cai, LettuceTrack: Detection and tracking of
13 748 lettuce for robotic precision spray in agriculture, *Front. Plant Sci.* 13 (2022) 1003243.
14 749 <https://doi.org/10.3389/fpls.2022.1003243>.

15 750 [99] J. Waltman, E. Buchanan, D.M. Bulanon, Nighttime Harvesting of OrBot (Orchard RoBot),
16 751 *AgriEngineering* 6 (2024) 1266–1276. <https://doi.org/10.3390/agriengineering6020072>.

17 752 [100] R. Goulart, D. Jarvis, K.B. Walsh, Evaluation of End Effectors for Robotic Harvesting of Mango Fruit,
18 753 *Sustainability* 15 (2023) 6769. <https://doi.org/10.3390/su15086769>.

19 754 [101] Z. Yu, C. Lu, Y. Zhang, L. Jing, Gesture-Controlled Robotic Arm for Agricultural Harvesting Using a
20 755 Data Glove with Bending Sensor and OptiTrack Systems, *Micromachines* 15 (2024) 918.
21 756 <https://doi.org/10.3390/mi15070918>.

22 757 [102] G. Schouterden, R. Verbiest, E. Demeester, K. Kellens, Robotic Cultivation of Pome Fruit: A
23 758 Benchmark Study of Manipulation Tools—From Research to Industrial Standards, *Agronomy* 11
24 759 (2021) 1922. <https://doi.org/10.3390/agronomy11101922>.

25 760 [103] B. Zhang, S. Xu, Z. Xiong, H. Qin, X. Ai, T. Yuan, W. Li, Research on Robot Control Technology of
26 761 Tomato Plant Lowering in Greenhouses, *Agronomy* 14 (2024) 1966.
27 762 <https://doi.org/10.3390/agronomy14091966>.

28 763 [104] O. Krakhmalev, S. Gataullin, E. Boltachev, S. Korchagin, I. Blagoveshchensky, K. Liang, Robotic
29 764 Complex for Harvesting Apple Crops, *Robotics* 11 (2022) 77.
30 765 <https://doi.org/10.3390/robotics11040077>.

31 766 [105] W. Zheng, N. Guo, B. Zhang, J. Zhou, G. Tian, Y. Xiong, Human Grasp Mechanism Understanding,
32 767 Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots, *Sensors* 22
33 768 (2022) 5240. <https://doi.org/10.3390/s22145240>.

34 769 [106] A.C. Tagarakis, L. Benos, E. Aivazidou, A. Anagnostis, D. Kateris, D. Bochtis, Wearable Sensors for
35 770 Identifying Activity Signatures in Human-Robot Collaborative Agricultural Environments, in: 13th
36 771 EFITA Int. Conf., MDPI, 2021: p. 5. <https://doi.org/10.3390/engproc2021009005>.

37 772 [107] H.A. Khan, U. Farooq, S.R. Saleem, U. Rehman, M.N. Tahir, T. Iqbal, M.J.M. Cheema, M.A. Aslam,
38 773 S. Hussain, Design and development of machine vision robotic arm for vegetable crops in hydroponics,
39 774 *Smart Agric. Technol.* 9 (2024) 100628. <https://doi.org/10.1016/j.atech.2024.100628>.

40 775 [108] M. Bigonah, F. Jamshidi, A. Pant, S. Poudel, S. Reddy Nallapareddy, A. Charmchian Langroudi, D.
41 776 Marghitu, A Systematic Review of Extended Reality (XR) Technologies in Agriculture and Related
42 777 Sectors (2022–2024), *IEEE Access* 13 (2025) 49721–49734.
43 778 <https://doi.org/10.1109/ACCESS.2025.3550891>.

44 779 [109] G. de M. Costa, M.R. Petry, A.P. Moreira, Augmented Reality for Human–Robot Collaboration and
45 780 Cooperation in Industrial Applications: A Systematic Literature Review, *Sensors* 22 (2022) 2725.
46 781 <https://doi.org/10.3390/s22072725>.

47 782 [110] L. Emmi, R. Fernández, P. Gonzalez-de-Santos, M. Francia, M. Golfarelli, G. Vitali, H. Sandmann,
48 783 M. Hustedt, M. Wollweber, Exploiting the Internet Resources for Autonomous Robots in Agriculture,
49 784 *Agriculture* 13 (2023) 1005. <https://doi.org/10.3390/agriculture13051005>.

