Monitoring Technical Debt in an Industrial Setting

Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Stamatia Bibi, Alexander Chatzigeorgiou, loannis Stamelos

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
Computer Science Department, Aristotle University of Thessaloniki, Greece
Department of Informatics and Telecommunications, University of Western Macedonia, Kozani, Greece
earvanitoy@gmail.com, apostolos.ampatzoglou@gmail.com, shibi@uowm.gr, achat@uom.gr, stamelos@csd.auth.gr

ABSTRACT

Context: Technical Debt (TD) quantification has been studied in the
literature and is supported by various tools; however, there is no
common ground on what information shall be presented to stake-
holders. Similarly to other quality monitoring processes, it is desira-
ble to provide several views of quality through a dashboard, in which
metrics concerning the phenomenon of interest are displayed.
Obijective: The aim of this study is to investigate the indicators that
shall be presented in such a dashboard, so as to: (a) be meaningful for
industrial stakeholders, (b) present all necessary information, and (c)
be simple enough so that stakeholders can use them.

Method: We explore TD Management (TDM) activities (i.e., meas-
urement, prioritization, repayment) and choose the main concepts
that need to be visualized, based on existing literature and tool-
support. Next, we perform a survey with 60 software engineers (i.e.,
architects, developers, etc.) working for 11 software development
companies located in 9 countries, to understand their needs for TDM.
Results / Conclusions: The results of the study suggest that different
stakeholders need a different view of the quality dashboard, but also
some commonalities can be identified. For example, on the one hand,
managers are mostly interested in financial concepts, whereas on the
other hand developers are more interested in the nature of the prob-
lems that exist in the code. The outcomes of this study can be useful
to both researchers and practitioners, in the sense that the former can
focus their efforts on aspects that are meaningful to industry, whereas
the latter to develop meaningful dashboards, with multiple views.

CCS CONCEPTS

Software and its engineering— Software creation and management—
Software verification and validation— Empirical software validation

KEYWORDS
Technical debt, visualization, metrics, software quality, survey

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

EASE '19, April 15-17, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7145-2/19/04...$15.00
https://doi.org/10.1145/3319008.3319019

ACM Reference format:

E. M. Arvanitou, A Ampatzoglou, S. Bibi, A. Chatzigeorgiou, and |. Sta-
melos, “Monitoring Technical Debt in an Industrial Setting”, In Proceedings
of 23" Conference on the Evaluation and Assessment in Software Engineering
(EASE’ 19), Copenhagen, Denmark, 15-17April 2019.

1. Introduction

Technical Debt (TD) is a metaphor from economics that refers to
inefficiencies during software development that lead to additional
maintenance effort [23]. In recent years, TD has attracted a signifi-
cant attention from both academia and industry, in the sense that the
corpus of academic papers is expanding [1], and the industrial
awareness on TD is increasing [4]. The importance of efficient Tech-
nical Debt Management (TDM) is highlighted by industrial evidence
suggesting that software maintenance, when not performed optimal-
ly, can reach up to 75% of the total costs of software development
[34]. Additionally, up to 25% of “wasted” development time during
maintenance can be attributed to TD [29].

According to Li et al. [24], efficient TDM requires the execution of
up to eight activities. For simplicity, the activities can be merged to
four high-level (HL) activities, based on their goal. We note that only
the primitive activities are obtained from Li et al. [24], whereas the
synthesized high-level ones are based on our perception of their na-
ture, and conceptual similarities:

e Visualizing TD: The process of visualizing TD includes the activi-
ties of: (a) representing TD in a uniform manner addressing the
concerns of particular stakeholders, (b) communicating TD by
making it visible to stakeholders so that it can be discussed and
further managed, and (c) monitoring TD, which deals with observ-
ing the evolution of the cost and benefit of unresolved TD over
time.

e Quantifying TD: The process of quantifying TD, involves two
main activities: (a) TD identification, which aims at detecting arti-
facts that suffer from TD caused by intentional or unintentional
technical decisions in a software system through specific tech-
niques, such as static code analysis; and (b) TD measurement,
which aims at quantifying the benefit and cost of known TD in a
software system through estimation techniques, or estimating the
level of the overall TD in a system.

e Prioritizing TD: The process of TD prioritization ranks identified
TD items, according to certain predefined rules to support decid-
ing which TD items should be repaid first and which TD items can
be tolerated until later releases.

e Reducing TD: To reduce the amount of TD in a system, two
activities can be performed: (a) TD prevention that aims to pre-

mailto:sbibi@uowm.gr
mailto:achat@uom.gr

vent potential TD from being incurred in future developments,
and (b) TD repayment, which aims to resolve or mitigate TD in a
software system by techniques such as reengineering / refactoring.

Given the aforementioned activities, this study focuses on Visualizing
TD-related information to support the rest high-level TD activities.
More specifically, we focus on the construction of a TDM Dashboard
that would present the minimal amount of information that would be
required for efficiently supporting the rest of the aforementioned high-
level TDM activities, as shown in Figure 1.

TD Dashboard

| Visualizing TD

shows information that support:

artifacts that ' prevent TD on
Avoid Do first

)| suffer from TD " new artifacts
L Do ast Do secona

2
S4 s measure their o et refactor existing
amount of interest Value artifacts
and principal based on quantification
Quantifying TD Prioritizing TD Reducing TD

Figure 1. Connection between high-level TDM activities

Visualizing TD is the most understudied activity in TDM, which nev-
ertheless is of paramount importance. The importance of efficient TD
visualization is highlighted by the fact that in an industrial context
zero TD is an elusive target, which might be considered as not desira-
ble [14]. Additionally, by taking into account the vast amount of in-
formation that could potentially be shown in a quality dashboard (i.e.,
software metrics), it is important to not overload industrial stakehold-
ers with undesirable information. To this end the goal of this study is
to extract the needs of industrial stakeholders and determine what to
visualize and how to visualize it, in terms of required information for
efficient TD quantification, prioritization, and reduction. To achieve
this goal, we performed an industrial survey with 60 stakeholders,
working for 11 software development companies, located in 9 coun-
tries. The rest of the paper is organized as follows: in Section 2 we
present related work. In Section 3, we present the candidate pieces of
information for inclusion in the TDM dashboard, based on the litera-
ture and existing tool-support. In Section 4, we present the survey
design, whose results are presented in Section 5. The obtained results
are interpreted in Section 6, along with useful implications for re-
searchers and practitioners. Finally, in Section 7, we present threats to
validity, and in Section 8 we conclude the paper.

2. Related Work

2.1 Monitoring Technical Debt

According to Li et al. [24], TD representation, communication, and
monitoring are among the most understudied TDM activities. Among
those studies referenced by Li et al. [24], none is related to the devel-
opment of a quality dashboard for assisting efficient TDM. Although,
tool-wise, state-of-practice platforms, such as SonarQube, or CAST
offer TD-related dashboards, these tools are (mostly) focused on TD
principal assessment.

