

- 1 -

Software Engineering Practices for Scientific Software Development:

A Systematic Mapping Study
Elvira-Maria Arvanitou1, Apostolos Ampatzoglou1, Alexander Chatzigeorgiou1, Jeffrey C. Carver2

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

2 Department of Computer Science, University of Alabama

e.arvanitou@uom.edu.gr, a.ampatzoglou@uom.edu.gr, achat@uom.gr, carver@cs.ua.edu

Background: The development of scientific software applications is far from trivial, due to the constant

increase in the necessary complexity of these applications, their increasing size, and their need for intensive

maintenance and reuse. Aim: To this end, developers of scientific software (who usually lack a formal

computer science background) need to use appropriate software engineering (SE) practices. This paper

describes the results of a systematic mapping study on the use of SE for scientific application development

and their impact on software quality. Method: To achieve this goal we have performed a systematic

mapping study on 359 papers. We first describe a catalogue of SE practices used in scientific software

development. Then, we discuss the quality attributes of interest that drive the application of these practices,

as well as tentative side-effects of applying the practices on qualities. Results: The main findings indicate

that scientific software developers are focusing on practices that improve implementation productivity, such

as code reuse, use of third-party libraries, and the application of “good” programming techniques. In

addition, apart from the finding that performance is a key-driver for many of these applications, scientific

software developers also find maintainability and productivity to be important. Conclusions: The results of

the study are compared to existing literature, are interpreted under a software engineering prism, and

various implications for researchers and practitioners are provided. One of the key findings of the study,

which is considered as important for driving future research endeavors is the lack of evidence on the trade-

offs that need to be made when applying a software practice, i.e., negative (indirect) effects on other quality

attributes.

Keywords: software engineering practices; high performance computing; scientific computing

1. Introduction

Scientific software development refers to the analysis, design, implementation, testing, and

deployment of software applications for scientific purposes (e.g., physics, biology, medical

analysis, and data science). The need for continuous experimentation and validation of

techniques (e.g., simulations and cases studies) before the release of scientific results has led to

the emergence of the domain of scientific software development as an important method for

researchers to be successful in multiple fields (Birdsall and Langdon, 1991). As a result, “many

scientists and engineers spend much of their lives writing, debugging, and maintaining software,

but only a handful have ever been taught how to do this effectively: after a couple of introductory

courses, they are left to rediscover (or reinvent) the rest of programming on their own. The result?

Most spend far too much time wrestling with software, instead of doing research, but have no idea

how reliable or efficient their programs are.” (Wilson 2006). While this quote is 15 years old, the

sentiment has not changed. If anything, the dependence upon software has increased within the

scientific domain while scientists are still not well-equipped.

mailto:e.arvanitou@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:achat@uom.gr
mailto:carver@cs.ua.edu

- 2 -

The US National Science Foundation (NSF) has awarded more than US$9.6 billion to support

more than 18,000 projects and 95% of postdocs surveyed report the use software (that in most of

the cases they have developed themselves) to support their research (Nangia and Katz, 2017). In

addition, a recent blog post describing the results of a survey of 1,200 researchers funded by the

US NSF showed that the vast majority of respondents did not have sufficient time for training

and that most development activities (other than coding) were not well-supported by current

development tools (Carver, 2019). Although scientists invest a large fraction of their time (more

than 40%) to building software, they often do not take full advantage of the advancements in

software engineering (SE) (Heaton and Carver, 2015). This lack of SE practices can be attributed,

at least partially, to limited knowledge of the benefits of these practices (Schmidberger and

Brügge, 2012). Only about half of the postdocs from the survey mentioned earlier had received

any software development training (Nangia and Katz, 2017) and 75% of NSF-funded researchers

reported no time for training (Carver, 2019). As one specific example, only about half of scientists

know the basics of testing (Wilson 2006).

Figure 1: State of Practice and Envisioned Practices in Scientific Software Development

Based on the findings above, the left side of Figure 1 highlights some issues that arise when

scientific software developers lack proper SE practices. The text below explains these issues in

more detail:

• Management of Large Code-bases and Collaboration. Scientific software applications

can be complex, often containing millions of lines of code (Méndez et al., 20104). Projects of

this complexity cannot be developed by a single person. Therefore, scientific software

developers need to use collaborative software development approaches and tools. In addition,

projects of this scale are often multi-disciplinary (Howison and Herbsleb, 2011), which also

increases the need for collaboration. For example, development of a full-scale application can

require input from scientists with different expertise (e.g., mathematicians, biologists,

natural scientists, etc.).

• Maintainability. New development is only a portion of the software lifecycle. Because

maintenance activities can consume 50% to 75% of a project cost, it is important to keep

- 3 -

maintenance costs low (vanVliet, 2008). In fact, teams “waste” up to 25% of development time

during maintenance, due to technical debt (Martini et al., 2018). Similarly, scientific software

projects see maintainability as an important goal because (a) maintenance is costly in terms

of productivity and loss of vital scientific work; and (b) Exascale applications are usually

written in C, C++, or FORTRAN, which offer high performance but are difficult to evolve and

maintain (Schmidberger and Brügge, 2012).

• Reuse Opportunities. Productivity is one of the main concerns for scientific software

projects (Faulk et al., 2009). One way to improve productivity (i.e., reduce development time)

is through software reuse. Because some algorithms are common across projects, especially

within a domain, reuse of code should be a helpful approach. As evidence of the potential for

reuse, some scientific software projects have explored Software Product Lines, an advanced

reuse technique (Costa et al., 2015).

To address these limitations, scientific software developers could benefit from the advances in SE

as illustrated in the right side of Figure 1. For example, collaboration among developers and the

management of large codebases, could be performed through tools like git and Jenkins (Omar et

al., 2014); quality monitoring (especially focusing on Technical Debt) could be performed with

SonarQube (Ampatzoglou et al., 2015); and reusability could be facilitated with the use of

practices such as refactorings and design patterns (Ampatzoglou et al., 2011). All the above tools

could be synchronized by using well-known methodologies for managing software development

lifecycles, such as Agile practices (Unhelkar, 2013).

Based on the expected benefits of using SE practices in scientific software development1, there is

a growing interest among scientific software developers to cultivate a culture of SE within their

community. This growing interest has begun to impact the literature in this domain. There are

papers that report techniques and tools for improving the development of scientific software.

Therefore, the goal of this study is to provide a detailed mapping of the current state-of-research

and -practice about the use of SE in scientific software development. To properly scope this broad

topic, we define three more specific goals: (G1) investigate the SE practices currently used in

scientific software development; (G2) identify the quality attributes that drive the use of SE

practices2; and (G3) assess the level of empirical evidence that supports the impact of SE practices

on quality attributes. To achieve these goals, we conducted a Systematic Mapping Study (SMS),

focused on classification and categorization of primary studies to provide first understanding of

the domain.

2. Related Work

This section describes secondary studies (i.e., mapping studies or systematic literature reviews)

related to the application of SE practices for scientific software. In Section 2.1 we present an an-

notated bibliographic reference to such studies, whereas in Section 2.2 we compare them to the

current study.

2.1 Detailed Analysis of Primary Studies

Heaton and Carver’s (2015) systematic literature review aimed at identifying claims about how

developers of scientific software use SE practices in HPC included 43 papers published prior to

1 We expect these benefits to be present for scientific software development in a similar manner as they are for “traditional” SE.

2 In the domain of scientific software development, it might be more realistic to talk about quality expectations

- 4 -

May 2015. These papers produced 33 claims about 12 SE practices. They classified each claim

based on the type of evidence supporting the claim (e.g., interview or case study). The results

suggest that: (a) the most common types of evidence are interviews and surveys, (b) “Issue Track-

ing and “Version Control” are the SE practices most heavily adopted, and (c) “Verification and

Validation” and “Testing” are the practices scientific software developers find important, but are

not yet widely adopted. Our current study expands this one by including more recent literature

(i.e. beyond May 2015) and expanding the criteria to include SE practices for scientific software

development.

Sletholt et al. (2011) literature review about agile practices and their effects on scientific software

development investigated (a) the extent to which scientific software projects have used agile

practices, and (b) the impact the agile practices have on testing and requirements activities. The

review describes 8 papers published between 2000 and 2011. The results suggest scientific pro-

jects that adopt agile practices achieve better levels of testing. However, the authors also noticed

a positive effect of agile practices on the requirements-related activities. In a follow-up study,

which included 5 additional studies, Sletholt et al. (2012) identified 35 agile practices. Of these,

12 originate in Scrum and the rest originate in Extreme Programming. Our current study ex-

pands on the work by Sletholt et al. by broadening the scope of the review beyond agile practices

in testing and requirements activities.

Farhoodi et al. (2013) performed a systematic mapping study of the most common SE practices

for developing scientific software. From the 130 included studies, the main findings were: (a) the

majority of scientific software is written in Fortran followed by C++, C, Python, Java and Matlab;

(b) the most used SE practices relate to architecture/design, development/coding and test-

ing/verification/validation/quality; and (c) more than one third of the studies do not include vali-

dation for the proposed solution. Our current study expands on these results by using more re-

cent papers (this study only includes papers through 2011) and by adding the investigation of

quality attributes.

