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Background: The development of scientific software applications is far from trivial, due to the constant 

increase in the necessary complexity of these applications, their increasing size, and their need for intensive 

maintenance and reuse. Aim: To this end, developers of scientific software (who usually lack a formal 

computer science background) need to use appropriate software engineering (SE) practices. This paper 

describes the results of a systematic mapping study on the use of SE for scientific application development 

and their impact on software quality. Method: To achieve this goal we have performed a systematic 

mapping study on 359 papers. We first describe a catalogue of SE practices used in scientific software 

development. Then, we discuss the quality attributes of interest that drive the application of these practices, 

as well as tentative side-effects of applying the practices on qualities. Results: The main findings indicate 

that scientific software developers are focusing on practices that improve implementation productivity, such 

as code reuse, use of third-party libraries, and the application of “good” programming techniques. In 

addition, apart from the finding that performance is a key-driver for many of these applications, scientific 

software developers also find maintainability and productivity to be important. Conclusions: The results of 

the study are compared to existing literature, are interpreted under a software engineering prism, and 

various implications for researchers and practitioners are provided. One of the key findings of the study, 

which is considered as important for driving future research endeavors is the lack of evidence on the trade-

offs that need to be made when applying a software practice, i.e., negative (indirect) effects on other quality 

attributes. 
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1. Introduction 

Scientific software development refers to the analysis, design, implementation, testing, and 

deployment of software applications for scientific purposes (e.g., physics, biology, medical 

analysis, and data science). The need for continuous experimentation and validation of 

techniques (e.g., simulations and cases studies) before the release of scientific results has led to 

the emergence of the domain of scientific software development as an important method for 

researchers to be successful in multiple fields (Birdsall and Langdon, 1991). As a result, “many 

scientists and engineers spend much of their lives writing, debugging, and maintaining software, 

but only a handful have ever been taught how to do this effectively: after a couple of introductory 

courses, they are left to rediscover (or reinvent) the rest of programming on their own. The result? 

Most spend far too much time wrestling with software, instead of doing research, but have no idea 

how reliable or efficient their programs are.” (Wilson 2006). While this quote is 15 years old, the 

sentiment has not changed. If anything, the dependence upon software has increased within the 

scientific domain while scientists are still not well-equipped.  
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The US National Science Foundation (NSF) has awarded more than US$9.6 billion to support 

more than 18,000 projects and 95% of postdocs surveyed report the use software (that in most of 

the cases they have developed themselves) to support their research (Nangia and Katz, 2017). In 

addition, a recent blog post describing the results of a survey of 1,200 researchers funded by the 

US NSF showed that the vast majority of respondents did not have sufficient time for training 

and that most development activities (other than coding) were not well-supported by current 

development tools (Carver, 2019). Although scientists invest a large fraction of their time (more 

than 40%) to building software, they often do not take full advantage of the advancements in 

software engineering (SE) (Heaton and Carver, 2015). This lack of SE practices can be attributed, 

at least partially, to limited knowledge of the benefits of these practices (Schmidberger and 

Brügge, 2012). Only about half of the postdocs from the survey mentioned earlier had received 

any software development training (Nangia and Katz, 2017) and 75% of NSF-funded researchers 

reported no time for training (Carver, 2019). As one specific example, only about half of scientists 

know the basics of testing (Wilson 2006).  

 

Figure 1: State of Practice and Envisioned Practices in Scientific Software Development 

Based on the findings above, the left side of Figure 1 highlights some issues that arise when 

scientific software developers lack proper SE practices. The text below explains these issues in 

more detail: 

• Management of Large Code-bases and Collaboration. Scientific software applications 

can be complex, often containing millions of lines of code (Méndez et al., 20104). Projects of 

this complexity cannot be developed by a single person. Therefore, scientific software 

developers need to use collaborative software development approaches and tools. In addition, 

projects of this scale are often multi-disciplinary (Howison and Herbsleb, 2011), which also 

increases the need for collaboration. For example, development of a full-scale application can 

require input from scientists with different expertise (e.g., mathematicians, biologists, 

natural scientists, etc.).  