From a research point of view, Seaman and Guo [32] review the main
issues associated with TD, and propose management mechanisms
(processes and tools) for monitoring TD. In particular, they focus on
the ongoing monitoring of TD over time, by continuously plotting
various aggregated measures over time and look at the shape of the
curve to observe the trends. The aggregated measures include: (a) the
total number of TD items; (b) the total number of high-principal items;
(c) the total number of high interest (probability and amount) items;
and (d) the weighted total principal (TP), which is calculated by sum-
ming up the items in an entire list (set three points for high, two for
medium, one for low TD principal, given some thresholds). This work
has set the landscape for TD monitoring, but lacks empirical valida-
tion, and information related to activities other than quantification.
Finally, Brown et al. [9] focus on software-reliant systems that have
been developed by the agile community. The work focuses mostly on
monitoring trade-offs: when developers accept compromises in a sys-
tem in one dimension (e.g., modularity) to meet an urgent demand in
some other dimension (e.g., a deadline). The authors argue that TD
needs to be continuously monitored, in the sense that limited TD may
not be a problem, which grows when more TD is accumulated. There-
fore, there is a need for rules on when TD grows “too much” (e.g.,
acceptability thresholds) and TD visualization tools. The authors pro-
pose the use of a daemon plug-in that demonstrates how to monitor
coding rules violations and providing measures using debt heuristics.
This plugin should be able to: (a) determine the level of TD over time,
(b) recognize trends, and (c) disseminate warnings at appropriate
times. Optimally, such tools must be integrated into the IDE.

2.2 Software Quality Dashboards

In this section we discuss research efforts that present the develop-
ment of software quality dashboards. Software quality dashboards can
become extremely relevant when software grows larger through a long
evolution history [18]. Heinemann et al. [18] suggest that current qual-
ity analysis tools operate in batch-mode and run up to several hours
for large systems, which hampers the integration of quality control
into daily development. The authors present a quality analysis tool,
namely Teamscale, which aims at providing feedback to developers,
in limited time at a commit level. The tool has been successfully eval-
uated within a development team of an insurance company. Addition-
ally, Baysal et al. [8], have performed interviews with Mozilla devel-
opers suggesting that there is a need for qualitative dashboards de-
signed to improve developers’ awareness by: (a) providing task track-
ing, (b) presenting insights on the workloads, (c) listing individual
issues, etc., to help manage their workloads in day-to-day develop-
ment tasks. Finally, Steidl et al. [33], suggest that although companies
often use static analysis tools, they do not derive consequences from
the metric results and, hence, the code quality does not actually im-
prove. The authors present an experience report of a consulting com-
pany, suggesting how code quality can be improved in practice, by
combining metrics, manual action, requiring however the close coop-
eration between quality managers, developers, and managers.

2.3 Perception of TD in Industry

In this section we discuss similar (in terms of research method)
studies, which have surveyed industrial stakeholders to mainly under-
stand their perception on TD. Lim et al. [28] performed an interview
study, which aimed to characterize TD at the ground level and under-
stand the context in which it occurs and how software practitioners

perceive it. The main outcomes of the study are: (a) developers are
familiar with TD, since they “have to live with it everyday”; and (b)
measuring TD is not an easy task, because its impact is not uniform.
Additionally, Ernst et al. [15], report the results of a survey with 1,831
participants, primarily software engineers and architects working in
long-lived, software-intensive projects from three large organizations,
and follow-up interviews of seven software engineers. The findings
suggested that architectural decisions are the most important source of
TD. Furthermore, while respondents believe the metaphor is itself
important for communication, existing tools are not currently helpful
in managing the details. Their results are used to motivate a technical
debt timeline to focus management and tooling approaches. Finally,
Ampatzoglou et al. [4] conducted a supervised survey in the embed-
ded systems industry, to investigate: (a) the expected life-time of
components that have TD, (b) the most frequently occurring types of
TD in them, and (c) the significance of TD against run-time quality
attributes. The results suggested that: (a) maintainability is more seri-
ously considered when the expected lifetime of components is larger
than ten years, (b) the most frequent types of debt are test, architectur-
al, and code debt, and (c) in embedded systems the run-time qualities
are prioritized compared to design-time ones (associated with TD).
Finally, Martini and Bosch [25] performed a survey with TD practi-
tioners to identify the motivation for performing TD prioritization and
refactoring. The results suggested that although competitive advantage
and attractiveness are very important aspects, almost no ATD ap-
proach uses them for prioritization.

3. Dashboard Views & Information Alternatives

In this section we present the envisioned views of the TDM dashboard
and the tentative pieces of information that it could visualize for sup-
porting TDM activities. The selection of views is driven by the TDM
activities (see Section 1), whereas the alternative types of information
have been retrieved based on existing literature and available tools.

3.1 TD Quantification Dashboard

The cornerstones of the TD metaphor are two concepts borrowed from
economics: namely principal and interest. On the one hand, TD prin-
cipal is the effort required to eliminate inefficiencies in the current
design or implementation of a software system [3]. On the contrary,
TD interest is the additional development effort required to modify
the software, due to the presence of said inefficiencies. For instance,
when new functionality needs to be added, additional effort needs to
be spent due to inferior design quality [10].

According to two recent secondary studies on TD management by
Ampatzoglou et al. [3] and Li et al. [24], SonarQube is the most fre-
quently used tool for estimating TD principal. SonarQube is repre-
senting TD principal through two different views: (a) the number of
inefficiencies in the source code, and (b) the amount of time required
to fix such inefficiencies. However, since the TD concept relies on
monetary assessments a third option has been considered: (c) the
monetary assessment of the aforementioned effort in US dollars/euros.
Apart from these system-wide views SonarQube provides the oppor-
tunity to focus on specific artifacts that suffer from TD, and also pro-
vides a listing of the kind of problems that are identified.

Software maintainability is inherently related to technical debt, and in
particular to TD interest [23] (i.e., how easy it is for a software engi-

neer to apply changes in a specific software system). So, we consider
maintainability as a proxy for TD. Maintainability, although not asso-
ciated to a universally accepted definition, is widely perceived as the
ease of making changes into a system. Moreover, even when a practi-
tioner is not aware of the incurred TD, any decision that aims at en-
hancing maintainability will result in lowering the amount of TD in-
terest. On the other hand, if a development team is not interested in
producing a maintainable system, then it is highly probable that
shortcuts will be made; subsequently these shortcuts will hinder any
future maintenance activity. In the literature one can identify various
models for assessing maintainability, through corresponding tools.

