Investigating Trade-offs between Portability,
Performance and Maintainability in Exascale Systems

Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Nikolaos Nikolaidis, Aggeliki-Agathi Tzintzira,
Areti Ampatzoglou, Alexander Chatzigeorgiou

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
e.arvanitou@uom.edu.com, a.ampatzoglou@uom.edu.qgr, it14189@uom.edu.gr, angeliki.agathi.tsintzira@gmail.com, am-

patzoglou@gmail.com, achat@uom.gr

Abstract— Due to the rapid advancements in the hardware ar-
chitectures of High-Performance Computing infrastructures,
new challenges have arisen in the development of scientific soft-
ware applications. In particular, software that runs on Exascale
machines, needs to be highly portable, highly parallelizable and
at the same time maintainable, since software for HPC evolves
constantly over time. By taking into account that an overall op-
timization of all the aforementioned qualities is not realistic, in
this study, we explore the possible trade-offs, when optimizing
the run-time qualities of the software (i.e., performance and
portability) through state-of-practice techniques in Exascale
software development, in expense of code maintainability, as ex-
pressed by technical debt. To achieve this goal, we have per-
formed a case study, in which the effect of run-time optimiza-
tions on technical debt has been measured. The results suggest
that run-time optimizations tend to reduce TD principal,
whereas the effect on interest is not consistent. The results are
discussed in detail in this paper from the point of view of both
researchers and practitioners.

Keywords— technical debt; portability; performance

I. INTRODUCTION

Exascale computing refers to applications capable of making
a quintillion calculations per second. Such applications are
usually developed for scientific purposes (such as physics, bi-
ology, etc.) that require simulations relying upon large vol-
umes of data [5]. Due to the rapid evolution of the hardware
of Exascale systems, developers cannot have a complete view
of its internal structure [11]. Therefore, the programming of
future supercomputing architectures will become significantly
more challenging, in the sense that future architectures will
become more parallel and applications will have to be able to
exploit the parallelism at different levels. Additionally, archi-
tectures will become more heterogeneous involving different
type of processor cores and accelerators (such as GPUs and
FPGA boards). Thus, developers do not only have to be able
to exploit the capabilities of these more complex hardware ar-
chitectures, but software applications need to remain (perfor-
mance) portable. These challenges are vividly explained in the
Future and Emerging Technologies (FET) calls for HPC, sug-
gesting that there is a need for programming methods that will
enhance portability and performance. For further supporting
the importance of these qualities in Exascale applications,
Carver et al. [9] suggested that functional correctness, per-
formance, portability, and maintainability are considered by
developers as the most important for Exascale systems.

By considering the fact that functional correctness is not ne-
gotiable, the rest qualities need to be safeguarded. Therefore,
optimizations for improving the levels of the corresponding
quality attributes (e.g., performance, portability, maintainabil-
ity) are required. This problem is wicked in the sense that it is
often hard to find solutions that balance and optimize a variety

XXX=-X-XXXXK-XXXX-XIXX/$XX.00 ©20XX IEEE

of quality attributes, since various trade-offs appear: for in-
stance, the use of polymorphism improves the extendibility (a
sub-characteristic of maintainability) of the system, but incurs
a significant performance penalty. Trade-offs occur because
almost every architectural decision has the potential to posi-
tively affect some quality attributes and negatively affect oth-
ers. Therefore, it is vital to understand the nature of a trade-
off, to achieve the right balance between quality attributes [4],
rendering the decision to apply the optimization a fully in-
formed one.

The goal of this study focuses on the aforementioned qualities
(namely: portability, performance and maintainability), and
explores if there are trade-offs between them, when optimiz-
ing Exascale systems. To achieve this goal, we performed a
case study on 6 Exascale projects, which employ state-of-
practice tools for enhancing portability (SkePU [14]) and per-
formance (StarPU [12]) and explore the effect of using these
tools on maintainability. Software maintainability is assessed
through an emerging notion on the software development
community, termed Technical Debt (TD). TD has been intro-
duced [3] to monetize the financial costs that arise, along
maintenance: TD refers to the shortcuts taken along develop-
ment (e.g., in terms of shorter delivery time) that may have
negative impact on software qualities, e.g., maintainability.
The TD metaphor relies on two basic concepts: TD principal
(i.e., the effort required to refactor the software, so as to im-
prove its quality) and TD interest (i.e., the extra effort needed
along software maintenance, due to the existence of TD prin-
cipal). In this study, we quantify these concepts, based on the
FITTED framework—proposed by Ampatzoglou et al. [1],
and validated in an industrial setting [26]. We note that details
on SkePU [14], StarPU [12], and TD quantification [1] are not
discussed in this paper, due to space limitations, and can be
accessed in the aforementioned original studies.