• Maintainability. New development is only a portion of the software lifecycle. Because 

maintenance activities can consume 50% to 75% of a project cost, it is important to keep 
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maintenance costs low (vanVliet, 2008). In fact, teams “waste” up to 25% of development time 

during maintenance, due to technical debt (Martini et al., 2018). Similarly, scientific software 

projects see maintainability as an important goal because (a) maintenance is costly in terms 

of productivity and loss of vital scientific work; and (b) Exascale applications are usually 

written in C, C++, or FORTRAN, which offer high performance but are difficult to evolve and 

maintain (Schmidberger and Brügge, 2012).  

• Reuse Opportunities. Productivity is one of the main concerns for scientific software 

projects (Faulk et al., 2009). One way to improve productivity (i.e., reduce development time) 

is through software reuse. Because some algorithms are common across projects, especially 

within a domain, reuse of code should be a helpful approach. As evidence of the potential for 

reuse, some scientific software projects have explored Software Product Lines, an advanced 

reuse technique (Costa et al., 2015). 

To address these limitations, scientific software developers could benefit from the advances in SE 

as illustrated in the right side of Figure 1. For example, collaboration among developers and the 

management of large codebases, could be performed through tools like git and Jenkins (Omar et 

al., 2014); quality monitoring (especially focusing on Technical Debt) could be performed with 

SonarQube (Ampatzoglou et al., 2015); and reusability could be facilitated with the use of 

practices such as refactorings and design patterns (Ampatzoglou et al., 2011). All the above tools 

could be synchronized by using well-known methodologies for managing software development 

lifecycles, such as Agile practices (Unhelkar, 2013). 

Based on the expected benefits of using SE practices in scientific software development1, there is 

a growing interest among scientific software developers to cultivate a culture of SE within their 

community. This growing interest has begun to impact the literature in this domain. There are 

papers that report techniques and tools for improving the development of scientific software. 

Therefore, the goal of this study is to provide a detailed mapping of the current state-of-research 

and -practice about the use of SE in scientific software development. To properly scope this broad 

topic, we define three more specific goals: (G1) investigate the SE practices currently used in 

scientific software development; (G2) identify the quality attributes that drive the use of SE 

practices2; and (G3) assess the level of empirical evidence that supports the impact of SE practices 

on quality attributes. To achieve these goals, we conducted a Systematic Mapping Study (SMS), 

focused on classification and categorization of primary studies to provide first understanding of 

the domain. 

2. Related Work 

This section describes secondary studies (i.e., mapping studies or systematic literature reviews) 

related to the application of SE practices for scientific software. In Section 2.1 we present an an-

notated bibliographic reference to such studies, whereas in Section 2.2 we compare them to the 

current study. 

2.1 Detailed Analysis of Primary Studies  

Heaton and Carver’s (2015) systematic literature review aimed at identifying claims about how 

developers of scientific software use SE practices in HPC included 43 papers published prior to 

 
1  We expect these benefits to be present for scientific software development in a similar manner as they are for “traditional” SE. 

2  In the domain of scientific software development, it might be more realistic to talk about quality expectations 
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May 2015. These papers produced 33 claims about 12 SE practices. They classified each claim 

based on the type of evidence supporting the claim (e.g., interview or case study). The results 

suggest that: (a) the most common types of evidence are interviews and surveys, (b) “Issue Track-

ing and “Version Control” are the SE practices most heavily adopted, and (c) “Verification and 

Validation” and “Testing” are the practices scientific software developers find important, but are 

not yet widely adopted. Our current study expands this one by including more recent literature 

(i.e. beyond May 2015) and expanding the criteria to include SE practices for scientific software 

development.  

Sletholt et al. (2011) literature review about agile practices and their effects on scientific software 

development investigated (a) the extent to which scientific software projects have used agile 

practices, and (b) the impact the agile practices have on testing and requirements activities. The 

review describes 8 papers published between 2000 and 2011. The results suggest scientific pro-

jects that adopt agile practices achieve better levels of testing. However, the authors also noticed 

a positive effect of agile practices on the requirements-related activities. In a follow-up study, 

which included 5 additional studies, Sletholt et al. (2012) identified 35 agile practices. Of these, 

12 originate in Scrum and the rest originate in Extreme Programming. Our current study ex-

pands on the work by Sletholt et al. by broadening the scope of the review beyond agile practices 

in testing and requirements activities.  

