
Information and Software Technology 72 (2016) 110–124

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Software metrics fluctuation: a property for assisting the metric

selection process

Elvira-Maria Arvanitou a, Apostolos Ampatzoglou a,∗, Alexander Chatzigeorgiou b,
Paris Avgeriou a

a Department of Mathematics and Computer Science, University of Groningen, Zernike Campus, Groningen, The Netherlands
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 24 May 2015

Revised 22 December 2015

Accepted 22 December 2015

Available online 30 December 2015

Keywords:

Object-oriented metrics

Fluctuation

Case study

Software evolution

a b s t r a c t

Context: Software quality attributes are assessed by employing appropriate metrics. However, the choice

of such metrics is not always obvious and is further complicated by the multitude of available metrics.

To assist metrics selection, several properties have been proposed. However, although metrics are often

used to assess successive software versions, there is no property that assesses their ability to capture

structural changes along evolution.

Objective: We introduce a property, Software Metric Fluctuation (SMF), which quantifies the degree to

which a metric score varies, due to changes occurring between successive system’s versions. Regarding

SMF, metrics can be characterized as sensitive (changes induce high variation on the metric score) or

stable (changes induce low variation on the metric score).

Method: SMF property has been evaluated by: (a) a case study on 20 OSS projects to assess the ability of

SMF to differently characterize different metrics, and (b) a case study on 10 software engineers to assess

SMF’s usefulness in the metric selection process.

Results: The results of the first case study suggest that different metrics that quantify the same quality

attributes present differences in their fluctuation. We also provide evidence that an additional factor that

is related to metrics’ fluctuation is the function that is used for aggregating metric from the micro to

the macro level. In addition, the outcome of the second case study suggested that SMF is capable of

helping practitioners in metric selection, since: (a) different practitioners have different perception of

metric fluctuation, and (b) this perception is less accurate than the systematic approach that SMF offers.

Conclusions: SMF is a useful metric property that can improve the accuracy of metrics selection. Based

on SMF, we can differentiate metrics, based on their degree of fluctuation. Such results can provide input

to researchers and practitioners in their metric selection processes.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Software measurement is one of the most prevalent ways of

monitoring software quality [21]. In practice, software quality mea-

surement activities are governed by a measurement plan (e.g., de-

veloped based on the IEEE/ISO/IEC-15939 Std. [1]), which, among

others focuses in defining the measurement goals, and the metrics

selection process. According to Fenton and Pfleeger [16], building

a measurement plan involves answering three main questions, two

on defining the measurement goals, and a third one, on selecting

appropriate metrics:
∗ Corresponding author. Tel.: +30 2310611090.

E-mail addresses: e.m.arvanitou@rug.nl (E.-M. Arvanitou),

apostolos.ampatzoglou@gmail.com, a.ampatzoglou@rug.nl (A. Ampatzoglou),

achat@uom.gr (A. Chatzigeorgiou), paris@cs.rug.nl (P. Avgeriou).

http://dx.doi.org/10.1016/j.infsof.2015.12.010

0950-5849/© 2015 Elsevier B.V. All rights reserved.
• What to measure? This question has two levels: (a) what qual-

ity attributes to measure?—this is related to the identification

of the most important concerns of the stakeholders, and (b)

what parts of the system should be assessed?—this is related

to whether quality measurement should be performed on the

complete system (measure-in-large) or on a specific design “hot-

spot” (measure-in-small) [16].

• When to measure? This question has two levels as well. The

first level concerns the measurement frequency, where one can

choose between two major options: (i) perform the measure-

ment tasks once during the software lifecycle (measure once),

or (ii) perform measurement tasks many times during the soft-

ware lifecycle (measure repeatedly) [16]. The second level con-

cerns the development phase(s) when measurement is to be

performed. This decision sets some additional constraints to

the metric selection process, in the sense that if one selects to

http://dx.doi.org/10.1016/j.infsof.2015.12.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.12.010&domain=pdf
mailto:e.m.arvanitou@rug.nl
mailto:apostolos.ampatzoglou@gmail.com
mailto:a.ampatzoglou@rug.nl
mailto:achat@uom.gr
mailto:paris@cs.rug.nl
http://dx.doi.org/10.1016/j.infsof.2015.12.010


E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 111

o

r

‘

a

i

o

t

s

a

c

s

i

[

m

i

d

T

t

u

a

[

a

a

b

s

r

i

f

i

a

t

t

m

“

(

d

s

c

t

r

a

p

t

t

t

n

a

(

s

t

o

o

c

s

m

i

i

s

t

r

t

q

p

g

s

d

o

i

f

l

m

t

f

g

o

fl

c

a

s

t

S

c

l

g

i

t

t

s

p

e

t

t

2

l

l

M

o

t

l

2

i

h

r

a

C

u

o

a

f

perform measurement activities in an early development phase

the available metric suites are different from those that are

available at the implementation level. Usually, design-level met-

rics are less accurate than code-level metrics; however, they are

considered equally important, because they provide early in-

dications on parts of the system that are not well-structured.

A detailed discussion on high-level metrics (design-level) and

low-level metrics (code-level), can be found in [3].

• How to measure? While answering this question, one should se-

lect the most fitting measure from the vast collection of avail-

able software quality metrics.

All aforementioned questions are inter-dependent, so the order

f answering them varies; for example one could start from met-

ic selection (i.e. ‘how’) and then move on to answer ‘when’ and

what’ (i.e., measurement goal), or the other way around. When

nswering one of the questions, the available options for answer-

ng the subsequent questions are getting more limited (an elab-

rate discussion on the inter-connection among the answers to

hese questions is presented in Section 7). For example, if someone

elects to measure cohesion at the design phase, the set of avail-

ble metrics is limited to the high-level cohesion metrics, as dis-

ussed by Al Dallal and Briand [3]; whereas if one selects to mea-

ure cohesion at implementation level, the set of available metrics

s broadened to the union of high- and low-level cohesion metrics

3]. Due to the high number of available metrics, the selection of

etrics that quantify the target quality attributes is far from triv-

al. For example, concerning cohesion and coupling, recent studies

escribe more than 20 metrics for each one of them [3] and [19].

his selection process becomes even more complex by the option

o choose among multiple aggregation functions. Such functions are

sed to aggregate metric scores from the micro-level of individual

rtifacts (e.g. classes), to the macro-level of entire systems [13] and

33], whose industrial relevance is discussed in detail by Mordal et

l. [29]. In order to assist this metric selection process, researchers

nd practitioners have proposed several metric properties that can

e used for metrics validation and characterization [1,9] and [10].

Metrics selection becomes very interesting in the context of

oftware evolution. Along evolution metric scores change over time

eflecting the changes of different characteristics of the underly-

ng systems. For example a metric that concerns coupling, changes

rom one version of the system to the other, reflecting the changes

n the dependencies among its classes. Therefore, a quality assur-

nce team needs to decide on the accuracy with which they wish

o capture small-scale changes from one version of the system to

he other. This decision is influenced by the goals of the measure-

ent (i.e., the answers to the first two aforementioned questions—

what and when to measure?”). In particular, both available options

i.e., capture small changes or neglect them) may be relevant in

ifferent contexts. For example, when trying to assess the overall

oftware architecture, the quality team might not be interested in

hanges that are limited inside a specific component; on the con-

rary, when trying to assess the effect of applying a source code

efactoring, e.g., extract a superclass [18], which is a local change,

small fluctuation of the metric score should be captured. Thus, a

roperty that characterizes a metric’s ability to capture such fluc-

uations would be useful in the metric selection processes. Never-

heless, to the best of our knowledge, there is no such property in

he current state of the art for research or practice.

Therefore, in this paper, we define a new metric property,

amely Software Metrics Fluctuation (SMF), as the degree to which

metric score changes from one version of the system to the other

for more details see Section 3). While assessing a metric with re-

pect to its fluctuation, it can be characterized as stable (low fluc-

uation: the metric changes insignificantly over successive versions)

r as sensitive (high fluctuation: the metric changes substantially
ver successive versions). Of course, the property is not binary but

ontinuous: there is a wide range between metrics that are highly

table and those that are highly sensitive. Although the observed

etric fluctuations depend strongly on the underlying changes

n a system, the metrics calculation process also plays a signif-

cant role for the assessment of fluctuation. For example, “What

tructural characteristics does it measure?”, “How frequently/easily do

hese characteristics change?” or “What is the value range for a met-

ic?”. In order for the fluctuation property to be useful in prac-

ice it should be able to distinguish between different metrics that

uantify the same quality attribute (e.g., cohesion, coupling, com-

lexity, etc.). This would support the metric selection process by

uiding practitioners to select a metric that is either stable or sen-

itive according to their needs for a particular quality attribute. Ad-

itionally, several metrics work at the micro-level (e.g., method-

r class-level), whereas practitioners might be interested in work-

ng at a different level (e.g., component- or system-level). The most

requent way of aggregating metrics from the micro- to the macro-

evel is the use of an aggregation function (e.g., average, maxi-

um, sum, etc.). Therefore, we need to investigate if SMF is able

o distinguish between different aggregation functions when used

or the same metric. Such an ability would enable SMF to provide

uidance to practitioners for choosing the appropriate combination

f metric and aggregation function.

In this paper we empirically validate SMF by assessing: (a) the

uctuation of 19 existing object-oriented (OO) metrics, through a

ase study on open-source software (OSS) projects—see Section 5,

nd (b) its usefulness by conducting a second case study with 10

oftware engineers as subject—see Section 6. The contribution of

he paper is comprised of both the introduction and validation of

MF as a property and the empirical evidence derived from both

ase studies. The organization of the rest of the paper is as fol-

ows: Section 2 presents related work and Section 3 presents back-

round information on the object-oriented metrics that are used

n the case studies; Section 4 discusses fluctuation and introduces

he definition of a software fluctuation metric; Section 5 describes

he design and results of the case study performed so as to as-

ess the fluctuation of different object-oriented metrics; Section 6

resents the design and outcome of the case study conducted for

mpirically validating the usefulness of SMF; Section 7 discusses

he main findings of this paper; Section 8 presents potential threats

o the validity; and Section 9 concludes the paper.

