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ABSTRACT

Context: Software quality attributes are assessed by employing appropriate metrics. However, the choice
of such metrics is not always obvious and is further complicated by the multitude of available metrics.
To assist metrics selection, several properties have been proposed. However, although metrics are often
used to assess successive software versions, there is no property that assesses their ability to capture
structural changes along evolution.

Objective: We introduce a property, Software Metric Fluctuation (SMF), which quantifies the degree to
which a metric score varies, due to changes occurring between successive system’s versions. Regarding
SMF, metrics can be characterized as sensitive (changes induce high variation on the metric score) or
stable (changes induce low variation on the metric score).

Method: SMF property has been evaluated by: (a) a case study on 20 OSS projects to assess the ability of

SMF to differently characterize different metrics, and (b) a case study on 10 software engineers to assess
SMF’s usefulness in the metric selection process.
Results: The results of the first case study suggest that different metrics that quantify the same quality
attributes present differences in their fluctuation. We also provide evidence that an additional factor that
is related to metrics’ fluctuation is the function that is used for aggregating metric from the micro to
the macro level. In addition, the outcome of the second case study suggested that SMF is capable of
helping practitioners in metric selection, since: (a) different practitioners have different perception of
metric fluctuation, and (b) this perception is less accurate than the systematic approach that SMF offers.
Conclusions: SMF is a useful metric property that can improve the accuracy of metrics selection. Based
on SMF, we can differentiate metrics, based on their degree of fluctuation. Such results can provide input
to researchers and practitioners in their metric selection processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction « What to measure? This question has two levels: (a) what qual-
ity attributes to measure?—this is related to the identification
of the most important concerns of the stakeholders, and (b)
what parts of the system should be assessed?—this is related
to whether quality measurement should be performed on the
complete system (measure-in-large) or on a specific design “hot-
spot” (measure-in-small) [16].

When to measure? This question has two levels as well. The
first level concerns the measurement frequency, where one can
choose between two major options: (i) perform the measure-
ment tasks once during the software lifecycle (measure once),
or (ii) perform measurement tasks many times during the soft-
ware lifecycle (measure repeatedly) [16]. The second level con-
cerns the development phase(s) when measurement is to be
performed. This decision sets some additional constraints to
the metric selection process, in the sense that if one selects to

Software measurement is one of the most prevalent ways of
monitoring software quality [21]. In practice, software quality mea-
surement activities are governed by a measurement plan (e.g., de-
veloped based on the IEEE/ISO/IEC-15939 Std. [1]), which, among
others focuses in defining the measurement goals, and the metrics
selection process. According to Fenton and Pfleeger [16], building
a measurement plan involves answering three main questions, two
on defining the measurement goals, and a third one, on selecting
appropriate metrics:
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perform measurement activities in an early development phase
the available metric suites are different from those that are
available at the implementation level. Usually, design-level met-
rics are less accurate than code-level metrics; however, they are
considered equally important, because they provide early in-
dications on parts of the system that are not well-structured.
A detailed discussion on high-level metrics (design-level) and
low-level metrics (code-level), can be found in [3].

How to measure? While answering this question, one should se-
lect the most fitting measure from the vast collection of avail-
able software quality metrics.

All aforementioned questions are inter-dependent, so the order
of answering them varies; for example one could start from met-
ric selection (i.e. ‘how’) and then move on to answer ‘when’ and
‘what’ (i.e., measurement goal), or the other way around. When
answering one of the questions, the available options for answer-
ing the subsequent questions are getting more limited (an elab-
orate discussion on the inter-connection among the answers to
these questions is presented in Section 7). For example, if someone
selects to measure cohesion at the design phase, the set of avail-
able metrics is limited to the high-level cohesion metrics, as dis-
cussed by Al Dallal and Briand [3]; whereas if one selects to mea-
sure cohesion at implementation level, the set of available metrics
is broadened to the union of high- and low-level cohesion metrics
[3]. Due to the high number of available metrics, the selection of
metrics that quantify the target quality attributes is far from triv-
ial. For example, concerning cohesion and coupling, recent studies
describe more than 20 metrics for each one of them [3] and [19].
This selection process becomes even more complex by the option
to choose among multiple aggregation functions. Such functions are
used to aggregate metric scores from the micro-level of individual
artifacts (e.g. classes), to the macro-level of entire systems [13] and
[33], whose industrial relevance is discussed in detail by Mordal et
al. [29]. In order to assist this metric selection process, researchers
and practitioners have proposed several metric properties that can
be used for metrics validation and characterization [1,9] and [10].

Metrics selection becomes very interesting in the context of
software evolution. Along evolution metric scores change over time
reflecting the changes of different characteristics of the underly-
ing systems. For example a metric that concerns coupling, changes
from one version of the system to the other, reflecting the changes
in the dependencies among its classes. Therefore, a quality assur-
ance team needs to decide on the accuracy with which they wish
to capture small-scale changes from one version of the system to
the other. This decision is influenced by the goals of the measure-
ment (i.e., the answers to the first two aforementioned questions—
“what and when to measure?”). In particular, both available options
(i.e., capture small changes or neglect them) may be relevant in
different contexts. For example, when trying to assess the overall
software architecture, the quality team might not be interested in
changes that are limited inside a specific component; on the con-
trary, when trying to assess the effect of applying a source code
refactoring, e.g., extract a superclass [18], which is a local change,
a small fluctuation of the metric score should be captured. Thus, a
property that characterizes a metric’s ability to capture such fluc-
tuations would be useful in the metric selection processes. Never-
theless, to the best of our knowledge, there is no such property in
the current state of the art for research or practice.

Therefore, in this paper, we define a new metric property,
namely Software Metrics Fluctuation (SMF), as the degree to which
a metric score changes from one version of the system to the other
(for more details see Section 3). While assessing a metric with re-
spect to its fluctuation, it can be characterized as stable (low fluc-
tuation: the metric changes insignificantly over successive versions)
or as sensitive (high fluctuation: the metric changes substantially

over successive versions). Of course, the property is not binary but
continuous: there is a wide range between metrics that are highly
stable and those that are highly sensitive. Although the observed
metric fluctuations depend strongly on the underlying changes
in a system, the metrics calculation process also plays a signif-
icant role for the assessment of fluctuation. For example, “What
structural characteristics does it measure?”, “How frequently/easily do
these characteristics change?” or “What is the value range for a met-
ric?”. In order for the fluctuation property to be useful in prac-
tice it should be able to distinguish between different metrics that
quantify the same quality attribute (e.g., cohesion, coupling, com-
plexity, etc.). This would support the metric selection process by
guiding practitioners to select a metric that is either stable or sen-
sitive according to their needs for a particular quality attribute. Ad-
ditionally, several metrics work at the micro-level (e.g., method-
or class-level), whereas practitioners might be interested in work-
ing at a different level (e.g., component- or system-level). The most
frequent way of aggregating metrics from the micro- to the macro-
level is the use of an aggregation function (e.g., average, maxi-
mum, sum, etc.). Therefore, we need to investigate if SMF is able
to distinguish between different aggregation functions when used
for the same metric. Such an ability would enable SMF to provide
guidance to practitioners for choosing the appropriate combination
of metric and aggregation function.

In this paper we empirically validate SMF by assessing: (a) the
fluctuation of 19 existing object-oriented (0O) metrics, through a
case study on open-source software (OSS) projects—see Section 5,
and (b) its usefulness by conducting a second case study with 10
software engineers as subject—see Section 6. The contribution of
the paper is comprised of both the introduction and validation of
SMF as a property and the empirical evidence derived from both
case studies. The organization of the rest of the paper is as fol-
lows: Section 2 presents related work and Section 3 presents back-
ground information on the object-oriented metrics that are used
in the case studies; Section 4 discusses fluctuation and introduces
the definition of a software fluctuation metric; Section 5 describes
the design and results of the case study performed so as to as-
sess the fluctuation of different object-oriented metrics; Section 6
presents the design and outcome of the case study conducted for
empirically validating the usefulness of SMF; Section 7 discusses
the main findings of this paper; Section 8 presents potential threats
to the validity; and Section 9 concludes the paper.

2. Related work

Since the proposed Software Metrics Fluctuation property al-
lows the evaluation of existing metrics, past research efforts re-
lated to desired metric properties will be presented in this section.
Moreover, since the proposed property is of interest when some-
one aims at performing software evolution analysis, other metrics
that have been used in order to quantify aspects of software evo-
lution will be described as well.