Farhoodi et al. (2013) performed a systematic mapping study of the most common SE practices 

for developing scientific software. From the 130 included studies, the main findings were: (a) the 

majority of scientific software is written in Fortran followed by C++, C, Python, Java and Matlab; 

(b) the most used SE practices relate to architecture/design, development/coding and test-

ing/verification/validation/quality; and (c) more than one third of the studies do not include vali-

dation for the proposed solution. Our current study expands on these results by using more re-

cent papers (this study only includes papers through 2011) and by adding the investigation of 

quality attributes.  

Kanewala and Bieman (2013) presented a systematic literature review to identify the challenges, 

proposed solutions, and unsolved problems related to testing scientific software. This review in-

cludes 62 studies published prior to January 2013. The results include: (a) testing challenges 

occur due to characteristics of scientific software or to cultural differences between scientific 

software developers and the larger SE community, and (b) there are techniques scientific software 

developers can use to overcome some of the testing challenges. Our current paper expands on this 

work by focusing more broadly than testing and by including more recent papers. 

Queiroz and Spitz (2016) performed a systematic literature review to identify a set of UI design 

practices to support gamification and improve the usability of scientific software. The selection 

process retrieved 221 primary studies published prior to 2015. The results of this study suggested 

the “Lens of the Lab” as a vehicle to support designers working in collaboration with scientists 

and software engineers in professional scientific software initiatives. Moreover, the authors pro-

posed that the use of the lens to a project should be a straightforward process, during design 

stage or consulting appropriate stakeholders about the issues at hand. Our study is broader com-

pared to this of Queiroz and Spitz in the sense that it focuses on SE practices beyond UI design.  

Pflüger et al. (2016) conducted a systematic literature review to identify trade-offs between 

scalability and efficiency on the one hand, and maintainability and portability on the other hand, 
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in simulation software engineering. The selection process retrieved 33 primary studies published 

between 1990 and 2015. The main findings of this study are: (a) most of the primary studies pre-

sent some kind of solution or solution proposal; and (b) many of the papers have no clear empiri-

cal design, but are opinion pieces or experience reports. 

2.2 Comparison to Related Work  

Table 1 presents an overview of the papers discussed above, focusing on the research method, the 

number of included papers, the period covered, and the study goals. The table focus on the three 

study goals from Section 1 and highlights any goals not included in our study. The research 

method dictates the depth of analysis in the sense that typically SLRs are more in-depth than 

SMSs. The number of analyzed papers is an indicator of how broad a study is. The review period 

highlights how current the results are. The analysis of the goals aims to identify commonalities 

and differences among the studies. A balance between overlap and novelty is desirable to allow 

for both comparison and update of results and for novelty to provide additional implications for 

research and practice. 

Table 1: Related Work Overview 

Reference 

Research 

Method # papers 

Review 

Period 

G1 - SE 

Practices 

G2- 

Software 

Qualities  

G3 - 

Empirical 

Evidence Additional Goals 

Heaton and Carver (2015) SLR 43 through 2015 X  Χ  

Sletholt et al. (2011) 
SLR 

8 
2000 - 2011 X  

 impact of agile to testing 

and requirements activities Sletholt et al. (2012) 5 

Farhoodi et al. (2013) SMS 130 1996 - 2011 X  X bibliometrics  

Kanewala and Bieman (2013) SLR 62 until 2013 X  

 Definition and challenges 

of scientific software 

development 

Queiroz and Spitz (2016) 

 
SLR 221 Until 2015 partially partially 

 GUI design guidelines 

Gamification principles 

Pflüger et al. (2016) SLR 33 1990-2015  partially 
X Trade-offs between the 

QAs 

Our Study SMS 359 through 2019 X X X  

Based on Table 1, our study is broader (contains almost 3 times more papers than the most 

comparable study that has at least two goals in common) and more up-to-date (covering almost 

5 years from the last review). In terms of goals, our study has the widest focus, since: (a) it does 

not focus on a specific development methodology like Sletholt et al. (2011), who focus on agile 

practices; (b) it does not focus on a specific activity like Kanewala and Bieman (2013), who focus 

on testing; (c) it does not focus on a specific practice like Queiroz and Spitz (2016), who focus on 

GUI design; and (d) it does not focus on specific quality attributes like Pflüger et al (2016), who 

focus on four quality attributes. Finally, the main advancement of our work is that it is the first 

study that catalogues the impact of the application of software engineering practices on 

quality attributes in scientific software development; as well as possible trade-offs between 

qualities. 
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3. Study design 

In this section, we present the protocol of the systematic mapping study based on the guidelines 

described by Petersen et al. (2008).  