Kanewala and Bieman (2013) presented a systematic literature review to identify the challenges,

proposed solutions, and unsolved problems related to testing scientific software. This review in-

cludes 62 studies published prior to January 2013. The results include: (a) testing challenges

occur due to characteristics of scientific software or to cultural differences between scientific

software developers and the larger SE community, and (b) there are techniques scientific software

developers can use to overcome some of the testing challenges. Our current paper expands on this

work by focusing more broadly than testing and by including more recent papers.

Queiroz and Spitz (2016) performed a systematic literature review to identify a set of UI design

practices to support gamification and improve the usability of scientific software. The selection

process retrieved 221 primary studies published prior to 2015. The results of this study suggested

the “Lens of the Lab” as a vehicle to support designers working in collaboration with scientists

and software engineers in professional scientific software initiatives. Moreover, the authors pro-

posed that the use of the lens to a project should be a straightforward process, during design

stage or consulting appropriate stakeholders about the issues at hand. Our study is broader com-

pared to this of Queiroz and Spitz in the sense that it focuses on SE practices beyond UI design.

Pflüger et al. (2016) conducted a systematic literature review to identify trade-offs between

scalability and efficiency on the one hand, and maintainability and portability on the other hand,

- 5 -

in simulation software engineering. The selection process retrieved 33 primary studies published

between 1990 and 2015. The main findings of this study are: (a) most of the primary studies pre-

sent some kind of solution or solution proposal; and (b) many of the papers have no clear empiri-

cal design, but are opinion pieces or experience reports.

2.2 Comparison to Related Work

Table 1 presents an overview of the papers discussed above, focusing on the research method, the

number of included papers, the period covered, and the study goals. The table focus on the three

study goals from Section 1 and highlights any goals not included in our study. The research

method dictates the depth of analysis in the sense that typically SLRs are more in-depth than

SMSs. The number of analyzed papers is an indicator of how broad a study is. The review period

highlights how current the results are. The analysis of the goals aims to identify commonalities

and differences among the studies. A balance between overlap and novelty is desirable to allow

for both comparison and update of results and for novelty to provide additional implications for

research and practice.

Table 1: Related Work Overview

Reference

Research

Method # papers

Review

Period

G1 - SE

Practices

G2-

Software

Qualities

G3 -

Empirical

Evidence Additional Goals

Heaton and Carver (2015) SLR 43 through 2015 X Χ

Sletholt et al. (2011)
SLR

8
2000 - 2011 X

 impact of agile to testing

and requirements activities Sletholt et al. (2012) 5

Farhoodi et al. (2013) SMS 130 1996 - 2011 X X bibliometrics

Kanewala and Bieman (2013) SLR 62 until 2013 X

 Definition and challenges

of scientific software

development

Queiroz and Spitz (2016)

SLR 221 Until 2015 partially partially

 GUI design guidelines

Gamification principles

Pflüger et al. (2016) SLR 33 1990-2015 partially
X Trade-offs between the

QAs

Our Study SMS 359 through 2019 X X X

Based on Table 1, our study is broader (contains almost 3 times more papers than the most

comparable study that has at least two goals in common) and more up-to-date (covering almost

5 years from the last review). In terms of goals, our study has the widest focus, since: (a) it does

not focus on a specific development methodology like Sletholt et al. (2011), who focus on agile

practices; (b) it does not focus on a specific activity like Kanewala and Bieman (2013), who focus

on testing; (c) it does not focus on a specific practice like Queiroz and Spitz (2016), who focus on

GUI design; and (d) it does not focus on specific quality attributes like Pflüger et al (2016), who

focus on four quality attributes. Finally, the main advancement of our work is that it is the first

study that catalogues the impact of the application of software engineering practices on

quality attributes in scientific software development; as well as possible trade-offs between

qualities.

- 6 -

3. Study design

In this section, we present the protocol of the systematic mapping study based on the guidelines

described by Petersen et al. (2008).

3.1 Objectives and Research Questions

The goal of this study, expressed in the Goal-Question-Metrics (GQM) format (Basili et al., 1994),

is to analyze the development of scientific software applications for the purpose of characterization

and evaluation with respect to the software engineering practices employed and the quality attrib-

utes of interest from the point of view of researchers and practitioners. Based on this goal, we de-

fine the following research questions. To address the cross-cutting G3 (assess the level of empiri-

cal evidence that supports the use of SE practices in scientific software development), we have

added sub-research questions in RQ2.

RQ1: Which SE practices used in the development of scientific software have researchers

studied the most?

The answer to this research question aids scientific software developers in identifying which SE

practices researchers have studied most frequently. To further investigate this question, we

explore the SE practices used during each development activity (e.g. requirements, design, and

testing) and whether there are differences across application domains.

RQ2: Which software quality attributes do researchers study in scientific software development?

RQ2.1: Which quality attributes have researchers studied most often for each development

activity?

RQ2.2: What is the impact of SE practices on quality attributes?

RQ2.3: What is the level of empirical evidence on the aforementioned impact?

The answer to this research question will expand the knowledge acquired in RQ1, by helping

scientific software developers make decisions based both on quality attributes as well as software

development activities. The final outcome of this research question will be a 3-fold mapping of

practices, activities, and quality attributes. For each of these triplets, the results will produce a

value indicating the level of empirical evidence. Scientific software developers can use the

outcome of this research question to support their quality planning activities. Researchers can

use the results to better scope their future work to address the most important and/or

understudied quality attributes.

3.2 Search Process

Based on our goals and research questions, we have chosen to conduct a mapping study rather than a

systematic literature review because: (a) the topic is broad, (b) we want to provide a general overview

of the topic, (c) the main study goal is developing a classification, and (d) we are not performing a

synthesis of results or quality assessment of the primary studies. As searching space, we selected to

use the complete content of four well-known Digital Libraries (IEEExplore, ACM, Springer, and

ScienceDirect). We chose to search broad Digital Libraries (DLs) rather than specific venues so we

could be as inclusive as possible in the selection of papers related to scientific software development

and SE. Figure 2 provides an overview of the process, which is organized into four steps: (a)

searching Scopus without a start date; (b) filtering results to retain only the studies published in

the 4 DLs; (c) removing duplicates; and (d) applying the inclusion / exclusion criteria. In the end,

we retained 359 primary studies to include in this mapping study.

- 7 -

Figure 2: Overview of Search Process

In more detail: first we developed a search string (see box below) to identify papers relevant to SE

AND scientific software development. Because scientific software often demands a large number

of calculations over vast amounts of data, these applications make heavy use of High-

Performance Computing (HPC). In fact, more than 70% of HPC applications address problems

outside of computer science (Schmidberger and Brügge, 2012). Therefore, to be as inclusive as

possible, we included “HPC” in the list of search terms. We performed this search on the title /

abstract / keywords of all papers in Scopus, which includes papers from the four DLs of interest. We

used Scopus rather than the DL search engines to avoid inconsistency issues and problems identified

in other studies (e.g., Springer allows searching of only one field: full text or title—but not abstract).

("software engineering" OR "software development" OR "software practice")

AND

("scientific computing" OR "scientific software" OR "computational software" OR

"scientific programming" OR "high performance computing" OR "high performance

science" OR "HPC" OR "research software engineering" OR "research software

development")

Second, we manually filtered the results to retain studies published in the four DLs. Third, we

removed duplicated papers. Finally, since we used “HPC” in the search string, we had to ensure

that we include only papers relevant to scientific software development. Thus, we defined the

following Inclusion Criteria:

• IC1: The primary study is applied in scientific domain;

AND

• IC2: The primary study defines/uses one or more SE practices; OR

• IC3: The primary study evaluates one or more SE practices; OR

• IC4: The primary study uses one or more quality attributes; OR

In other words, the final inclusion criterion is: IC1 AND (IC2 OR IC2 OR IC4). Similarly, we de-

fined the following exclusion criteria. We excluded a study if it met at least one of them.

- 8 -

• EC1: The primary study is written in a language other than English.

• EC2: The primary study is an editorial, keynote, biography, opinion, tutorial, workshop

summary report, progress report, poster, or panel.

• EC3: The primary study is of horizontal perspective covering the complete spectrum of

SE practices (these studies have been reported as related work).

• EC4: The paper is focusing on HPC, without a reference to scientific software develop-

ment

During the inclusion/exclusion process, two authors independently examined 921 studies. In par-

ticular, the first two authors inspected the publications’ full text and assigned a score on a 4-

point scale (4: strong inclusion, 1: strong exclusion)—leading to a maximum score of 8 points.

Following the threshold used by Farhoodi et al. (2013), we retained studies that had a score of 6,

7 or 8. For the studies that scored 5 (88 cases), the third author reviewed them and made a final

decision.

3.3 Data Extraction

During the data extraction phase, we collected a set of variables that describe each primary

study. The complete dataset is available online3. To strengthen the validity of data extraction, we

used the following systematic process. The first two authors independently extracted data. If

there were inconsistencies in the extracted information, the authors first discussed the

inconsistencies. If they were not able to resolve the discrepancies, the third author joined the

discussion to resolve the disagreement. For every study, we extracted and assigned values to the

following variables:

[V1] Title: title of the paper.

[V2] Author: list of authors of the paper.

[V3] Year: publication year of the paper.

[V4] Type of Paper: whether the paper appears in a conference or journal or workshop.