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 785 [111] S. Noda, Y. Miyake, Y. Nakano, M. Kogoshi, W. Iijima, J. Nakagawa, A Mobile Laboratory Robot for
5 Various and Precise Measurements of Crops and Soil in Agricultural Fields: Development and Pilot
6 Study, *Agriculture* 13 (2023) 1419. <https://doi.org/10.3390/agriculture13071419>.
7
8 788 [112] M. Campbell, K. Ye, E. Scudiero, K. Karydis, A Portable Agricultural Robot for Continuous Apparent
9 Soil Electrical Conductivity Measurements to Improve Irrigation Practices, in: 2021 IEEE 17th Int. Conf.
10 Autom. Sci. Eng. CASE, 2021: pp. 2228–2234. <https://doi.org/10.1109/CASE49439.2021.9551401>.
11
12 791 [113] T. Fujinaga, T. Nakanishi, Evaluation of Maps Constructed by Crawler-type Agricultural Robot in
13 Different Farms, *Proc. Int. Conf. Artif. Life Robot.* 27 (2022) 756–761.
14 793 <https://doi.org/10.5954/ICAROB.2022.OS27-4>.
15
16 794 [114] E. Levintal, K. Lee Kang, L. Larson, E. Winkelman, L. Nackley, N. Weisbrod, J.S. Selker, C.J. Udell,
17 eGreenhouse: Robotically positioned, low-cost, open-source CO₂ analyzer and sensor device for
18 greenhouse applications, *HardwareX* 9 (2021) e00193. <https://doi.org/10.1016/j.ohx.2021.e00193>.
19
20 797 [115] L. Cui, F. Le, X. Xue, T. Sun, Y. Jiao, Design and Experiment of an Agricultural Field Management
21 Robot and Its Navigation Control System, *Agronomy* 14 (2024) 654.
22 800 <https://doi.org/10.3390/agronomy14040654>.
23
24 801 [116] C. Tomazzoli, A. Ponza, M. Cristani, F. Olivieri, S. Scannapieco, A Cobot in the Vineyard: Computer
25 Vision for Smart Chemicals Spraying, *Appl. Sci.* 14 (2024) 3777.
26 802 <https://doi.org/10.3390/app14093777>.
27
28 803 [117] S. Tiwari, Y. Zheng, M. Pattinson, M. Campo-Cossio, R. Arnau, D. Obregon, A. Ansuategui, C. Tubio,
29 I. Lluvia, O. Rey, J. Verschoore, V. Adam, J. Reyes, Approach for Autonomous Robot Navigation in
30 Greenhouse Environment for Integrated Pest Management, in: 2020 IEEEION Position Locat. Navig.
31 Symp. PLANS, IEEE, Portland, OR, USA, 2020: pp. 1286–1294.
32 807 <https://doi.org/10.1109/PLANS46316.2020.9109895>.
33
34 808 [118] A. Hentout, M. Aouache, A. Maoudj, I. Akli, Human–robot interaction in industrial collaborative
35 robotics: a literature review of the decade 2008–2017, *Adv. Robot.* 33 (2019) 764–799.
36 810 <https://doi.org/10.1080/01691864.2019.1636714>.
37
38 811 [119] T. Zhivkov, E.I. Sklar, D. Botting, S. Pearson, 5G on the Farm: Evaluating Wireless Network
39 Capabilities and Needs for Agricultural Robotics, *Machines* 11 (2023) 1064.
40 813 <https://doi.org/10.3390/machines11121064>.
41
42 814 [120] M. Pradel, M. De Fays, C. Seguinéau, Comparative Life Cycle Assessment of intra-row and inter-
43 row weeding practices using autonomous robot systems in French vineyards, *Sci. Total Environ.* 838
44 816 (2022) 156441. <https://doi.org/10.1016/j.scitotenv.2022.156441>.
45
46 817 [121] L. Türkler, T. Akkan, L.Ö. Akkan, Detection of Water Leakage in Drip Irrigation Systems Using
47 Infrared Technique in Smart Agricultural Robots, *Sensors* 23 (2023) 9244.
48 819 <https://doi.org/10.3390/s23229244>.
49
50 820 [122] C. Peng, S.G. Vougioukas, Deterministic predictive dynamic scheduling for crop-transport co-
51 robots acting as harvesting aids, *Comput. Electron. Agric.* 178 (2020) 105702.
52 822 <https://doi.org/10.1016/j.compag.2020.105702>.
53
54 823 [123] W. Yu, S. Song, Design and experimentation of remote driving system for robotic speed sprayer
55 operating in orchard environment, *ETRI J.* 45 (2023) 479–491. <https://doi.org/10.4218/etrij.2022-0079>.
56
57 826 [124] H. Eberle, S.J. Nasuto, Y. Hayashi, Synchronization-based control for a collaborative robot, *R. Soc.*
58 827 *Open Sci.* 7 (2020) 201267. <https://doi.org/10.1098/rsos.201267>.
59
60 828 [125] R.R. Shamshiri, E. Navas, V. Dworak, F.A. Auat Cheein, C. Weltzien, A modular sensing system with
61 CANBUS communication for assisted navigation of an agricultural mobile robot, *Comput. Electron.*
62 829 *Agric.* 223 (2024) 109112. <https://doi.org/10.1016/j.compag.2024.109112>.
63
64
65