2.1. Metric properties

According to Briand et al. [9,10] metrics should conform to var-
ious theoretical/mathematical properties. Specifically, Briand et al.,
have proposed several properties for cohesion and coupling met-
rics [9,10], namely: Normalization and Non-Negativity, Null Value
and Maximum Value, Monotonicity, and Merging of Unconnected
Classes [9,10]. The aforementioned metric properties are widely
used in the literature to mathematically validate existing metrics
of these categories (e.g., by Al Dallal et al. [2]). Additionally, in
a similar context, IEEE introduced six criteria that can be used
for assessing the validity of a metric in an empirical manner.
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Concerning empirical metric validation, the 1061-1998™ [EEE
Standard for Software Quality Metrics [1] discusses the following
properties: Correlation, Consistency, Tracking, Predictability, Discrimi-
native power, and Reliability. From the above metric properties, the
only one related to evolution (i.e., takes into account multiple ver-
sions of a system) is the tracking criterion. Tracking differs from
fluctuation in the sense that tracking is assessing the ability of
the metric to co-change with the corresponding quality attribute,
whereas the proposed fluctuation property is assessing the rate
with which the metric score is changing along software evolution,
due to changes in the underlying structure of the system.

2.2. Metrics for quantifying software evolution

Studying software evolution with the use of metrics is a broad
research field that has attracted the attention of researchers dur-
ing the last two decades. According to Mens and Demeyer [28]
software metrics can be used for predictive and retrospective rea-
sons. For example, metrics can be used to identify parts of the
system that are critical, or evolution-prone (i.e., predictive); or for
analysing the software per se, or the followed processes (retro-
spective). For example, Girba et al. [20] propose four metrics that
can be used for forecasting software evolution, based on histori-
cal measurements, e.g., Evolution of Number of Methods (ENOM) and
Latest Evolution of Number of Methods (LENOM).

Additionally, O Cinnéide et al. [30] characterize metrics as
volatile or inert by investigating if the values of specific metrics are
changed due to the application of a refactoring (i.e., binary value).
Despite the fact that the notions used by O Cinnéide et al. [30] are
similar to ours (characterize a metrics as sensitive or stable), they
are only able to capture if the application of a refactoring changes
a metric value or not. As a result, volatility can be calculated only
if a detailed change record is available, whereas in our study fluc-
tuation can be calculated simply by using a time series of metric
values. In addition to that, volatility, as described by O Cinnéide et
al. [30] is a binary property, whereas SMF is a continuous property
which captures the degree of change. As a consequence the dis-
criminative power of SMF is substantially higher. For example, two
metrics might have changed during a system transition, but the
first might have been modified by 5% and the other by 90%. SMF
will be able to capture such differences between metrics, whereas
the approach by O Cinnéide et al. [30] would characterize them
both as equally volatile.

3. Quality attributes and object-oriented metrics

As already discussed in Section 1, different software quality
metrics can be calculated for assessing the same quality attribute
(QA). In this study we focus on metrics from two well-known met-
ric suites [6,34]. The employed suites contain metrics that can be
calculated at the detailed-design and the source-code level (re-
lated to the when to measure question, discussed in Section 1),
and can be used to assess well-known internal quality attributes,
such as complexity, coupling, cohesion, inheritance, and size. We
note that although all detailed-design metrics can be calculated
at source code level, as well, we categorize them in the earliest
possible phase (i.e., detailed-design), in which they can be calcu-
lated!. The aforementioned quality attributes have been selected
in accordance to [14], where the authors, using metrics quantify-
ing these QAs, performed an exploratory analysis of empirical data

1 For example, number of methods (NOM) can be calculated from both UML class
diagram and source code, but it is mapped to detailed-design since the class dia-
grams are usually produced before the source code. On the other hand, message
passing coupling (MPC) can only be calculated from the source code since it needs
the number of methods called.

concerning productivity. The selected metric suites are described
as follows:

+ Source-code-level metrics: Riaz et al. [31] presented a system-
atic literature review (SLR) that aimed at summarizing software
metrics that can be used as maintainability predictors. In addi-
tion to that, the authors have ranked the identified studies, and
suggested that the work of van Koten and Gray [34], and Zhou
and Leung [36] were the most solid ones [31]. Both studies (i.e.,
[34,36]) have been based on two metric suites proposed by Li
and Henry [26] and Chidamber et al. [14], i.e., two well-known
object-oriented set of metrics. The majority of the van Koten
and Gray metrics are calculated at the implementation phase.
Detailed-design-level metrics: On the other hand, a well-
known object-oriented metric suite that can be calculated at
the detailed-design phase is the quality metrics for object-
oriented design (QMOOD) suite, proposed by Bansiya and Davis
[6]. The QMOOD metric suite introduces 11 software metrics
that are used to assess internal quality attributes that are sim-
ilar to those of the Li and Henry suite [26]. The validity of the
QMOOD suite has been evaluated by performing a case study
with professional software engineers [6].

The two selected metric suites are presented in Table 1. From
the 21 metrics described in Table 1, for the purpose of our study
we ended up with 19 by:

» Excluding the direct access measure (DAM) metric from the
QMOOD suite [6], because the Li and Henry [26] metric suite
does not offer metrics for the encapsulation quality attribute;
and

+ Considering the number of methods (NOM) metric from both
metrics suite as one metric in our results, since it is defined
identically in both studies.

The metrics that are presented in Table 1 are accompanied by
the quality attribute that they quantify and the development phase
in which they can be calculated. Concerning quality attributes, we
have tried to group metrics together, when possible. For example,
DAC (Data Abstraction Coupling) could be classified both as an ab-
straction metric and as a coupling metric. However, since no other
metric from our list was related to abstraction, we preferred to
classify it as a coupling metric. Similarly, NOP (Number of Polymor-
phic Methods) is originally introduced as a polymorphism metric.
However, polymorphism is often associated with the elimination
of cascaded-if statements (e.g., the Strategy design pattern), which
in turn is associated with complexity measures (e.g., WMPC). Thus,
instead of eliminating it (similarly to DAM), we preferred to treat
it as a complexity measure, calculated at the design level.

4. Software metrics fluctuation

In this section we present a measure for quantifying the met-
ric fluctuation property. One of the first tasks that we have per-
formed while designing this study was to research the literature in
order to identify if an existing measure could be able to quantify
the metric fluctuation property, based on the following high-level
requirements:

(a) Based on the definition of SMF (i.e., the degree to which a
metric score changes from one version of the system to the
other), the identified metric should take into account the or-
der of measurements in a metric time series. This is the
main characteristic that a fluctuation property should hold,
in the sense that it should quantify the extent to which a
score changes between two subsequent time points.

(b) As a border case from the aforementioned requirement,
the identified metrics should be able to reflect changes
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Suite Metric  Description Develop. phase  Quality attribute
van Koten and Gray  DIT Depth of Inheritence Tree: Inheritence level number, 0 for the root class. Design Inheritance
NOCC Number of Children Classes: Number of direct sub-classes that the class has. Design Inheritance
MPC Message Passing Coupling: Number of send statements defined in the class. Source code Coupling
RFC Response For a Class: Number of local methods plus the number of methods called by Source code Coupling
local methods in the class.
LCOM Lack of Cohesion of Methods: Number of disjoint sets of methods (number of sets of Source code Cohesion
methods that do not interact with each other), in the class.
DAC Data Abstraction Coupling: Number of abstract types defined in the class. Design Coupling
WMPC Weighted Method per Class: Average cyclomatic complexity of all methods in the class. Source code Complexity
NOM Number of Methods: Number of methods in the class. Design Size
SIZE1 Lines of Code: Number of semicolons in the class. Source code Size
SIZE2 Number of Properties: Number of attributes and methods in the class Design Size
QMOOD DSC Design Size in Classes: Number of classes in the design. Design Size
NOH Number of Hierarchies: Number of class hierarchies in the design. Design Inheritance?
ANA Average Number of Ancestors: Average number of classes from which a class inherits Design Inheritance?
information.
DAM Data Access Metric: Ratio of the number of private (protected) attributes to the total Design Encapsulation
number of attributes.
DCC Direct Class Coupling: Number of other classes that the class is directly related to (by Source code Coupling
attribute declarations and message passing).
CAM Cohesion Among Methods: Sum of the intersection of method parameters with the Design Cohesion
maximum independent set of all parameter types in the class.
MOA Measure of Aggregation: Number of data declarations whose types are user defined Design Coupling®
classes.
MFA Measure of Functional Abstraction: Ratio of the number of methods inherited by a class Design Inheritance?
to the total number of methods accessible by methods.
CIS Class Interface Size: Number of public methods Design Size
NOP Number of Polymorphic Methods: Number of methods that can exhibit polymorphic Design Complexity
behavior
NOM Number of Methods: Number of methods in the class. Design Size
2 All metrics whose calculation is based on inheritance trees are marked as associated to inheritance.
b Since aggregation is a specific type of coupling, we classified MOA as a coupling metric.
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Fig. 1. Fluctuation example.

between individual successive versions and not by treat-
ing the complete software evolution as a single change.
In other words, the property should be able to discrimi-
nate between time series that range within the same up-
per and lower value, but with a different change fre-
quency (e.g., see TimeSeries1 and TimeSeries2 in the fol-
lowing example—Fig. 1) between subsequent points in
time.