[V5] Publication Venue: name of the corresponding journal or conference.

[V6] Development Activity: development activity investigated in the primary study (e.g.,

requirements, architecture, design, implementation, testing)

[V7] Type of Software Artifact: software artifacts mentioned in the study (e.g. class dia-

gram, use case, etc.)

[V8] Names of Software Engineering Practice: SE practices described in the paper (e.g.

design patterns, traceability, model-driven development etc.)

[V9] Names of Quality Attributes: list of the names of quality attributes investigated in

the study, exactly as reported in the primary study.

[V10] Programming Language: programming language used in study (e.g. Fortran, C, C++

etc.)

[V11] Application Domain: application domain in which the software is used (e.g. astrono-

my, geology, chemistry, etc.)

[V12] Empirical Research Method: the type of empirical method (e.g., case study, survey,

experiment, action research, ethnography, field research) used to validate the impact of

the SE practice on the Quality Attribute.

3 https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx

https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx

- 9 -

[V13] Impact: The outcome of the empirical validation (positive, negative, or neutral). In cas-

es when the paper studied more than one QA and the impact on one QA was positive

and the impact on the other QA was negative, we marked the study as a trade-off

(Feitosa et al., 2015). In cases when a blended (either positive or negative) impact was

identified, based on some parameter, we marked the study as a cut-off (Charalampidou

et al., 2017).

For all variables, we performed data extraction based on the terminology used in the primary

study. In other words, we did not try to change the terms if we believed the authors used an in-

correct term. We did not have a pre-determined list of development activities. But rater allowed

the reported activities to emerge from the data. The identification of development activities and

their mapping to software artifacts is not a trivial task, due to the existence of various processes

and Software Development Lifecycle Models (SDLC). To catalogue activities and perform the

mapping of artifacts to activities, we used a number of sources, as there was no single source that

contained all datapoints (artifacts or activities) that we have identified. Specifically, we used four

process models (RUP, OpenUP, ICONIX, and Scrum) and the IEEE 830 Standard. For example,

the “Software Architecture Document” is mapped to the architecture activity according to RUP

(RUP calls activities as workflows), whereas the term “Use‐Case Model” is mapped to the re-

quirements activity, based on both OpenUP and ICONIX (OpenUP calls activities as domains

while ICONIX calls them disciplines. In cases of artifacts that can be mapped to more than one

activity depending on the SDLC model, we map the artifact to the activity that produces it. For

example, “reported bugs/issues” can be treated as parts of testing (in RUP) or requirements

(since they are fed as backlog items in SCRUM). We map them to testing, because initially, bugs

are considered as an outcome of testing and later are fed back to the system as requirements.

Table 2: Development of Empirical Methods Classification Schema

Research Methods
Easterbrook

et al. (2008)

de Magalhaes

(2014)

Hummel

(2014)

Silva et

al. (2015)

Stol

et al. (2009)

ESEM

Conference Count

Survey X X X X X X 6

Case Study X X X X X X 6

Action Research X X X X X X 6

Experiment X X X X X 5

Ethnography X X X X 4

Field Research/Study X X X 3

Grounded Theory X X 2

Simulation X X 2

Quantitative Analysis X X 2

Experience Report X X 2

SLR X X 2

Theoretical/Descriptive X 1

Meta-Analysis X 1

Qualitative X 1

Focus Group X 1

Conversely, for [V12], we reused a list of empirical methods (Charalampidou et al., 2020). In par-

ticular, we considered several names of empirical research methods found in literature, as shown

- 10 -

in Table 2. The first column of the table shows the research method names, while the next 6 col-

umns indicate the sources that consider the method as empirical research. To identify the list of

sources, we began with the most well-known papers and books dealing on empirical software

engineering research (e.g., (Wohlin et al., 2012) and (Runeson et al., 2012)). However, these

sources focused on specific research methods (i.e., experiments and case studies respectively).

Thus, we identified five papers that focused on empirical research from a more generic perspec-

tive. Additionally, since we collected the empirical research methods listed in the call for papers

from the International Symposium on Empirical Software Engineering and Measurement

(ESEM) is the main conference for the empirical SE community. Similarly, we examined the

aims and scope of the journal Empirical Software Engineering, however we did not identify addi-

tional keywords. The last column of the table shows how many times each research method ap-

pears as an empirical approach in the six sources. In our classification schema, we only retained

methods that appeared in at least two sources (green cells). Note that although the term SLR had

two references, we did not include it in our framework because it is not a primary study.

In reviewing the primary studies, we identified the empirical method as follows: (a) in cases

where the study explicitly mentioned the study type, we validated that the empirical setup

matched the term and then assigned it to the corresponding variable; and (b) in cases where the

study did not explicitly mention the empirical method, we determined it based upon the study

design.

3.4 Data Analysis

We collected variables [V1] – [V5] for documentation reasons. We use variables [V10] and [V11]

for demographics. Table 3 provides a mapping between the research questions and the remaining

variables, along with the type of analysis performed on the data. For RQ1 and RQ2, we provide

the frequency table of variables [V8] and [V9], respectively.

Table 3: Mapping of paper attributes to RQs

Research

Question Variables Used Analysis Method

RQ1 [V6], [V7], [V8] Crosstabs for [V6], [V8], Crosstabs for [V7], [V8]

RQ2.1 [V6], [V9] Crosstabs for [V6], [V9]

RQ2.2 [V8], [V9], [V12] Crosstabs for [V8], [V9], Crosstabs for [V8], [V12]

RQ2.3 [V8], [V9], [V12] Crosstabs for [V8], [V12], Crosstabs for [V9], [V12]

Due to the large number of SE practices in the literature we performed pre-processing. To con-

solidate and merge similar values of [V8] we used Open Card Sorting (Spencer 2009). In particu-

lar, we: (a) identified more generic practices (i.e., super-categories) from the SE practices in the

primary studies—e.g., we developed a theme “Programming Technique”; (b) reviewed the themes

to find candidates for merging—e.g., we mapped “Model-Driven Engineering” as “Programming

Technique”; and (c) defined the names of the final themes and super-categories. In the manu-

script we report on super-categories, but in the dataset, we report the more detailed categories.

The first author performed the process. Then the second and third authors validated the results.

- 11 -

4. Results

In this section we present the results and some initial interpretation of our data. In particular,

Section 4.1 presents an overview of the studies based upon frequencies of demographic

information. Then Sections 4.2 and 4.3 provide the answers to RQ1 and RQ2, respectively.

4.1 Overview of Included Studies

As a general overview, we provide the frequencies of the main variables describing the primary

studies. We note that from all presented frequency tables, we have excluded items with one

occurrence. Additionally, datapoints, which split with slash, correspond to merged datapoints,

whereas datapoints, which are split with comma, correspond to different ones with the same

count. First, Figure 3 illustrates the number of studies published per year. Based on these

numbers it appears that in ‘80s and ’90s, scientific software development research was not

particularly focused on the use of SE practices. However, after 2000 (and in particular after

2004), the number of studies has increased substantially. This result is not surprising given that

scientific software has increased in size, complexity, or the need for other properties for which SE

practices can be helpful (e.g. scalability and portability).

Figure 3: Frequency of Publication

Table 4 lists the frequencies of studies that investigated specific development activities. Table 4

shows that the most frequently studied development activity is implementation, followed by

architecture and testing. Interestingly, only less than 2% of the studies investigated the

maintenance activity, despite the fact that maintenance is an important and costly activity for

software that evolves over time. The prevalence of implementation, testing, and architecture

activities in scientific software development is consistent with findings from earlier studies

(Farhoodi et al. 2013), (Odun-Avo et al. 2018), and (Heaton and Carver 2015).

Table 4: Frequency of Development Activities

Development Activity Count Development Activity Count

Implementation 159 Project Management 14

Architecture 71 Maintenance 7

Testing 50 Deployment 6

Design 28 Integration 4

Requirements 23

- 12 -

The results in Table 5, which lists the software artifacts studied in the primary studies, show

that source code is the most frequently studied software artifact (45%). This outcome is expected,

because it follows the distribution in Table 4: i.e., artifacts that are produced by popular activities

in Table 4 score higher in Table 5, as well (with the same ranking for the first five artifacts).

Table 5: Frequency of Software Artifacts

Software Artifact Count Software Artifact Count

Source Code 162 Domain Model / Class Diagram 19

Component / Component Diagram 61 Requirements 14

Unit Test / Test Case / Test Plan 32 Flow Charts, Use Case Diagrams 9

Table 6 provides a cross-tabulation of the results from Tables 4 and 5. These results show that

source code appears in all development activities4. In addition, for most of the activities, the

artifact that is most associated with the activity, based on SDLC models, is the most prevalent

(e.g. the requirements artifact in the requirements activity and component diagram in the

Architecture activity).

Table 6: Frequency of Software Artifacts per Development Activity

Development Activity Software Artifact Freq.