Il. RELATED WORK

Literature on software quality mostly focuses on the optimi-
zation of separate qualities, such as maintainability, usability,
security, etc. [4]. However, during the development process,
the effort to optimize one software quality attribute might neg-
atively affect another. Thus, the struggle to achieve a higher
software quality level is subject to many trade-offs. Since the
amount of research in this domain is very large, this section
includes only an indicative sample of this corpus of studies,
due to space limitations. Buyens et al. [6] analyze the trade-
offs in three cases between security and maintainability. Se-
curity is measured by two metrics: the number of violations
and the estimation of the attackers’ effort. On the other hand,
maintainability is measured by two coupling metrics. The re-
sults suggest that it is more effective to apply transformations
jointly, and indicate the existence of trade-offs between the
qualities of security and maintainability.

mailto:e.arvanitou@uom.edu.com
mailto:a.ampatzoglou@uom.edu.gr
mailto:it14189@uom.edu.gr
mailto:angeliki.agathi.tsintzira@gmail.com
mailto:ampatzoglou@gmail.com
mailto:ampatzoglou@gmail.com
mailto:achat@uom.gr

Additionally, Feitosa et al. [15] focus on the existence of: (a)
quality trade-offs in critical embedded systems (CES) by ana-
lyzing their implemented architecture through evolution; and
(b) different trade-offs between critical embedded systems
and systems from other domains. The results suggest that
quality trade-offs are usually in favor of critical qualities, and
in expense of non-critical ones. In a similar fashion, Papado-
poulos et al. [20] analyze the trade-offs between design-time
and run-time qualities in the field of embedded systems. The
results have empirically validated the existence of trade-offs
between run- and design-time qualities.

I1l. CASE STUDY DESIGN

To explore the relation between: (a) the application of perfor-
mance / portability optimizations; and (b) their effect on main-
tainability, we performed a case study on six Exascale pro-
jects. In this section we describe the study design, according
to the guidelines of Runeson et al. [22]. The reason for con-
ducting a case study was that we aimed at investigating real-
world projects that apply performance and portability optimi-
zations (as they are performed in practice), without controlling
their consequences on maintainability.

Objective and Research Questions. The goal of this study, de-
scribed using the Goal-Question-Metric (GQM) formulation
is: “to analyze portability and performance optimizations for
the purpose of understanding possible unintentional trade-offs
with respect to software maintainability from the point of view
of software engineers, in the context of Exascale software de-
velopment”. Although research in the field of Technical Debt
Management (TDM) has been very active during the last
years, the accumulation and consequences of TD through the
development of Exascale systems has not been investigated in
the literature [25]. We take into consideration the fact that the
use of optimization approaches, such as SkePU or StarPU, re-
sult either to the modification (refactoring) of existing files,
or to the addition of new code. The reason differentiating the
two types of files is to check if the new code that is introduced
for applying the optimization is different from the refactored
code (due to the application of the optimization). The differ-
ences of TD between new and refactored code have been dis-
cussed by Arvanitou et al. [2]. Based on the above, we have
extracted two research questions (RQs). In each one we focus
on the two main concepts of TD, namely: principal and inter-
est. Despite the fact that intuitively TD principal is expected
to co-evolve with interest (i.e., the higher the principal, the
higher the interest that it is produced), in some cases (such as
reuse), they appear to be not correlated [16].

RQ1: What is the effect of performance and portability opti-
mization on software maintainability, in the refactored parts
of the source-code?

To answer this research question, we compare the levels of TD
principal and TD interest of the files that are modified along
the optimization. The results on performance (SkePU) and
portability (StarPU) are treated separately, since they obey to
different transformation rules. Through this question, we aim
at investigating if the modifications of the source-code, due to
the application of tools that improve performance or portabil-
ity lead to more or less maintainable code.