. Related work

Since the proposed Software Metrics Fluctuation property al-

ows the evaluation of existing metrics, past research efforts re-

ated to desired metric properties will be presented in this section.

oreover, since the proposed property is of interest when some-

ne aims at performing software evolution analysis, other metrics

hat have been used in order to quantify aspects of software evo-

ution will be described as well.

.1. Metric properties

According to Briand et al. [9,10] metrics should conform to var-

ous theoretical/mathematical properties. Specifically, Briand et al.,

ave proposed several properties for cohesion and coupling met-

ics [9,10], namely: Normalization and Non-Negativity, Null Value

nd Maximum Value, Monotonicity, and Merging of Unconnected

lasses [9,10]. The aforementioned metric properties are widely

sed in the literature to mathematically validate existing metrics

f these categories (e.g., by Al Dallal et al. [2]). Additionally, in

similar context, IEEE introduced six criteria that can be used

or assessing the validity of a metric in an empirical manner.



112 E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124

c

a

t

w

t

i

h

D

s

m

c

p

H

o

i

i

i

4

r

f

o

t

r

Concerning empirical metric validation, the 1061–1998TM IEEE

Standard for Software Quality Metrics [1] discusses the following

properties: Correlation, Consistency, Tracking, Predictability, Discrimi-

native power, and Reliability. From the above metric properties, the

only one related to evolution (i.e., takes into account multiple ver-

sions of a system) is the tracking criterion. Tracking differs from

fluctuation in the sense that tracking is assessing the ability of

the metric to co-change with the corresponding quality attribute,

whereas the proposed fluctuation property is assessing the rate

with which the metric score is changing along software evolution,

due to changes in the underlying structure of the system.

2.2. Metrics for quantifying software evolution

Studying software evolution with the use of metrics is a broad

research field that has attracted the attention of researchers dur-

ing the last two decades. According to Mens and Demeyer [28]

software metrics can be used for predictive and retrospective rea-

sons. For example, metrics can be used to identify parts of the

system that are critical, or evolution-prone (i.e., predictive); or for

analysing the software per se, or the followed processes (retro-

spective). For example, Gîrba et al. [20] propose four metrics that

can be used for forecasting software evolution, based on histori-

cal measurements, e.g., Evolution of Number of Methods (ENOM) and

Latest Evolution of Number of Methods (LENOM).

Additionally, Ó Cinnéide et al. [30] characterize metrics as

volatile or inert by investigating if the values of specific metrics are

changed due to the application of a refactoring (i.e., binary value).

Despite the fact that the notions used by Ó Cinnéide et al. [30] are

similar to ours (characterize a metrics as sensitive or stable), they

are only able to capture if the application of a refactoring changes

a metric value or not. As a result, volatility can be calculated only

if a detailed change record is available, whereas in our study fluc-

tuation can be calculated simply by using a time series of metric

values. In addition to that, volatility, as described by Ó Cinnéide et

al. [30] is a binary property, whereas SMF is a continuous property

which captures the degree of change. As a consequence the dis-

criminative power of SMF is substantially higher. For example, two

metrics might have changed during a system transition, but the

first might have been modified by 5% and the other by 90%. SMF

will be able to capture such differences between metrics, whereas

the approach by Ó Cinnéide et al. [30] would characterize them

both as equally volatile.

3. Quality attributes and object-oriented metrics

As already discussed in Section 1, different software quality

metrics can be calculated for assessing the same quality attribute

(QA). In this study we focus on metrics from two well-known met-

ric suites [6,34]. The employed suites contain metrics that can be

calculated at the detailed-design and the source-code level (re-

lated to the when to measure question, discussed in Section 1),

and can be used to assess well-known internal quality attributes,

such as complexity, coupling, cohesion, inheritance, and size. We

note that although all detailed-design metrics can be calculated

at source code level, as well, we categorize them in the earliest

possible phase (i.e., detailed-design), in which they can be calcu-

lated1. The aforementioned quality attributes have been selected

in accordance to [14], where the authors, using metrics quantify-

ing these QAs, performed an exploratory analysis of empirical data
1 For example, number of methods (NOM) can be calculated from both UML class

diagram and source code, but it is mapped to detailed-design since the class dia-

grams are usually produced before the source code. On the other hand, message

passing coupling (MPC) can only be calculated from the source code since it needs

the number of methods called.
oncerning productivity. The selected metric suites are described

s follows:

• Source-code-level metrics: Riaz et al. [31] presented a system-

atic literature review (SLR) that aimed at summarizing software

metrics that can be used as maintainability predictors. In addi-

tion to that, the authors have ranked the identified studies, and

suggested that the work of van Koten and Gray [34], and Zhou

and Leung [36] were the most solid ones [31]. Both studies (i.e.,

[34,36]) have been based on two metric suites proposed by Li

and Henry [26] and Chidamber et al. [14], i.e., two well-known

object-oriented set of metrics. The majority of the van Koten

and Gray metrics are calculated at the implementation phase.

• Detailed-design-level metrics: On the other hand, a well-

known object-oriented metric suite that can be calculated at

the detailed-design phase is the quality metrics for object-

oriented design (QMOOD) suite, proposed by Bansiya and Davis

[6]. The QMOOD metric suite introduces 11 software metrics

that are used to assess internal quality attributes that are sim-

ilar to those of the Li and Henry suite [26]. The validity of the

QMOOD suite has been evaluated by performing a case study

with professional software engineers [6].

The two selected metric suites are presented in Table 1. From

he 21 metrics described in Table 1, for the purpose of our study

e ended up with 19 by:

• Excluding the direct access measure (DAM) metric from the

QMOOD suite [6], because the Li and Henry [26] metric suite

does not offer metrics for the encapsulation quality attribute;

and

• Considering the number of methods (NOM) metric from both

metrics suite as one metric in our results, since it is defined

identically in both studies.

The metrics that are presented in Table 1 are accompanied by

he quality attribute that they quantify and the development phase

n which they can be calculated. Concerning quality attributes, we

ave tried to group metrics together, when possible. For example,

AC (Data Abstraction Coupling) could be classified both as an ab-

traction metric and as a coupling metric. However, since no other

etric from our list was related to abstraction, we preferred to

lassify it as a coupling metric. Similarly, NOP (Number of Polymor-

hic Methods) is originally introduced as a polymorphism metric.

owever, polymorphism is often associated with the elimination

f cascaded-if statements (e.g., the Strategy design pattern), which

n turn is associated with complexity measures (e.g., WMPC). Thus,

nstead of eliminating it (similarly to DAM), we preferred to treat

t as a complexity measure, calculated at the design level.

. Software metrics fluctuation

In this section we present a measure for quantifying the met-

ic fluctuation property. One of the first tasks that we have per-

ormed while designing this study was to research the literature in

rder to identify if an existing measure could be able to quantify

he metric fluctuation property, based on the following high-level

equirements:

(a) Based on the definition of SMF (i.e., the degree to which a

metric score changes from one version of the system to the

other), the identified metric should take into account the or-

der of measurements in a metric time series. This is the

main characteristic that a fluctuation property should hold,

in the sense that it should quantify the extent to which a

score changes between two subsequent time points.

(b) As a border case from the aforementioned requirement,

the identified metrics should be able to reflect changes



E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 113

Table 1

Object-oriented metrics.

Suite Metric Description Develop. phase Quality attribute

van Koten and Gray DIT Depth of Inheritence Tree: Inheritence level number, 0 for the root class. Design Inheritance

NOCC Number of Children Classes: Number of direct sub-classes that the class has. Design Inheritance

MPC Message Passing Coupling: Number of send statements defined in the class. Source code Coupling

RFC Response For a Class: Number of local methods plus the number of methods called by

local methods in the class.

Source code Coupling

LCOM Lack of Cohesion of Methods: Number of disjoint sets of methods (number of sets of

methods that do not interact with each other), in the class.

Source code Cohesion

DAC Data Abstraction Coupling: Number of abstract types defined in the class. Design Coupling

WMPC Weighted Method per Class: Average cyclomatic complexity of all methods in the class. Source code Complexity

NOM Number of Methods: Number of methods in the class. Design Size

SIZE1 Lines of Code: Number of semicolons in the class. Source code Size

SIZE2 Number of Properties: Number of attributes and methods in the class Design Size

QMOOD DSC Design Size in Classes: Number of classes in the design. Design Size

NOH Number of Hierarchies: Number of class hierarchies in the design. Design Inheritancea

ANA Average Number of Ancestors: Average number of classes from which a class inherits

information.

Design Inheritancea

DAM Data Access Metric: Ratio of the number of private (protected) attributes to the total

number of attributes.

Design Encapsulation

DCC Direct Class Coupling: Number of other classes that the class is directly related to (by

attribute declarations and message passing).

Source code Coupling

CAM Cohesion Among Methods: Sum of the intersection of method parameters with the

maximum independent set of all parameter types in the class.

Design Cohesion

MOA Measure of Aggregation: Number of data declarations whose types are user defined

classes.

Design Couplingb

MFA Measure of Functional Abstraction: Ratio of the number of methods inherited by a class

to the total number of methods accessible by methods.

Design Inheritancea

CIS Class Interface Size: Number of public methods Design Size

NOP Number of Polymorphic Methods: Number of methods that can exhibit polymorphic

behavior

Design Complexity

NOM Number of Methods: Number of methods in the class. Design Size

a All metrics whose calculation is based on inheritance trees are marked as associated to inheritance.
b Since aggregation is a specific type of coupling, we classified MOA as a coupling metric.

Fig. 1. Fluctuation example.

a

e

r

m

between individual successive versions and not by treat-

ing the complete software evolution as a single change.

In other words, the property should be able to discrimi-

nate between time series that range within the same up-

per and lower value, but with a different change fre-

quency (e.g., see TimeSeries1 and TimeSeries2 in the fol-

lowing example—Fig. 1) between subsequent points in

time.

(c) The proposed fluctuation property should produce values

that can be intuitively interpreted, especially for border

cases. Therefore, if a score does not change in the exam-

ined time period, the fluctuation metric should be evalu-
ated to zero. Any other change pattern should result in a

non-zero fluctuation value. Finally, the metric should pro-

duce its highest value for time series that constantly change

over time and fluctuate between the one end of their range

to the other end, for every pair of successive versions of the

software.