1
2
3
4 831 [126] A. Saddik, R. Latif, F. Taher, A. El Ouardi, M. Elhoseny, Mapping Agricultural Soil in Greenhouse
5 832 Using an Autonomous Low-Cost Robot and Precise Monitoring, *Sustainability* 14 (2022) 15539.
6 833 <https://doi.org/10.3390/su142315539>.
7 834 [127] K. Kim, A. Deb, D.J. Cappelleri, P-AgBot: In-Row & Under-Canopy Agricultural Robot for Monitoring
8 835 and Physical Sampling, *IEEE Robot. Autom. Lett.* 7 (2022) 7942–7949.
9 836 <https://doi.org/10.1109/LRA.2022.3187275>.
10 837 [128] J.M. Shutske, Agricultural Automation & Autonomy: Safety and Risk Assessment Must Be at the
11 838 Forefront, *J. Agromedicine* 28 (2023) 5–10. <https://doi.org/10.1080/1059924X.2022.2147625>.
12 839 [129] G.R. Aby, S.F. Issa, Safety of Automated Agricultural Machineries: A Systematic Literature Review,
13 840 *Safety* 9 (2023) 13. <https://doi.org/10.3390/safety9010013>.
14 841 [130] G. Ali, M.M. Mijwil, B.A. Buruga, M. Abotaleb, I. Adamopoulos, A Survey on Artificial Intelligence
15 842 in Cybersecurity for Smart Agriculture: State-of-the-Art, Cyber Threats, Artificial Intelligence
16 843 Applications, and Ethical Concerns, *Mesopotamian J. Comput. Sci.* 2024 (2024) 53–103.
17 844 <https://doi.org/10.58496/MJCS/2024/007>.
18 845 [131] A. Botta, S. Rotbei, S. Zinno, G. Ventre, Cyber security of robots: A comprehensive survey, *Intell.*
19 846 *Syst. Appl.* 18 (2023) 200237. <https://doi.org/10.1016/j.iswa.2023.200237>.
20 847 [132] B. Belzile, T. Wanang-Siyapdjie, S. Karimi, R.G. Braga, I. Iordanova, D. St-Onge, From Safety
21 848 Standards to Safe Operation with Mobile Robotic Systems Deployment, (2025).
22 849 <https://doi.org/10.48550/arXiv.2502.20693>.
23 850 [133] M. de Koning, T. Machado, A. Ahonen, N. Strokina, M. Dianatfar, F. De Rosa, T. Minav, R.
24 851 Ghabcheloo, A comprehensive approach to safety for highly automated off-road machinery under
25 852 Regulation 2023/1230, *Saf. Sci.* 175 (2024) 106517. <https://doi.org/10.1016/j.ssci.2024.106517>.
26 853 [134] X. Xiao, Y. Wang, Y. Jiang, Review of Research Advances in Fruit and Vegetable Harvesting Robots,
27 854 *J. Electr. Eng. Technol.* 19 (2024) 773–789. <https://doi.org/10.1007/s42835-023-01596-8>.
28 855 [135] K. Lochan, A. Khan, I. Elsayed, B. Suthar, L. Seneviratne, I. Hussain, Advancements in Precision
29 856 Spraying of Agricultural Robots: A Comprehensive Review, *IEEE Access* 12 (2024) 129447–129483.
30 857 <https://doi.org/10.1109/ACCESS.2024.3450904>.
31 858 [136] Z. Kamarianakis, S. Perdikakis, I.N. Daliakopoulos, D.M. Papadimitriou, S. Panagiotakis, Design and
32 859 Implementation of a Low-Cost, Linear Robotic Camera System, Targeting Greenhouse Plant Growth
33 860 Monitoring, *Future Internet* 16 (2024) 145. <https://doi.org/10.3390/fi16050145>.
34 861 [137] G.S. Berger, M. Teixeira, A. Cantieri, J. Lima, A.I. Pereira, A. Valente, G.G.R. de Castro, M.F. Pinto,
35 862 Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring System in a Precision
36 863 Agriculture Scenario, *Agriculture* 13 (2023) 239. <https://doi.org/10.3390/agriculture13020239>.
37 864 [138] V. Thomopoulos, D. Bitas, K.-N. Papastavros, D. Tsipianitis, A. Kavga, Development of an
38 865 Integrated IoT-Based Greenhouse Control Three-Device Robotic System, *Agronomy* 11 (2021) 405.
39 866 <https://doi.org/10.3390/agronomy11020405>.
40 867 [139] Q. Li, THE DESIGN OF GROUND AIR DUAL PURPOSE AGRICULTURAL INFORMATION ACQUISITION