Implementation Source-Code 155

Architecture Component/Component Diagram 61

Testing

Unit Test/Test Case/Test Plan 32

Source-Code 8

Design

Domain Model/Class Diagram 17

Use Case Diagram, Flow Chart 4

Requirements

Requirement 14

Domain Model/Class Diagram 2

Maintenance Source-Code 3

Table 7 lists the programming languages reported in the included studies. The finding that C++,

C, and Fortran are the most common languages for scientific software development is consistent

with prior studies ((Johanson et al., 2018), (Farhoodi et al., 2013), and (Amaral et al., 2019)). This

result is expected because Fortran is still a dominant language for large-scale scientific

applications that heavily rely on mathematical operations (Faulk et al. 2009). The fact that the

C-family languages are ranked first, can be explained by the general popularity of the languages5

and the curricula of most natural science departments, which first acquaint developers of

scientific software with C and C++.

4 To see details about architecture, design, and requirements see Appendix B.
5 https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

- 13 -

Table 7: Frequency of Programming Languages

Programming Language Count Programming Language Count

C++ 81 Python 22

C 51 Matlab 14

Fortran 44 Corba, R 4

MPI 31 Mathematica, Cuda, Cell, OpenCL, JS, Ruby 2

Java 24

As reported in Table 8, researchers involved in scientific software development come from a

variety of domains. Note that the sum of the studies in Table 8 is less than the total included

studies because several studies did not report application domain. The most frequent domains

reported in Table 8 are those that are in need of large-scale simulations, which often require

large amounts of computational power and process large amounts of data. The results of the

study are in agreement with previous work (Farhoodi et al., 2013) who suggested that physics,

biology and mathematics are the top application domains of scientific software development.

Table 8: Frequency of Application Domain

Application Domain Count Application Domain Count

 Biology 12 Airborne 6

Physics 12 Chemistry 5

Mathematics 11 Medical 3

Climate / Environment 9 Communications, Green Computing 2

Geoscience / Cosmology 8 Music, Material Science 1

Table 9 lists the empirical methods authors used to validate the proposed approaches. An

interesting finding is that a large percentage of studies (~33%) have no validation of the proposed

methods. For the studies that did use an empirical validation, the distribution mirrors traditional

SE, in which case studies and experiments are the dominant type of research (Molleri et al.,

2019). An interesting observation from the data is that prior to 2000, very few studies applied

empirical methods (less than 20%). However, after 2000, researchers begun to more frequently

validate their results via empirical methods (more than 50%).

Table 9: Frequency of Empirical Methods Used for Validation Purposes

Empirical Method Count

Case Study 76

No Validation6 57

Experiment 32

Survey 9

Ethnography 1

6 We note that from the table we excluded the studies (51%) that do not refer to a specific QA, since the empirical method variable cannot

be defined.

- 14 -

4.2 RQ1 –Software Engineering Practices in Scientific Software Development

In this section, we present the results of our mapping study related to SE practices in scientific

software development. Table 10 lists the software practices most frequently reported in the

included studies (after the consolidation process described in Section 3.6). The results are

consistent with what one would expect given the nature of scientific software development.

Table 10: Frequency of Software Practices (RQ1)

Software Practice Freq. Software Practice Freq.

Reuse or Libraries or API 41 Quality Assurance, with or without Metrics 17

Programming Technique 33 Agile Practices 15

Parallel Programming or Distributed Software 25 Quality Optimizations 15

Software Development Process Improvement or Lifecycle

Management
24

(Introduce or Use a Specific) Programming

Language
14

Component-Based Software Development 21
Integrated Development Environment (IDE),

Domain Specific Languages
13

Development Framework (propose) 21 Code Generation 13

Testing, Regression or Automated Testing, Testing without

oracle
19

Project Management, Formal Testing

Methods, Software Architecture,

Requirements Specification

11

Design and Architecture Models 18 People Management or Communication 9

The results suggest that the most commonly reported practices are related to implementation.

The most common SE practice is software reuse, not in the form of source code reuse, but in the

form of developing an artifact for reuse (Lambropoulos et al., 2018). The most common packaging

for this type of software is a library that can solve common problems in a domain. In some cases,

researchers discuss how Application Programming Interfaces (APIs) can ease reuse of these

third-party libraries (Zaimi et al., 2015). Second, we observed that a study discusses a variety of

Programming Techniques, including: “Model-Driven Engineering”, “Skeleton Programming”,

“Task Scheduling”, or programming paradigms (e.g., “Aspect-Oriented Programming”—AOP or

“Object-Oriented Programming”—OOP). The discussion of programming techniques (none of

which appeared in more than 3% of included papers), suggests that the scientific software

development community has high interest on how to achieve programming efficiency. Third, we

observe some architecting practice, such as Parallel or Distributed Software Architectures

and the dominant practice of higher-level reuse, i.e., Component-Based Software Engineering

(CBSE). The focus on parallelization can be attributed to the need for execution performance of

the very complex calculations usually performed in scientific software. The focus on CBSE

suggests an attempt to systematize reuse in earlier phases of development. Fourth, a large

portion of research is spent on Testing. Because scientific software applications are complex,

developers must perform different types of testing to verify and validate the results.

Furthermore, there were seven additional papers that discussed test-driven development and

quality assurance, which could both be considered an aspect of testing. Finally, we need to

underline the interest on practices related to Software Process Improvement. As scientific

software developers learn more about SE practices, it makes sense that studies about how to best

- 15 -

assemble those practices into a lifecycle could benefit software development. For instance, we

have observed an interest in "Collaborative Development”. The prevalence of this topic is

consistent with the fact that the complexity of most scientific projects requires collaboration

among multiple developers, often with diverse backgrounds.

SE Practices per Activity: In Figure 4 we present a map between activities and SE practices.

(a) Implementation (b) Architecture

(c) Testing (d) Design

(e) Requirements (f) Project Management

Figure 4: Frequency of Software Practices per Development Activity (RQ1.1)

From the results we can make the following observations:

• During implementation, developers of scientific software are interested in the development

and reuse of code through libraries, the adoption of programming techniques, the use of

development frameworks, the collaboration between the developers, and in different

techniques and methods for improving the quality of the software.

- 16 -

• During the architecture/design activity, developers of scientific software are interested in

reuse through component-based software engineering, the use of models and techniques for

improving the quality of the software, and reducing the cost of the software (e.g., SPL).

• Researchers have studied the use of multiple types of testing in software development.

• During the requirements activity, developers of scientific software focus on gathering

requirements using various techniques (e.g., interviews, workshops, etc.) from stakeholders

and building a better understanding for the requirements.

• During the project management activity, it seems that developers of scientific software are

focused on peopleware aspects, e.g., practices for managing the human factors to deliver

projects consistently, efficiently, and on time and within budget.

We note that the sum of the items in Figure 4 may be larger than reported in Table 10 because

some studies linked an SE practice to more than one activity. An interesting result is that, while

a previous study reported testing as one of the most understudied activities in scientific software

development (Heaton and Carver, 2015), we found, five years later, testing is now one of the

highest studied activities.

Finally, we note that some SE practices are cross-cutting, in the sense that they can be applied in

more than one development activities. For example, “Quality Assurance with or without metrics”

can be performed during implementation quality assurance through code reviews or linters. At

the architecture / design phase it can be performed with design reviews or inspections. Finally, at

testing phase it can be performed through coverage metrics. However, the number of cross-

cutting SE practices is not substantial enough to perform an analysis for checking differences

among different development activities.

SE Practices per Application Domain: Table 11 presents the cross-tabulation of SE practices

and application domains. Based on the findings of Table 11, we have observed that there are no

differences in the SE practices that are applied across different application domains. Thus, for

the rest of this manuscript, we report on the dataset as a whole, without differentiating between

application domains, or development activities.

Table 11: Frequency of Software Practices per Application Domain

Domain Software Practice Freq. Domain Software Practice Freq.

Biology

Reuse or Libraries or API 2

Climate /

Environment

DSL 2

People Management or

Communication

2 Release as OSS 2

Agile Practices, Software

Architecture, GUI Design,

Programming Language,

Development of Compilers,

Requirements Specification,

Parallel Programming or

Distributed Software,

Requirements Elicitation,

Design and Architecture

Modelling

1 IDE, People Management or

Communication, Software Development

Process Improvement or Lifecycle

Management, requirements elicitation,

Reuse or Libraries or API, Separation of

Concerns

1

- 17 -

Domain Software Practice Freq. Domain Software Practice Freq.

Mathematics

Programming Technique 3

Chemistry

Reuse or Libraries or API 2

Code Generation 3 Agile Practices, Programming Language,

Requirements Elicitation

1

Separation of Concerns,

Requirements Management,

Documentation, Software

Development Process

Improvement or Lifecycle

Management, People

Management or

Communication, Development

Framework (Propose), IDE

1

Airborne

Quality Assurance, with or without Metrics,

Release as OSS, Programming Language,

Design and Architecture Modelling, Design

and Architecture Models, Requirements

Specification, Development Framework

(Usage), Development Framework

(Propose), Cost / Effort Estimation

1

Physics

Development Framework

(Propose)

3

Geoscience /

Cosmology

Reuse or Libraries or API 2

Project Management 2 Quality Optimizations 2

People Management or

Communication

2 Requirements Elicitation 2

Reuse or Libraries or API,

Quality Optimizations, Risk

Management, Agile Practices,

Component-Based Software

Development, Requirements

Elicitation, Parallel

Programming or Distributed

Software, Design and

Architecture Modelling

1 Collaborative Software

Development/Version

Control/Configuration Management,

Programming Technique, Requirements

Specification, Release as OSS, Quality

Assurance, with or without Metrics

1

4.3 RQ2 –Quality Attributes relevant to Scientific Software Development

In response to RQ2, Table 12 lists the frequencies of quality attributes targeted by the primary

studies. Performance is the most studied quality attribute. This result makes sense because

developers of scientific software need to obtain their data and/or analysis results as quickly as

possible (García et al., 2013). The second ranked quality attribute is Productivity, which refers

to development efficiency: explaining the focus on reuse (libraries and CBSE)—interestingly,

reusability is ranked low. This indicates that the goal of scientific software developers is not on

systematic reuse, but on reducing development time. The following attribute is

Maintainability, which is a rationale outcome in the sense that such applications change

frequently, and therefore it is desirable to reduce the effort for updating the software. Finally, an

interesting observation is that portability is the fourth most frequently studied quality attribute,

since developers of scientific software are interested in developing applications that are portable

to parallel development environments (Watson and De Bardeleben, 2006).