The proposed fluctuation property should produce values
that can be intuitively interpreted, especially for border
cases. Therefore, if a score does not change in the exam-
ined time period, the fluctuation metric should be evalu-

ated to zero. Any other change pattern should result in a
non-zero fluctuation value. Finally, the metric should pro-
duce its highest value for time series that constantly change
over time and fluctuate between the one end of their range
to the other end, for every pair of successive versions of the
software.

To make the aforementioned requirements more understand-
able, let us assume the time series of Fig. 1. For the series of the
example, we would expect that a valid fluctuation property would
rank TimeSeries1 as the most sensitive, and TimeSeries5, as the
most stable. From the literature [11,12,17,23], we identified three
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measures that we considered as possible quantification of the fluc-
tuation property, namely:

« Volatility [30], which traditionally has been used as a measure
of the variation of price of a financial instrument over time, de-
rived from time series of past market prices. Volatility is calcu-
lated as the standard deviation of returns (i.e., the ratio of the
score in one time point, over the score in the previous time
point).

Coefficient of Variance—CoV [17] is a standardized measure of
dispersion, which is defined as the ratio of the standard devia-
tion over the mean.

Auto-correlation of lag one [11] is the similarity between obser-
vations as a function of the time lag between them. It is cal-
culated as the correlation co-efficient between each score with
the score in the previous time point.

However, none of these metrics was able to conform to the
aforementioned requirements, and the intuitive interpretation of
Fig. 1. Specifically:

« Volatility ranks TimeSeries4 as the most stable series (be-
cause the returns remain the same throughout the evolu-
tion). However, this result is not intuitively correct. The rea-
son for this, is that volatility is calculated by using the
standard deviation of returns (i.e., scorei-1/scorei). In Time-
Series4, the returns are stable, although it is clearly evi-
dent that the fluctuation is limited and with no ripples
at all.

Coefficient of Variance, ranks TimeSeries1 and TimeSeries2, as
having exactly the same fluctuation. However, this interpre-
tation is not intuitively correct, in the sense that TimeSeries2
changes only once in the given timespan. The reason for this is
that CoV is calculated based on standard deviation and average
value, which are the same for both series.

Auto-correlation of lag one, ranks TimeSeries3 and TimeSeries4,
as the most stable series. However, this result is also not in-
tuitive. The reason for the inability of the auto-correlation of
lag one to adequately act as a fluctuation measure, is the
fact that it explores if a series of numbers follow a spe-
cific pattern, in which one value is a function of the previ-
ous one. This is the case of TimeSeries3 which is an arith-
metic progression and of TimeSeries4, which is an exponential
progression.

Therefore, none of the examined existing measures is able to
quantify the SMF property. We thus estimate the Software Met-
rics Fluctuation property, as the “average deviation from zero of the
difference ratio between every pair of successive versions”. The math-
ematical formulation of metric fluctuation (mf) is as follows:

X:sum,

n:total number of versions,
score;: metric score at
version i,

score;_y: metric score at
version i — 1

i=n ( score;—score;_; \2
i=2 score;_q

mf =

n-1

For calculating the deviation from zero, we used the squared
root of the second power of the ratio of the difference, in a way
similar to the one of standard deviation. Based on the aforemen-
tioned definition, the closer to zero mf is the more stable the met-
ric is; the higher the value of mf is, the more sensitive the met-
ric becomes. Using mf, the ranking of the time series of Fig. 1
is as follows (listed from most sensitive to most stable): Time-
Series1 > TimeSeries2 > TimeSeries3 ~ TimeSeries4 > TimeSeries5,
which is intuitive.

5. Case study on assessing the fluctuation of object-oriented
metrics

In this section we present the design and the results obtained
by a case study on 20 open-source software (OSS) projects, in or-
der to assess the ability of SMF to differentiate between metrics
that quantify the same quality attribute and investigate possible
differences due to the used aggregation function. In Section 5.1, we
present the case study design, whereas in Section 5.2 the obtained
results.

5.1. Study design

Case study is an observational empirical method that is used
for monitoring projects and activities in a real-life context [32].
The main reason for selecting to perform this study on OSS sys-
tems is the vast amount of data that is available in OSS reposito-
ries, in terms of versions and projects. The case study of this paper
has been designed and is presented according to the guidelines of
Runeson et al. [32].

5.1.1. Objectives and research questions

The goal of this study, stated here using the Goal-Question-
Metrics (GQM) approach [7], is to “analyze object-oriented metrics
for the purpose of characterization with respect to their fluctuation,
from the point of view of researchers in the context of software
metric comparison”. The evaluation of the fluctuation of metrics is
further focused on two specific directions:

RQ: Are there differences in the fluctuation of metrics that quantify
the same quality attribute?

RQ,: Are there differences in the fluctuation of metrics when using
different functions to aggregate them from class level to system
level?

The first question aims at comparing the fluctuation of metrics
that quantify the same quality attribute. For example, concerning
complexity, we have compared the fluctuation of WMPC [26], and
NOP [6] metrics. In this sense a quality assurance team can select
a specific quality attribute, and subsequently compare all available
metrics that quantify this attribute in order to select one or more
metrics based on their fluctuation. We have examined coupling,
cohesion, complexity, inheritance and size from both metric suites
(i.e., [6] and [26]).

The second question deals with comparing different functions
that aggregate metrics from class to system level, with respect
to metric fluctuation. We have examined the most common ag-
gregation functions, i.e. average (AVG), sum (SUM), and maximum
(MAX) [8]. The decision to use these three aggregation functions is
based on their frequent use and applicability for ratio scale mea-
sures [25]. Specifically, from the available aggregation functions in
the study by Letouzey and Coq [25], we have preferred to use:

« MAX over MIN, because in many software metrics the mini-
mum value is expected to be zero, and therefore, no variation
would be detected;

+ AVG over MEDIAN, because in many software metrics the me-
dian value is expected to be either zero or one, and therefore,
no variation would be detected.

Although we acknowledge the fact that other more sophisti-
cated aggregation functions exist, we have preferred to employ the
most common and easy to use ones, in order to increase the ap-
plicability and generality of our research results.

5.1.2. Case selection and unit analysis
The case study of this paper is characterized as embedded [32],
in which the context is the OSS domain, the subjects are the OSS
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Table 2
Subjects and units of analysis.
Case Category # Classes  #Versions  AVG(LoC)
Art of Illusion Games 749 32 9,306
Azureus Vuze Communication 3,888 25 2,160,
Checkstyle Development 1,186 36 9,627
Dr Java Development 3,464 58 15,282
File Bot Audio & Video 7,466 25 92,079
FreeCol Games 794 41 6,593
FreeMind Graphics 443 42 6,106
Hibernate Database 3,821 51 23,753
Home Player Audio & Video 457 32 4913
Html Unit Development 920 29 3,389
iText Text Processing 645 23 54,857
LightweightJava Game Library ~ Development 654 42 8,485
ZDF MediaThek Audio & Video 617 41 1,742
Mondrian Databases 1,471 33 8,339
Open Rocket Games 3,018 27 19,720
Pixelator Graphics 827 33 3,392
Subsonic Audio & Video 4,688 42 62,369
Sweet Home 3D Graphics 341 25 6,382
Tux Guitar Audio & Video 745 20 3,645
Universal Media Server Communication 5,499 51 58,115

projects and the units of analysis are their classes, across different
versions. In order to retrieve data from only high quality projects
that evolve over a period of time, we have selected to investigate
well-known and established OSS projects (see Table 2) based on
the following criteria, aiming at selecting 20 OSS projects?:

c1 The software is a popular OSS project in Sourceforge.net. This cri-
terion ensures that the investigated projects are recognized as
important by the OSS community, i.e. there is substantial sys-
tem functionality and adequate development activity in terms
of bug-fixing and adding requirements. To sort OSS projects
by popularity, we have used the built-in sorting algorithm of
sourceforge.net.

c2 The software has more than 20 versions (official releases). We
have included this criterion for similar reasons to c1. Although
the selected number of versions is ad-hoc, it is set to a rela-
tively high value, in order to guarantee high activity and evolu-
tion of the project. Also, this number of versions provides an
adequate set of repeated measures as input to the statistical
analysis phase.

c3 The software contains more than 300 classes. This criterion en-
sures that we will not include “toy examples” in our dataset. Af-
ter data collection, a manual inspection of the selected projects
has been performed so as to guarantee that the classes per se
are not trivial.

c4 The software is written in java. We include this criterion because
the employed metric calculation tools analyze Java bytecode.