3.1 Objectives and Research Questions 

The goal of this study, expressed in the Goal-Question-Metrics (GQM) format (Basili et al., 1994), 

is to analyze the development of scientific software applications for the purpose of characterization 

and evaluation with respect to the software engineering practices employed and the quality attrib-

utes of interest from the point of view of researchers and practitioners. Based on this goal, we de-

fine the following research questions. To address the cross-cutting G3 (assess the level of empiri-

cal evidence that supports the use of SE practices in scientific software development), we have 

added sub-research questions in RQ2. 

RQ1: Which SE practices used in the development of scientific software have researchers 

studied the most? 

The answer to this research question aids scientific software developers in identifying which SE 

practices researchers have studied most frequently. To further investigate this question, we 

explore the SE practices used during each development activity (e.g. requirements, design, and 

testing) and whether there are differences across application domains. 

RQ2: Which software quality attributes do researchers study in scientific software development? 

RQ2.1: Which quality attributes have researchers studied most often for each development 

activity? 

RQ2.2: What is the impact of SE practices on quality attributes? 

RQ2.3: What is the level of empirical evidence on the aforementioned impact? 

The answer to this research question will expand the knowledge acquired in RQ1, by helping 

scientific software developers make decisions based both on quality attributes as well as software 

development activities. The final outcome of this research question will be a 3-fold mapping of 

practices, activities, and quality attributes. For each of these triplets, the results will produce a 

value indicating the level of empirical evidence. Scientific software developers can use the 

outcome of this research question to support their quality planning activities. Researchers can 

use the results to better scope their future work to address the most important and/or 

understudied quality attributes.  

3.2 Search Process  

Based on our goals and research questions, we have chosen to conduct a mapping study rather than a 

systematic literature review because: (a) the topic is broad, (b) we want to provide a general overview 

of the topic, (c) the main study goal is developing a classification, and (d) we are not performing a 

synthesis of results or quality assessment of the primary studies. As searching space, we selected to 

use the complete content of four well-known Digital Libraries (IEEExplore, ACM, Springer, and 

ScienceDirect). We chose to search broad Digital Libraries (DLs) rather than specific venues so we 

could be as inclusive as possible in the selection of papers related to scientific software development 

and SE. Figure 2 provides an overview of the process, which is organized into four steps: (a) 

searching Scopus without a start date; (b) filtering results to retain only the studies published in 

the 4 DLs; (c) removing duplicates; and (d) applying the inclusion / exclusion criteria. In the end, 

we retained 359 primary studies to include in this mapping study. 
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Figure 2: Overview of Search Process 

In more detail: first we developed a search string (see box below) to identify papers relevant to SE 

AND scientific software development. Because scientific software often demands a large number 

of calculations over vast amounts of data, these applications make heavy use of High-

Performance Computing (HPC). In fact, more than 70% of HPC applications address problems 

outside of computer science (Schmidberger and Brügge, 2012). Therefore, to be as inclusive as 

possible, we included “HPC” in the list of search terms. We performed this search on the title / 

abstract / keywords of all papers in Scopus, which includes papers from the four DLs of interest. We 

used Scopus rather than the DL search engines to avoid inconsistency issues and problems identified 

in other studies (e.g., Springer allows searching of only one field: full text or title—but not abstract). 

("software engineering" OR "software development" OR "software practice")  

AND  

("scientific computing" OR "scientific software" OR "computational software" OR 

"scientific programming" OR "high performance computing" OR "high performance 

science" OR "HPC" OR "research software engineering" OR "research software 

development") 

Second, we manually filtered the results to retain studies published in the four DLs. Third, we 

removed duplicated papers. Finally, since we used “HPC” in the search string, we had to ensure 

that we include only papers relevant to scientific software development. Thus, we defined the 

following Inclusion Criteria:  

• IC1: The primary study is applied in scientific domain; 

AND 

• IC2: The primary study defines/uses one or more SE practices; OR 

• IC3: The primary study evaluates one or more SE practices; OR 

• IC4: The primary study uses one or more quality attributes; OR 

In other words, the final inclusion criterion is: IC1 AND (IC2 OR IC2 OR IC4). Similarly, we de-

fined the following exclusion criteria. We excluded a study if it met at least one of them. 
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• EC1: The primary study is written in a language other than English. 