- 18 -

Table 12: Frequency of Targeted Quality Attributes

Quality Attribute Freq. Quality Attribute Freq.

Performance 67 Robustness (also referenced as Fault Tolerance) 12

Productivity 33
Complexity (also referenced as

Understandability)
10

Maintainability (also referenced as Extensibility or

Flexibility or Changeability)
28 Interoperability, Usability 7

Portability 26 Energy and Memory Efficiency 6

Scalability 24 Security or Safety 5

Correctness (also referenced as Accuracy or

Reliability)
18

Modularity, Testability (also referenced as

Verifiability)
3

Reusability 13

In response to RQ2.1, Figure 5 presents the QAs of interest for each development activity.

(a) Implementation (b) Architecture

(c) Testing (d) Design

(e) Project Management (f) Deployment

Figure 5: Frequency of Quality Attributes per Development Activity (RQ1.1)

- 19 -

Based on this information, we can note that Maintainability is of interest in all development

activities except for deployment. As explained before, scientific software developers are interested

in efficiently maintaining their code because of the need to make minor adjustments across

versions and perform corrective maintenance. These needs have made maintainability important

across multiple development activities, including early activities like project management and

architecture, when the impact of considering maintenance can be far-reaching.

In response to RQ2.2, Table 13 lists the quality attributes associated with each of the top-20 most

common software practices. In a parenthesis (when applicable) we denote the number of studies

that report a negative or neutral impact of the SE practice on the quality attribute. We note that

as negative we also designate cases in which a study reveals that the effect is not uniform, i.e.,

there are cases when the SE practice has a positive effect and others that it is negative. Based on

the results, we can claim that researchers publish positive results more frequently than negative

results (less than 2% of the studies report negative results). This finding is expected due to the

phenomenon termed publication bias (Ampatzoglou et al., 2019). The tendency to publish only

positive results has also been identified in traditional software engineering research. Thus, the

number of venues that explicitly state (in their call for papers) that they accept negative results

is increasing.

Additionally, in traditional software engineering, there is no design decision or application of a

practice that does not come without a cost (Ampatzoglou et al., 2021). Thus, any decision-maker

needs to consider various quality attributes and explore possible quality trade-offs between them

(i.e., one QA is improved, whereas another deteriorates) (Bass et al., 2003). By seeking for

explicit trade-off analysis studies in our dataset, we have identified only one (Naughton et al.,

2018) study that identifies trade-offs and only two ((Abdullin et al., 2017) and (Sapuan et al.,

2018)) that identify cut-off points (i.e., the same practice can have both positive and negative

impact, based on some parameters).

Table 13: Frequency of Quality Attributes per Software Practice

Software Practice Quality Attribute Freq.

Reuse or Libraries or

API

Performance 9

Portability 3

Scalability 3

Robustness (also referenced as Fault Tolerance), Productivity, Reusability, Maintainability

(also referenced as Extensibility or Flexibility or Changeability)

2

Programming Technique Performance 7

Maintainability (also referenced as Extensibility or Flexibility or Changeability),

Productivity

3

Scalability 3

Reusability, Complexity (also referenced as Understandability), Correctness (also

referenced as Accuracy or Reliability)

2

Parallel Programming or

Distributed Software

Performance 8 (1)

Portability 5

Scalability 4

Correctness (also referenced as Accuracy or Reliability), Maintainability (also referenced 3

- 20 -

Software Practice Quality Attribute Freq.

as Extensibility or Flexibility or Changeability)

Productivity 2

Software Development

Process Improvement or

Lifecycle Management

Performance 5

Productivity, Maintainability (also referenced as Extensibility or Flexibility or

Changeability), Portability

3

Usability 2

Component-Based

Software Development

Performance 8

Portability 3 (1)

Maintainability (also referenced as Extensibility or Flexibility or Changeability),

Reusability

3

Modularity, Scalability 2

Testing, Regression or

Automated Testing,

Testing without oracle

Performance, Correctness (also referenced as Accuracy or Reliability), Portability,

Scalability, Productivity

2

Development Framework

(propose)

Portability, Performance 4

Productivity, Scalability 3

Maintainability (also referenced as Extensibility or Flexibility or Changeability), Energy or

Memory Efficiency, Correctness (also referenced as Accuracy or Reliability),

Interoperability, Robustness (also referenced as Fault Tolerance)

2

Quality Assurance, with

or without Metrics

Productivity, Complexity (also referenced as Understandability) 2

Design and Architecture

Models

Performance 3

Reusability, Maintainability (also referenced as Extensibility or Flexibility or

Changeability)

2

Programming Language Performance 6 (2)

Productivity 4

Quality Optimizations Maintainability (also referenced as Extensibility or Flexibility or Changeability) 5

Performance 4

Productivity 2

Agile Practices Maintainability (also referenced as Extensibility or Flexibility or Changeability),

Performance, Security, Safety
2

Productivity 2 (1)

Domain Specific

Language

Reusability 3

Productivity 2

Code Generation Performance 4 (1)

Productivity 2

Project Management Productivity 3

Formal Testing Methods Robustness or Fault Tolerance 2

Performance 2 (1)

Software Architecture Performance 4

People Management or

Communication

Productivity, Robustness (also referenced as Fault Tolerance) 2

- 21 -

In response to RQ2.3, we present two views of empirical validation methods. In Figure 6, we

present a bubble chart representing the frequency with which each QA is evaluated by every

empirical method. In Figure 7, we visualize the frequency with which the impact of each SE

practice has been validated.

Figure 6 provides an overview of the level of validation that exists for each pair. The results show

that: (a) researchers have studied performance (18%), scalability (28%), correctness (29%), and

complexity (10%) most rigorously, based on the lowest percentage studies without any validation

(excluding the quality attributes with only one study); and (b) reusability (54%), usability (50%),

energy consumption (50%), and robustness (42%) need more empirical evidence because they

have the lowest percentage of validation studies.

Figure 6: Frequency of Empirical Methods for the Validation of QAs

Based on Figure 7, we can draw some observations. By focusing on the extreme cases: two out of

the three studies that address “People Management”, 42% of studies that focus on “Software

Lifecycle Improvement” (SDLC) and 40% of studies that study “Software Architectures” do not

provide any empirical validation. One possible explanation for this observation is that earlier

stage activities (in which not many artifacts have been developed) may be more difficult to

evaluate; due to the need of more advance qualitative approaches. On the other hand, 94% of

studies that focus on “Parallelization or Distribution” of code have rigorous validation. This

result can be explained by the fact that in most of the cases, the performance indicator for this

practice is the time required to execute the software, which is relatively easy to obtain.

- 22 -

Figure 7: Frequency of Empirical Methods for the Validation of SE Practices

5. Discussion

5.1 Overview and Interpretation of Results

The results of our mapping study are consistent with prior studies. The software practices

identified as the most studied match prior results as follows: Odun-Avo et al (2018) also

highlighted the importance of process improvement, multiple studies noted the importance of

testing (Heaton and Carver, 2015), (Johanson et al., 2018), and (Farhoodi et al., 2013), as well as

multiple studies noted the importance of focusing on application development and programming

languages (Odun-Avo, et al., 2018), (Assiroj, et al., 2018), and (Farhoodi, et al., 2013). By having

a closer look at the more frequently used SE practices, one can observe that their majority deals

with implementation and testing tasks:

• Ease of Development. Papers report multiple practices that aim to ease and speedup

software development including reusable code identification algorithms, use of 3rd party

libraries, software development frameworks, and developing applications that can evolve. This

emphasis can be explained by the fact that often scientific applications share common

functionalities, therefore, reuse is an appealing way of improving productivity. A similar

productivity increase can be achieved through the use of tools, frameworks and libraries.

• Testing. Papers reported two practices related to testing: test-driven development and

specific types of testing (e.g., regression and automated testing). This outcome suggests that

scientific software developers see a need to produce correct results, especially in cases of

simulations related to critical software systems. For example, when implementing

- 23 -

optimization algorithms (e.g., simulation of CO2 emission (Damartzis et al., 2018)), scientific

software developers prioritize finding a solution that is a global optimum rather than a local

one over the time required to produce that solution. To ensure this goal, the developers need

exhaustive validation.