To make the aforementioned requirements more understand-

ble, let us assume the time series of Fig. 1. For the series of the

xample, we would expect that a valid fluctuation property would

ank TimeSeries1 as the most sensitive, and TimeSeries5, as the

ost stable. From the literature [11,12,17,23], we identified three



114 E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124

5

m

b

d

t

d

p

r

5

f

T

t

r

h

R

5

M

f

f

m

f

t

c

N

a

m

m

c

(

t

t

g

(

b

s

t

c

m

p

5

measures that we considered as possible quantification of the fluc-

tuation property, namely:

• Volatility [30], which traditionally has been used as a measure

of the variation of price of a financial instrument over time, de-

rived from time series of past market prices. Volatility is calcu-

lated as the standard deviation of returns (i.e., the ratio of the

score in one time point, over the score in the previous time

point).

• Coefficient of Variance—CoV [17] is a standardized measure of

dispersion, which is defined as the ratio of the standard devia-

tion over the mean.

• Auto-correlation of lag one [11] is the similarity between obser-

vations as a function of the time lag between them. It is cal-

culated as the correlation co-efficient between each score with

the score in the previous time point.

However, none of these metrics was able to conform to the

aforementioned requirements, and the intuitive interpretation of

Fig. 1. Specifically:

• Volatility ranks TimeSeries4 as the most stable series (be-

cause the returns remain the same throughout the evolu-

tion). However, this result is not intuitively correct. The rea-

son for this, is that volatility is calculated by using the

standard deviation of returns (i.e., scorei-1/scorei). In Time-

Series4, the returns are stable, although it is clearly evi-

dent that the fluctuation is limited and with no ripples

at all.

• Coefficient of Variance, ranks TimeSeries1 and TimeSeries2, as

having exactly the same fluctuation. However, this interpre-

tation is not intuitively correct, in the sense that TimeSeries2

changes only once in the given timespan. The reason for this is

that CoV is calculated based on standard deviation and average

value, which are the same for both series.

• Auto-correlation of lag one, ranks TimeSeries3 and TimeSeries4,

as the most stable series. However, this result is also not in-

tuitive. The reason for the inability of the auto-correlation of

lag one to adequately act as a fluctuation measure, is the

fact that it explores if a series of numbers follow a spe-

cific pattern, in which one value is a function of the previ-

ous one. This is the case of TimeSeries3 which is an arith-

metic progression and of TimeSeries4, which is an exponential

progression.

Therefore, none of the examined existing measures is able to

quantify the SMF property. We thus estimate the Software Met-

rics Fluctuation property, as the “average deviation from zero of the

difference ratio between every pair of successive versions”. The math-

ematical formulation of metric fluctuation (mf) is as follows:

m f =

√∑i=n
i=2

(
scorei−scorei−1

scorei−1

)2

n − 1

�:sum,

n:total number of versions,
scorei: metric score at
version i,
scorei−1: metric score at
version i − 1

For calculating the deviation from zero, we used the squared

root of the second power of the ratio of the difference, in a way

similar to the one of standard deviation. Based on the aforemen-

tioned definition, the closer to zero mf is the more stable the met-

ric is; the higher the value of mf is, the more sensitive the met-

ric becomes. Using mf, the ranking of the time series of Fig. 1

is as follows (listed from most sensitive to most stable): Time-

Series1 > TimeSeries2 > TimeSeries3 ≈ TimeSeries4 > TimeSeries5,

which is intuitive.
. Case study on assessing the fluctuation of object-oriented

etrics

In this section we present the design and the results obtained

y a case study on 20 open-source software (OSS) projects, in or-

er to assess the ability of SMF to differentiate between metrics

hat quantify the same quality attribute and investigate possible

ifferences due to the used aggregation function. In Section 5.1, we

resent the case study design, whereas in Section 5.2 the obtained

esults.

.1. Study design

Case study is an observational empirical method that is used

or monitoring projects and activities in a real-life context [32].

he main reason for selecting to perform this study on OSS sys-

ems is the vast amount of data that is available in OSS reposito-

ies, in terms of versions and projects. The case study of this paper

as been designed and is presented according to the guidelines of

uneson et al. [32].

.1.1. Objectives and research questions

The goal of this study, stated here using the Goal-Question-

etrics (GQM) approach [7], is to “analyze object-oriented metrics

or the purpose of characterization with respect to their fluctuation,

rom the point of view of researchers in the context of software

etric comparison”. The evaluation of the fluctuation of metrics is

urther focused on two specific directions:

RQ1: Are there differences in the fluctuation of metrics that quantify

the same quality attribute?

RQ2: Are there differences in the fluctuation of metrics when using

different functions to aggregate them from class level to system

level?

The first question aims at comparing the fluctuation of metrics

hat quantify the same quality attribute. For example, concerning

omplexity, we have compared the fluctuation of WMPC [26], and

OP [6] metrics. In this sense a quality assurance team can select

specific quality attribute, and subsequently compare all available

etrics that quantify this attribute in order to select one or more

etrics based on their fluctuation. We have examined coupling,

ohesion, complexity, inheritance and size from both metric suites

i.e., [6] and [26]).

The second question deals with comparing different functions

hat aggregate metrics from class to system level, with respect

o metric fluctuation. We have examined the most common ag-

regation functions, i.e. average (AVG), sum (SUM), and maximum

MAX) [8]. The decision to use these three aggregation functions is

ased on their frequent use and applicability for ratio scale mea-

ures [25]. Specifically, from the available aggregation functions in

he study by Letouzey and Coq [25], we have preferred to use:

• MAX over MIN, because in many software metrics the mini-

mum value is expected to be zero, and therefore, no variation

would be detected;

• AVG over MEDIAN, because in many software metrics the me-

dian value is expected to be either zero or one, and therefore,

no variation would be detected.

Although we acknowledge the fact that other more sophisti-

ated aggregation functions exist, we have preferred to employ the

ost common and easy to use ones, in order to increase the ap-

licability and generality of our research results.

.1.2. Case selection and unit analysis

The case study of this paper is characterized as embedded [32],

in which the context is the OSS domain, the subjects are the OSS



E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 115

Table 2

Subjects and units of analysis.

Case Category # Classes #Versions AVG(LoC)

Art of Illusion Games 749 32 9,306

Azureus Vuze Communication 3,888 25 2,160,

Checkstyle Development 1,186 36 9,627

Dr Java Development 3,464 58 15,282

File Bot Audio & Video 7,466 25 92,079

FreeCol Games 794 41 6,593

FreeMind Graphics 443 42 6,106

Hibernate Database 3,821 51 23,753

Home Player Audio & Video 457 32 4,913

Html Unit Development 920 29 3,389

iText Text Processing 645 23 54,857

LightweightJava Game Library Development 654 42 8,485

ZDF MediaThek Audio & Video 617 41 1,742

Mondrian Databases 1,471 33 8,339

Open Rocket Games 3,018 27 19,720

Pixelator Graphics 827 33 3,392

Subsonic Audio & Video 4,688 42 62,369

Sweet Home 3D Graphics 341 25 6,382

Tux Guitar Audio & Video 745 20 3,645

Universal Media Server Communication 5,499 51 58,115

p

v

t

w

t

c

c

c

c

f

e

o

t

a

s

c

c

t

o

s

o

w

c

d

t

5

L

m

p

c

i

c

(

i

b

o

b

v

d

w

t

s

m

t

t

t

rojects and the units of analysis are their classes, across different

ersions. In order to retrieve data from only high quality projects

hat evolve over a period of time, we have selected to investigate

ell-known and established OSS projects (see Table 2) based on

he following criteria, aiming at selecting 20 OSS projects2:

1 The software is a popular OSS project in Sourceforge.net. This cri-

terion ensures that the investigated projects are recognized as

important by the OSS community, i.e. there is substantial sys-

tem functionality and adequate development activity in terms

of bug-fixing and adding requirements. To sort OSS projects

by popularity, we have used the built-in sorting algorithm of

sourceforge.net.

2 The software has more than 20 versions (official releases). We

have included this criterion for similar reasons to c1. Although

the selected number of versions is ad-hoc, it is set to a rela-

tively high value, in order to guarantee high activity and evolu-

tion of the project. Also, this number of versions provides an

adequate set of repeated measures as input to the statistical

analysis phase.

3 The software contains more than 300 classes. This criterion en-

sures that we will not include “toy examples” in our dataset. Af-

ter data collection, a manual inspection of the selected projects

has been performed so as to guarantee that the classes per se

are not trivial.

4 The software is written in java. We include this criterion because

the employed metric calculation tools analyze Java bytecode.

Building on the aforementioned criteria, we have developed the

ollowing selection process:

1. Sort Sourceforge.net projects according to their popularity

(c1)—step performed on January 2014.

2. Filter java projects (c2).

3. For the next project, check the number of versions in the repos-

itory (c3).

4. If number of versions > 20, download the most recent version

of the project, and check the number of classes (c4).

5. If number of classes > 300, then pick the project as a case for

our study (c4).

6. If the number of projects < 20, go back to step 3, if not, the

case selection phase is completed.
2 We aimed at selecting data for 20 OSS projects, to ensure the existence of

nough cases for an adequate statistical analysis.

d

D

t

s

In order to more comprehensively describe the context in which

ur study has been performed, we have analyzed our dataset

hrough various perspectives, and provide various demographics

nd descriptive statistics. First, concerning the actual changes that

ystems undergo, we test if the selected subjects (i.e., OSS projects)

onform to the Lehman’s law of continuous growth [24], i.e., in-

rease in number of methods. The results of our analysis suggest

hat in approximately 75% of transitions from one version to the

ther the number of methods has increased, whereas it remained

table in about 13%. Second, in Fig. 2, we present a visualization

f various demographic data on our sample. Specifically, in Fig. 2a,

e present a pie chart on the distribution of LoC, in Fig. 2b a pie

hart on the distribution of developers, in Fig. 2c a pie chart on the

istribution of years of development, and in Fig. 2d a pie chart on

he distribution of downloads.