• EC2: The primary study is an editorial, keynote, biography, opinion, tutorial, workshop 

summary report, progress report, poster, or panel. 

• EC3: The primary study is of horizontal perspective covering the complete spectrum of 

SE practices (these studies have been reported as related work).  

• EC4: The paper is focusing on HPC, without a reference to scientific software develop-

ment 

During the inclusion/exclusion process, two authors independently examined 921 studies. In par-

ticular, the first two authors inspected the publications’ full text and assigned a score on a 4-

point scale (4: strong inclusion, 1: strong exclusion)—leading to a maximum score of 8 points. 

Following the threshold used by Farhoodi et al. (2013), we retained studies that had a score of 6, 

7 or 8. For the studies that scored 5 (88 cases), the third author reviewed them and made a final 

decision. 

3.3  Data Extraction 

During the data extraction phase, we collected a set of variables that describe each primary 

study. The complete dataset is available online3. To strengthen the validity of data extraction, we 

used the following systematic process. The first two authors independently extracted data. If 

there were inconsistencies in the extracted information, the authors first discussed the 

inconsistencies. If they were not able to resolve the discrepancies, the third author joined the 

discussion to resolve the disagreement. For every study, we extracted and assigned values to the 

following variables:  

[V1] Title: title of the paper. 

[V2] Author: list of authors of the paper. 

[V3] Year: publication year of the paper. 

[V4] Type of Paper: whether the paper appears in a conference or journal or workshop. 

[V5] Publication Venue: name of the corresponding journal or conference. 

[V6] Development Activity: development activity investigated in the primary study (e.g., 

requirements, architecture, design, implementation, testing) 

[V7] Type of Software Artifact: software artifacts mentioned in the study (e.g. class dia-

gram, use case, etc.)  

[V8] Names of Software Engineering Practice: SE practices described in the paper (e.g. 

design patterns, traceability, model-driven development etc.) 

[V9] Names of Quality Attributes: list of the names of quality attributes investigated in 

the study, exactly as reported in the primary study. 

[V10] Programming Language: programming language used in study (e.g. Fortran, C, C++ 

etc.) 

[V11] Application Domain: application domain in which the software is used (e.g. astrono-

my, geology, chemistry, etc.) 

[V12] Empirical Research Method: the type of empirical method (e.g., case study, survey, 

experiment, action research, ethnography, field research) used to validate the impact of 

the SE practice on the Quality Attribute.  

 
3  https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx   

https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx
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[V13] Impact: The outcome of the empirical validation (positive, negative, or neutral). In cas-

es when the paper studied more than one QA and the impact on one QA was positive 

and the impact on the other QA was negative, we marked the study as a trade-off 

(Feitosa et al., 2015). In cases when a blended (either positive or negative) impact was 

identified, based on some parameter, we marked the study as a cut-off (Charalampidou 

et al., 2017). 

For all variables, we performed data extraction based on the terminology used in the primary 

study. In other words, we did not try to change the terms if we believed the authors used an in-

correct term. We did not have a pre-determined list of development activities. But rater allowed 

the reported activities to emerge from the data. The identification of development activities and 

their mapping to software artifacts is not a trivial task, due to the existence of various processes 

and Software Development Lifecycle Models (SDLC). To catalogue activities and perform the 

mapping of artifacts to activities, we used a number of sources, as there was no single source that 

contained all datapoints (artifacts or activities) that we have identified. Specifically, we used four 

process models (RUP, OpenUP, ICONIX, and Scrum) and the IEEE 830 Standard. For example, 

the “Software Architecture Document” is mapped to the architecture activity according to RUP 

(RUP calls activities as workflows), whereas the term “Use‐Case Model” is mapped to the re-

quirements activity, based on both OpenUP and ICONIX (OpenUP calls activities as domains 

while ICONIX calls them disciplines. In cases of artifacts that can be mapped to more than one 

activity depending on the SDLC model, we map the artifact to the activity that produces it. For 

example, “reported bugs/issues” can be treated as parts of testing (in RUP) or requirements 

(since they are fed as backlog items in SCRUM). We map them to testing, because initially, bugs 

are considered as an outcome of testing and later are fed back to the system as requirements.  