RQz2: What is the effect of performance and portability opti-
mization on software maintainability, in the new parts of the
source-code?

To answer this research question, we compare the levels of TD
principal and TD interest of the files that are introduced (e.g.,

libraries) due the optimization process. Similarly to RQ1, the
results on performance (SkePU) and portability (StarPU) are
treated separately. Through this research question, we aim at
investigating if the files that are introduced along of the trans-
formation exhibit higher or lower maintainability compared to
the average existing files.

Case Selection and Unit of Analysis. According to Runeson
et al. [22], our study is characterized as an embedded multiple
case study, as we investigate multiple units of analysis (i.e.,
files) extracted from various cases (i.e., Exascale projects).
Despite the plethora of available Exascale as open-source, we
have selected to limit our case selection process to a conven-
ience sample consisting of projects that: (a) we are aware of
the commit in which a SkePU or StarPU transformation has
been performed; and (b) we are aware that in the aforemen-
tioned commit, limited other changes (apart from the quality
optimization) have been performed.

TABLE I. PROJECTS CONSIDERED IN THE CASE STUDY

. #files .
Project Language Tool Provider
! guag ®) [@
Cotifeap' Fortran SkePU 25135 | CcerTH
SkePU 42 42
Metalwalls | Fortran / C++ StarPU a1 | a2 CNRS
Pastix Fortran/C StarPU 100 | 100 INRIA
QR-mumps Fortran / C StarPU 91 | 102 | JULICH
Rodinia C/C++ StarPU 4 14 LIU
ParseC C/C++ SkePU 36 | 65 LIU

Due to the aforementioned limitations, we were not able to
blindly search for open-source projects, but we had to refer to
specific Exascale application providers. In particular, we have
used six consortium-owned projects (see Table I). Apart from
the project name, we report the programming language, the
tool used for the optimization, the number of files before (b)
and after (a) the quality optimization, and the partner that has
provided the tool and applied the optimization.

Data Collection and Pre-processing. For every project we
have analyzed two versions: before optimization and after op-
timization, and we recorded several variables. We note that the
selection of these variables (as well as the argumentation of
how they related to TD concepts) is presented in detail by Am-
patzoglou et al. [1]: (a) Number of Code Smells—NCS (TD
Principal); (b) Number of Functions—NOF (TD Interest);
(c) Complexity—CC (TD Interest); (d) Lines of Code—LoC
(TD Interest); (¢) Comments Ratio—CR (TD Interest); (f)
Fan-Out—FO (TD Interest); and (g) Lack of Cohesion of
Lines—LCOL (TD Interest).

Next, by comparing the file names and sizes (in terms of KBs

and LoC) in the before and after versions, we characterized

each file as: NEW, REFACTORED, or UNCHANGED. Then, we

have performed the following data transformations:

o for each REFACTORED file, for every metric, we calcu-
late the difference between the before and after version.
To ensure the uniform interpretation of the difference var-
iable, the order of the subtraction ensures that negative
differences correspond to negative effect of the transfor-
mation; whereas positive differences to positive effect.
Thus, for CR, we have calculated DIFF as AFTER-
BEFORE, whereas for the rest BEFORE-AFTER.

o for each NEW file, for every metric, we first calculate the
mean value of the metric in the before version. Next, we
calculate the difference of the metric between the after

http://www.certh.gr/
http://www.cnrs.fr/
http://www.inria.fr/
http://www.fz-juelich.de/
https://liu.se/
https://liu.se/
https://exa2pro.eu/

version and the mean value in the before version. Simi-
larly, regarding CR, we have calculated DIFF as
AFTER-MEAN, whereas for the rest as MEAN-AFTER.

Next, by acknowledging the need to synthesize the six TD in-
terest proxies in one variable, we have relied on the FITTED
framework [1], and we calculated the unified TD Interest
Proxy. Therefore, the final dataset of the study contains the
following variables: [V1] Filename; [V2] Used Tool for Opti-
mization (SkePU or StarPU); [V3] File Type (NEW,
REFACTORED, or UNCHANGED); [V4] TD Principal Proxy
(DIFFNcs); and [V5] TD Interest Proxy.