.1.3. Data collection and pre-processing

As discussed in Section 3, we have selected two metric suites:

i a Henry [26] and QMOOD [6]. To automatically extract these

etric scores we have used Percerons Client (retrieved from: www.

ercerons.com), a tool developed in our research group, which cal-

ulates them from Java bytecode. Percerons is a software engineer-

ng platform [4] created by one of the authors with the aim of fa-

ilitating empirical research in software engineering, by providing:

a) indications of componentizable parts of source code, (b) qual-

ty assessment, and (c) design pattern instances. The platform has

een used for similar reasons in [5] and [22]. On the completion

f data collection, each class (unit of analysis) was characterized

y 19 variables. Each variable corresponds to one metric, and is a

ector of the metric values for the 20 examined project versions.

We note that Percerons Client calculates metric values, even

etailed-design metrics, from the source code of applications,

hereas normally, such metrics would be calculated on design ar-

ifacts (e.g., class diagrams). Therefore, for the needs of this case

tudy, we assume that: (a) design artifacts are produced with as

any details as required in order to proceed with the implemen-

ation phase, and (b) source code implementation follows the in-

ended design (i.e., there is no design drift). Supposing that these

wo assumptions hold, metrics calculated at source code level and

etailed-design level will be equivalent. For example, the values for

IT, NOM and CIS would be the same regardless of the phase that

hey are calculated. A threat to validity originating from these as-

umptions is discussed in Section 8.

http://www.percerons.com


116 E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124

Fig. 2. Sample demographics.

5

t

l

f

t

p

p

s

e

i

t

Additionally, in order to be able to perform the employed sta-

tistical analysis (Software Metric Fluctuation—see Section 3), we

had to explore an equal number of versions for each subject (OSS

project). Therefore, since the smallest number of versions explored

for a single project was 20, we had to omit several versions from

all other projects (that had more than 20 versions). In order for

our dataset to be as up-to-date as possible, for OSS projects with

larger evolution history, in our final dataset we have used the 20

most recent versions. Finally, to answer RQ2 we have created three

datasets (one for each aggregation function—MAX, SUM and AVG),

in which each one of the 20 cases was characterized by the same

set of metrics. We note that for the DSC metric, only the SUM func-

tion is applicable, since both the use of AVG or MAX function at

class level, would result to a system score of 1.00. Similarly, results

on the NOH metrics could be explored only through the SUM and

AVG aggregation functions.

5.1.4. Data analysis

In order to investigate the fluctuation of the considered met-

rics, we have used the mf measure (see Section 3), and hypothesis

testing, as follows:

• We have employed mf for quantifying the fluctuation of metric

scores retrieved from successive versions of the same project.

On the completion of the data collection phase, we have

recorded 20 cases (OSS software projects) that have been an-

alyzed by calculating mf (across their 20 successive versions).

In particular we have calculated mf for each metric score at

system level, three times, one for each different aggregation

function—MAX, SUM and AVG;

• We have performed paired sample t-tests [17] for investigating

if there is a difference between the mean mf of different met-

rics (aggregated at system level with the same function) that

quantify the same quality attribute;

• We have performed Friedman chi-square (x2) ANOVA [17] for

investigating if there is a difference between the mean mf

of the same metric, using different aggregation functions. For
identifying the differences between specific cases we have per-

formed post hoc testing, based on the Bonferroni correction

[17].

.2. Results

In order to assess the fluctuation metrics and aggregation func-

ions, in Table 3 we present the results of the mean mf, calcu-

ated over all projects and all versions with all three aggregation

unctions. The mean mf is accompanied by basic descriptive statis-

ics like min, max, and variance [17]. For each quality attribute, we

resent the corresponding metrics, and the corresponding mf. We

referred not to set an mf threshold for characterizing a metric as

table or sensitive, but rather use a comparative approach. To this

nd, we consider comparable:

• Metrics that quantify the same quality attribute and have been

aggregated with the same function, e.g. Compare avg(wmpc)

versus Avg(nop); and

• The same metrics aggregated with different functions, e.g., avg

versus Max.

In addition, in order to enable the reader to more easily extract

nformation regarding each research question, we used two nota-

ions in Table 3:

• The color of the cell (applicable for metrics), represents if the

specific metric is considered the most stable or the most sen-

sitive within its group, based on the mean score. On the one

hand, as most sensitive (see light grey cell shading), we char-

acterize metrics that present the maximum mf value, regard-

less of the aggregation function—e.g. NOP. On the other hand,

as most stable (see dark cell shading) we characterize those

that present the minimum mf, regardless of the aggregation

function—e.g. WMPC. We note that these characterizations are

only based on descriptive statistics, and therefore are influ-

enced by extreme values, corresponding to specific systems. A

final assessment of the sensitivity of metrics will be provided



E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 117

Table 3

Object-oriented metric fluctuation.

QA Metric Aggr. func. Mean Min Max Variance

Complexity WMPC AVG 0.063 0.005 0.315 0.005

SUM 0.214 0.005 1.206 0.064

MAX 0.224 0.000 0.608 0.041

NOP AVG 0.306 0.002 2.775 0.363

SUM 0.633 0.004 5.057 1.566

MAX 0.227 0.000 0.922 0.050

Cohesion LCOM AVG 0.256 0.006 0.994 0.085

SUM 0.402 0.009 1.669 0.264

MAX 0.791 0.000 4.725 1.517

CAM AVG 0.109 0.007 1.339 0.085

SUM 0.233 0.006 1.249 0.071

MAX 0.211 0.000 4.129 0.851

Inheritance NOCC AVG 0.122 0.005 0.551 0.019

SUM 0.243 0.009 1.074 0.060

MAX 0.543 0.000 5.965 1.739

DIT AVG 0.072 0.003 0.187 0.004

SUM 0.207 0.005 0.469 0.018

MAX 0.113 0.000 0.308 0.011

NOH AVG 0.097 0.006 0.345 0.012

SUM 0.172 0.017 0.738 0.024

MAX N/A N/A N/A N/A

ANA AVG 0.149 0.005 0.484 0.023

SUM 0.283 0.008 0.962 0.068

MAX 0.161 0.000 0.484 0.030

MFA AVG 0.289 0.000 1.255 0.139

SUM 0.390 0.000 1.471 0.210

MAX 0.076 0.000 0.967 0.049

Coupling DAC AVG 0.459 0.007 5.736 1.583

SUM 0.491 0.015 5.335 1.356

MAX 0.550 0.000 4.781 1.106

RFC AVG 0.070 0.003 0.301 0.006

SUM 0.181 0.009 0.642 0.022

MAX 0.114 0.000 0.487 0.017

MPC AVG 0.125 0.005 0.480 0.018

SUM 0.214 0.008 0.740 0.031

MAX 0.345 0.000 4.129 0.819

DCC AVG 0.097 0.006 0.229 0.007

SUM 0.217 0.010 0.681 0.026

MAX 0.126 0.000 0.375 0.015

MOA AVG 0.113 0.002 0.319 0.011

SUM 0.204 0.004 0.693 0.033

MAX 0.113 0.000 0.408 0.016

Size NOM AVG 0.230 0.190 0.292 0.001

SUM 0.180 0.007 0.642 0.020

MAX 0.207 0.000 1.005 0.081

CIS AVG 0.092 0.003 0.219 0.005

SUM 0.201 0.006 0.601 0.018

MAX 0.231 0.000 0.939 0.073

DSC AVG N/A N/A N/A N/A

SUM 0.974 0.004 36.351 65.484

MAX N/A N/A N/A N/A

SIZE1 AVG 0.079 0.004 0.325 0.006

SUM 0.169 0.009 0.450 0.012

MAX 0.182 0.000 0.841 0.051

SIZE2 AVG 0.072 0.005 0.227 0.004

SUM 0.179 0.008 0.516 0.014

MAX 0.231 0.000 1.151 0.087

d

Table 4

Differences by quality attribute.

QA Metric-1 Metric-2 AVG SUM MAX

Complexity WMPC NOP –1.866 –1.697 –0.049

0.07 0.10 0.96

Cohesion LCOM CAM 1.527 1.371 1.580

0.14 0.18 0.13

Inheritance NOCC DIT 1.814 0.842 1.481

0.08 0.41 0.15

NOH 0.833 1.258 N/A

0.41 0.22

ANA –1.251 –1.905 1.266

0.22 0.07 0.22

MFA –2.035 –1.537 1.604

0.05 0.14 0.12

DIT NOH –1.165 1.297 N/A

0.29 0.21

ANA –2.600 –1.847 –1.528

0.02 0.08 0.14

MFA –2.631 –2.088 0.882

0.02 0.05 0.39

NOH ANA –2.098 –1.909 N/A

0.05 0.07

MFA –2.637 –2.479 N/A

0.01 0.02

ANA MFA –1.834 –1.187 1.545

0.08 0.25 0.14

Coupling DAC RFC 1.405 1.177 1.805

0.18 0.25 0.09

MPC 1.202 1.050 0.634

0.24 0.31 0.53

DCC 1.310 1.038 1.798

0.21 0.31 0.09

MOA 1.237 1.081 1.852

0.23 0.29 0.08

RFC MPC –2.538 –1.578 –1.118

0.02 0.13 0.29

DCC –2.023 –3.034 –0.820

0.06 0.00 0.42

MOA –2.574 –1.017 0.035

0.02 0.32 0.97

MPC DCC 1.539 –0.204 1.054

0.14 0.84 0.30

MOA 0.523 0.411 1.121

0.61 0.69 0.28

DCC MOA –0.965 0.617 0.506

0.35 0.54 0.62

Size NOM CIS 10.467 –1.611 –0.419

0.00 0.12 0.68

DSC N/A –0.987 N/A

0.34

SIZE1 9.486 1.006 0.304

0.00 0.33 0.76

SIZE2 13.680 0.069 –0.481

0.00 0.95 0.64

Size (cont.) CIS DSC N/A –0.980 N/A

0.34

SIZE1 0.878 2.116 1.059

0.39 0.05 0.30

SIZE2 2.472 2.009 –0.004

0.02 0.06 0.99

DSC SIZE1 N/A 0.993 N/A

0.33

SIZE2 N/A 0.992 N/A

0.33

SIZE1 SIZE2 0.575 –0.964 –0.634

0.57 0.35 0.53

t

t

t

a

m

after we examine the existence of statistically significant differ-

ences (see Table 4—Section 5.2.1).