3.2 TD Prioritization Dashboard

According to Galorath [17] and Chen and Huang [12] maintenance
costs are increased by up to 75% if the software is unstable. In the
literature, one can identify a relevant quality property, termed stability
(and it’s opposite: instability) [19]. Based on the 1SO-9126 standard
stability characterizes the sensitivity of a given system to change,
which is the negative impact that may be caused by system changes
[19]. In the technical debt literature, instability is considered as a
proxy of interest probability. More specifically, it is claimed that
more change-prone artifacts are more likely to accumulate interest
than less change-prone ones, since interest manifests only during
maintenance activities [5]. Additionally, a class that will never change
along evolution, regardless of how poorly designed it is (i.e., high
principal) will never produce interest if it is not maintained. According
to Seaman and Guo [32], TD prioritization can be performed, either
based on principal, interest, or interest probability. Given the fact that
principal and interest information have been presented in the previous
view, the TD prioritization view shall focus on interest probability.

3.3 TD Reduction Strategy Dashboard

The amount of TD in a system can be mitigated in two ways: (2) repay
existing TD by applying refactoring, or (b) prevent the accumulation
of TD, by writing new clean code. The TD reduction dashboard can
potentially present information for both strategies. On the one hand,
regarding the “cleanness” of new code, the dashboard could present a
comparison between the TD intensity (i.e., the fraction of the total TD
divided by the Lines of Code of the artifact under study) in existing
against the TD intensity on new code [13]. The rationale for focusing
on cleaner new code, is that by committing code that is of superior
quality than the existing average, the entire codebase will eventually
improve in terms of TD.

On the other hand, regarding the refactoring of existing code, in the
literature one can identify various indicators or refactoring opportuni-
ties identification tools (e.g., [6][26]). Such methods and tools can
vary across various levels of granularity, ranging from the source code
level to the architecture level. For instance, with respect to the viola-
tion of the Single Responsibility Principle, we have been able to iden-
tify tools that can perform extract method opportunities (e.g., [11]),
i.e., working at the micro-level, whereas other are able to split long
packages (e.g., [31]), working at the architecture level.

4. Study Design

According to Pfleeger and Kitchenham [30], surveys are the most
appropriate research method for gathering information to describe
existing knowledge, attitudes, or behavior. Surveys are used to gather

information on topics with which the subjects are familiar. For the
case of this study, although subjects might not be extremely familiar
with the TD concepts and terminology, all subjects are experienced in
issues related to quality assessment. A possible lack of experience in
TD terminology has been considered during the design of the data
collection instrument (see Section 4.2).

The survey is organized based on the activities defined by Pfleeger
and Kitchenham [30]: (a) set research objectives, (b) plan and sched-
ule the survey, (c) ensure that appropriate resources are available, (d)
design the survey, (e) prepare the data collection instrument, (f) vali-
date the instrument, (g) select participants, (h) administer and score
the instrument, (i) analyze data, and (j) report the results. To avoid
excessive use of sub-sectioning, we present activities (a—d and g) in
Section 4.1 (namely “Survey Design”), activities (e, f and h) in Sec-
tion 4.2 (namely “Survey Instrument Design”), activity (i) in Section
4.3 (namely “Data Analysis Strategy ”) and activity (j) in Section 5
(namely “Results”).

4.1 Survey Design

The survey design section presents research objectives and research
questions, survey planning, resource management and selection of
participants. The design process began with reviewing the objectives,
examining the target population identified by the objectives and decid-
ing how the data collection shall be approached for obtaining the in-
formation needed to address those objectives. Additionally, we con-
sidered factors such as: (a) determining the appropriate sample size,
and (b) ensuring the largest possible response rate [30].

Research Objective: The goal of this survey, formulated as a GQM
statement [7], is to: “analyze industrial stakeholders’ concerns for the
purpose of understanding their needs with respect to the information
that should be visualized in a TDM dashboard for supporting: (a) TD
Quantification, (b) TD Prioritization, and (c) TD Reduction from the
point of view of the various roles of the stakeholders”.

Research Questions: Based on the aforementioned goal we were able
to state four research questions that will guide the design of this sur-
vey and the reporting of the results:

RQ:: What could be the optimal information to be visualized in a

TDM dashboard for efficient TD quantification?
RQ1 aims to explore which are the most important indicators that one
stakeholder would consider beneficial for TD monitoring. In particu-
lar, we provide indicators for TD principal and TD interest (see Sec-
tion 3). The motivation for setting up this research question is that
when dealing with stakeholders with very limited time “less is more”.
In other words, it is expected that an optimal dashboard shall provide
to practitioners, exactly the amount of information that they need,
without any extra material that would not be useful and would only
hinder the quality assessment process. Such an approach is expected
to increase the usability of the dashboard, the satisfaction of the in-
volved stakeholders, and therefore the efficiency of technical debt
management.

RQ2: What could be the optimal information to be visualized in a
TDM dashboard for efficient TD prioritization?

RQ:2 deals with the information required for efficient prioritization of

individual inefficiencies. According to Seaman and Guo [32], there

are three ways that one can prioritize which TD items (TDIs—i.e.,

artifacts that suffer from TD) to refactor first those with the highest:
(a) principal, (b) interest, or (c) interest probability. By considering
that (a) and (b) have already been explored in RQq, in this research
question we focus on interest probability (c) and in particular in its
perceived usefulness, and the extent to which stakeholders would be
interested to include it in a TDM dashboard. Additionally, we investi-
gate if the kind of the identified inefficiency can influence TDI priori-
tization. Additionally, we dig further in this task by investigating the
level of granularity (e.g., method- or architecture-level) that seems
more appealing to stakeholders, regarding TD prioritization. On the
one hand, changes at the higher levels of granularity are expected to
have a larger impact on quality, but on the other hand, such changes
might seem a bit abstract to practitioners and thereof difficult to apply.

RQs: What could be the optimal information to be visualized in a
TDM dashboard for efficient TD reduction?

In the literature, one can identify two distinct ways to reduce the nor-
malized amount of TD that is accumulated in a software system: (a)
preventing the accumulation of TD in new artifacts, and (b) repaying
the TD that is already accumulated into existing code. In RQs, we
contrast these two options, by weighting the importance of incorporat-
ing them in the TDM dashboard. The normalized amount of TD is
considered important so as to be able to compare TD accumulation of
systems with different (however, not substantially different) sizes.

RQ.: Do different roles of stakeholders require different views of the
quality dashboard?

RQa deals with investigating if the different roles of stakeholders,
drives the incorporation of multiple views in the TDM dashboard. For
example, we expect that managers will be more interested on mone-
tary views of software quality (since their responsibility is to get an
overview of system quality and assess the required effort), compared
to software developers, who would be more interested in getting indi-
cators on the artifacts that are suffering from TD (since it is their re-
sponsibility to resolve them).