Data Analysis. As a first step for our data analysis we have
performed a descriptive statistical analysis on the two datasets
(before and after optimization) for all raw metrics (see afore-
mentioned bullet list), for each project. Next, to answer each
research question, we have performed statistical hypothesis
testing to investigate if variables [V4] and [V5] differ from
zero, i.e., to explore if the mean effect of the optimization
differs statistically significant from having no effect
(DIFF=0.0). To perform hypothesis testing with a single
variable, we applied the one-sample t-test, using as testing
variables [V4] and [V5], whereas as test value O.
More specifically, for RQ1, we filter the dataset using [V3],
selecting only files that are REFACTORED, whereas for RQg,
we retained only files that are NEW. Finally, while reporting
both research questions, we split the dataset, based on [V2].

IV. RESULTS

We present the results of the case study organized by research
question. Based on a descriptive analysis (omitted due to
space limitations), we can observe that the cases in which the
before version is better is 47%, and the cases that after version
excels is 53%. To investigate: (a) if the aforementioned means
present statistically significant differences; (b) if the same dif-
ferences appear for refactored and new code in isolation; and
(c) the differences on interest when all metrics are synthe-
sized; we present next an in-detail analysis.

A. Effect of SkePU / StarPU Transformations (Refactoring)

In Table 11, we present the results of the one value t-test on
the mean difference of the variable before and after the opti-
mization, from zero. Both differences are calculated first at a
file level, and then a grand average (on all files, without a per
project assessment) is calculated.

TABLE Il. EFFECT OF TRANSFORMATION ON TD FOR REFACTORED CODE

Optimizatio
n TD Concept Mean | t-value sig.
SkePU TD Principal | 19.8% 2.591 0.014
TD Interest 2.8% 0.989 0.336
StarPU TD Principal 16.6% 3.256 0.001
TD Interest -5.2% -2.397 0.019
* Across projects the range of difference values for principal
and interest is [-390%, 200%] and [-230%, 160%]

The results suggest that all mean differences (apart from TD
interest for StarPU) are positive, i.e., the value of TD principal
or TD interest has decreased (i.e., improved) due to the opti-
mization. This result is statistically significant in all cases,
apart from TD Interest for SkePU. However, the differences
(see column Mean) in absolute values appear to be small for
TD Principal, and marginal for TD Interest. To dig further into
the aforementioned cases, in terms of the frequencies of refac-
tored files, in Fig. 1, we present bar charts on frequency of
files that have been positively or negatively affected. The left

part of Fig. 1 refers to the SkePU transformation, whereas the
right part to the effect of the StarPU transformation. By con-
trasting the results of Table Il and Fig. 1, we can observe that
in terms of frequency, the transformations appear to have a
negative effect in at least half of files for both SkePU and
StarPU. Given that for TD Principal (in the StarPU case) the
mean score of a set of values (that comprises 60% of negative
numbers and 40% of positive numbers) is positive, we can de-
duce that in absolute values, the positive numbers are higher
than the negative ones. This observation leads to the conclu-
sion that the positive effect of StarPU on TD (when it appears)
is higher (in magnitude), compared to the cases of negative
effect. This observation also applies to all other cases.

SkePU StarPU
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
TD Principal TD Interest TD Principal TD Interest
H Positive Negative

Fig. 1. Frequency of positive and negative effect

B. Effect of SkePU / StarPU Transformations in New Files

Similarly to RQg, in Table 111, we present the results of the one
sample t-test, that assesses the TD Principal and Interest, in
new files introduced while performing SkePU / StarPU trans-
formations, compared to the rest files.

TABLE Ill. EFFECT OF TRANSFORMATION ON TD FOR NEW CODE

Optimizatio
n TD Concept Mean | t-value sig.
TD Principal | 34.7% 2.466 0.018
SkePU 103.7
TD Interest % 3.229 0.003
StarPU TD Principal | 35.0% 3.403 0.001
TD Interest 31.6% 2.030 0.047
* Across projects the range of difference values for principal
and interest is [-120%, 99%] and [-99%, 226%]

From the results of Table I1, we can observe that all mean
differences are positive (i.e., the transformations improve TD
Principal and Interest according to the mean values), and that
all differences are statistically significant. In Fig. 2 we present
the frequency of new files having a higher or lower TD Prin-
cipal and Interest compared to the rest of the system while per-
forming SkePU and StarPU transformations. In contrast to
RQ;: (effect on the refactored code), the effect of new code
seems lower, in the sense that the mean values and the fre-
guency investigations comply. Based on Fig. 2, approx. 80%
of the files that are introduced along with the SkePU transfor-
mation have lower TD Principal and Interest, compared to the
average values of the system. A similar observation can be
made for new files of StarPU transformations, but on a lower
rate, especially for TD Interest.