• Font style (applicable for aggregation functions), emphasizes the

combination of metrics and aggregation functions that produces

the most stable/sensitive versions of the specific metric. For ex-

ample, concerning WMPC, the MAX function is annotated with

italic fonts, since it provides the highest mf value—most sensi-

tive, whereas the AVG function (annotated with bold) provides

the lowest mf—most stable.

The observations that can be made, based on Table 3, are

iscussed in Sections 5.2, after the presentation of hypotheses
esting. Specifically, in Section 5.2.1 we further investigate

he differences among metrics assessing the same quality at-

ribute, whereas in Section 5.2.2, we explore the differences

mong different functions aggregating the scores of the same

etric.



118 E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124

5

a

o

m

t

a

r

e

s

s

(

g

p

h

g

m

o

s

r

t

c

w

A

s

o

c

p

5

r

l

3 The calculation of the LCOM employed by van Koten and Gray [34] is based

on the creation of a graph, in which nodes are methods, and edges are shared at-
5.2.1. Differences in the fluctuation of metrics assessing the same

quality attribute

To investigate if the results of Table 3 are statistically signifi-

cant, we have performed paired sample t-tests for all possible com-

parable combinations of metrics (see Table 4). For each comparable

cell (i.e., both metrics can be aggregated with the same aggrega-

tion function), we provide the t- and the sig value of the test. In

order for a difference to be statistically significant, sig. should be

less than 0.05 (see light grey cells). The sign of t-value, represents,

which metric has a higher mf. Specifically, a negative sign suggests

that the metric of the second column has a higher mf (i.e., is more

sensitive) than the first. For example, concerning NOCC and MFA,

the signs suggest that MFA is more sensitive when using the AVG

function.

The main findings concerning RQ1, are summarized in this sec-

tion organized by quality attribute. From this discussion we have

deliberately excluded metrics that cannot be characterized as most

stable or sensitive w.r.t. the examined quality attribute (e.g., ANA—

inheritance).

• Complexity: Concerning complexity, our dataset includes two

types of metrics: (a) one metric calculated at source code

level (Weighted Methods per Class (WMPC)—based on number

of control statements), and (b) one metric calculated at de-

sign level (Number of polymorphic methods (NOP)—based on a

count of polymorphic methods. The results of the study suggest

that number of polymorphic methods (NOP) is the most sensi-

tive complexity measure, whereas weighted methods per class

(WMPC) are the most stable one. However, this difference is not

statistically significant.

• Cohesion: Regarding cohesion, the cohesion among methods

of a class (CAM) metric, which can be calculated on the de-

tailed design, (defined in the QMOOD suite) is more stable

than the lack of cohesion of methods (LCOM) metric that is

calculated at source code level (defined in the Li and Henry

suite). Similar to complexity, this result is not statistically

significant.

• Inheritance: The metrics that are used to assess inheritance

are all calculated from design level artifacts. The most sensi-

tive metrics related to inheritance trees are number of children

classes (NOCC) and measure of functional abstraction (MFA),

whereas the most stable are number of hierarchies (NOH) and

depth of inheritance tree (DIT). The fact that DIT is the most

stable inheritance metric is statistically significant, only when

the AVG function is used.

• Coupling: Coupling metrics are calculated at both levels of

granularity. Specifically, data abstraction coupling (DAC) and

measure of aggregation (MOA) are calculated at design-level,

whereas message passing coupling (MPC), direct class cou-

pling (DCC) and response for a class (RFC) are calculated

at source code level. The most sensitive coupling metric

is data abstraction coupling (DAC), whereas response for a

class (RFC) and direct class coupling (DCC) are the most

stable ones. The result on the stability of RFC is statis-

tically significant, only with the use of AVG aggregation

function.

• Size: Concerning size we have explored five metrics, one on

code level—lines of code (SIZE1), and four on design level—

design size in classes (DSC), number of properties (SIZE2), class

interface size (CIS) and number of methods (NOM). The num-

ber of properties (SIZE2) metric is the most stable size measure;

whereas the most sensitive are number of methods (NOM) and

class interface size (CIS).The results reported on the sensitivity

of NOM are statistically significant concerning the AVG aggre-

gation function.
 t
.2.2. Differences in metrics’ fluctuation by employing a different

ggregation function

Similarly to Section 5.2.1, in this section we provide the results

f investigating the statistical significance of differences among the

f for the same metric, when using a different aggregation func-

ion. In Table 5, we present the results of an analysis of variance,

nd the corresponding post-hoc tests. Concerning the ANOVA we

eport the F-value and its level of significance (sig.), whereas for

ach post-hoc test only its level of significance. When the level of

ignificance for the F-value is lower than 0.05, the statistical analy-

is implies that there is a difference between aggregation functions

without specifying in which pairs). To identify the pairs of ag-

regation functions that exhibit statistically significant differences,

ost hoc tests are applied. Statistically significant differences are

ighlighted by light grey shading on the corresponding cells.

The results of Table 5 suggest that the use of different aggre-

ation functions can yield different fluctuations for the selected

etrics, at a statistically significant level. Therefore, to provide an

verview of the impact of the aggregation functions on metrics’

ensitivity, we visualize the information through two pie charts,

epresenting the frequency with which software metrics are found

o be the most stable or the most sensitive (see Fig. 3).

For example, if someone aims at sensitive metrics, preferable

hoices is aggregation by MAX or SUM (50% and 44%, respectively),

hereas AVG rarely produces sensitive results. On the other hand,

VG should be selected if someone is interested in stable metrics,

ince it yields the stable results for 83.3% of the cases. From these

bservations we can conclude that different aggregation functions

an be applied to the same metric and change the fluctuation

roperty of the specific metric.

.3. Interpretation of results

Concerning the reported differences in the fluctuation of met-

ics assessing the same quality attribute, we can provide the fol-

owing interpretations, organized by quality attribute:

• Complexity: NOP is more sensitive than WMPC. This result can

be interpreted from the fact that the calculation of WMPC

includes an additional level of aggregation (from method to

class), and the function that is used for this aggregation is the

AVG. Based on the findings of this study, the AVG function

provides relatively stable results, in the sense that in order to

have a change of one unit in the aggregated WMPC, one control

statement should be added in all methods of a class. Therefore,

the change rate of WMPC value is relatively low.

• Cohesion: LCOM is more sensitive than CAM. This result can be

explained by the fact that the addition of a method in a class

during evolution is highly likely to join some disjoint clusters of

the cohesion graph3, and therefore decrease the value of LCOM.

Consequently, LCOM value is expected not to be stable during

evolution.

• Inheritance: The fact that NOCC is the most sensitive among

the inheritance metrics is intuitively correct, since the addition

of children is the most common extension scenario for a hier-

archy. On the contrary, since only a few of these additions can

lead to an increase of DIT, this metric is among the most stable

ones. Similarly, NOH is not subject to many fluctuations, in the

sense that adding or removing an entire hierarchy is expected

to be a rather infrequent change.

• Coupling: The observation that MPC is more sensitive cou-

pling metric than RFC could be explained by the fact that MPC
ributes. The number of disjoint graphs is LCOM.



E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 119

Table 5

Differences by aggregation functions.

QA Metric x2 test (sig.) Post hoc tests

AVG-SUM AVG-MAX SUM-MAX

Complexity WMPC 15.487 0.00 0.00 0.88

0.000

NOP 8.380 0.03 0.90 0.08

0.015

Cohesion LCOM 7.000 0.03 0.01 0.00

0.030

CAM 28.900 0.00 0.01 0.00

0.000

Inheritance NOCC 11.873 0.00 0.01 0.68

0.003

DIT 24.025 0.00 0.06 0.00

0.000

NOH 27.900 N/A N/A 0.00

0.000

ANA 18.405 0.00 0.94 0.01

0.000

MFA 22.211 0.01 0.00 0.00

0.000

Coupling DAC 1.848 0.16 0.70 0.71

0.397

RFC 19.924 0.00 0.02 0.02

0.000

MPC 9.139 0.00 0.10 0.13

0.010

DCC 20.835 0.00 0.31 0.00

0.000

MOA 15.718 0.00 0.43 0.00

0.000

Size NOM 7.900 0.05 0.09 0.09

0.019

CIS 18.231 0.00 0.00 0.45

0.000

SIZE1 17.797 0.00 0.00 0.23

0.000

SIZE2 15.823 0.00 0.01 0.68

0.000

Fig. 3. Metrics sensitivity overview.

t

f

a

counts individual send messages, i.e., method invocations to

other classes. This count can be affected even by calling an

already called method. On the contrary, RFC (sum of method

calls and local methods) is more stable, since it depends on

the number of distinct method calls, and thus for its value to

change a new method should be invoked.

• Size: The fact that NOM and CIS are the most sensitive size met-

rics, was a rather expected result, in the sense that the addi-

tion/removal of methods (either public or not) is a very com-

mon change along software evolution. Therefore, the scores of

these metrics are expected to highly fluctuate across versions.

On the contrary, SIZE1 (i.e., lines of code) has proven to be the
most stable size metric, probably because of the large absolute

values of this metric (we used only large projects), which hin-

der changes of a large percentage to occur frequently.

The results of the study that concern the differences in the fluc-

uation of metrics that are caused by switching among aggregation

unctions, have been summarized in Fig. 3, and can be interpreted,

s follows:

• The fact that the AVG function provides the most stable results

for 83% of the metrics (all except from NOP, MFA and NOM), can

be explained by the fact that most of the projects were quite

large, in terms of number of classes. Therefore changes in the



120 E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124

m

H

t

m

d

p

t

i

R

c

T

w

fl

t

o

s

s

p

T

c

T

p

e

r

m

o

1

r

a

t

c

b

w

v

t

a

t

i

i

w

o

Z

“

r

r

t

s

t

numerator (sum of changes in some classes) could not reflect a

significant difference in the AVG metric scores at system level.

Thus, replicating the case study on smaller systems might be

useful for the generalizability of our results.