Table 2: Development of Empirical Methods Classification Schema 

Research Methods 
Easterbrook  

et al. (2008) 

de Magalhaes 

(2014) 

Hummel 

(2014) 

Silva et 

al. (2015) 

Stol  

et al. (2009) 

ESEM 

Conference Count 

Survey X X X X X X 6 

Case Study X X X X X X 6 

Action Research X X X X X X 6 

Experiment X X X  X X 5 

Ethnography X X X  X  4 

Field Research/Study  X   X X 3 

Grounded Theory   X  X  2 

Simulation   X   X 2 

Quantitative Analysis     X X 2 

Experience Report     X  X 2 

SLR   X   X 2 

Theoretical/Descriptive    X   1 

Meta-Analysis      X 1 

Qualitative      X 1 

Focus Group   X    1 

Conversely, for [V12], we reused a list of empirical methods (Charalampidou et al., 2020). In par-

ticular, we considered several names of empirical research methods found in literature, as shown 



 

- 10 - 

 

in Table 2. The first column of the table shows the research method names, while the next 6 col-

umns indicate the sources that consider the method as empirical research. To identify the list of 

sources, we began with the most well-known papers and books dealing on empirical software 

engineering research (e.g., (Wohlin et al., 2012) and (Runeson et al., 2012)). However, these 

sources focused on specific research methods (i.e., experiments and case studies respectively). 

Thus, we identified five papers that focused on empirical research from a more generic perspec-

tive. Additionally, since we collected the empirical research methods listed in the call for papers 

from the International Symposium on Empirical Software Engineering and Measurement 

(ESEM) is the main conference for the empirical SE community. Similarly, we examined the 

aims and scope of the journal Empirical Software Engineering, however we did not identify addi-

tional keywords. The last column of the table shows how many times each research method ap-

pears as an empirical approach in the six sources. In our classification schema, we only retained 

methods that appeared in at least two sources (green cells). Note that although the term SLR had 

two references, we did not include it in our framework because it is not a primary study.  

In reviewing the primary studies, we identified the empirical method as follows: (a) in cases 

where the study explicitly mentioned the study type, we validated that the empirical setup 

matched the term and then assigned it to the corresponding variable; and (b) in cases where the 

study did not explicitly mention the empirical method, we determined it based upon the study 

design. 

3.4 Data Analysis 

We collected variables [V1] – [V5] for documentation reasons. We use variables [V10] and [V11] 

for demographics. Table 3 provides a mapping between the research questions and the remaining 

variables, along with the type of analysis performed on the data. For RQ1 and RQ2, we provide 

the frequency table of variables [V8] and [V9], respectively. 

Table 3: Mapping of paper attributes to RQs 

Research 

Question Variables Used Analysis Method 

RQ1 [V6], [V7], [V8] Crosstabs for [V6], [V8], Crosstabs for [V7], [V8] 

RQ2.1 [V6], [V9] Crosstabs for [V6], [V9] 

RQ2.2  [V8], [V9], [V12] Crosstabs for [V8], [V9], Crosstabs for [V8], [V12] 

RQ2.3 [V8], [V9], [V12] Crosstabs for [V8], [V12], Crosstabs for [V9], [V12] 

Due to the large number of SE practices in the literature we performed pre-processing.  To con-

solidate and merge similar values of [V8] we used Open Card Sorting (Spencer 2009). In particu-

lar, we: (a) identified more generic practices (i.e., super-categories) from the SE practices in the 

primary studies—e.g., we developed a theme “Programming Technique”; (b) reviewed the themes 

to find candidates for merging—e.g., we mapped “Model-Driven Engineering” as “Programming 

Technique”; and (c) defined the names of the final themes and super-categories. In the manu-

script we report on super-categories, but in the dataset, we report the more detailed categories. 