Building on the aforementioned criteria, we have developed the
following selection process:

1. Sort Sourceforge.net projects according to their popularity
(c1)—step performed on January 2014.

2. Filter java projects (c2).

3. For the next project, check the number of versions in the repos-
itory (c3).

4. If number of versions > 20, download the most recent version
of the project, and check the number of classes (c4).

5. If number of classes > 300, then pick the project as a case for
our study (c4).

6. If the number of projects < 20, go back to step 3, if not, the
case selection phase is completed.

2 We aimed at selecting data for 20 OSS projects, to ensure the existence of
enough cases for an adequate statistical analysis.

In order to more comprehensively describe the context in which
our study has been performed, we have analyzed our dataset
through various perspectives, and provide various demographics
and descriptive statistics. First, concerning the actual changes that
systems undergo, we test if the selected subjects (i.e., OSS projects)
conform to the Lehman’s law of continuous growth [24], i.e., in-
crease in number of methods. The results of our analysis suggest
that in approximately 75% of transitions from one version to the
other the number of methods has increased, whereas it remained
stable in about 13%. Second, in Fig. 2, we present a visualization
of various demographic data on our sample. Specifically, in Fig. 2a,
we present a pie chart on the distribution of LoC, in Fig. 2b a pie
chart on the distribution of developers, in Fig. 2c a pie chart on the
distribution of years of development, and in Fig. 2d a pie chart on
the distribution of downloads.

5.1.3. Data collection and pre-processing

As discussed in Section 3, we have selected two metric suites:
Li a Henry [26] and QMOOD |[6]. To automatically extract these
metric scores we have used Percerons Client (retrieved from: www.
percerons.com), a tool developed in our research group, which cal-
culates them from Java bytecode. Percerons is a software engineer-
ing platform [4] created by one of the authors with the aim of fa-
cilitating empirical research in software engineering, by providing:
(a) indications of componentizable parts of source code, (b) qual-
ity assessment, and (c) design pattern instances. The platform has
been used for similar reasons in [5] and [22]. On the completion
of data collection, each class (unit of analysis) was characterized
by 19 variables. Each variable corresponds to one metric, and is a
vector of the metric values for the 20 examined project versions.

We note that Percerons Client calculates metric values, even
detailed-design metrics, from the source code of applications,
whereas normally, such metrics would be calculated on design ar-
tifacts (e.g., class diagrams). Therefore, for the needs of this case
study, we assume that: (a) design artifacts are produced with as
many details as required in order to proceed with the implemen-
tation phase, and (b) source code implementation follows the in-
tended design (i.e., there is no design drift). Supposing that these
two assumptions hold, metrics calculated at source code level and
detailed-design level will be equivalent. For example, the values for
DIT, NOM and CIS would be the same regardless of the phase that
they are calculated. A threat to validity originating from these as-
sumptions is discussed in Section 8.


http://www.percerons.com
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a Lines of Code
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Number of dowloads

= 0-1000

 1001-5000

= 5001-10000 = >10000

Fig. 2. Sample demographics.

Additionally, in order to be able to perform the employed sta-
tistical analysis (Software Metric Fluctuation—see Section 3), we
had to explore an equal number of versions for each subject (0SS
project). Therefore, since the smallest number of versions explored
for a single project was 20, we had to omit several versions from
all other projects (that had more than 20 versions). In order for
our dataset to be as up-to-date as possible, for OSS projects with
larger evolution history, in our final dataset we have used the 20
most recent versions. Finally, to answer RQ, we have created three
datasets (one for each aggregation function—MAX, SUM and AVG),
in which each one of the 20 cases was characterized by the same
set of metrics. We note that for the DSC metric, only the SUM func-
tion is applicable, since both the use of AVG or MAX function at
class level, would result to a system score of 1.00. Similarly, results
on the NOH metrics could be explored only through the SUM and
AVG aggregation functions.

5.1.4. Data analysis

In order to investigate the fluctuation of the considered met-
rics, we have used the mf measure (see Section 3), and hypothesis
testing, as follows:

« We have employed mf for quantifying the fluctuation of metric
scores retrieved from successive versions of the same project.
On the completion of the data collection phase, we have
recorded 20 cases (OSS software projects) that have been an-
alyzed by calculating mf (across their 20 successive versions).
In particular we have calculated mf for each metric score at
system level, three times, one for each different aggregation
function—MAX, SUM and AVG;

« We have performed paired sample t-tests [17] for investigating
if there is a difference between the mean mf of different met-
rics (aggregated at system level with the same function) that
quantify the same quality attribute;

« We have performed Friedman chi-square (x2) ANOVA [17] for
investigating if there is a difference between the mean mf
of the same metric, using different aggregation functions. For

identifying the differences between specific cases we have per-
formed post hoc testing, based on the Bonferroni correction
[17].

5.2. Results

In order to assess the fluctuation metrics and aggregation func-
tions, in Table 3 we present the results of the mean mf, calcu-
lated over all projects and all versions with all three aggregation
functions. The mean mf is accompanied by basic descriptive statis-
tics like min, max, and variance [17]. For each quality attribute, we
present the corresponding metrics, and the corresponding mf. We
preferred not to set an mf threshold for characterizing a metric as
stable or sensitive, but rather use a comparative approach. To this
end, we consider comparable:

+ Metrics that quantify the same quality attribute and have been
aggregated with the same function, e.g. Compare avg(wmpc)
versus Avg(nop); and

« The same metrics aggregated with different functions, e.g., avg
versus Max.

In addition, in order to enable the reader to more easily extract
information regarding each research question, we used two nota-
tions in Table 3:

 The color of the cell (applicable for metrics), represents if the
specific metric is considered the most stable or the most sen-
sitive within its group, based on the mean score. On the one
hand, as most sensitive (see light grey cell shading), we char-
acterize metrics that present the maximum mf value, regard-
less of the aggregation function—e.g. NOP. On the other hand,
as most stable (see dark cell shading) we characterize those
that present the minimum mf, regardless of the aggregation
function—e.g. WMPC. We note that these characterizations are
only based on descriptive statistics, and therefore are influ-
enced by extreme values, corresponding to specific systems. A
final assessment of the sensitivity of metrics will be provided
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Table 3 Table 4
Object-oriented metric fluctuation. Differences by quality attribute.
QA Metric  Aggr. func. Mean  Min Max Variance QA Metric-1  Metric-2  AVG SUM MAX
Complexity ~WMPC  AVG 0.063 0005 0315 0.005 Complexity ~ WMPC NOP -1.866  -1.697 -0.049
SUM 0214 0005 1206  0.064 0.07 0.10 0.96
MAX 0224 0000 0.608  0.041 Cohesion LCOM CAM 1.527 1.371 1.580
NOP AVG 0306 0002 2775 0363 0.14 0.18 0.13
SuM 0633 0004 5057 1566 Inheritance  NOCC DIT 1814 0842 1.481
MAX 0227 0000 0922  0.050 0.08 0.41 015
Cohesion LCOM  AVG 0256 0006 0994  0.085 NOH 0.833 1258 NJA
SUM 0.402  0.009  1.669 0.264 0.41 0.22
MAX 0791  0.000 4725 1517 ANA -1251  -1.905 1.266
CAM AVG 0109 0007 1339 0.085 0.22 0.07 0.22
SUM 0233 0006 1249 0.071 MFA -2035 -1.537 1.604
MAX 0211 0000 4129 0.851 0.05 0.14 0.12
Inheritance  NOCC  AVG 0122 0005 0.551 0.019 DIt NOH '(1)'12%5 5'3?7 N/A
SUM 0243 0009 1074 0.060 : -
MAX 0543 0000 5965 1739 ANA -é.ggo '(])'g;” '3)'15‘:8
DIT AVG 0.072 0003 0.187 0.004 MEFA 2631 2088 0.882
SUM 0207 0005 0469  0.018 002 005 039
MAX 0113 0000 0308  0.011 : : :
NOH  AVG 0097 0006 0345 0012 NOH ANA ‘3'328 '8'339 N/A
SUM 0172 0017 0738  0.024 . -
MAX NA  NA  NA NJA MFA ’3'3?7 ’g‘gzg N/A
ANA AVG 0149 0005 0484  0.023 : :
SUM 0283 0008 0962  0.068 ANA MEA -1834 1187 1.545
MAX 0161 0000 0484  0.030 0.08 0.25 0.14
MFA AVG 0.289 0.000 1.255 0.139 Coupling DAC RFC 1.405 1177 1.805
SUM 0390 0000 1471 0.210 018 0.25 0.09
MAX 0.076 0000 0967  0.049 MPC 1.202 1.050 0.634
Coupling DAC AVG 0459 0007 5.736 1.583 bec ?g?o ?’3;8 ?‘338
SUM 0491 0015 5335 1.356 091 031 0.09
MAX 0550  0.000 4781 1106 MOA 1237 1081 1852
RFC AVG 0.070  0.003  0.301 0.006 023 029 008
SUM 0181 0009 0.642  0.022 : ’ :
MAX 0114 0000 0487  0.017 RrC MPC —3.338 '(1)'15; 8 '(1)'12198
MPC AVG 0125 0005 0480  0.018 bec 2023 _3.034 0820
SUM 0214 0008 0740  0.031 0.06 0.00 0.42
MAX 0345  0.000 4129 0.819 MOA o5 1017 0.035
MG om0
UM 217 .01 } X
MAX 0126 0000 0375 0015 MpC pee (]]'1529 '8‘224 (1)'(3)(5)4
MOA AVG 0113 0002 0319 0.011 MOA 0,523 0.411 1121
SUM 0204 0004 0693 0033 061 0.69 028
MAX 0113 0000 0408 0016 pec MOA 0,965 0.617 0.506
Size NOM AVG 0230 0190 0292  0.001 0.35 0.54 0.62
SUM 0180 0007 0642  0.020 Size NOM cIs 10467  -1.611 -0.419
MAX 0207  0.000  1.005 0.081 0.00 0.12 0.68
cis AVG 0.092 0003 0219 0.005 DSC N/A -0987 N/A
SUM 0201  0.006  0.601 0.018 0.34
MAX 0231 0000 0939 0073 SIZE1 9.486 1.006 0.304
DSC AVG N/A N/A N/A N/A 0.00 0.33 0.76
SUM 0974 0004 36351 65484 SIZE2 13.680 0.069 -0.481
MAX N/A N/A N/A N/A 0.00 0.95 0.64
SIZE1 AVG 0.079 0004 0325  0.006 Size (cont.)  CIS DSC N/A -0980 N/A
SUM 0169  0.009 0450  0.012 0.34
MAX 0182  0.000 0.841 0.051 SIZE1 0.878 2116 1.059
SIZE2  AVG 0.072 0005 0227  0.004 0.39 0.05 0.30
SUM 0179 0008 0.516 0.014 SIZE2 2472 2.009 -0.004
MAX 0231 0000 1151 0.087 0.02 0.06 0.99
DSC SIZE1 N/A 0993 N/A
0.33
SIZE2 N/A 0992 NJA
after we examine the existence of statistically significant differ- 033
ences (see Table 4—Section 5.2.1). SIZE1 SIZE2 0575 -0964  -0634
0.57 0.35 0.53