• The fact that both MAX and SUM functions provide the most

sensitive versions for almost an equal number of metrics, sug-

gests that these functions do not present important differences.

However, specifically for source code metrics, it appears that

the MAX function, provides more sensitive results. This result

can be considered intuitive, in the sense that source code met-

rics are changing more easily, and produce larger variations,

from version to version, compared to design level metrics. For

example, changes in number of lines are more frequent and

larger in absolute value than changes in the number of classes

or methods. Thus, the likelihood of the maximum value of a

metric change is higher in source code metrics, rather than

design-level ones.

6. Case study on the usefulness of SMF in metrics selection

In order to validate the ability of SMF to aid software quality as-

surance teams in the metric selection process, we conducted a case

study with 10 software engineers. In particular, we investigated if

software engineers are able to intuitively assess metric fluctuation

without using SMF, and how accurate this assessment is, compared

to SMF. In Section 6.1, we present the case study design, whereas

in Section 6.2 the obtained results.

6.1. Study design

With the term case study we refer to an empirical method that

is used for monitoring processes in a real-life context [32]. For this

reason, we have performed a case study simulating the process of

metric selection. The case study of this paper has been designed

and is presented according to the guidelines of Runeson et al. [32].

6.1.1. Objectives and research questions

The goal of this case study, stated here using the Goal-Question-

Metrics (GQM) approach [7], is to “analyze the SMF property for the

purpose of evaluation with respect to its usefulness in the context

of the software metrics selection process from the point of view of

software engineers”. The evaluation of the SMF property has been

focused on two specific directions:

RQ1: Do software engineers have a uniform perception on the fluc-

tuation of software metrics when not using the SMF property?

RQ2: Does SMF provide a more accurate prediction of the actual met-

ric fluctuation, compared to the intuition of software engineers?

The first research question aims at investigating the need for

introducing a well-defined property for quantifying metric fluctua-

tion. In particular, if software engineers have diverse perception of

what the fluctuation of a specific metric is, then there is a need for

guidance that will enable them to have a uniform way of assess-

ing metrics’ fluctuation. The second research question deals with

comparing: (a) the accuracy of software engineers’ opinion when

ranking specific combinations of metrics and aggregation functions

subjectively, i.e. without using the SMF property, with (b) the ac-

curacy of the ranking as provided objectively by the SMF property.

6.1.2. Case selection and data collection

To answer the aforementioned questions, we will compile a

dataset in which rows will be the cases (i.e., combinations of met-

rics and aggregation functions) and columns will be: (a) how soft-

ware engineers perceive metric fluctuation, (b) the metric fluctua-

tion as quantified through SMF, and (c) the actual metric fluctua-

tion. The case selection and data collection processes are outlined

below.
6.1.2.1. Case selection. In order to keep the case study execution

anageable we have preferred to focus on one quality attribute.

aving included more than one quality attributes would increase

he complexity of the metrics selection process, and would require

ore time for the execution of the case study. From the metrics

escribed in Table 1, we have decided to focus only on the cou-

ling quality attribute since that would offer:

• A variety of metrics. We have selected a quality attribute that

could be assessed with multiple metrics. Therefore, we have

eliminated complexity and cohesion QAs.

• Metric calculation at both the source code and detailed-design

level. We have excluded the inheritance QA, since all related

metrics can be calculated at the detailed-design phase. None of

the metrics can be only calculated at the source code level.

• Metrics whose calculation is not trivial. To increase the real-

ism of the metric selection process we have preferred to ex-

clude from our case study the metrics quantifying the size QA,

since their calculation is trivial.

Therefore, and by taking into account that we have used

hree aggregation functions (AVG, MAX, and SUM—as explained

n Section 5.1.1) and five coupling metrics (DCC, MOA, DAC, MPC,

FC—as presented in Table 1), our dataset consists of 15 cases.

6.2.1.2. Data collection. For each one of the aforementioned 15

ases, we have collected 12 variables (i.e., columns in the dataset).

he first 10 variables ([V1]–[V10]) represent the perception of soft-

are engineers on metrics fluctuations, whereas the other two: the

uctuation based on SMF ([V11]) and the actual mf, which is going

o be used as the basis for comparison ([V12]).

Perception of software engineers on metrics fluctuation. To

btain these variables we have used a well-known example on

oftware refactoring [18], which provides an initial system de-

ign (see Fig. 4a) and a final system design (see Fig. 4b), and ex-

lains the refactoring that have been used for this transformation.

he aforementioned designs, accompanied with the corresponding

ode, have been provided to 10 software engineers (i.e., subjects).

he case study participants possess at least an MSc degree in com-

uter science and have a proven working experience as software

ngineers in industry (see Table 6).

The subjects have been asked to order the combinations of met-

ics and aggregation functions from 1st to 15th place, i.e. from the

ost stable (1st place) to the most sensitive (15th place), based

n the influence of these changes to the metric scores. The 1–

5 range has been used to discriminate between all possible met-

ic/aggregation function combinations of the study. For example,

n engineer who considers that metric M and aggregation func-

ion F captures most of the changes that have been induced on

oupling, would assign the value 15 to that metric/function com-

ination. For the most stable metric/function combination, he/she

ould assign the value 1. These rankings have been mapped to

ariables: [V1]–[V10], one for each subject of the study. We note,

hat in order to increase the realism of the case study, we have not

llowed the participants to make any calculation on paper, since

his would not be feasible in large software systems. We note that

n case of an equal value, fractional ranking has been performed:

tems that are equally ranked, receive the same ranking number,

hich is the mean of the ranking they would have received, under

rdinal rankings. For example, if item X ranks ahead of items Y and

(which compare equal), ordinal ranking would rank X as “1”, Y as

2” and Z as “3” (Y and Z are arbitrarily ranked). Under fractional

anking, Y and Z would each get ranking number 2.5. Fractional

anking has the property that the sum of the ranking numbers is

he same as under ordinal ranking. For this reason, it is used in

tatistical tests [15].

SMF ranking. The ranking by SMF (column [V11]), is based on

he empirical results obtained from our case study on 20 open



E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 121

Fig. 4. Movie club (initial and final design) [18].

Table 6

Subjects’ demographics.

AVG (SD)

Age 31.3 (±8.42)

Development experience in years 7.8 (±4.34)

Frequency

BSc MSc PhD

Degree 2 7 1

Design Code Research

Type of experience 6 8 7

Web/Mobile Scientific Desktop Applications

Application domain 5 9 5

s

t

T

l

t

u

t

S

t

p

n

b

S

6

t

t

u

c

R

a

a

M

c

q

s

a

w

r

t

c

s

6

T

ource projects. In particular it has been extracted by sorting

he mean metric fluctuation as presented in the 4th column of

able 3.

Actual ranking. Finally, in order to record [V12], we have calcu-

ated the actual metric fluctuation from the initial to the final sys-

em, based on the formula provided in Section 4. Although the val-

es of [V12] have originally been numerical, we transformed them

o ordinal ones (i.e., rankings), so as to be comparable to [V1]–[V11].

imilarly to [V1]–[V10], equalities have been treated using the frac-

ional ranking strategy [15]. The final dataset of this case study is

resented in Table 7. It should be noted that SMF ranking does

ot perfectly match the actual ranking, because it has been derived

y the metric fluctuation recorded in the case study presented in

ection 5, i.e., in a different set of projects.

.1.3. Data analysis

To answer RQ1 we have performed correlation analysis by ex-

racting the intra-class correlation (ICC) on variables [V1]–[V10]

o check the inter-rater agreement [17]. In particular, we have

sed the average ICC in order to get an estimate of the average
orrelation of rankings between the subjects. To answer research

Q2, we have extracted Spearman correlation [17], between vari-

bles [V1]–[V11] with [V12]. The decision to apply a correlation

nalysis is based on the 1061 IEEE Standard for Software Quality

etrics Methodology [1], which suggests that a sufficiently strong

orrelation “determines whether a metric can accurately rank, by

uality, a set of products or processes (in the case of this study: a

et of metrics)”.

In order to interpret the values obtained by the correlation

nalysis, we have used the thresholds provided by Marg et al. [27],

hich suggest that a correlation coefficient higher than 0.7 cor-

espond to very strong relationships, correlations coefficients be-

ween 0.4 and 0.7 represent strong relationships, and correlation

oefficients between 0.3 and 0.4 correspond to moderate relation-

hips.

.2. Results

By performing the aforementioned analysis on the data of

able 7, we have been able to answer the research questions stated



122 E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124

Table 7

Case study dataset.

Function Metric Actual fluctuation Actual ranking [V12] SMF ranking [V11] [V1] [V2] [V3] [V4] [V5] [V6] [V7] [V8] [V9] [V10]

AVG MOA 0.00% 2 3 3 2 10 4 1 1 12 4 3.5 8.5

AVG RFC 0.00% 2 1 8 4.5 1 1 4 4 1 7 1.5 10

MAX RFC 0.00% 2 5 4 7 3 2 6 8 3 9 6.5 12

AVG MPC 4.31% 4 6 6 8.5 4 10 10 5.5 7 8 5 4

AVG DCC 8.33% 5 2 11 2 7 7 9 3 4 2 1.5 4

MAX MOA 26.09% 6 4 1 2 12 5 3 2 10 1 3.5 6.5

MAX MPC 33.33% 7 12 7 8.5 6 11 8 7 8 10 8 1.5

MAX DCC 80.43% 8 7 10 4.5 9 8 7 5.5 6 3 6.5 1.5

SUM RFC 91.38% 9 8 2 11.5 2 3 5 12 2 11 12 11

SUM MPC 100.00% 10,5 10 9 11.5 5 12 12 10 9 12 10 6.5

SUM MOA 100.00% 10,5 9 5 6 11 6 2 11 11 5 10 8.5

SUM DCC 116.67% 12 11 12 10 8 9 11 9 5 6 10 4

Table 8

Metrics selection accuracy (Software engineers

perception versus SMF-based).

Evaluator Correlation coeff. Sig.