The first author performed the process. Then the second and third authors validated the results. 
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4. Results 

In this section we present the results and some initial interpretation of our data. In particular, 

Section 4.1 presents an overview of the studies based upon frequencies of demographic 

information. Then Sections 4.2 and 4.3 provide the answers to RQ1 and RQ2, respectively. 

4.1 Overview of Included Studies 

As a general overview, we provide the frequencies of the main variables describing the primary 

studies. We note that from all presented frequency tables, we have excluded items with one 

occurrence. Additionally, datapoints, which split with slash, correspond to merged datapoints, 

whereas datapoints, which are split with comma, correspond to different ones with the same 

count. First, Figure 3 illustrates the number of studies published per year. Based on these 

numbers it appears that in ‘80s and ’90s, scientific software development research was not 

particularly focused on the use of SE practices. However, after 2000 (and in particular after 

2004), the number of studies has increased substantially. This result is not surprising given that 

scientific software has increased in size, complexity, or the need for other properties for which SE 

practices can be helpful (e.g. scalability and portability). 

 

Figure 3:  Frequency of Publication 

Table 4 lists the frequencies of studies that investigated specific development activities. Table 4 

shows that the most frequently studied development activity is implementation, followed by 

architecture and testing. Interestingly, only less than 2% of the studies investigated the 

maintenance activity, despite the fact that maintenance is an important and costly activity for 

software that evolves over time. The prevalence of implementation, testing, and architecture 

activities in scientific software development is consistent with findings from earlier studies 

(Farhoodi et al. 2013), (Odun-Avo et al. 2018), and (Heaton and Carver 2015).  

Table 4: Frequency of Development Activities  

Development Activity Count Development Activity Count 

Implementation 159 Project Management 14 

Architecture 71 Maintenance  7 

Testing 50 Deployment 6 

Design 28 Integration 4 

Requirements  23  
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The results in Table 5, which lists the software artifacts studied in the primary studies, show 

that source code is the most frequently studied software artifact (45%). This outcome is expected, 

because it follows the distribution in Table 4: i.e., artifacts that are produced by popular activities 

in Table 4 score higher in Table 5, as well (with the same ranking for the first five artifacts). 

Table 5: Frequency of Software Artifacts 

Software Artifact Count Software Artifact Count 

Source Code 162 Domain Model / Class Diagram 19 

Component / Component Diagram 61 Requirements 14 

Unit Test / Test Case / Test Plan  32 Flow Charts, Use Case Diagrams 9 

Table 6 provides a cross-tabulation of the results from Tables 4 and 5. These results show that 

source code appears in all development activities4. In addition, for most of the activities, the 

artifact that is most associated with the activity, based on SDLC models, is the most prevalent 

(e.g. the requirements artifact in the requirements activity and component diagram in the 

Architecture activity).  

Table 6: Frequency of Software Artifacts per Development Activity 

Development Activity Software Artifact Freq. 

Implementation Source-Code 155 

Architecture Component/Component Diagram 61 

Testing 

Unit Test/Test Case/Test Plan 32 

Source-Code 8 

Design 

Domain Model/Class Diagram 17 

Use Case Diagram, Flow Chart 4 

Requirements 

Requirement 14 

Domain Model/Class Diagram 2 

Maintenance Source-Code 3 

Table 7 lists the programming languages reported in the included studies. The finding that C++, 

C, and Fortran are the most common languages for scientific software development is consistent 

with prior studies ((Johanson et al., 2018), (Farhoodi et al., 2013), and (Amaral et al., 2019)). This 

result is expected because Fortran is still a dominant language for large-scale scientific 

applications that heavily rely on mathematical operations (Faulk et al. 2009). The fact that the 

C-family languages are ranked first, can be explained by the general popularity of the languages5 

and the curricula of most natural science departments, which first acquaint developers of 

scientific software with C and C++.  

 

 

 
4  To see details about architecture, design, and requirements see Appendix B.  
5  https://www.tiobe.com/tiobe-index/  

https://www.tiobe.com/tiobe-index/
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Table 7: Frequency of Programming Languages 

Programming Language Count Programming Language Count 

C++ 81  Python 22 

C 51 Matlab 14 

Fortran 44 Corba, R 4 

MPI  31 Mathematica, Cuda, Cell, OpenCL, JS, Ruby 2 

Java  24  

As reported in Table 8, researchers involved in scientific software development come from a 

variety of domains. Note that the sum of the studies in Table 8 is less than the total included 

studies because several studies did not report application domain. The most frequent domains 

reported in Table 8 are those that are in need of large-scale simulations, which often require 

large amounts of computational power and process large amounts of data. The results of the 

study are in agreement with previous work (Farhoodi et al., 2013) who suggested that physics, 

biology and mathematics are the top application domains of scientific software development. 