SkePU StarPU
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
TD Principal TD Interest TD Principal TD Interest
M Positive Negative

Fig. 2. Frequency of positive and negative effect

V. DiscussION

In this section we summarize the main findings by interpreting
the results, comparing them to existing literature, and provid-
ing implications to researchers and practitioners. As a first
step towards an effective discussion, in Table IV, we summa-
rize the main findings of our case study.

TABLE IV. SUMMARY OF RESULTS

Optimizatio
n TD Concept Frequency Absolute Effect

5 {_.‘j g TD Principal Equal Strong for Positive
g|x S TD Interest Equal Strong for Positive
& 2 TD Principal Positive Strong

zZ TD Interest Positive Strong
5 % g TD Principal Negative Strong for Positive
| xXo TD Interest Negative Strong
s 3 TD Principal Positive Strong

z TD Interest Positive Limited

Interpretation of Results. Regarding SkePU we can claim that
no important trade-offs are observed, in the sense that porta-
bility improvements offered by SkePU are not substantially
hurting the maintainability of the system in terms of TD. More
specifically, the results suggest that the new code that is intro-
duced is of better quality compared to existing one, and for the
refactored code the effects are balanced (approx. half of the
files are positively affected and the other half are negatively
affected). On top of this, it seems that positively affected files
are more intensively affected, making the overall assessment
positive (even statistically significant). Nevertheless, there is
still room for improvement, esp. regarding the TD Interest of
refactored files. An example of how SkePU transformations
improves interest is presented in Fig. 3.

The top part of Fig. 3 corresponds to the source code of array
dot product implementation with SkePU, whereas the lower
part without SkePU. Both implementations have the same CR,
FO, NOF, and LCoL (zero—number of cohesive pair of lines
is higher or equal, compared to non-cohesive ones). The cy-
clomatic complexity of the SkePU implementation is 1,
whereas for the non-SkePU implementation CC equals 2; also,
the LoC of the non-SkePU implementation is higher by 1 line.
Therefore, the TD interest of the non-SkePU solution is higher
than the SkePU implementation. On the other hand, regarding
StarPU, trade-offs are more evident: the use of StarPU guar-
antees the performance of the system, but it seems to hurt the
maintainability of refactored files (more than 60% of them).
However, similarly to before, the new files that are added
seem to have better levels of TD Principal and Interest com-

pared to the rest of the code. Therefore, in this kind of trans-
formation there is again room for improvement, placing spe-
cial emphasis to refactored code and the produced interest.
The existence of trade-offs between run-time optimizations
and maintainability is an expected outcome, since literature
has reported similar findings [4][6][15]. Similarly, the find-
ings of the study comply with existing literature on the corre-
lation between TD Principal and TD Interest, since in all four
cases, the effect of the transformation on both concepts of TD
was uniform. Nevertheless, it is important to stress out that TD
Interest seems more difficult to handle and more vulnerable to
trade-offs compared to TD Principal. A tentative explanation
on this is the fact that TD Interest is calculated as collection of
usually conflicting quality properties (e.g., coupling vs. cohe-
sion; size vs. complexity) in contrast to Principal.

float prod(float a, float b) {
return a * b;

}

Vector<float> vector_ prod(Vector<float> &vl, Vector
<float> &v2) {

auto vsum = Map<2> (prod) ;

Vector<float> result(vl.size());

return vsum(result, vl, v2);

}

float prod(float a, float b) {
return a * b;

}

Vector<float> vector prod(Vector<float> &vl, Vec-
tor<float> &v2) {
Vector<float> result;
for (int 1=0; i<vl.size(); i++) {
result.push back(prod(vl[i], v2[i]));
}
return result;