Font style (applicable for aggregation functions), emphasizes the
combination of metrics and aggregation functions that produces
the most stable/sensitive versions of the specific metric. For ex-
ample, concerning WMPC, the MAX function is annotated with
italic fonts, since it provides the highest mf value—most sensi-
tive, whereas the AVG function (annotated with bold) provides
the lowest mf—most stable.

The observations that can be made, based on Table 3, are
discussed in Sections 5.2, after the presentation of hypotheses

testing. Specifically, in Section 5.2.1 we further investigate
the differences among metrics assessing the same quality at-
tribute, whereas in Section 5.2.2, we explore the differences
among different functions aggregating the scores of the same
metric.
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5.2.1. Differences in the fluctuation of metrics assessing the same
quality attribute

To investigate if the results of Table 3 are statistically signifi-
cant, we have performed paired sample t-tests for all possible com-
parable combinations of metrics (see Table 4). For each comparable
cell (i.e., both metrics can be aggregated with the same aggrega-
tion function), we provide the t- and the sig value of the test. In
order for a difference to be statistically significant, sig. should be
less than 0.05 (see light grey cells). The sign of t-value, represents,
which metric has a higher mf. Specifically, a negative sign suggests
that the metric of the second column has a higher mf (i.e., is more
sensitive) than the first. For example, concerning NOCC and MFA,
the signs suggest that MFA is more sensitive when using the AVG
function.

The main findings concerning RQ, are summarized in this sec-
tion organized by quality attribute. From this discussion we have
deliberately excluded metrics that cannot be characterized as most
stable or sensitive w.r.t. the examined quality attribute (e.g., ANA—
inheritance).

» Complexity: Concerning complexity, our dataset includes two
types of metrics: (a) one metric calculated at source code
level (Weighted Methods per Class (WMPC)—based on number
of control statements), and (b) one metric calculated at de-
sign level (Number of polymorphic methods (NOP)—based on a
count of polymorphic methods. The results of the study suggest
that number of polymorphic methods (NOP) is the most sensi-
tive complexity measure, whereas weighted methods per class
(WMPC) are the most stable one. However, this difference is not
statistically significant.
Cohesion: Regarding cohesion, the cohesion among methods
of a class (CAM) metric, which can be calculated on the de-
tailed design, (defined in the QMOOD suite) is more stable
than the lack of cohesion of methods (LCOM) metric that is
calculated at source code level (defined in the Li and Henry
suite). Similar to complexity, this result is not statistically
significant.
Inheritance: The metrics that are used to assess inheritance
are all calculated from design level artifacts. The most sensi-
tive metrics related to inheritance trees are number of children
classes (NOCC) and measure of functional abstraction (MFA),
whereas the most stable are number of hierarchies (NOH) and
depth of inheritance tree (DIT). The fact that DIT is the most
stable inheritance metric is statistically significant, only when
the AVG function is used.

Coupling: Coupling metrics are calculated at both levels of

granularity. Specifically, data abstraction coupling (DAC) and

measure of aggregation (MOA) are calculated at design-level,
whereas message passing coupling (MPC), direct class cou-
pling (DCC) and response for a class (RFC) are calculated
at source code level. The most sensitive coupling metric

is data abstraction coupling (DAC), whereas response for a

class (RFC) and direct class coupling (DCC) are the most

stable ones. The result on the stability of RFC is statis-
tically significant, only with the use of AVG aggregation
function.

» Size: Concerning size we have explored five metrics, one on
code level—lines of code (SIZE1), and four on design level—
design size in classes (DSC), number of properties (SIZE2), class
interface size (CIS) and number of methods (NOM). The num-
ber of properties (SIZE2) metric is the most stable size measure;
whereas the most sensitive are number of methods (NOM) and
class interface size (CIS).The results reported on the sensitivity
of NOM are statistically significant concerning the AVG aggre-
gation function.

5.2.2. Differences in metrics’ fluctuation by employing a different
aggregation function

Similarly to Section 5.2.1, in this section we provide the results
of investigating the statistical significance of differences among the
mf for the same metric, when using a different aggregation func-
tion. In Table 5, we present the results of an analysis of variance,
and the corresponding post-hoc tests. Concerning the ANOVA we
report the F-value and its level of significance (sig.), whereas for
each post-hoc test only its level of significance. When the level of
significance for the F-value is lower than 0.05, the statistical analy-
sis implies that there is a difference between aggregation functions
(without specifying in which pairs). To identify the pairs of ag-
gregation functions that exhibit statistically significant differences,
post hoc tests are applied. Statistically significant differences are
highlighted by light grey shading on the corresponding cells.

The results of Table 5 suggest that the use of different aggre-
gation functions can yield different fluctuations for the selected
metrics, at a statistically significant level. Therefore, to provide an
overview of the impact of the aggregation functions on metrics’
sensitivity, we visualize the information through two pie charts,
representing the frequency with which software metrics are found
to be the most stable or the most sensitive (see Fig. 3).

For example, if someone aims at sensitive metrics, preferable
choices is aggregation by MAX or SUM (50% and 44%, respectively),
whereas AVG rarely produces sensitive results. On the other hand,
AVG should be selected if someone is interested in stable metrics,
since it yields the stable results for 83.3% of the cases. From these
observations we can conclude that different aggregation functions
can be applied to the same metric and change the fluctuation
property of the specific metric.

5.3. Interpretation of results

Concerning the reported differences in the fluctuation of met-
rics assessing the same quality attribute, we can provide the fol-
lowing interpretations, organized by quality attribute:

« Complexity: NOP is more sensitive than WMPC. This result can
be interpreted from the fact that the calculation of WMPC
includes an additional level of aggregation (from method to
class), and the function that is used for this aggregation is the
AVG. Based on the findings of this study, the AVG function
provides relatively stable results, in the sense that in order to
have a change of one unit in the aggregated WMPC, one control
statement should be added in all methods of a class. Therefore,
the change rate of WMPC value is relatively low.

Cohesion: LCOM is more sensitive than CAM. This result can be
explained by the fact that the addition of a method in a class
during evolution is highly likely to join some disjoint clusters of
the cohesion graph?, and therefore decrease the value of LCOM.
Consequently, LCOM value is expected not to be stable during
evolution.