• Coding. In addition to practices that aim at making development easier, more efficient, and

more productive, another research direction is the study of programming languages,

compilers, code generation, and code management strategies. All the identified practices

suggest that scientific software developers view coding tasks as very important, yet still

struggle with them. Therefore, researches invest substantial effort in providing scientific

software developers with tools that support coding.

• Project Management. The scientific software domain seems to be in need of project

management practices. To this end, software development processes are the 2nd most studied

SE practice. Such measures that do not focus on a specific activity (e.g., the application of

standardized development practice, rather than an ad-hoc one) is an interesting topic for

scientific software researchers, because they expect these practices to yield various benefits

(e.g., higher quality software and increased productivity).

• Quality Assurance. Finally, the literature shows that scientific software researchers are

interested in software quality assurance procedures that focus on non-functional

requirements, in addition to testing (described above), which focus on functional

requirements.

By further focusing on the most-studied in the scientific software development literature, we see

that performance is the top-priority for scientific software developers. The next quality attributes

of interest appear to be maintainability and development productivity. This finding suggests that

developers of scientific software are highly interested in decreasing the effort they spend in

software development. In particular, they need solutions that make software construction more

productive, but also decrease their maintenance effort, since they appear to deem it as non-

negligible. Finally, the next quality attributes are those that are primarily improved by the used

practices (reusability, correctness, and reliability), the size of the software (probably as a proxy of

effort as well), and portability. Portability is a sub-characteristic of maintainability that seems

important in scientific software development, in the sense that it is related to performance. For

instance, to decrease execution time in many cases solution architects move certain calculations

to GPU (from CPU). To ease such a tailoring the original code must be portable to other types of

processors, hardware, operation systems, etc. The results on the importance of quality attributes

comply with those of Johanson et al. (2018), who suggested that the main quality drivers of

scientific software applications are performance, maintainability, portability, and correctness.

5.2 Implications to Researchers and Practitioners

The main benefit of this study for practitioners is guidance in selecting the most fitting SE

practices for improving quality attributes for each development activity. To illustrate how a

practitioner can use the results, we first need to develop a synthesized view of the results.

• Selection of development activity. First, the practitioner needs to specify the software

development activity of interest. Based on this selection he/she can identify the most studied

SE practices for this activity from the answer to RQ1.1 in Figure 4.

- 24 -

• Selection of quality attributes. Then, to limit the SE practices of interest, the developer needs

to identify which practices are related to the quality attribute of interest, for each

development activity based on the answers to RQ2.1 and RQ2.2.

Figure 8 presents a portion of a matrix we developed to illustrate the results. It includes

development activities, SE practices, and quality attributes (as dimensions) and inside each cell

the effect of the practice on the quality attribute. Due to the size of the matrix, we show only an

example here. The full matrix is available in Appendix C. To reduce the complexity of the

representation, we mapped development activity and SE practices in the matrix rows via nesting.

The first two columns present the most studied SE practices for each development activity. Then,

in the remaining columns, we highlight which SE practices are related to each quality attribute.

Developers can use this figure to choose which SE practices are most relevant when developing

scientific software.

Activity Software Practice

Quality Attributes

P
e
r
fo

r
m

a
n

ce

P
r
o

d
u

c
ti

v
it

y

M
a

in
ta

in
a

b
il

it
y

P
o

r
ta

b
il

it
y

S
c
a

la
b

il
it

y

C
o

r
re

c
tn

e
ss

R
e
u

sa
b

il
it

y

R
o

b
u

st
n

e
ss

 /
 F

a
u

lt

T
o
le

ra
n

ce

C
o

m
p

le
x
it

y
 /

U
n

d
e
r
st

a
n

d
a

b
il

it
y

In
te

r
o

p
e
ra

b
il

it
y

U
sa

b
il

it
y

E
n

e
rg

y
 /

 M
em

o
r
y

E
ff

ic
ie

n
cy

S
e
c
u

ri
ty

 /
 S

a
fe

ty

M
o

d
u

la
ri

ty

T
e
st

a
b

il
it

y
 /

V
e
r
if

ia
b

il
it

y

Im
p

le
m

en
ta

ti
o
n

Reuse or Libraries or API X X X X X X X X

Programming Technique X X X X X X X X

Development Framework

(propose)

X X X X X X X X X

Parallel or Distributed Software X X X X X X

Programming Language X X X X X

Quality Assurance X X X X X X X

Code Generation X X

A
rc

h
it

ec
tu

re

CBSE X X X X X X

Design and Architecture Models X X X X X X X X X

Software Architecture X X X X

Parallel or Distributed Software X X X

Domain Specific Language

Programming Technique X X X

Figure 8: Illustrative Example

As an example, suppose a practitioner wants to select the most studied SE practices for

improving maintainability and portability during implementation / architecture. Based on

Figure 8, there are four SE practices (marked with a blue rectangle) that can be used for

improving both quality attributes in the aforementioned activities, namely: Component-Based

Software Development, Reuse or Libraries or APIs, Programming Techniques, and Development of

Parallel or Distributed Systems. However, the practitioner can also use other SE practices for

improving portability or maintainability in isolation (marked with red rectangle). For

example, he/she can develop software architecture models to address portability. Based on the

above observation and through a mental qualitative synthesis process, the software engineer

- 25 -

understands that the development should be based on reuse: i.e., building component-based

architecture, which should be specified through relevant models, and while proceeding at the

implementation level he/she should first attempt to reuse code artifacts, such as COTS, third-

party libraries etc. Additionally, parallel or distributed architectures should also be considered.

From a research perspective, it is clear that any research effort must take into account

performance. Even when other quality attributes are of primary interest, the impact of the

proposed approach or tool on performance has to be considered. Additionally, we advise

researchers not to compromise performance in benefit of other quality attributes. For example, a

study focused on the potential benefits of refactoring must also consider the impact on

performance. If both effects are present, the researcher should conduct a cost-benefit analysis.

The previous statement extends to other quality attributes in the sense that research works,

should not only consider one QA, but multiple ones, when proposing an approach or the

application of an SE practice. Therefore, we highly advise researchers to seek for trade-off and

cut-off analysis in their studies, in the sense that any SE is seldomly comes without side-

effects, or has a uniform impact across different cases.

Furthermore, one of the most prominent (an unexpected) results of this SMS is the community’s

focus on reuse. In contrast to traditional software engineering, where reuse is mostly ad-hoc, or

highly systematic (e.g., SPLs) (Lambropoulos et al., 2018), in scientific software development

reuse relies mostly on library reuse. In particular, it seems that there are many research

endeavors to develop for reuse, in many cases with documented impact on qualities of interest

(e.g., performance). However, it is not evident that this rich pool of software is visible. Thus, we

believe that the development of a repository of reusable artifacts (such as Maven repository)

would highly benefit the community. Finally, we believe that an endeavor to catalogue

programming techniques, as well as their benefits and drawbacks would be helpful to the

community, in the sense that the current state-of-research suggests an experimentation with a

wide range of techniques, with limited reoccurrence. This finding suggests that almost all

programming techniques are far from be considered as a state-of-practice in scientific software

development.

6. Threats to Validity

We organize the threats to validity around the guidelines provided by Ampatzoglou et al. (2019).

In Section 6.1, we report threats to validity related to study selection. In Section 6.2, we report

threats related to data validity. Finally, in Section 6.3, we report threats related to research va-

lidity.

6.1 Study Selection Validity

Study selection validity concerns the early phases of the research, i.e., the search process and the

filtering of studies. To guarantee that our search process adequately identified all relevant stud-

ies, we used a well-defined protocol to select the primary studies, based on strict guidelines

(Kitchenham and Charters, 2007). The identification process consisted of an automated search of

the most-known DLs. We used a broad search string that only included keywords and synonyms

related to two domains, SE and scientific software development. However, it is possible that the

search process returned some candidate primary studies that are related to HPC, but are not to

scientific software. However, based on the literature more than 70% of HPC apps are non-

- 26 -

computer science apps, but scientific software. By considering that also some of the computer

science applications can also be used for scientific purposes (e.g., data science), the percentage of

false-positives becomes even lower. We believe that this threat is minor in the sense that the vast

majority of applications that are deployed in HPC are science-related (Schmidberger and Brügge,

2012). Additionally, as a means for verification, we have contrasted our dataset to the primary

studies of the broader previous secondary study in the literature. In particular, we manually

checked and verified that all papers included in the work of Farhoodi et al. (2013) and published

in the four DLs of interest are included in our pool of primary studies.

Next, during the inclusion / exclusion phase, it is always possible to accidentally exclude relevant

studies. To mitigate this threat, we first extensively discussed the criteria to ensure clarity and a

common understanding. Then, we used two authors to conduct this process. These two discussed

any potential conflicts. After this process, a third author randomly screening a subset (10%) of

the studies chosen for inclusion to verify the choice, without identifying any problems. Further-

more, from our searching space we have excluded grey literature, since the goal of the study fo-

cuses on the use of empirical evidence, which are almost never published in grey literature.

We were careful to remove any duplicated results, keeping the most extensive version in our set.

Also, our study is not suffering from missing non-English papers and the papers published in a

limited number of journals and conferences, since our search process was aiming at a large num-

ber of publication venues (including DLs as a whole) all publishing papers only in English. Final-

ly, we were able to access all publications because our institutions provide access to DLs.