Design: The goal of this survey is to identify the needs of industrial
stakeholders, for the purpose of developing a dashboard that would
include all necessary (but minimal) information for efficient TDM.
Based on the nature and the special characteristics of survey design, it
has been organized as a not supervised, cross sectional study [20]. The
study is not supervised, because the researchers have not intervened
while participants fill in the survey instrument. In addition, it is cross-
sectional, because participants have been asked about their past expe-
riences in a given point in time [20].

Plan and Schedule: According to Kitchenham and Pfleeger, there are
six common ways to get information: literature searches, personal
interviews, focus groups, email or telephone surveys, and online ques-
tionnaires [20]. In this survey, we performed data collection through
an online questionnaire, so as to increase the number of possible par-
ticipants, since the supervision will not be necessary. To increase the
response rate, we sent invitation emails in two phases (an initial one,
and a reminder). The reminder has been sent two weeks after the orig-
inal email, and we stopped waiting for answers, one month after send-
ing the reminder. The survey was executed between October 2018 and
January 2019: from October 2018 till mid-November the survey was
designed and piloted, data extraction lasted until mid-December,
whereas data analysis and reporting was performed from mid-
December to mid-January.

Resource Management: Online surveys are the most cost-effective
method of distributing a survey. The use of Google Forms provides us
the opportunity to easily setup the survey instrument and distribute it,
among practitioners, whereas all responses were automatically man-
aged by Google. The main benefit of this strategy is that no errors
during the recording of the responses can be introduced.

Participants Selection: As participants we opted for stakeholders with
different roles in the software industry. This survey has been conduct-
ed as part of two research projects, namely: SDK4ED and EXTREME
(see Acknowledgements), and therefore participants have been re-
trieved from industrial partners of the two consortia, which are spread
across EU, and vary in terms of application domains. For confidential-
ity reasons the companies have been anonymized in this manuscript.
The publicly available information is presented in Table I.

TABLE I. PARTICIPATING COMPANIES DEMOGRAPHICS

1D Application Domain Country | Participants | Size
Cl1 | Airborne France 2 Large
C2 | Constructions Greece 8 Large
C3 | Embedded Systems Sweden 3 SME
C4 | Quality Assurance Germany 6 SME
C5 | Transportation Belgium 2 SME
C6 | Augmented Reality Romania 3 SME
C7 | Mobile Applications Greece 5 SME
C8 | Enterprise Applications | Luxemburg 13 Large
C9 | Enterprise Applications Greece 14 Large
C10 | Medical Applications Netherlands 1 SME
C11 | Mobile Application Cyprus 3 SME

To reach the most fitting participants for our study, we have not
blindly targeted all software engineers of the eleven involved compa-
nies, but we have only reached project managers and asked them to
forward the questionnaire to people that would be candidate stake-
holders of the obtained dashboard and are experienced in such tasks.
From SMEs we asked them to forward the email to 10 individuals,
and from Large Enterprises to forward the email to 20 people. Based
on our planning 150 invitations have been sent. The response rate that
we have achieved was 40%, which is substantially higher than the
expected one (according to Kitchenham and Pfleeger [20] 20% is an
acceptable response rate). This high response rate can be attributed to
two possible reasons: (a) the industries are already collaborating ones,
so0 an established connection of trust has been used, and (b) the selec-
tion of participants from the project managers was beneficial, since
they were aware of subjects that would be interested in the survey
scope and goals. To comply with GDPR, we informed the participants
of the survey that: (a) the results of the study will be made available to
them in an aggregate form in case they are interested; (b) will only be
published in an aggregated form; (c) each participant should proceed
with the completion of the questionnaire only if he/she provides his
consent, and (d) their data will be erased upon participants requests.

4.2 Survey Instrument Design

Survey instruments are questionnaires that are constructed in three
steps: (a) preparation, (b) evaluation, and (c) documentation [21].

Prepare the Data Collection Instrument: The most important part of
developing a questionnaire is the selection of questions. In our study,

this process was governed by the guidelines provided in [21]: (a) keep
the amount of questions low, (b) questions should be purposeful and
concrete, (c) answer categories should be mutually exclusive, and (d)
they should avoid biasing the respondent.

To this end, we constructed a questionnaire with 15 main questions,
organized into three main sections (see Table IlI), and an introductory
one (2 questions). The questionnaire begins with some demographic
information (Name of Company and Role in the Company). We note
that we have not prompted the participants to record their experience,
since they were all considered as experienced enough from their man-
agers, who invited them to participate in the survey. In Section-2,
industrial stakeholders are asked to rate, in a Likert scale, a group of
questions based on the usefulness of TD principal indicators, whereas
in Section-3, he/she is asked to rate, a group of questions based on the
usefulness of TD interest indicators. Additionally, in Section-4, he/she
is asked to consider the optimal strategy for mitigating TD. In the
beginning of each Section some basic TD definitions have been pro-
vided, so as to establish a common understanding and terminology
among participants. The complete questionnaire is available online.
The mapping of questions to RQs is provided in Section 4.3.

TABLE Il. SURVEY INSTRUMENT

ID | Question

Section 2 — TD Principal

Q.2.1 | How useful is it to know how many inefficiencies your code has?

Q.2.2 | How useful is it to have an estimation of the effort required to solve
all inefficiencies?

Q.2.3 | How useful is it to have an estimation of the effort required to solve
all inefficiencies in a currency format (e.g. $ or €)?

Q.2.4 | If you had only one option for quantifying inefficiencies, which one
would you prefer?

Q.25 | To what extent the granularity (architecture, method) of an
inefficiency is important for selecting the ones to resolve?

Section 3 — TD Interest / Interest Probability

Q.3.1 | How useful is it to know how maintainable your code as a whole
(system-level) is?

Q.3.2 | How useful is it to know the maintainability of specific artifacts?

Q.3.3 | How useful is it to know the kind of structural problems that hinder
maintainability?

Q.3.4 | How useful is it to know the probability of one artifact to need
maintenance?

Q.35 | At which level of granularity would you prefer to get a
maintainability indicator?

Q.3.6 | What piece of information would be more important for selecting
which artifact to refactor first?

Section 4 — TD Reduction

Q.4.1 | Do you consider TD repayment (refactoring) as a useful activity for
improving quality?

Q.4.2 | Do you consider writing new code that is TD-free as a useful activity
for improving quality?

Q.4.3 | Do you consider a metric comparing TD density on existing and new
code useful?

Q.4.4 | To reduce the TD density of your system, would you prefer to
refactor or write TD-free new code?