Inheritance: The fact that NOCC is the most sensitive among
the inheritance metrics is intuitively correct, since the addition
of children is the most common extension scenario for a hier-
archy. On the contrary, since only a few of these additions can
lead to an increase of DIT, this metric is among the most stable
ones. Similarly, NOH is not subject to many fluctuations, in the
sense that adding or removing an entire hierarchy is expected
to be a rather infrequent change.

Coupling: The observation that MPC is more sensitive cou-
pling metric than RFC could be explained by the fact that MPC

3 The calculation of the LCOM employed by van Koten and Gray [34] is based
on the creation of a graph, in which nodes are methods, and edges are shared at-
tributes. The number of disjoint graphs is LCOM.
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Table 5
Differences by aggregation functions.

QA Metric x2 test (sig.) Post hoc tests
AVG-SUM AVG-MAX SUM-MAX
Complexity WMPC 15.487 0.00 0.00 0.88
0.000
NOP 8.380 0.03 0.90 0.08
0.015
Cohesion LCOM 7.000 0.03 0.01 0.00
0.030
CAM 28.900 0.00 0.01 0.00
0.000
Inheritance NOCC 11.873 0.00 0.01 0.68
0.003
DIT 24.025 0.00 0.06 0.00
0.000
NOH 27.900 N/A N/A 0.00
0.000
ANA 18.405 0.00 0.94 0.01
0.000
MFA 22211 0.01 0.00 0.00
0.000
Coupling DAC 1.848 0.16 0.70 0.71
0.397
RFC 19.924 0.00 0.02 0.02
0.000
MPC 9.139 0.00 0.10 0.13
0.010
DCC 20.835 0.00 0.31 0.00
0.000
MOA 15.718 0.00 043 0.00
0.000
Size NOM 7.900 0.05 0.09 0.09
0.019
CIS 18.231 0.00 0.00 0.45
0.000
SIZE1 17.797 0.00 0.00 0.23
0.000
SIZE2 15.823 0.00 0.01 0.68
0.000
Sensitive Metrics Stable Metrics
5.56% 5.56%

u MAX

uSUM "AVG

B MAX

uSUM "AVG

Fig. 3. Metrics sensitivity overview.

counts individual send messages, i.e.,, method invocations to
other classes. This count can be affected even by calling an
already called method. On the contrary, RFC (sum of method
calls and local methods) is more stable, since it depends on
the number of distinct method calls, and thus for its value to
change a new method should be invoked.

Size: The fact that NOM and CIS are the most sensitive size met-
rics, was a rather expected result, in the sense that the addi-
tion/removal of methods (either public or not) is a very com-
mon change along software evolution. Therefore, the scores of
these metrics are expected to highly fluctuate across versions.
On the contrary, SIZE1 (i.e., lines of code) has proven to be the

most stable size metric, probably because of the large absolute
values of this metric (we used only large projects), which hin-
der changes of a large percentage to occur frequently.

The results of the study that concern the differences in the fluc-
tuation of metrics that are caused by switching among aggregation
functions, have been summarized in Fig. 3, and can be interpreted,
as follows:

+ The fact that the AVG function provides the most stable results
for 83% of the metrics (all except from NOP, MFA and NOM), can
be explained by the fact that most of the projects were quite
large, in terms of number of classes. Therefore changes in the
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numerator (sum of changes in some classes) could not reflect a
significant difference in the AVG metric scores at system level.
Thus, replicating the case study on smaller systems might be
useful for the generalizability of our results.

The fact that both MAX and SUM functions provide the most
sensitive versions for almost an equal number of metrics, sug-
gests that these functions do not present important differences.
However, specifically for source code metrics, it appears that
the MAX function, provides more sensitive results. This result
can be considered intuitive, in the sense that source code met-
rics are changing more easily, and produce larger variations,
from version to version, compared to design level metrics. For
example, changes in number of lines are more frequent and
larger in absolute value than changes in the number of classes
or methods. Thus, the likelihood of the maximum value of a
metric change is higher in source code metrics, rather than
design-level ones.

6. Case study on the usefulness of SMF in metrics selection

In order to validate the ability of SMF to aid software quality as-
surance teams in the metric selection process, we conducted a case
study with 10 software engineers. In particular, we investigated if
software engineers are able to intuitively assess metric fluctuation
without using SMF, and how accurate this assessment is, compared
to SMF. In Section 6.1, we present the case study design, whereas
in Section 6.2 the obtained results.

6.1. Study design

With the term case study we refer to an empirical method that
is used for monitoring processes in a real-life context [32]. For this
reason, we have performed a case study simulating the process of
metric selection. The case study of this paper has been designed
and is presented according to the guidelines of Runeson et al. [32].

6.1.1. Objectives and research questions

The goal of this case study, stated here using the Goal-Question-
Metrics (GQM) approach [7], is to “analyze the SMF property for the
purpose of evaluation with respect to its usefulness in the context
of the software metrics selection process from the point of view of
software engineers”. The evaluation of the SMF property has been
focused on two specific directions:

RQ;y: Do software engineers have a uniform perception on the fluc-
tuation of software metrics when not using the SMF property?
RQ,: Does SMF provide a more accurate prediction of the actual met-
ric fluctuation, compared to the intuition of software engineers?

The first research question aims at investigating the need for
introducing a well-defined property for quantifying metric fluctua-
tion. In particular, if software engineers have diverse perception of
what the fluctuation of a specific metric is, then there is a need for
guidance that will enable them to have a uniform way of assess-
ing metrics’ fluctuation. The second research question deals with
comparing: (a) the accuracy of software engineers’ opinion when
ranking specific combinations of metrics and aggregation functions
subjectively, i.e. without using the SMF property, with (b) the ac-
curacy of the ranking as provided objectively by the SMF property.

6.1.2. Case selection and data collection

To answer the aforementioned questions, we will compile a
dataset in which rows will be the cases (i.e., combinations of met-
rics and aggregation functions) and columns will be: (a) how soft-
ware engineers perceive metric fluctuation, (b) the metric fluctua-
tion as quantified through SMF, and (c) the actual metric fluctua-
tion. The case selection and data collection processes are outlined
below.

6.1.2.1. Case selection. In order to keep the case study execution
manageable we have preferred to focus on one quality attribute.
Having included more than one quality attributes would increase
the complexity of the metrics selection process, and would require
more time for the execution of the case study. From the metrics
described in Table 1, we have decided to focus only on the cou-
pling quality attribute since that would offer:

- A variety of metrics. We have selected a quality attribute that
could be assessed with multiple metrics. Therefore, we have
eliminated complexity and cohesion QAs.

Metric calculation at both the source code and detailed-design
level. We have excluded the inheritance QA, since all related
metrics can be calculated at the detailed-design phase. None of
the metrics can be only calculated at the source code level.
Metrics whose calculation is not trivial. To increase the real-
ism of the metric selection process we have preferred to ex-
clude from our case study the metrics quantifying the size QA,
since their calculation is trivial.

Therefore, and by taking into account that we have used
three aggregation functions (AVG, MAX, and SUM-as explained
in Section 5.1.1) and five coupling metrics (DCC, MOA, DAC, MPC,
RFC—as presented in Table 1), our dataset consists of 15 cases.

6.2.1.2. Data collection. For each one of the aforementioned 15
cases, we have collected 12 variables (i.e., columns in the dataset).
The first 10 variables ([V;]-[V1g]) represent the perception of soft-
ware engineers on metrics fluctuations, whereas the other two: the
fluctuation based on SMF ([Vq;]) and the actual mf, which is going
to be used as the basis for comparison ([V3]).

Perception of software engineers on metrics fluctuation. To
obtain these variables we have used a well-known example on
software refactoring [18], which provides an initial system de-
sign (see Fig. 4a) and a final system design (see Fig. 4b), and ex-
plains the refactoring that have been used for this transformation.
The aforementioned designs, accompanied with the corresponding
code, have been provided to 10 software engineers (i.e., subjects).
The case study participants possess at least an MSc degree in com-
puter science and have a proven working experience as software
engineers in industry (see Table 6).

The subjects have been asked to order the combinations of met-
rics and aggregation functions from 1st to 15th place, i.e. from the
most stable (1st place) to the most sensitive (15th place), based
on the influence of these changes to the metric scores. The 1-
15 range has been used to discriminate between all possible met-
ric/aggregation function combinations of the study. For example,
an engineer who considers that metric M and aggregation func-
tion F captures most of the changes that have been induced on
coupling, would assign the value 15 to that metric/function com-
bination. For the most stable metric/function combination, he/she
would assign the value 1. These rankings have been mapped to
variables: [V;]-[Vio], one for each subject of the study. We note,
that in order to increase the realism of the case study, we have not
allowed the participants to make any calculation on paper, since
this would not be feasible in large software systems. We note that
in case of an equal value, fractional ranking has been performed:
items that are equally ranked, receive the same ranking number,
which is the mean of the ranking they would have received, under
ordinal rankings. For example, if item X ranks ahead of items Y and
Z (which compare equal), ordinal ranking would rank X as “1”, Y as
“2" and Z as “3” (Y and Z are arbitrarily ranked). Under fractional
ranking, Y and Z would each get ranking number 2.5. Fractional
ranking has the property that the sum of the ranking numbers is
the same as under ordinal ranking. For this reason, it is used in
statistical tests [15].