6.2 Data Validity

The primary data validity threat is related to data extraction bias. The first author extracted and

manually recorded all relevant data. Due to the potential for subjectivity in this process, two

other authors further inspected and refined the collected data, re-validating them. After this pro-

cedure, the results were discussed among the first three authors and they resolved any conflicts.

The next potential threat to data validity is publication bias. There are two types of publication

bias: (a) bias caused by the fact that primary studies are published by a closed and small circle of

researchers; and (b) caused by the tendency of publishing positive rather than negative results

(Ampatzoglou et al., 2019). In this study, the first type of publication bias is not present because

our broad search identified studies from a large group of researchers. Regarding the second type

of publication bias, due to the nature of this study we acknowledge the existence of the threat.

Therefore, it is likely that our sample of papers overemphasizes positive results simply because

many negative results are not published in the peer-reviewed literature. Given that, readers

should take care to examine the results in the papers in case they are interested in a particular

SE practice to be applied.

In addition, there are other potential threats to data validity that could affect our study. First,

small sample size is not of concern because we analyzed close to 3,000 studies. Second, lack of

relationships is not a threat because our study was not aiming to identify any relationships

among data, but only to classify. Third, low quality of primary studies is a potential threat be-

cause, based on the SMS guidelines (Petersen et al., 2008), we did not perform any type of quality

assessment because we did not have an explicit research question related to quality. Therefore,

because we counted all studies the same in the analysis, regardless of their quality, it is possible

that our counts reflect a biased overall picture. Fourth, selection of variables to be extracted is not

- 27 -

a threat because the straightforward research questions of our study did not raise any conflicts in

the discussions among authors on which variables should be extracted. Fifth, we did not identify

issues with the use of statistical analysis, in the sense that the nature of our research questions

did not require hypothesis testing, but only basic statistical analysis (descriptive statistics).

Sixth, to mitigate the researchers’ bias in data interpretation and analysis, the authors discussed

the data clustering for the SE practices and the qualities of interest. Finally, we note that the

findings in this mapping study only summarize the state-of-research in this field and not neces-

sarily the state-of-practice. In other words, the study cannot guarantee that the reported results

can be generalized as a reflection of industrial practices.

6.3 Research Validity

For the first threat in this category, research method bias, the authors are experienced with con-

ducting secondary studies having conducted and reviewed a large number of such studies. There-

fore, this threat is minimal. A possible threat to validity of this the selection of the wrong type of

research method to answer the research questions. Thus, one concern might be that RQ2.2 and

RQ2.3 have aspects of SLR-questions, because they demand some synthesis. This issue does not

threaten the validity of this study, in the sense that in the literature there are various cases (e.g.,

(Galster et al., 2014) and (Kitchenham et al., 2010)) of hybrid secondary studies—i.e., uses one

research method and answers (usually) one RQ, based on the other design. Nevertheless, we note

that in our study, the reporting of empirical methods is not done in full detail, i.e., we are only

recognizing the type of the empirical method, and not get into details of data collection / analysis

methods, samples, etc. which would indeed require more synthesis. For the second threat in this

category, repeatability, by following a detailed review process we enable the reliability and repli-

cation of our study. This manuscript describes the review procedures in detail. Multiple authors

were involved in all phases of the process to reduce potential bias. Finally, we have made all ex-

tracted data publicly available7 to enable the comparison and validation of the results.

Additionally, through discussion among the authors we have defined two main research ques-

tions that accurately and holistically map to the study goal. This is clearly depicted by the map-

ping of each research question to the research sub-goals/objectives. Therefore, there was no bias

in the selection of specific research questions. Furthermore, in the literature we have been able to

identify a substantial amount of related works that can be used for comparison to our results. In

particular, for this reason we used related studies from the SE and scientific software develop-

ment literature. Additionally, the selection of the research method is adequate for the goal of this

study and no deviations from the guidelines have been made.

7. Summary

Scientists are increasingly turning to the development of software to help them reach their re-

search goals which require the use of large-scale simulations, models, and big data analysis. The

size and complexity of these software applications, the need to reuse code for improving produc-

tivity, and the need for continuous maintenance have required scientific software developers to

become more familiar with SE practices and use them in their projects. This mapping study pro-

vided some insight into how and why scientific software developers use SE practices. To obtain as

many relevant studies as possible, we search four well-known digital libraries using a well-

7 https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx

https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx

- 28 -

constructed search string resulting in approximately 1000 articles initially identified. Using a

rigorous filtering process, we reduced that total to 359 primary studies, which we analyzed.

The results showed scientific software development teams are mostly interested in software im-

plementation and testing activities. However, we also found a number of practices that aid in

achieving a better architecture and implementation; having a special focus on reuse, either

through libraries or components. Also, apart from the understandable focus on performance,

maintainability and development productivity stand out as important quality drivers for scien-

tific software developers. To make the results of this study more actionable, we provide an illus-

tration of their usage in a scenario from the perspective of both researchers and practitioners.

Finally, we provided researchers of both the SE and scientific software development domains

with multiple implications and interesting future work opportunities.

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research and innova-

tion programme under grant agreement No 801015 - EXA2PRO (https://exa2pro.eu)

References

A. Abdullin, D. Stepanov, and M. Akhin. 2017. Distributed Analysis of the BMC Kind: Making It

Fit the Tornado Supercomputer. International Conference on Tools and Methods for Program

Analysis (TMPA 2017). Volume 779. pp. 1-10.

V. Amaral, B. Norberto, M. Goulão, M. Aldinucci, S. Benkner, A. Bracciali, P. Carreira, E. Celms,

L. Correia, C. Grelck, H. Karatza, C. Kessler, P. Kilpatrick, H. Martiniano, I. Mavridis, S.

Pllana, A. Respício, J. Simão, L. Veiga, and A. Visa, “Programming Languages for Data-

Intensive HPC Applications: a Systematic Mapping Study”, Parallel Computing, Elsevier,

2019, accepted for publication.

A. Ampatzoglou, E. M. Arvanitou, A. Ampatzoglou, P. Avgeriou, A. A. Tsintzira, and A. Chat-

zigeorgiou, “Architectural Decision-making as a Financial Investment: An Industrial Case

Study”, Information and Software Technology, Elsevier, January 2021.

A. Ampatzoglou, A. Kritikos, G. Kakarontzas, and I. Stamelos, “An Empirical Investigation on

the Reusability of Design Patterns and Software Packages”, Journal of Systems and Software,

Elsevier, 84 (12), pp. 2265-2283, Dec. 2011.

A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzigeorgiou, “Identifying, Categoriz-

ing and Mitigating Threats to Validity in Software Engineering Secondary Studies”, Infor-

mation and Software Technology, 106, 2019.

Ar. Ampatzoglou, Ap. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou, “Establishing a frame-

work for managing interest in technical debt”, 5th International Symposium on Business Mod-

elling and Software Design (BMSD’15), July 2015.

P. Assiroj, A. L. Hananto, A. Fauzi, H. L. H. S. Warnars, "High Performance Computing (HPC)

Implementation: A Survey", Indonesian Association for Pattern Recognition International

Conference (INAPR), September 2018.

V. R. Basili, G. Caldiera, and H.D. Rombach, "Goal question metric paradigm", Encyclopaedia of

Software Engineering. John Wiley & Sons, pp. 528–532, 1994.

https://exa2pro.eu/

- 29 -

L. Bass, P. Clements, and R. Kazman, “Software Architecture in Practice”, Addison-Wesley Pro-

fessional, 2nd edition, 2003.

C. K. Birdsall and A. B. Langdon, "Plasma Physics via Computer Simulation", the Adam Hilger

Series on Plasma Physics. Adam Hilger, New York, 1991.

R. Buyya, "High Performance Cluster Computing: Programming and Applications", volume 2,

Prentice Hall, 1999.

J. Carver, “URSSI Conceptualization Survey Results”, http://urssi.us/blog/2019/05/20/urssi-

conceptualization-survey-results/, 2019.

S. Charalampidou, A. Ampatzoglou, E. Karountzos, and P. Avgeriou, “Empirical Studies on Soft-

ware Traceability: A Mapping Study”, Journal of Software: Evolution and Process, Wiley and

Sons, 32 (11), November 2020.

S. Charalampidou, A. Ampatzoglou, P. Avgeriou, S. Sencer, E.-M. Arvanitou and I. Stamelos, "A

theoretical model for capturing the impact of design patterns on quality", Proc. 32nd ACM

SIGAPP Symp. Appl. Comput. (SAC), pp. 1231-1238, 2017.

G. C. B. Costa, R. Braga, J. M. N. David, and F. Campos, "A Scientific Software Product Line for

the Bioinformatics domain", Journal of Biomedical Informatics, 56, pp. 239-264, 2015.

T. Damartzis, A. I. Papadopoulos, and P. Seferlis, "Solvent effects on design with operability con-

siderations in post-combustion CO2 capture plants", Chemical Engineering Research and De-

sign, 131, pp. 414-429, 2018.

S. Easterbrook, J. Singer, M. A. Storey, and D. Damian, “Selecting empirical methods for soft-

ware engineering research”, Guide to advanced empirical software engineering, Springer,

2008, pp. 285-311.