41 868 ROBOT, *INMATEH Agric. Eng.* (2020) 259–268. <https://doi.org/10.35633/inmateh-62-27>.
42 869 [140] R. Sparrow, M. Howard, Robots in agriculture: prospects, impacts, ethics, and policy, *Precis. Agric.*
43 870 22 (2021) 818–833. <https://doi.org/10.1007/s11119-020-09757-9>.
44 871 [141] H. Zhao, Z. Tang, Z. Li, Y. Dong, Y. Si, M. Lu, G. Panoutsos, Real-Time Object Detection and Robotic
45 872 Manipulation for Agriculture Using a YOLO-Based Learning Approach, in: 2024 IEEE Int. Conf. Ind.
46 873 Technol. ICIT, IEEE, Bristol, United Kingdom, 2024: pp. 1–6.
47 874 <https://doi.org/10.1109/ICIT58233.2024.10540740>.
48 875 [142] C. Lauretti, C. Tamantini, L. Zollo, A New DMP Scaling Method for Robot Learning by
49 876 Demonstration and Application to the Agricultural Domain, *IEEE Access* 12 (2024) 7661–7673.
50 877 <https://doi.org/10.1109/ACCESS.2023.3349093>.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 878 [143] T.A. Ciarfuglia, I. Marian Motoi, L. Saraceni, D. Nardi, Pseudo-label Generation for Agricultural
5 879 Robotics Applications, in: 2022 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshop CVPRW, IEEE,
6 880 New Orleans, LA, USA, 2022: pp. 1685–1693. <https://doi.org/10.1109/CVPRW56347.2022.00175>.
7 881 [144] S. Woo, D.D. Uyeh, J. Kim, Y. Kim, S. Kang, K.C. Kim, S.Y. Lee, Y. Ha, W.S. Lee, Analyses of Work
8 882 Efficiency of a Strawberry-Harvesting Robot in an Automated Greenhouse, *Agronomy* 10 (2020) 1751.
9 883 <https://doi.org/10.3390/agronomy10111751>.
10 884 [145] J.P.L. Ribeiro, P.D. Gaspar, V.N.G.J. Soares, J.M.L.P. Caldeira, Computational Simulation of an
11 885 Agricultural Robotic Rover for Weed Control and Fallen Fruit Collection—Algorithms for Image
12 886 Detection and Recognition and Systems Control, Regulation, and Command, *Electronics* 11 (2022)
13 887 790. <https://doi.org/10.3390/electronics11050790>.
14 888 [146] H. Zeng, J. Yang, N. Yang, J. Huang, H. Long, Y. Chen, A Review of the Research Progress of Pruning
15 889 Robots, in: 2022 IEEE 2nd Int. Conf. Data Sci. Comput. Appl. ICDSCA, 2022: pp. 1069–1073.
16 890 <https://doi.org/10.1109/ICDSCA56264.2022.9988192>.
17 891 [147] B. Xie, Y. Jin, M. Faheem, W. Gao, J. Liu, H. Jiang, L. Cai, Y. Li, Research progress of autonomous
18 892 navigation technology for multi-agricultural scenes, *Comput. Electron. Agric.* 211 (2023) 107963.
19 893 <https://doi.org/10.1016/j.compag.2023.107963>.
20 894 [148] T. Wang, B. Chen, Z. Zhang, H. Li, M. Zhang, Applications of machine vision in agricultural robot
21 895 navigation: A review, *Comput. Electron. Agric.* 198 (2022) 107085.
22 896 <https://doi.org/10.1016/j.compag.2022.107085>.
23 897 [149] G. Kootstra, X. Wang, P.M. Blok, J. Hemming, E. van Henten, Selective Harvesting Robotics:
24 898 Current Research, Trends, and Future Directions, *Curr. Robot. Rep.* 2 (2021) 95–104.
25 899 <https://doi.org/10.1007/s43154-020-00034-1>.
26 900 [150] M. Bergerman, J. Billingsley, J. Reid, E. van Henten, Robotics in Agriculture and Forestry, in: B.
27 901 Siciliano, O. Khatib (Eds.), *Springer Handb. Robot.*, Springer International Publishing, Cham, 2016: pp.
28 902 1463–1492. https://doi.org/10.1007/978-3-319-32552-1_56.
29 903 [151] Å. Fast-Berglund, L. Gong, D. Li, Testing and validating Extended Reality (xR) technologies in
30 904 manufacturing, *Procedia Manuf.* 25 (2018) 31–38. <https://doi.org/10.1016/j.promfg.2018.06.054>.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65