}

Fig. 3. SkePU Transformation - TD Interest Illusatrtion

Implications for Practitioners. Based on the findings we sug-
gest practitioners to consider the effect of run-time quality op-
timizations on maintainability. By considering that the im-
provement of run-time qualities is non-negotiable in HPC ap-
plications, we highlight the most frequent pitfalls (while ap-
plying SkePU or StarPU) so that practitioners have them in
mind and avoid them in future transformations. In Table V,
we list the most frequent types of TD Items that are related to
the SkePU / StarPU transformations. We list all the rules that
are introduced in the new code and the refactored files. With
red cell shading we denote the rules that appear in the top-10
most frequently violated rules of each project, whereas top-20
most frequently violated rules are denoted with yellow cell
shading. The least frequently violated rules are denoted with
green cell shading. The criterion for one smell to be included
in the table was its occurrence in at least 3 projects. Based on
the findings of Table V, we can encourage practitioners to try
to avoid the “Magic Number”, “Missing Curly Braces”, and
rule violations when applying StarPU and SkePU transfor-
mations in C/C++ code, and the “Float Compare”, “Check
Code Return”, and the “Exit Loop” rule violations, when
working with Fortran code.

Implications for Researchers. Regarding researchers, several
future work opportunities can be highlighted. The most inter-
esting future direction that we plan to pursue is to perform ex-
planatory studies that would unveil the reasons for which the
smells presented in Table V are introduced. This could be
achieved through longitudinal studies and single-project anal-
ysis. Possible factors that might influence this effect are: (a)

the overall frequency of these rules; (b) the culture of teams or
the application domain; or (c) the specifics of the transfor-
mations of the two tools. Additionally, we encourage re-
searchers studying the structural implications of StarPU and
SkePU, since they both affect interest.

TABLE V. CODE SMELLS FREQUENCY

Code Smell Project

c:ClassName

¢:CommentedCode

c:FileHeader

c¢:FunctionCognitiveComplexity

c:FunctionComplexity

c¢:FunctionName

c/cxx:MagicNumber

c/exx:MissingCurlyBraces

c/exx:MissinglncludeFile

c:ReservedNames

c/exx:StringLiteral Duplicated

c/cxx:TabCharacter

c:TooLongLine

c/cxx:TooManyParameters

c:TooManyStatementsPerLine

c/cxx:UndocumentedApi

common-c:DuplicatedBlocks

common-c: InsufficientCommentDensity

common-c:InsufficientLineCoverage

F-rules:COM.DATA.FloatCompare

F-rules:COM.FLOW.CheckCodeReturn

F-rules:COM.FLOW.EXxitLoop

VI. THREATS TO VALIDITY

The results are subject to generalization threats pertaining
both to the analyzed projects and the selected optimization
tools. In other words, we cannot argue that StarPU and SkePU
optimizations will reduce TD principal in every Exascale soft-
ware project, as only six projects have been employed. Simi-
larly, it cannot be claimed that any other kind of performance
or portability optimization, beyond those applied by SkePU
and StarPU will lead to consistent results. Further research is
required to validate these findings and to delve deeper into the
reasons that optimizations affect software qualities. In terms
of construct validity threats, we have to stress that to assess
the impact on TD principal and interest, a specific tool (So-
narQube) and selected structural metrics have been used. So-
narQube assesses mainly the so-called code and design debt
and pays less emphasis on inefficiencies at the higher levels
of a software system (i.e. architecture). However, due to the
nature of the applied performance and portability optimiza-
tions we would not anticipate changes beyond the code and
design level of the impacted software. For TD interest, we
have relied on proxies of interest, as the concept of interest
(i.e., additional maintenance effort due to the presence of TD)
is hard to quantify. However, the used interest proxies are
widely acknowledged as indicators of maintainability. Finally,
with respect to the reliability of the findings, the described
methodology outlines all steps followed to conduct the case
study, and a replication package is provided online.