The majority of the questions have been answered in a Likert Scale
ranging from: (a) “Not Useful” to “Very Useful” for questions that

https://goo.gl/forms/9z0v1TDQj8gObHF52

start with “How useful...?”, or “Do you consider...”, and (b) “Not

Important ” to “Very Important ” for the question Q.2.5. Questions that

do not fall in the aforementioned three categories, the candidate re-

sponses were as follows:

2.4 (a) number of inefficiencies, (b) effort to solve inefficiencies, or
(c) monetary assessment of the effort required to solve ineffi-
ciencies

3.5 (a) system-level maintainability, or (b) artifact-level maintaina-
bility

3.6 (a) kind of maintenance problems, or (b) probability of an arti-
fact to need maintenance

4.4 (a) refactoring, or (b) write TD-free new code

Evaluation: Before data collection, the survey instrument should be
evaluated [21]. In particular, we performed a pilot survey with a
smaller number of participants (i.e., PhD and MSc students with sub-
stantial software engineering experience), to check the understandabil-
ity of the questions, the reliability and validity of the survey instru-
ment, and the appropriateness of the data analysis techniques [21].
Especially for ensuring the validity of the process (by testing the con-
sistency of respondents’ answers), we have inserted some control
questions (see Section 4.3). For example, with respect to the quantifi-
cation of TD principal questions Q.2.1 — Q.2.3 rate alternative forms
of representation individually. Next, in Q.2.4 (the control question),
we ask participants to select one of the three. We expect participants
in Q.2.4 to select the indicator with the max score of Q.2.1 — Q.2.3.We
note that the list of questions that was listed in Table Il is the final one,
after the execution of the pilot, which led to mostly syntax changes.

Documentation: Since our survey was self-administered, we have
developed a questionnaire specification (survey protocol) including:
(a) the objectives of the study, (b) the description of the rationale for
each question, and (c) the description of the evaluation process. In the
end, when the questionnaire is administered, we updated the question-
naire specification with more information [21].

4.3 Data Analysis Strategy

Our dataset consists of 16 columns (questions in Table I, plus the role
of the respondent in the company) and 60 rows (responses). The ob-
tained dataset consists of 8 managers, 12 architects/designers, 3 re-
quirements’ engineers, 8 testers, and 29 software developers. The data
analysis [22] has three goals: (a) evaluate the correctness of the devel-
oped questionnaire, (b) identify the most useful information to be used
in a TDM dashboard (by answering the RQs of the study), and (c)
study potential differences the views of different stakeholder roles.

To achieve goal (a), we have used four control questions: Q.2.4 Q.3.5,
Q.3.6, and Q.4.4. The control questions are marked with italic fonts
inside a parenthesis in Table Ill—the parenthesis suggests the ques-
tions that are being tested. To evaluate the correctness of the question-
naire, we have examined the consistency of the obtained answers
similarly to the evaluation of the survey instrument, as exemplified in
Section 4.2. The reporting of consistency will be performed through
frequencies: i.e., the percentage of responses to control questions that
are in accordance to the responses to the individual answers to which
they are mapped to (e.g., Q.2.4 is mapped to Q.2.1 — Q.2.3).

To achieve goal (b), we have used descriptive statistical analysis on
the obtained answers. The mapping of questionnaire questions and
research questions is presented in Table I1l. Analysis with frequency
tables will reveal the importance of the parameter studied in each

question. For visualization, pie and bar charts will be created. We note
that we use pie and bar charts as means of visualization, instead of
boxplots, because our variables are ordinal, and therefore treating
them as numeric values would not be appropriate [16]. For similar
reasons, we have selected not to perform paired sample t-tests, for
comparing means or use 95% confidence intervals.

TABLE Ill. ANALYSIS STRATEGY

RQ Questions
1 Q.21-Q.23(Q.2.4), Q.3.1,Q.3.2 (Q3.5)
2 Q.3.3-Q.3.4(Q.3.6),Q.25
3 Q.41-Q.4.3(Q.4.4)
4 All Questions + Role

To achieve goal (c), we have performed cross tabulation between
stakeholder roles and frequencies of answers to each question of the
survey instrument, and calculated the chi-square index to check if
there are differences among the answers of stakeholders of various
roles. The mapping of questions to RQs is the same as in goal (b)—
see Table IlI. Similarly to goal (b), we have not been able to perform
Analysis of Variance, since the variables are ordinal.

5. Results

In this section we present the results of this study, organized based on
the goals that have been described in Section 4.3. In Section 5.1 we
present the instrument validation, in Section 5.2 the answers to RQ:-
RQs (TDM dashboard), and in Section 5.3 we present the differences
in the perception of stakeholders with different roles (RQ4).

5.1 Instrument Validity

The results of instrument validation suggest that the questionnaire is
well-constructed regarding the internal consistency of the instrument.
The results are summarized in Table IV. The rows of the table corre-
spond to sets of control and individual questions, whereas the last
column presents the levels of consistency.

TABLE IV. INSTRUMENT VALIDATION

Control Individual

Question Questions Consistency
Q.24 Q.21-Q.23 81%
Q.35 Q31-Q3.2 91%
Q.3.6 Q.33-Q34 96%
Q.44 Q41-Q4.2 84%

For example, the 2™ row suggests that 91% of the respondents gave

consistent answers to Q.3.1, Q.3.2, and Q.3.5. For this row as con-

sistent we consider the following cases:

o stakeholders that have selected “system-level maintainability” in
Q.3.5 have rated Q.3.1 higher or equal than Q.3.2

o stakeholders that have selected “artifact-level maintainability” in
Q.3.5 have rated Q.3.2 higher or equal than Q.3.1

The survey instrument is considered as internally consistent at the
80% level, which is interpreted as high internal consistency.

5.2 TDM Dashboard Setup

TD Quantification Dashboard: To investigate the indicators that are
preferable for the quantification of TD (RQ1), we have investigated

the indicators for measuring the two main concepts of the TD meta-
phor: principal and interest. The results of the survey (Q.2.4—see
Figure 2) suggest that an indication of the “effort required to resolve
all inefficiencies in minutes” seems to be the most acceptable view of
TD principal, followed by the “number of inefficiencies”, and the “ef-
fort required to resolve all inefficiencies in currency”. The frequency
analysis of individual questions (Q.2.1-Q.2.3) yielded similar results
in the sense that the mode and median value for “effort in minutes”
and “number of inefficiencies” was “Very Useful”, whereas for “effort
in currency” the median value was “Useful” (the mode value is “Very
Useful”).