SMF ranking. The ranking by SMF (column [V{;]), is based on
the empirical results obtained from our case study on 20 open



E.-M. Arvanitou et al./Information and Software Technology 72 (2016) 110-124 121

a Customer Rental Movie
-_name : string —_— -_movie : Movie movie 4 -_title : string
-_rentals : vector = -_daysRented : int -_priceCode : int
+Customer(name : string) +Rental(movie : movie, daysRented : int) +Movie(title : string, priceCode : int)
+addRental(arg : Rental) +getDaysRented() : int +getPriceCode() : int
+getName() : string +getMovie() : Movie +setPriceCode(arg : int)
+statement() : string +getTitle() : string
b Movie . 1 Price
_title : string <> P getPriceCode() : int
-_price : Price +getCharge(daysRented : int) : double
+Movie(title : string, price : price) +getFrequentRenterPoints(daysRented : int) : int
+getPriceCode() : int
+setPriceCode(arg : int)
+getTitle() : string
+getCharge(daysRented : int) : double
+getFrequentRenterPoaints(daysRented : int) : int
ChildrensPrice RegularPrice
1 +getPrice Code() : int +getPriceCode() : int
+getCharge(daysRented : int) : double +getCharge(daysRented : int) : double
_movie
NewReleasePrice
+getPriceCode() : int
c Rental +getCharge(daysRented : int) : double
-_name : string . |-_movie : Movie +getFrequentRenterPoints(daysRented : int): int
-_rentals : vector <> _rentals -_daysRented : int

+Customer(name : string)
+addRental(arg : rental)
+getName() : string
+statement() : string
+getTolalCharge() : double

+Rental(movie : movie, daysRented : int)
+getDaysRented() : int

+getMovie() : movie

+getCharge() : double
+getFrequentRenterPoints() : int

+getTolalF requentRenterPoints() : int
+htmliStatement() : string

Fig. 4. Movie club (initial and final design) [18].

Table 6
Subjects’ demographics.
AVG (SD)
Age 31.3 (+8.42)
Development experience in years 7.8 (£4.34)
Frequency
BSc MSc PhD
Degree 2 7 1
Design Code Research
Type of experience 6 8 7
Web/Mobile Scientific  Desktop Applications
Application domain 5 9 5

source projects. In particular it has been extracted by sorting
the mean metric fluctuation as presented in the 4th column of
Table 3.

Actual ranking. Finally, in order to record [V, ], we have calcu-
lated the actual metric fluctuation from the initial to the final sys-
tem, based on the formula provided in Section 4. Although the val-
ues of [V;,] have originally been numerical, we transformed them
to ordinal ones (i.e., rankings), so as to be comparable to [V;]-[Vi1].
Similarly to [V;]-[Vyg], equalities have been treated using the frac-
tional ranking strategy [15]. The final dataset of this case study is
presented in Table 7. It should be noted that SMF ranking does
not perfectly match the actual ranking, because it has been derived
by the metric fluctuation recorded in the case study presented in
Section 5, i.e., in a different set of projects.

6.1.3. Data analysis

To answer RQ; we have performed correlation analysis by ex-
tracting the intra-class correlation (ICC) on variables [V;]-[Vio]
to check the inter-rater agreement [17]. In particular, we have
used the average ICC in order to get an estimate of the average

correlation of rankings between the subjects. To answer research
RQ,, we have extracted Spearman correlation [17], between vari-
ables [V;]-[Vi1] with [Viy]. The decision to apply a correlation
analysis is based on the 1061 IEEE Standard for Software Quality
Metrics Methodology [1], which suggests that a sufficiently strong
correlation “determines whether a metric can accurately rank, by
quality, a set of products or processes (in the case of this study: a
set of metrics)”.

In order to interpret the values obtained by the correlation
analysis, we have used the thresholds provided by Marg et al. [27],
which suggest that a correlation coefficient higher than 0.7 cor-
respond to very strong relationships, correlations coefficients be-
tween 0.4 and 0.7 represent strong relationships, and correlation
coefficients between 0.3 and 0.4 correspond to moderate relation-
ships.

6.2. Results

By performing the aforementioned analysis on the data of
Table 7, we have been able to answer the research questions stated
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Table 7
Case study dataset.

Function = Metric  Actual fluctuation  Actual ranking [V;,]  SMF ranking [V,;]  [V4]  [V,] [Vl [Vl Vsl [Vl  [V5]  [Vg]l [Vl  [Vyl
AVG MOA 0.00% 2 3 3 2 10 4 1 1 12 4 35 8.5
AVG RFC 0.00% 2 1 8 4.5 1 1 4 4 1 7 1.5 10
MAX RFC 0.00% 2 5 4 7 3 2 6 8 3 9 6.5 12
AVG MPC 4.31% 4 6 6 85 4 10 10 5.5 7 8 5 4
AVG DCC 8.33% 5 2 1 2 7 7 9 3 4 2 1.5 4
MAX MOA 26.09% 6 4 1 2 12 5 3 2 10 1 35 6.5
MAX MPC 33.33% 7 12 7 8.5 6 1 8 7 8 10 8 1.5
MAX DCC 80.43% 8 7 10 45 9 8 7 55 6 3 6.5 1.5
SUM RFC 91.38% 9 8 2 11.5 2 3 5 12 2 1 12 1n
SUM MPC 100.00% 10,5 10 9 11.5 5 12 12 10 9 12 10 6.5
SUM MOA 100.00% 10,5 9 5 6 11 6 2 1 11 5 10 8.5
SUM DCC 116.67% 12 1 12 10 8 9 1n 9 5 6 10 4
Table 8 30% of our study’s subjects (i.e., experienced software engineers)

Metrics selection accuracy (Software engineers
perception versus SMF-based).

Evaluator Correlation coeff.  Sig.
#1 0.325 0.30
#2 0.563 0.05
#3 0.282 0.37
#4 0.543 0.06
#5 0.381 0.22
#6 0.689 0.01
#7 0.176 0.58
#8 0173 0.59
#9 0.789 0.00

#10 -0.314 032

AVG (Evaluator) 0.361 N/A

SMF 0.794 0.00

in Section 6.1.1. First, concerning the correlation of the rankings
provided by the software engineers, the analysis showed that the
average ICC coefficient equals -0.227. The negative correlation coef-
ficient suggests that there is no reliability in the way that software
engineers intuitively assess the fluctuation of a metric. Therefore,
there is a need for a property that objectively characterizes this
metric property, and consequently guides software engineers in the
metrics selection process.

In addition, in order to investigate if the guidance that SMF pro-
vides is more accurate than the intuition of a software engineer,
we have extracted the Spearman rank correlation, and we present
the results in Table 8. The results of Table 8 suggest that the rank-
ing provided by SMF is more accurate in terms of correlation with
the actual metric fluctuation (i.e., 79.4%), than the ranking pro-
vided by the intuition of software engineers.

Additionally, we can also observe that only three evaluators
have been able to predict with a statistically significant accu-
racy the ranking of metrics with respect to their fluctuation. Al-
though this result might suggest that these software engineers are
not in great need of guidance, they represent only the 30% of
the sample. The rest of the software engineers had performed a
rather poor prediction, i.e., a correlation coefficient ranging from
-0.314 to 0.543. For example, Evaluator #10, has characterized as
the most sensitive metric MAX(RFC)—which in practice has not
changed its value in the provided example, whereas as the most
stable MAX(DCC)—in practice had an approximately 80% change.

Consequently, SMF can be characterized as a useful property in
the metric selection process, for three reasons: (a) software en-
gineers are in need of a property that can objectively character-
ize the degree of metrics fluctuation—since different software en-
gineers perceive different metrics as stable or sensitive; (b) the use
of SMF is leading to the most accurate prediction of metric fluctua-
tion, compared to the intuition of software engineers; and (c) only

have been able to rank the metrics in a way that was statistically
significant correlated with the actual metric ordering—the large
majority of software engineers would perform inadequate metric
selection, in terms of fluctuation, without the use of SMF.