VII. CONCLUSIONS

The continuous advancements in High-Performance Compu-
ting infrastructures have resulted in methods and tools sup-
porting performance and portability optimizations in Exascale
applications, such as SkePU and StarPU. At the same time
HPC software is becoming increasingly complex and is also
subject to continuous evolution, calling for increased main-

tainability. To shed light into potential tradeoffs between per-
formance/portability optimizations and software quality, as
captured by the popular Technical Debt metaphor, we have
performed an empirical study on six Exascale applications.
The results reveal that in the majority of cases SkePU is not
hurting the maintainability of the system, whereas StarPU
seems to have a negative effect on the maintainability of re-
factored code. Nevertheless, the majority of issues introduced
are common; therefore, the creation of a strategy to optimize
the refactoring seems feasible.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 801015 - EXA2PRO

REFERENCES

[1] Ar. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A.
Chatzigeorgiou, “A Financial Approach for Managing Interest in
Technical Debt”, International Symposium on Business Modeling and
Software Design (BMSD’15), Milan, Italy, 6 — 8 July 2015.

[2] E. M. Arvanitou, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, and I.
Stamelos. “Monitoring Technical Debt in an Industrial Setting”, 23
Proceedings of the Evaluation and Assessment on Software
Engineering (EASE ’19), Copenhagen, Denmark, 14 — 17 April 2019.

[3] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering”, Dagstuhl Reports, 2016.

[4] S. Barney, K. Petersen, M. Svahnberg, A. Aurum, and H. Barney,
“Software quality trade-offs: A systematic map”, Information and
Software Technology. 54 (7), pp. 651-662, July 2012.

[5] C. K. Birdsall and A. B. Langdon, "Plasma Physics via Computer
Simulation”, Adam Hilger Series on Plasma Physics. New York, 1991

[6] K.Buyens, R. Scandariato, and W. Joosen, “Measuring the interplay of
security principles in software architectures”, 3™ International
Symposium on Empirical Software Engineering and Measurement
(ESEM”'09), Lake Buena Vista, FL, USA, 15-16 October 2009.

[7] J. C. Carver, R. P. Kendall, S. E. Squires and D. E. Post, "Software
Development Environments for Scientific and Engineering Software:
A Series of Case Studies," 29" International Conference on Software
Engineering (ICSE'07), Minneapolis, MN, 20-26 May 2007.

[8] G. Da Costa, et. al., “Exascale Machines Require New Programming
Paradigms and Runtimes”, Supercomputing Frontiers and Innovations:
an International Journal, 2 (2), 2015.

[9] U. Dastgeer, and C. Kessler, “Flexible Runtime Support for Efficient
Skeleton Programming on Heterogeneous GPU-based Systems”,
Advances in Parallel Computing, 22 (7), pp. 159 — 166, August 2011.

[10] A. Ernstsson, L. Li, and C. Kessler, “SkePU 2: Flexible and Type-Safe
Skeleton Programming for Heterogeneous Parallel Systems”,
International Journal of Parallel Programming, 46, pp. 6280, 2017.

[11] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa,
“Investigating Quality Trade-offs in Open Source Critical Embedded
Systems”, 11" International Conference on Quality of Software
Architectures (QoSA '15), Montréal, Canada, May 2015.

[12] D. Feitosa, A. Ampatzoglou, A. Gkortzis, S. Bibi, and A.
Chatzigeorgiou, “Code Reuse in Practice: Benefiting or Harming
Technical Debt”, Journal of Systems and Software, Elsevier, 2020.

[13] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A.
Chatzigeorgiou, and D. Soudris, “Interrelations between Sotware uality
Metrics, Performance and Energy Consumption in Embedded
Applications”, 21* International Workshop on Software and Compilers
for Embedded Systems (SCOPES '18), Germany, May 2018.

[14] P.Runeson, M. Host, A. Rainer, and B. Regnell, “Case Study Research
in Software Engineering: Guidelines and Examples”, Wiley, 2012.

[15] D. Soudris, et al., “EXA2PRO programming environment: Architecture
and Applications”, 18" International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation, 2018.

[16] A. A. Tsintzira, A. Ampatzoglou, O. Matei, A. Ampatzoglou, A.
Chatzigeorgiou, and R. Heb, “Technical Debt Quantification through
Metrics: An Industrial Validation”, 15" China-Europe International
Symposium on Software Engineering Education, Portugal, 2019.

http://se.uom.gr/wp-content/uploads/StarPU_SkePU_TD.zip
https://exa2pro.eu/