= number of inefficiencies

u effort required to resolve inefficiencies in minutes

= effort required to resolve inefficiencies in currency

Figure 2. TD Principal Indicators

Regarding the level of granularity at which TD interest shall be calcu-
lated, the results of the study suggest that an assessment and the re-
porting of the TD interest at the artifact-level is more useful compared
to the system-level. In Figure 3, we present the fraction of stakehold-
ers that selected each option in the corresponding control question
(Q.3.5). The results suggest that more than 50% of the respondents are
interested in artifact-based assessments. However, in addition to the
close difference presented in Figure 3, the investigation of the re-
sponses of stakeholders to individual questions (Q.3.1-Q.3.2), con-
firmed that this result is rather marginal (see Figure 4), and therefore
both options have a merit of their own.

m Artifact-level = Both

m System-level

Figure 3. Level of Granularity for Calculating TD Interest

System-level Artifact-level

W Unuseful ®m Neutral = Useful Very Useful

Figure 4. TD Interest Preferences (stacked bars)

TD quantification is preferable at the artifact level, however, system-
level assessments are also deemed important, and they shall not be
disregarded. Indicators that offer an assessment of TD concepts in an
effort form (in minutes) are preferable compared to a simple count of
inefficiencies.

TD Prioritization Dashboard: To unveil the information that is neces-
sary for TDIs prioritization, we have explored two possible parame-
ters: (a) the artifact to change—and in particular its change probabil-
ity, and (b) the kind of the problem from which the artifact suffers
from. The results (control question Q.3.6) suggest that the kind of
problem from which the artifact suffers from is more important for
prioritization purposes, compared to the artifact per se (kind of prob-
lem: 57%, specific artifact: 37%, both: 6%). An outline of the stake-
holders’ answers to individual questions (Q.3.3 and Q.3.4) is provided
in Figure 5. The frequency analysis suggests that the mode and medi-
an value on the usefulness of the kind of problem information is “Very
Useful”, whereas for the usefulness of knowing the information
“which artifact is going to change” is “Useful”.

kind of problem

artifact to change

m Unuseful m Neutral mUseful = Very Useful

Figure 5. TD Prioritization (stacked bars)

Similarly to before, the importance of knowing the level of granularity
of the identified inefficiency for prioritizing the resolution of the TDI
that is suffering from it is being explored (Q.2.5). The results suggest
that the level of granularity of the inefficiency (i.e., method, class, or
architecture level) is an important parameter for the repayment deci-
sion—mode and median value: “Very Important”.

TD prioritization is preferable to be performed on artifacts that suffer
from certain design problems (the level of granularity is an important
parameter), rather than on artifacts that are changing frequently.

45.6%
54.4%

u refactoring ® write TD-free new code

Figure 6. TD Reduction Preferences (pie-chart)

TD Reduction Dashboard: By comparing the preferable strategy of
stakeholders to reduce the amount of technical debt, our results
(Q.4.4) suggest that writing clean code on new artifacts is preferable
compared to refactoring, see Figure 6. The mode and median value for
Q.4.1 and Q.4.2 are both “Very Useful”. This belief is supported by
the fact that stakeholders consider the existence of a metric that cap-
ture the amount of TD inserted with new code as (at least) useful by
75% (Q.4.3).

Stakeholders prefer to reduce TD by writing TD-free new code on
new modules, compared to refactoring existing artifacts.

5.3 Roles of Stakeholders

Regarding the different perception that the role of each stakeholder
can bring into the TDM dashboard configuration, we can observe that
important differences can be identified only in the quantification of
TD principal, followed by the level of reporting interest, and the role
of granularity in TD prioritization. In particular, in Table V, we pre-
sent the results of the chi-square test after cross-tabulating the role of
the stakeholders and the answers obtained from control questions in
the survey instrument.

effort in effort in number of

currency minutes inefficiencies
Manager -40% -26%
Requirements Engineering 39% _
Architect-Designer 4% 30%
Software Developer -43% 1% 17%

Tester-Quality Assurance 39%

Figure 7a. TD Principal Quantification

Not Very
Useful

Neutral Useful Useful

Manager 307% 45% -69%
Requirements Engineering 104% -
Architect-Designer 2% 10%
Software Developer -29% -8% 15%

Tester-Quality Assurance -19% -12%

Figure 7b. Interest Reporting at Artifact Level

Very
Neutral Useful Useful
Manager 81% 48% -69%
Requirements Engineering
Architect-Designer 30% 10%
Software Developer -21% -9% 15%
Tester-Quality Assurance 27% 4% -12%

Figure 7c. Prioritization based on Problem Granularity

The role of stakeholders does not appear to substantially influence the
views that need to be included in the TDM dashboard. However, some
deviations have been identified: (a) managers are more interested in
monetary views of problems, (b) testers and managers are those that
are least interested in quality at artifact-level, since they prefer having
the big picture, and (c) requirements engineers do not see any benefit
of refactoring inefficiencies based on their level of granularity.

TABLE V. IMPACT OF STAKEHOLDERS’ VIEW

RO| Q Description X2 sig.
2.4 | TD Principal Quantification 13.81 | 0.02

1 | 3.1 | Interestat System-Level 7.39 | 0.83
3.2 | Interest at Artifact-Level 17.03 | 0.04

3.3 | Prioritze based on Kind of Problem 474 | 0.78

2 | 3.4 | Prioritze based on Artifact’s Interest Probability | 10.19 | 0.59
2.5 | Prioritize based on Problem Granularity 9.88 | 0.05

3 | 4.4 | Repayment Strategy (refactor vs. new code) 458 | 0.33

From the aforementioned results, we can observe that only three are
statistically significant at the 0.05 level (Q.2.4, Q.3.2, and Q.2.5) and
therefore warrant additional investigation. Therefore, for each of these
questions, we present a heatmap (see Figures 7a-7c). In the heatmap,
the rows correspond to the role of the stakeholder, and the columns to
the tentative answers. The color of each cell suggests if the value for
the specific type is higher (green) or lower (red) than the expected
one. The percentage that appears inside the cell corresponds to the
fraction (expressed as a percentage) of the difference between the
observed value in the Likert scale from the expected value, over the
expected value.

6. Discussion

In this section we discuss the findings of this study, organized into two
sub-sections: in Section 6.1 we provide tentative interpretations of the
obtained results, whereas is Section 6.2 we discuss the implications to
research and practice from this study.