#1 0.325 0.30

#2 0.563 0.05

#3 0.282 0.37

#4 0.543 0.06

#5 0.381 0.22

#6 0.689 0.01

#7 0.176 0.58

#8 0.173 0.59

#9 0.789 0.00

#10 –0.314 0.32

AVG (Evaluator) 0.361 N/A

SMF 0.794 0.00

3

h

s

m

s

7

b

m

t

b

a

m

t

t

s

c

i

in Section 6.1.1. First, concerning the correlation of the rankings

provided by the software engineers, the analysis showed that the

average ICC coefficient equals –0.227. The negative correlation coef-

ficient suggests that there is no reliability in the way that software

engineers intuitively assess the fluctuation of a metric. Therefore,

there is a need for a property that objectively characterizes this

metric property, and consequently guides software engineers in the

metrics selection process.

In addition, in order to investigate if the guidance that SMF pro-

vides is more accurate than the intuition of a software engineer,

we have extracted the Spearman rank correlation, and we present

the results in Table 8. The results of Table 8 suggest that the rank-

ing provided by SMF is more accurate in terms of correlation with

the actual metric fluctuation (i.e., 79.4%), than the ranking pro-

vided by the intuition of software engineers.

Additionally, we can also observe that only three evaluators

have been able to predict with a statistically significant accu-

racy the ranking of metrics with respect to their fluctuation. Al-

though this result might suggest that these software engineers are

not in great need of guidance, they represent only the 30% of

the sample. The rest of the software engineers had performed a

rather poor prediction, i.e., a correlation coefficient ranging from

–0.314 to 0.543. For example, Evaluator #10, has characterized as

the most sensitive metric MAX(RFC)—which in practice has not

changed its value in the provided example, whereas as the most

stable MAX(DCC)—in practice had an approximately 80% change.

Consequently, SMF can be characterized as a useful property in

the metric selection process, for three reasons: (a) software en-

gineers are in need of a property that can objectively character-

ize the degree of metrics fluctuation—since different software en-

gineers perceive different metrics as stable or sensitive; (b) the use

of SMF is leading to the most accurate prediction of metric fluctua-

tion, compared to the intuition of software engineers; and (c) only
0% of our study’s subjects (i.e., experienced software engineers)

ave been able to rank the metrics in a way that was statistically

ignificant correlated with the actual metric ordering—the large

ajority of software engineers would perform inadequate metric

election, in terms of fluctuation, without the use of SMF.

. Implications for researchers and practitioners

In order to provide an outcome that is directly exploitable by

oth researchers and practitioners, during the development of their

easurement plans (see details in Section 1), we created a pivot

able (see Table 9). The discussion of the results will be guided

y two factors that the quality assurance teams should take into

ccount when developing the measuring plan: (a) the decision to

easure in-large or measure in-small (“what to measure?”), and (b)

he development phase in which each metric is calculated (“when

o measure?”). The characterization of any metric as stable or as

ensitive can prove beneficial concerning the metrics selection pro-

ess as follows:

• Concerning the “what to measure” question: On the one

hand, metrics that have been characterized as sensitive are less

fitting than stable metrics for measure-in-large [16] evaluations,

because of the numerous and large fluctuations that hinder the

ability to derive the overall trend of the corresponding metric.

On the other hand, sensitive metrics are considered more fitting

for measure-in-small evaluations, e.g., to evaluate the effect of

a refactoring activity or the application of a design pattern, be-

cause they are more sensitive to code changes, than the more

stable ones.

• Concerning the “when to measure” question: The answer to

this question is influenced by both the decision on “what to

measure?” and the available metrics’ fluctuation. For example,

suppose a case in which we want to select a metric that is sen-

sitive (e.g., we are interested in performing a measure-in-small

evaluation); if, in addition, for the specific quality attribute all

design-level metrics are stable, then we should perform the

evaluation at the implementation level.

The dimensions of Table 9 represent the main options concern-

ng when and what to measure questions, whereas the content of

cells present the optimal combination of metric and aggregation

function with respect to fluctuation (how to measure question).

From the pivot table (and specifically from the when to measure

dimension), we deliberately excluded the measurement frequency

factor, since fluctuation is relevant only for repeated measures.

The results of this paper, as summarized in Table 9, can be ex-

ploited by both researchers and practitioners, as follows:

• Researchers can perform metric selection, based on metrics

fluctuation and the scope of their projects. More specifically, in



E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124 123

Table 9

Overview of suitable metrics/aggregation functions.

When to measure?

What to measure (granularity/QA)? Design Implementation

Measure in-small (sensitive metrics are desired) Complexity SUM(NOP) MAX(WMC)

Cohesion SUM(CAM) MAX(LCOM)

Inheritance MAX(NOCC) N/A

Coupling MAX(DAC) MAX(MPC)

Size MAX(CIS) MAX(SIZE1)

Measure in-large (stable metrics are desired) Complexity MAX(NOP) AVG(WMC)

Cohesion AVG(CAM) AVG(LCOM)

Inheritance AVG(DIT) N/A

Coupling AVG(MOA) AVG(RFC)

Size AVG(SIZE2) AVG(SIZE1)

8

i

d

s

s

e

t

a

w

t

o

o

m

m

w

l

m

p

W

(

v

p

i

s

b

F

t

a

a

i

t

u

a

o

s

d

s

p

t

r

t

fl

e

H

a

t

t

t

t

e

s

e

p

g

c

C

cases that researchers wish to evaluate design or implementa-

tion decisions that have a local effect (e.g. refactorings or de-

sign patterns) and are interested in their effect on system level,

they should prefer a sensitive metric. To this end, the results

indicate that sensitive combinations of metrics and aggregation

functions exist for all explored quality attributes.

• Researchers can use the proposed fluctuation evaluation, while

introducing software quality metrics, and accompany their empir-

ical assessment with that evaluation. This can be done in ad-

dition to evaluating the validity of the metric, by using well-

known international standards [1] or established SE guidelines

[9,10].

• Practitioners can perform metric selection, based on metrics

fluctuation and their software quality measuring plan. After

selecting: (a) the quality attribute they want to assess, and (b) if

they want to measure in-small, or measure in-large, they can de-

cide if they will use a sensitive or a stable metric. Then, based

on the findings of this study, they can filter the available met-

rics from their quality dashboard. We note that metric selec-

tion cannot be blindly based on SMF, since the main properties

of metrics should be considered as well. For example, if a soft-

ware development team wishes to quantify a specific aspect of

size, e.g., the number of classes in a system, they will use the

DSC (Design Size in Classes) metric, regardless of its fluctua-

tion. Nevertheless, if for example a software quality assurance

team wants to quantify the change in coupling after a refactor-

ing (without focusing on a specific type of coupling), the use of

SMF can optimize the metric selection decision.

• When practitioners are interested in producing stable versions

of code-level metrics, they should employ the AVG function,

whereas, when they are interested in sensitive versions, they

should use the MAX function. Similarly, regarding design-level

metrics, stable versions of metrics are more frequently produced

by using the AVG function. In the case of using the SUM or MAX

aggregation function, a case-by-case examination is needed.

• Practitioners can include in their quality dashboards var-

ious views of the same metric (same metric with differ-

ent aggregation functions), since they provide different in-

formation, and therefore can be exploited under different

circumstances.

. Threats to validity

This section discusses construct, conclusion, and external valid-

ty for this study. Internal validity is not applicable as the study

oes not examine causal relations. Furthermore, we study conclu-

ion validity instead of reliability, as in purely quantitative case

tudies, the room for researcher bias is rather limited, if not zero,

liminating any threats to reliability [35].

A threat to construct validity is that the obtained mf and

he conclusions regarding the fluctuation are dependent upon the
ctual changes that have been performed in each system. In other

ords, the fact that SMF is quantified and discussed based on

he results of a case study implies that the fluctuation property

f a specific metric is dependent upon the examined systems, as

pposed to a property like monotonicity which can be assessed

athematically and independently from the systems on which the

etric is applied. For example, a system with no changes at all

ould imply that a metric is stable, whereas stability is due to the

ack of changes, and not a property of the metric itself. In order to

itigate this threat, during project selection we mined only active

rojects that were substantially different across successive releases.

e manually validated these differences by inspecting the SIZE1

Lines of Code) metric score. In addition, a possible threat to the

alidity of our results is the bias that might be caused by the time

eriod between versions for different projects, and the differences

n projects’ development team size, which might affect the load of

ystem changes. However, we believe that this threat is mitigated

y the variance of these factors in our sample, as presented in

ig. 2.

Moreover, the current assessment of design-level metrics fluc-

uation has been performed on the source code of applications,

nd not on design artifacts. The metrics calculated on source code

nd design artifacts, can be considered as equivalent if the follow-

ng two assumptions hold: (a) the design artifacts are fully de-

ailed, and (b) there is no design drift. These assumptions do not

sually hold in practice, as the level of detail of design artifacts

nd the degree of design drift varies across projects. For example,

ne could produce a class diagram only with class names and ba-

ic associations, while another could produce class diagrams with

etails in the level of even getters and setters. However, as-

essing metrics’ fluctuation on these extreme cases would possibly

rovide different results, which would not be reliable, in the sense

hat they would be mostly related to the artifact level of detail,

ather than the metrics’ properties.

Furthermore, concerning conclusion validity, we need to note

hat the rather small sample size in the case study assessing the

uctuation of object-oriented metrics might to some extent influ-

nce the characterization of metrics as either sensitive or stable.

owever, we believe that the diversity of projects’ characteristics

s presented in Fig. 2, is sufficiently mitigating any effect from

he sample size of investigated OSS projects. Finally, concerning

hreats to external validity, we have identified two issues. First,

he results are heavily dependent on the size of the projects in

erms of classes (see Section 4: RQ2) and therefore cannot be gen-

ralized to smaller projects. However, this threat cannot be con-

idered crucial, in the sense that quality assurance is more rel-

vant to larger projects. Secondly, our dataset only included Java

rojects, and therefore results cannot be generalized to other pro-

ramming languages, where different principles exist. For example,

oncerning the results on ANA, the results might be different for

++ projects, in which multiple inheritance is allowed.