7. Implications for researchers and practitioners

In order to provide an outcome that is directly exploitable by
both researchers and practitioners, during the development of their
measurement plans (see details in Section 1), we created a pivot
table (see Table 9). The discussion of the results will be guided
by two factors that the quality assurance teams should take into
account when developing the measuring plan: (a) the decision to
measure in-large or measure in-small (“what to measure?”), and (b)
the development phase in which each metric is calculated (“when
to measure?”). The characterization of any metric as stable or as
sensitive can prove beneficial concerning the metrics selection pro-
cess as follows:

» Concerning the “what to measure” question: On the one
hand, metrics that have been characterized as sensitive are less
fitting than stable metrics for measure-in-large [16] evaluations,
because of the numerous and large fluctuations that hinder the
ability to derive the overall trend of the corresponding metric.
On the other hand, sensitive metrics are considered more fitting
for measure-in-small evaluations, e.g., to evaluate the effect of
a refactoring activity or the application of a design pattern, be-
cause they are more sensitive to code changes, than the more
stable ones.

Concerning the “when to measure” question: The answer to
this question is influenced by both the decision on “what to
measure?” and the available metrics’ fluctuation. For example,
suppose a case in which we want to select a metric that is sen-
sitive (e.g., we are interested in performing a measure-in-small
evaluation); if, in addition, for the specific quality attribute all
design-level metrics are stable, then we should perform the
evaluation at the implementation level.

The dimensions of Table 9 represent the main options concern-
ing when and what to measure questions, whereas the content of
cells present the optimal combination of metric and aggregation
function with respect to fluctuation (how to measure question).
From the pivot table (and specifically from the when to measure
dimension), we deliberately excluded the measurement frequency
factor, since fluctuation is relevant only for repeated measures.

The results of this paper, as summarized in Table 9, can be ex-
ploited by both researchers and practitioners, as follows:

- Researchers can perform metric selection, based on metrics
fluctuation and the scope of their projects. More specifically, in
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Table 9
Overview of suitable metrics/aggregation functions.

When to measure?

What to measure (granularity/QA)? Design Implementation

Measure in-small (sensitive metrics are desired)  Complexity =~ SUM(NOP) MAX(WMC)
Cohesion SUM(CAM) MAX(LCOM)
Inheritance  MAX(NOCC)  N/A
Coupling MAX(DAC) MAX(MPC)
Size MAX(CIS) MAX(SIZE1)

Measure in-large (stable metrics are desired) Complexity MAX(NOP) AVG(WMC)
Cohesion AVG(CAM) AVG(LCOM)
Inheritance ~ AVG(DIT) N/A
Coupling AVG(MOA) AVG(RFC)
Size AVG(SIZE2) AVG(SIZET)

cases that researchers wish to evaluate design or implementa-
tion decisions that have a local effect (e.g. refactorings or de-
sign patterns) and are interested in their effect on system level,
they should prefer a sensitive metric. To this end, the results
indicate that sensitive combinations of metrics and aggregation
functions exist for all explored quality attributes.

Researchers can use the proposed fluctuation evaluation, while
introducing software quality metrics, and accompany their empir-
ical assessment with that evaluation. This can be done in ad-
dition to evaluating the validity of the metric, by using well-
known international standards [1] or established SE guidelines
[9,10].

Practitioners can perform metric selection, based on metrics
fluctuation and their software quality measuring plan. After
selecting: (a) the quality attribute they want to assess, and (b) if
they want to measure in-small, or measure in-large, they can de-
cide if they will use a sensitive or a stable metric. Then, based
on the findings of this study, they can filter the available met-
rics from their quality dashboard. We note that metric selec-
tion cannot be blindly based on SMF, since the main properties
of metrics should be considered as well. For example, if a soft-
ware development team wishes to quantify a specific aspect of
size, e.g., the number of classes in a system, they will use the
DSC (Design Size in Classes) metric, regardless of its fluctua-
tion. Nevertheless, if for example a software quality assurance
team wants to quantify the change in coupling after a refactor-
ing (without focusing on a specific type of coupling), the use of
SMF can optimize the metric selection decision.

When practitioners are interested in producing stable versions
of code-level metrics, they should employ the AVG function,
whereas, when they are interested in sensitive versions, they
should use the MAX function. Similarly, regarding design-level
metrics, stable versions of metrics are more frequently produced
by using the AVG function. In the case of using the SUM or MAX
aggregation function, a case-by-case examination is needed.
Practitioners can include in their quality dashboards var-
ious views of the same metric (same metric with differ-
ent aggregation functions), since they provide different in-
formation, and therefore can be exploited under different
circumstances.

8. Threats to validity

This section discusses construct, conclusion, and external valid-
ity for this study. Internal validity is not applicable as the study
does not examine causal relations. Furthermore, we study conclu-
sion validity instead of reliability, as in purely quantitative case
studies, the room for researcher bias is rather limited, if not zero,
eliminating any threats to reliability [35].

A threat to construct validity is that the obtained mf and
the conclusions regarding the fluctuation are dependent upon the

actual changes that have been performed in each system. In other
words, the fact that SMF is quantified and discussed based on
the results of a case study implies that the fluctuation property
of a specific metric is dependent upon the examined systems, as
opposed to a property like monotonicity which can be assessed
mathematically and independently from the systems on which the
metric is applied. For example, a system with no changes at all
would imply that a metric is stable, whereas stability is due to the
lack of changes, and not a property of the metric itself. In order to
mitigate this threat, during project selection we mined only active
projects that were substantially different across successive releases.
We manually validated these differences by inspecting the SIZE1
(Lines of Code) metric score. In addition, a possible threat to the
validity of our results is the bias that might be caused by the time
period between versions for different projects, and the differences
in projects’ development team size, which might affect the load of
system changes. However, we believe that this threat is mitigated
by the variance of these factors in our sample, as presented in
Fig. 2.

Moreover, the current assessment of design-level metrics fluc-
tuation has been performed on the source code of applications,
and not on design artifacts. The metrics calculated on source code
and design artifacts, can be considered as equivalent if the follow-
ing two assumptions hold: (a) the design artifacts are fully de-
tailed, and (b) there is no design drift. These assumptions do not
usually hold in practice, as the level of detail of design artifacts
and the degree of design drift varies across projects. For example,
one could produce a class diagram only with class names and ba-
sic associations, while another could produce class diagrams with
details in the level of even getters and setters. However, as-
sessing metrics’ fluctuation on these extreme cases would possibly
provide different results, which would not be reliable, in the sense
that they would be mostly related to the artifact level of detail,
rather than the metrics’ properties.

Furthermore, concerning conclusion validity, we need to note
that the rather small sample size in the case study assessing the
fluctuation of object-oriented metrics might to some extent influ-
ence the characterization of metrics as either sensitive or stable.
However, we believe that the diversity of projects’ characteristics
as presented in Fig. 2, is sufficiently mitigating any effect from
the sample size of investigated OSS projects. Finally, concerning
threats to external validity, we have identified two issues. First,
the results are heavily dependent on the size of the projects in
terms of classes (see Section 4: RQ,) and therefore cannot be gen-
eralized to smaller projects. However, this threat cannot be con-
sidered crucial, in the sense that quality assurance is more rel-
evant to larger projects. Secondly, our dataset only included Java
projects, and therefore results cannot be generalized to other pro-
gramming languages, where different principles exist. For example,
concerning the results on ANA, the results might be different for
C++ projects, in which multiple inheritance is allowed.
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9. Conclusions

Metric selection for long-term monitoring of software quality is
a multi-criteria decision making process, in the sense that the soft-
ware quality assurance team should agree on the important quality
attributes, the frequency with which the measurement should be
performed, and the scale to which it should be applied (system-
wide or local). Apart from its inherent complexity, this process be-
comes even more challenging due to the plethora of existing soft-
ware metrics attached to each quality attribute. To assist the met-
ric selection process, in this paper we define a new metric prop-
erty, namely fluctuation, as the degree to which a metric is able
to capture changes in the underlying structure of the software sys-
tem. Based on this definition, we investigated the fluctuation of 19
object-oriented metrics, through a case study on 20 open-source
software projects. The results of the study indicated that source
code metrics are in principle more sensitive than design level met-
rics, and that there are specific metrics that when used with dif-
ferent aggregation functions can provide both sensitive and stable
measures of the investigated quality attributes. Finally, scenarios
of use for the main results of this paper have been presented from
both practitioners’ and researchers’ point of view.

As future work, we plan to replicate this study with different
metrics (e.g., architecture ones) and compile a comprehensive list
of sensitive and stable metrics that can be used in design and
implementation phases. Additionally, interesting follow-up for this
study would be to investigate the relationship of metrics fluctu-
ation with the growth rate of the project. Therefore, we would
be able to examine if the results are differentiated for smaller
projects and gain interesting insight to metrics’ fluctuation. Fi-
nally, we plan to evaluate the usability of taking into account met-
ric fluctuation while producing measurement plans in industrial
context.
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