6.1 Interpretations of Results

The main findings of this work are summarized and discussed below:

e TD quantification: The results suggest that stakeholders prefer to
see effort-related information of inefficiencies and improperly de-
signed/developed artifacts. This preference suggests that the TD
metaphor (relating poor software development to effort is useful in
practice. The fact that the currency view is not the most popular
among stakeholders, can be interpreted by the fact that most indus-
trial stakeholders are more familiar with effort in MMs or minutes,
while monetary estimates are by definition subject to numerous
assumptions.

o Level of Detail for Reporting: The results suggest that a marginal
majority of stakeholders suggest that the level of reporting shall be
at the artifact level, and not system-wide. This finding is interpret-
ed by the fact that artifact-level reporting can be more easily relat-
ed to actionable results in the sense that it points to part of the sys-
tem that need redesign. On the contrary, system-wide reporting
provides a panoramic view of quality, which does not lead to spe-
cific actions. However, such an assessment still has a merit for
comparing different software systems, as a whole.

e TD Prioritization parameters: Stakeholders believe that they shall
start repaying TD from artifacts that suffer from specific problems,
and not based on the interest probability of the artifact. This out-
come, although not intuitive is supported by the literature [2], and
can be partially explained due to the fact that stakeholders are not
acquainted with TD terminology and principles. Thus, it might not
be clear to them that additional parameters shall be considered.

e TD Repayment strategies: Writing TD-free new code, or develop-
ing TD-free new artifacts seems as a more promising strategy for
mitigating TD, compared to refactoring existing code. This finding
suggests that stakeholders are reluctant to change a piece of soft-
ware that is well-tested and properly running, just for the sake of
improving quality. Therefore, they find the ‘clean new code’ ap-
proach as more intriguing, in the sense that minimal investment
during commits can ensure software with less TD on average.

e Managers’ View. The main differences of the managers’ view
compared to the study corpus are that they are more interested: (a)
in monetary views and (b) system-wide evaluations, compared to
the rest stakeholders. The results can be considered intuitive, since
managers are more familiar to working with monetary estimates,
and they are not interested in details. The first observation con-
firms the belief of the TD community that the TD metaphor can
bridge the gap between technical and managerial stakeholders.

o Testers’ View: Testers are among the least interested in artifact-
level reporting. However, this result shall be treated with caution,
since only eight testers exist in our sample. Although initially this
result seems as counter-intuitive, it can be explained if the testers’
role in the company is the reporting of quality at a more coarse-
grain level through quality gates, which are either passed or failed.

6.2 Implications to Researchers and Practitioners

The results of this study lead to interesting implications for both re-

searchers and practitioners. Regarding researchers we highlight that:

e The TD community shall try to further disseminate basic views of
the TD metaphor, e.g., interest probability. At this point, although
industrial stakeholders clearly understand the concepts of principal
and interest, they are neglecting the important parameter of inter-
est probability. This parameter is acknowledged as important in
TD research cycles (e.g., [5], [32]), but it still is not acknowledged
as important by the practitioners.

¢ Investigate the benefits of developing TD-free artifacts. This ap-
proach seems promising to practitioners, but there exists limited
empirical evidence that such a strategy will have the same effect
as refactoring of a system. Therefore, there is a need for rigorously
investigating an industrial relevant topic.

e TD as a vehicle for communication. This study provides some
initial empirical evidence that TD can play the role of a communi-
cation vehicle among technical and managerial stakeholders.

However, this belief needs to be further supported by strong em-
pirical evidence.

Regarding practitioners, the outcomes of this study are able to drive
the development of an industrially-relevant TDM platform that covers
the needs of stakeholders and eventually lead to efficient TDM. Some
initial directions on the features that such a TDM dashboard could
have are discussed next. Figure 7 presents a mockup of a TD quantifi-
cation and evolution dashboard. First, in the left side of the screen, the
user sees the project explorer tree, through which he/she can select the
artifact (either the class or the package) that he/she wants to check. In
the TD principal panel, an overview of the results (similar to those
obtained from the SonarQube tool [27]) is presented (e.g., cumulative
TD principal, number of bugs, violations, code smells etc.). In the TD
Interest panel, one can inspect the total interest, the levels of main-
tainability predictors, the measurements of change proneness (interest
probability, instability and interest probability ranking), and the table
that contains the top-10 probable inefficiencies. In the TD of New
Code the evolution of technical debt for the newly added code vs. the
technical debt of existing code will be presented.

e R
TO Dashboard Dashboard ty Dashboard 1 fa port e
»; 210ays ¢ 150K o «@ O o o« @
- % . .

Deb

10
Total Interest Maintainability Ranking

Figure 7. TDM Dashboard Overview

TD principal indicators are expressed in effort related-information
(both currency and minutes, so as to cover all stakeholders). Further-
more, both interest and principal indicators can be easily swap from
system-level to artifact-level using the tree-view. Additionally, TD on
new code has a prominent place in the dashboard. Interest probability
information is presented, along with information on the types of vio-
lations. The developed demo dashboards are part of SDK4ED plat-
form, and more details can be found online.

7. Threats to Validity

While designing this study, we have identified several threats to valid-
ity. First, regarding conclusion validity, all interpretations are tentative
ones, since (by definition) surveys cannot support causality, but only
report trends and general beliefs in the state-of-practice. Additionally,
the sample of this study is a bit narrow compared to other surveys;
however, it could not be expanded to a larger population since we
were interested in a corpus of software engineers that are experienced
and are aware of software quality assessment practices. Nevertheless,
we need to note that the wide-spread of the population to many com-
panies, that vary across EU countries guarantee to some extent the
generalizability of the results. Furthermore, we acknowledge that re-
peating the study with a different set of industrial stakeholders might

https://sdk4ed.eu/documents/

yield different results; however, the study design is completely repli-
cable since all data collection instruments and procedures are present-
ed transparently in Section 4. Finally, a threat to construct validity
stems from the fact that we presented to the participants only elements
retrieved from the literature or existing tools; therefore, we might have
missed other aspects that they consider important, but were not listed
in tentative answers, neither including open-ended questions.

8. Conclusions

TD is a powerful metaphor that has been recently used to raise the
awareness of software developers to quality malfunctions. TD is a
continuously evolving concept that needs monitoring and correspond-
ing managing activities. However, neither in state-of-research or —
practice one can identify guidelines on how to visualize TD, through a
simple, but holistic dashboard. In this paper, we aim to obtain the
industrial requirements for such a dashboard through a survey with
experienced software engineers. The results of the study suggest that
TD metaphor concepts, such as principle and interest, make sense to
the practitioners, since the effort-related estimates that they provide
appear to be useful. Additionally, several parameters for TD prioritiza-
tion and repayment have been investigated and useful conclusions
have been reached. As a final step to this study, we drafted a mockup
of the envisioned dashboard that we are currently implementing as
part of the SDK4ED project.

ACKNOWLEDGEMENTS

Work reported in this paper has received funding from the European
Union Horizon 2020 research and innovation programme under grant
agreement No. 780572 (project: SDK4ED).

REFERENCES

[1] N. Alves, T. Mendes, M. Mendonga, R. Spinola, F. Shull, C. Seaman, “Identifica-
tion and management of technical debt: A systematic mapping study”, Information
and Software Technology, Elsevier, 70 (2), pp. 100-121, 2016.

[2] T. Amanatidis, N. Mittas, A. Chatzigeorgiou, A. Ampatzoglou, and L. Angelis,
“The developer's dilemma: factors affecting the decision to repay code debt”, Pro-
ceedings of the 2018 International Conference on Technical Debt (TechDebt’ 18),
|EEE, pp. 62-66, Gothenburg, Sweden, June 2018.