R. Farhoodi, V. Garousi, D. Pfahl, and J. Sillito, "Development of Scientific Software: A System-

atic Mapping, a Bibliometrics Study, and a Paper Repository", International Journal of Soft-

ware Engineering and Knowledge Engineering, 23 (4), 2013.

S. Faulk, E. Loh, M. L. V. D. Vanter, S. Squires and L. G. Votta, "Scientific Computing's Produc-

tivity Gridlock: How Software Engineering Can Help," in Computing in Science & Engineer-

ing, 11(6), pp. 30-39, Nov.-Dec. 2009.

D. Feitosa, A. Ampatzoglou, P. Avgeriou and E. Y. Nakagawa, "Investigating Quality Trade-offs

in Open Source Critical Embedded Systems", Quality of Software Architectures (QoSA' 15),

2015.

D. Pflüger et al., "The Scalability-Efficiency/Maintainability-Portability Trade-Off in Simulation

Software Engineering: Examples and a Preliminary Systematic Literature Review," Fourth

International Workshop on Software Engineering for High Performance Computing in Com-

putational Science and Engineering (SE-HPCCSE), Salt Lake City, UT, 2016, pp. 26-34

M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou, “Variability in Software Systems-

A Systematic Literature Review”, IEEE Transactions on Software Engineering, vol. 40(3), pp.

282–306, 2014.

J. C. García, C. Gómez-Martín, J.L. González-Sánchez and D. C. Polo, "Development of Scientific

Applications with High-Performance Computing through a Component-Based and Aspect-

Oriented Methodology", International Journal of Advanced Computer Science, 3, 2013.

http://urssi.us/blog/2019/05/20/urssi-conceptualization-survey-results/
http://urssi.us/blog/2019/05/20/urssi-conceptualization-survey-results/

- 30 -

D. Heaton and J. C. Carver, "Claims about the use of software engineering practices in science: A

systematic literature review", Information and Software Technology, 67, pp. 207-219, 2015.

J. Howison and J. D. Herbsleb, "Scientific Software Production: Incentives and Collaboration",

Computer Supported Cooperative Work, Hangzhou, China, 19–23 March 2011.

M. Hummel, “State-of-the-art: a systematic literature review on agile information systems devel-

opment”, 47th Hawaii International Conference on System Sciences, Waikoloa, HI; 2014, pp.

4712-4721,

International Symposium on Empirical Software Engineering and Measurement (ESEM),

http://esem-conferences.org

A. Johanson and W. Hasselbring, "Software Engineering for Computational Science: Past, Pre-

sent, Future," Computing in Science & Engineering, IEEE, 2018.

U. Kanewala and J. M. Bieman, “Testing scientific software: A systematic literature review”,

Information and Software Technology, 56 (10), pp. 1219-1232, 2014.

B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in

software engineering”, Technical Report EBSE 2007-001, Keele University and Durham Uni-

versity, 2007.

B. Kitchenham, R. Pretorius, D. Budgen, O. Pearl Brereton, M. Turner, M. Niazi, S. Linkman,

“Systematic literature reviews in software engineering – A tertiary study”, Information on

Software Technology, Elsevier, vol. 52 (8), pp. 792-805, August, 2010.

P. Kruchten, "The Rational Unified Process: An Introduction (3rd Edition)", Addison-Wesley Pro-

fessional; 3rd edition 20 December 2003.

A. Lampropoulos, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, and I. Stamelos, “REACT—a pro-

cess for improving open-source software reuse”, 11th International conference on the quality of

information and communications technology (QUATIC ‘18), Coimbra, Portugal, September 4–

7, 2018, IEEE Computer Society, pp 251–254, 2018

C. V. de Magalhaes, F. Q. da Silva, and R. E. Santos, “Investigations about replication of empiri-

cal studies in software engineering: preliminary findings from a mapping study”, Proceedings

of the 18th International Conference on Evaluation and Assessment in Software Engineering

(EASE '14). ACM, New York, NY, USA; 2014: article 37.

A. Martini, T. Besker, J. Bosch, “Technical Debt tracking: Current state of practice: A survey and

multiple case study in 15 large organizations”, Science of Computer Programming, Elsevier,

163 (1), pp. 42-61, October 2018.

M. Méndez, F. G. Tinetti and J. L. Overbey, "Climate Models: Challenges for Fortran Develop-

ment Tools", 2nd International Workshop on Software Engineering for High Performance

Computing in Computational Science and Engineering, New Orleans, LA, pp. 6-12, 2014.

J. S. Molléri, K. Petersen, E. Mendes, “CERSE - Catalog for empirical research in software engi-

neering: A Systematic mapping study”, Information and Software Technology, 105, pp. 117-

149, 2019.

G. E. Moore, "Cramming more components onto integrated circuits", Electronics, 38(8), pp. 114–

117, 1965.

- 31 -

U. Nangia, and D. S. Katz, “Surveying the U.S. National Postdoctoral Association Regarding

Software Use and Training in Research”, Workshop on Sustainable Software for Science:

Practice and Experiences (WSSSPE’ 17), 2017.

T. Naughton, L., Sorrillo, A. Simpson, and N., Imam. 2018. Balancing Performance and Portabil-

ity with Containers in HPC: An OpenSHMEM Example. s.l., Springer International Publish-

ing, pp. 130-142.

I. Odun-Ayo, R. Goddy-Worlu, O. O. Ajayi, and E. Grant, “A Systematic Mapping Study of High

Performance Computing and The Cloud”, ARPN Journal of Engineering and Applied Sciences,

13 (24), 2018.

C. Omar, J. Aldrich, and R. C. Gerkin, "Collaborative infrastructure for test-driven scientific

model validation", 36th International Conference on Software Engineering, New York, NY,

USA, pp. 524-527, 2014.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic mapping studies in software

engineering", 12th International Conference on Evaluation and Assessment in Software Engi-

neering (EASE’08), Bari, Italy, British Computer Society Swinton, pp. 68–77, 26 –27 June

2008.

F. Queiroz and R. Spitz, “The Lens of the Lab: Design Challenges in Scientific Software”, Inter-

national Journal of Design Management and Professional Practice, 10 (3), 2016.

P. Runeson, M. Host, A. Rainer, and B. Regnell, “Case Study Research in Software Engineering:

Guidelines and Examples”, (1st ed.). John Wiley & Sons, 2012.

F. Sapuan, M. Saw, and E. Cheah. 2018. General-Purpose Computation on GPUs in the Browser

Using gpu.js. Computing in Science & Engineering. 20 (1). pp. 33-42. January/February 2018.

F. S. Silva, F. S. Furtado Soares, A. Lima Peres, et al. “Using CMMI together with agile software

development: a systematic review”, Inf. Softw. Technol. 2015, 58, pp. 20-43.

M. T. Sletholt, J. Hannay, D. Pfahl, H. C. Benestad, and H. P. Langtangen, “A literature review

of agile practices and their effects in scientific software development”, 4th International

Workshop on Software Engineering for Computational Science and Engineering (SECSE '11),

ACM, NY, USA, Waikiki, Honolulu, USA, 28 May 2011.

M. T. Sletholt, J. E. Hannay, D. Pfahl and H. P. Langtangen, "What Do We Know about Scientific

Software Development's Agile Practices?", Computing in Science & Engineering, 14(2), pp. 24-

37, March-April 2012.

D. Spencer, “Card Sorting: Designing Usable Categories”, Rosenfeld Media, 1st edition, April

2009.

M. Schmidberger and B. Brügge, "Need of Software Engineering Methods for High Performance

Computing Applications", 11th International Symposium on Parallel and Distributed Compu-

ting, Munich, Germany, 25-29 June 2012.

K. Stol, J. M. A. Babar, B. Russo, and B. Fitzgerald, “The use of empirical methods in Open

Source Software research: facts, trends and future directions”, Proceedings of the 2009 ICSE

Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Develop-

ment (FLOSS), IEEE Computer Society, Washington, DC, USA, 2009, pp. 19-24.

- 32 -

S. Quenette, B. F. Appelbe, M. Gurnis, M. L. Moresi, awnd P. Sunter, "An investigation into de-

sign for performance and code maintainability in high performance computing" The ANZIAM

Journal. 2004.

B. Unhelkar, "The Art of Agile Practice: A Composite Approach for Projects and Organizations",

2013.

H. van Vliet, “Software Engineering: Principles and Practice”, John Wiley, 2008.

G. R. Watson and N. A. DeBardeleben, "A Model-Based Framework for the Integration of Parallel

Tools," IEEE International Conference on Cluster Computing, Barcelona, pp. 1-11, 2006.

G. Wilson, "Software Carpentry: Getting Scientists to Write Better Code by Making Them More

Productive", Computing in Science & Engineering, 8 (6), pp. 66-69, Nov.-Dec. 2006.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, “Experimentation in

Software Engineering”, Springer Publishing Company, Incorporated, 2012.

A. Zaimi, A. Ampatzoglou, N. Triantafyllidou, A. Chatzigeorgiou, A. Mavridis, T. Chaikalis, I.

Deligiannis, P. Sfetsos, and I. Stamelos, “An Empirical Study on Reusing Third-Party Librar-

ies in Open-Source Software Development”, 7th Balkan Conference on Informatics (BCI’ 15),

ACM, 2 – 4 Sept. 2015, Romania.