124 E.-M. Arvanitou et al. / Information and Software Technology 72 (2016) 110–124

[

[

[

[

[

[

[

[

9. Conclusions

Metric selection for long-term monitoring of software quality is

a multi-criteria decision making process, in the sense that the soft-

ware quality assurance team should agree on the important quality

attributes, the frequency with which the measurement should be

performed, and the scale to which it should be applied (system-

wide or local). Apart from its inherent complexity, this process be-

comes even more challenging due to the plethora of existing soft-

ware metrics attached to each quality attribute. To assist the met-

ric selection process, in this paper we define a new metric prop-

erty, namely fluctuation, as the degree to which a metric is able

to capture changes in the underlying structure of the software sys-

tem. Based on this definition, we investigated the fluctuation of 19

object-oriented metrics, through a case study on 20 open-source

software projects. The results of the study indicated that source

code metrics are in principle more sensitive than design level met-

rics, and that there are specific metrics that when used with dif-

ferent aggregation functions can provide both sensitive and stable

measures of the investigated quality attributes. Finally, scenarios

of use for the main results of this paper have been presented from

both practitioners’ and researchers’ point of view.

As future work, we plan to replicate this study with different

metrics (e.g., architecture ones) and compile a comprehensive list

of sensitive and stable metrics that can be used in design and

implementation phases. Additionally, interesting follow-up for this

study would be to investigate the relationship of metrics fluctu-

ation with the growth rate of the project. Therefore, we would

be able to examine if the results are differentiated for smaller

projects and gain interesting insight to metrics’ fluctuation. Fi-

nally, we plan to evaluate the usability of taking into account met-

ric fluctuation while producing measurement plans in industrial

context.

References

[1] IEEE Std 1061-1998, IEEE standard for a software quality metrics methodology,

IEEE Comput. Soc. 31 (December 1998).

[2] J. Al Dallal, Mathematical validation of object-oriented class cohesion metrics,
Int. J. Comput. 4 (2) (2010) 45–52.

[3] J. Al Dallal, L. Briand, A precise method-method interaction-based cohesion
metric for object-oriented classes, Trans. Softw. Eng. Methodol. ACM 21 (2)

(March 2012).
[4] A. Ampatzoglou, O. Michou, I. Stamelos, Building and mining a repository of

design pattern instances: Practical and research benefits, Entertainment Com-

put. Elsevier. 4 (2) (April 2013) 131–142.
[5] A. Ampatzoglou, A. Gkortzis, S. Charalampidou, P. Avgeriou, An embedded

multiple-case study on OSS design quality assessment across domains, in: 7th
International Symposium on Empirical Software Engineering and Measurement

(ESEM’ 13), ACM/IEEE Computer Society, Baltimore, USA, 10-11 October 2013,
pp. 255–258.

[6] J. Bansiya, C.G. Davies, A hierarchical model for object-oriented design quality
assessment, IEEE Comput. Soc. Trans. Softw. Eng. 28 (1) (January 2002) 4–17.

[7] V.R. Basili, G. Caldiera, H.D. Rombach, Goal question metric paradigm, Encyclo-

pedia of Software Engineering, John Wiley & Sons, 1994, pp. 528–532.
[8] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practition-

ers, Springer, 2008.
[9] L. Briand, J.W. Daly, J.K. Wüst, A unified framework for coupling measurement

in object-oriented systems, IEEE Comput. Soc. Trans. Softw. Eng. 25 (1) (Jan-
uary 1999) 91–121.

[10] L. Briand, J. Daly, J. Wüst, A unified framework for cohesion measurement in

object-oriented systems, Empirical Softw. Eng., 3 (1) (1998) 65–117.
[11] P.M.T. Broersen, Automatic Autocorrelation and Spectral Analysis, Springer,
2006.

[12] M.J. Campbell, T.D.V. Swinscow, Statistics at Square One, Wiley-Blackwell,
2009.

[13] A. Chatzigeorgiou, E. Stiakakis, Combining metrics for software evolution as-
sessment by means of data envelopment analysis, J. Softw. Maintenance Evol.:

Res. Pract. 25 (3) (March 2013) 303–324.
[14] S.R. Chidamber, D.P. Darcy, C.F. Kemerer, Managerial use of metrics for ob-

ject oriented software: an exploratory analysis, IEEE Comput. Soc. Trans. Softw.

Eng. 24 (8) (August 1998) 629–639.
[15] P. Cichosz, Data Mining Algorithms: Explained Using R, Wiley, 2015.

[16] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
2nd Edition, Pws Pub Co, 1996.

[17] A. Field, Discovering Statistics using IBM SPSS Statistics, SAGE Publications,
2013.

[18] M. Fowler, Refactoring: Improving the Design of Existing Code, 1st Edition,

Addison-Wesley, 1999.
[19] R. Geetika, P. Singh, Dynamic coupling metrics for object oriented software

systems: A survey, SIGSOFT Softw. Eng. Notes, ACM 39 (2) (March 2014) 1–8.
[20] T. Gîrba, S. Ducasse, M. Lanza, Yesterday’ s weather: guiding early reverse en-

gineering efforts by summarizing the evolution of changes, in: 20th Interna-
tional Conference on Software Maintenance (ICSM’ 04), IEEE Computer Society,

Chicago, USA, 11-14 September 2004, pp. 40–49.

[21] O. Gómez, H. Oktaba, M. Piattini, F. García, A systematic review measure-
ment in software engineering: state-of-the-art in measures, Communications

in Computer and Information Science (CCIS), 10, Springer, 2008, pp. 165–176.
22] I. Griffith, C. Izurieta, Design pattern decay: the case for class grime, in: 8th

International Symposium on Empirical Software Engineering and Measurement
(ESEM ’14), ACM/IEEE Computer Society, Torino, Italy, 18-19 September 2014.

23] J.C. Hull, Options, Futures and Other Derivatives, Prentice-Hall, New Jersey,

USA, 1997.
[24] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, W.M. Turski, Metrics and

laws of software evolution-the nineties view, in: 4th International Software
Metrics Symposium (METRICS 1997), IEEE Computer Society, Albuquerque,

New Mexico, 5-7 November 1997, pp. 20–32.
25] J.L. Letouzey, T. Coq, The SQALE analysis model: An analysis model compliant

with the representation condition for assessing the quality of software source

code, in: 2nd International Conference on Advances in System Testing and Val-
idation Lifecycle (VALID’ 10), IEEE Computer Society, Nice, Paris, 22-27 August

2010, pp. 43–48.
26] W. Li, S. Henry, Object-oriented metrics that predict maintainability, J. Syst.

Softw., 23 (2) (November 1993) 111–122.
[27] L. Marg, L.C. Luri, E. O’Curra, A. Mallett, Rating evaluation methods through

correlation, in: 1st Workshop on Automatic and Manual Metrics for Opera-

tional Translation Evaluation (MTE’ 14), Reykjavik, Iceland, 26 May 2014.
28] T. Mens, S. Demeyer, Future trends in software evolution metrics, in: 4th In-

ternational Workshop on Principles of Software Evolution (IAWPSE ’01), ACM,
Vienna, Autria, 10-14 September 2001, pp. 83–86.

29] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, S. Ducasse, Soft-
ware quality metrics aggregation in industry, J. Softw. Evol. Proccess, 25 (10)

(Octomber 2012) 1117–1135.
[30] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, I.H. Moghadam, Experimental

assessment of software metrics using automated refactoring, in: 6th IEEE In-

ternational Symposium on Empirical Software Engineering and Measurement
(ESEM 2012), ACM, Lund, Sweden, September 2012, pp. 49–58.

[31] M. Riaz, E. Mendes, E. Tempero, A systematic review on software maintainabil-
ity prediction and metrics, in: 3rd International Symposium on Empirical Soft-

ware Engineering and Measurement (ESEM’09), IEEE Computer Society, Florida,
USA, 15-16 October 2009, pp. 367–377.

32] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Software

Engineering: Guidelines and Examples, John Wiley & Sons, 2012.
[33] A. Serebrenik, M. van den Brand, Theil index for aggregation of software met-

rics values, in: 26th IEEE International Conference on Software Maintenance
(ICSM’ 10), IEEE Computer Society, Timisoara, Romania, 12–18 September 2010,

pp. 1–9.
[34] A. van Koten, A.R. Gray, An application of Bayesian network for predicting ob-

ject - oriented software maintainability, Inf. Softw. Technol. 48 (1) (January

2006) 59–67.
[35] C. Wohlin, M. Host, P. Runeson, M. Ohlsson, B. Regnell, A. Wesslen, Experimen-

tation in Software Engineering: An Introduction, Kluwer Academic Publishers,
2012.

36] Y. Zhou, H. Leung, Predicting object-oriented software maintainability using
multivariate adaptive regression splines, J. Syst. Softw. 80 (8) (2007) 1349–

1361.

http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0001
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0002
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0003
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0004
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0005
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0006
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0007
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0008
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0009
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0010
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0011
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0012
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0013
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0014
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0015
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0016
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0017
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0018
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0019
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0020
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0021
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0022
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0023
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0024
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0025
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0026
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0027
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0028
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0029
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0030
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0031
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0032
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0033
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0034
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0035
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0036
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0036
http://refhub.elsevier.com/S0950-5849(15)00219-0/sbref0036

	Software metrics fluctuation: a property for assisting the metric selection process
	1 Introduction
	2 Related work
	 2.1. Metric properties
	 2.2. Metrics for quantifying software evolution

	3 Quality attributes and object-oriented metrics
	4 Software metrics fluctuation
	5 Case study on assessing the fluctuation of object-oriented metrics
	5.1 Study design
	5.1.1 Objectives and research questions
	5.1.2 Case selection and unit analysis
	5.1.3 Data collection and pre-processing
	5.1.4 Data analysis

	5.2 Results
	5.2.1 Differences in the fluctuation of metrics assessing the same quality attribute
	5.2.2 Differences in metrics’ fluctuation by employing a different aggregation function

	5.3 Interpretation of results

	6 Case study on the usefulness of SMF in metrics selection
	6.1 Study design
	6.1.1 Objectives and research questions
	6.1.2 Case selection and data collection
	6.1.3 Data analysis

	6.2 Results

	7 Implications for researchers and practitioners
	8 Threats to validity
	9 Conclusions
	 References