[3] Ar. Ampatzoglou, Ap. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The
financial aspect of managing technical debt: A systematic literature review”, In-
formation and Software Technology, Elsevier, vol. 64, pp. 52—73, Aug. 2015.

[4] Ar. Ampatzoglou, Ap. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, P. Abra-
hamsson, A. Martini, U. Zdun and K. Systa, “The Perception of Technical Debt in
the Embedded Systems Domain: An Industrial Case Study”, 8th International
Workshop on Managing Technical Debt (MTD’ 16), IEEE, USA, Oct. 2016.

[5] Ar. Ampatzoglou, Ap. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou, “Estab-
lishing a framework for managing interest in technical debt”, 5" International
Symposium on Business Modeling and Software Design (BMSD’15), July 2015.

[6] F.F. Arcelli, I. Pigazzini, R. Roveda, and M. Zanoni. “Automatic Detection of
Instability Architectural Smells”, International Conference on Software Mainte-
nance and Evolution, (ICSME’16), USA, pp. 433-437, 2-7 October 2016.

[71 V.R,, Basili, G. Caldiera, and H. D. Rombach, "Goal Question Metric Paradigm”,
Encyclopedia of Software Engineering, John Wiley & Sons, pp. 528-532, 1994.

[8] O. Baysal, R. Holmes, and M. W. Godftrey, “Developer Dashboards: The Need for
Qualitative Analytics”, IEEE Software, IEEE, 30 (4), pp. 56-52, July-Aug. 2014.

[9] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N.
Zazworka, “Managing Technical Debt in Software-Reliant Systems”, Workshop
on Future of software engineering research (FOSER '10), pp. 47-52, New Mexico,
USA, 07 - 08 November 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

311

[32]

[33]

341

A. Chatzigeorgiou, Ap. Ampatzoglou, Ar. Ampatzoglou, and T. Amanatidis,
“Estimating the breaking point for technical debt”, 7th International Workshop on
Managing Technical Debt (MTD’ 15), IEEE, Germany, pp.53-56, Oct. 2015.

S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis, and P. Avge-
riou, “Identifying Extract Method Refactoring Opportunities Based on Functional
Relevance” IEEE Trans. Software Eng., 43(10), pp. 954-974, 2017.

J.-C. Chen, and S.-J. Huang, "An empirical analysis of the impact of software
development problem factors on software maintainability," Journal of Systems and
Software, 82(6), pp. 981-992, 2009.

G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou and A. Ampatzoglou, “How
do developers fix issues and pay back technical debt in the Apache ecosystem?”,
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER’18), IEEE, Campobasso, Italy, 20-23 March 2018.

R. J. Eisenberg “A threshold based approach to technical debt”, ACM SIGSOFT
Software Engineering Notes, 37 (2), pp. 1 - 6, ACM, 2012.

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure It? Man-
age It? Ignore It? Software Practitioners and Technical Debt”, 10" Joint Meeting
on Foundations of Software Engineering (ESEC/FSE’15), pp. 50-60, Italy, 30 Au-
gust - 04 September 2015.

A. Field, “Discovering Statistics using IBM SPSS Statistics”, SAGE, 2013.

D. D. Galorath, "Software total ownership costs: development is only job one,"
Software Tech News, 11(3), 2008.

L. Heinemann, B. Hummel, and D. Steidl, “Teamscale: Software Quality Control
in Real-Time”, 36th International Conference on Software Engineering (ICSE’14),
Companion, pp. 592-595, Hyderabad, India, 31 May — 07 June 2014.

ISO/IEC 9126-1:2001, Software engineering - Product quality (Part 1: Quality
model), Geneva, Switzerland, 2001.

B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research part 2: design-
ing a survey”, ACM SIGSOFT Softw. Engineering Notes 27(1), pp. 18-20, 2002.
B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research: part 3: con-
structing a survey instrument”, ACM SIGSOFT Softw. Engineering Notes 27(2),
pp. 20-24, 2002.

B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research part 6: data
analysis”, ACM SIGSOFT Software Engineering Notes 28(2), pp. 24-27, 2003.

P. Kruchten, R. L. Nord, and 1. Ozkaya, “Technical Debt: From Metaphor to
Theory and Practice”, IEEE Software, 29 (6), 18-21, 2006.

Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt
and its management”, Journal of Systems and Software, Elsevier, v. 101, pp. 193-
220, March 2015.

A. Martini and J. Bosch, “Towards Prioritizing Architecture Technical Debt:
Information Needs of Architects and Product Owners”, 41 Euromicro Conference
on Software Engineering and Advanced Applications, IEEE, Funchal, Portugal,
26-28 Aug. 2015

M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Identification and
application of Extract Class refactorings in object-oriented systems”, Journal of
Systems and Software, Elsevier, 85 (10), pp. 2241-2260, 2012.

J. L. Letouzey and T. Coq, “The SQALE Analysis Model: An Analysis Model
Compliant with the Representation Condition for Assessing the Quality of Soft-
ware Source Code”, 2™ International Conference on Advances in System Testing
and Validation Lifecycle (VALID’ 10), IEEE, pp. 43-48, France, 22-27 Aug. 2010.
E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software Practi-
tioners Have to Say about Technical Debt”, IEEE Software, IEEE Computer So-
ciety, 29 (6), pp. 22-27, Nov.-Dec. 2012.

A. Martini, T. Besker, J. Bosch, “Technical Debt tracking: Current state of prac-
tice: A survey and multiple case study in 15 large organizations”, Science of Com-
puter Programming, Elsevier, 163 (1), pp. 42-61, October 2018.

S. L. Pfleeger, B. A. Kitchenham, “Principles of survey research: part 1: turning
lemons into lemonade”, ACM SIGSOFT Software Engineering Notes, 26(6), pp.
16-18, 2001.

S. M. A. Shah, J. Dietrich, C. McCartin, “Making Smart Moves to Untangle Pro-
grams”, 16th European Conference on Software Maintenance and Reengineering
(CSMR 2012), Szeged, Hungary, IEEE Computer Society, 72-30 March 2012.

C. Seaman and Y. Guo, “Measuring and monitoring technical debt”, Advances in
Computers, Elsevier, v.82, pp. 25 - 46, 2011.

D. Steidl, F. Deissenboeck, M. Poehlmann, R.Heinke, and B. Uhink-Mergenthaler,
“Continuous Software Quality Control in Practice”, International Conference on
Software Maintenance and Evolution (ICSME’14), Canada, 2014.

H. van Vliet, “Software Engineering: Principles and Practice”, John Wiley, 2008.

	Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the ful...
	EASE '19, April 15–17, 2019, Copenhagen, Denmark
	© 2019 Association for Computing Machinery.
	ACM ISBN 978-1-4503-7145-2/19/04…$15.00
	https://doi.org/10.1145/3319008.3319019