Table 8: Frequency of Application Domain 

Application Domain Count Application Domain Count 

 Biology 12 Airborne 6 

Physics  12 Chemistry 5 

Mathematics 11 Medical 3 

Climate / Environment 9 Communications, Green Computing 2 

Geoscience / Cosmology 8 Music, Material Science 1 

Table 9 lists the empirical methods authors used to validate the proposed approaches. An 

interesting finding is that a large percentage of studies (~33%) have no validation of the proposed 

methods. For the studies that did use an empirical validation, the distribution mirrors traditional 

SE, in which case studies and experiments are the dominant type of research (Molleri et al., 

2019). An interesting observation from the data is that prior to 2000, very few studies applied 

empirical methods (less than 20%). However, after 2000, researchers begun to more frequently 

validate their results via empirical methods (more than 50%).  

Table 9: Frequency of Empirical Methods Used for Validation Purposes 

Empirical Method Count 

Case Study 76 

No Validation6 57 

Experiment 32 

Survey 9 

Ethnography 1 

 
6  We note that from the table we excluded the studies (51%) that do not refer to a specific QA, since the empirical method variable cannot 

be defined. 
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4.2 RQ1 –Software Engineering Practices in Scientific Software Development 

In this section, we present the results of our mapping study related to SE practices in scientific 

software development. Table 10 lists the software practices most frequently reported in the 

included studies (after the consolidation process described in Section 3.6). The results are 

consistent with what one would expect given the nature of scientific software development.  

Table 10: Frequency of Software Practices (RQ1) 

Software Practice Freq. Software Practice Freq. 

Reuse or Libraries or API 41 Quality Assurance, with or without Metrics 17 

Programming Technique 33 Agile Practices 15 

Parallel Programming or Distributed Software 25 Quality Optimizations 15 

Software Development Process Improvement or Lifecycle 

Management 
24 

(Introduce or Use a Specific) Programming 

Language 
14 

Component-Based Software Development 21 
Integrated Development Environment (IDE), 

Domain Specific Languages 
13 

Development Framework (propose) 21 Code Generation 13 

Testing, Regression or Automated Testing, Testing without 

oracle 
19 

Project Management, Formal Testing 

Methods, Software Architecture, 

Requirements Specification 

11 

Design and Architecture Models 18 People Management or Communication 9 

The results suggest that the most commonly reported practices are related to implementation.  

The most common SE practice is software reuse, not in the form of source code reuse, but in the 

form of developing an artifact for reuse (Lambropoulos et al., 2018). The most common packaging 

for this type of software is a library that can solve common problems in a domain. In some cases, 

researchers discuss how Application Programming Interfaces (APIs) can ease reuse of these 

third-party libraries (Zaimi et al., 2015). Second, we observed that a study discusses a variety of 

Programming Techniques, including: “Model-Driven Engineering”, “Skeleton Programming”, 

“Task Scheduling”, or programming paradigms (e.g., “Aspect-Oriented Programming”—AOP or 

“Object-Oriented Programming”—OOP). The discussion of programming techniques (none of 

which appeared in more than 3% of included papers), suggests that the scientific software 

development community has high interest on how to achieve programming efficiency. Third, we 

observe some architecting practice, such as Parallel or Distributed Software Architectures 

and the dominant practice of higher-level reuse, i.e., Component-Based Software Engineering 

(CBSE). The focus on parallelization can be attributed to the need for execution performance of 

the very complex calculations usually performed in scientific software. The focus on CBSE 

suggests an attempt to systematize reuse in earlier phases of development. Fourth, a large 

portion of research is spent on Testing. Because scientific software applications are complex, 

developers must perform different types of testing to verify and validate the results. 

Furthermore, there were seven additional papers that discussed test-driven development and 

quality assurance, which could both be considered an aspect of testing. Finally, we need to 

underline the interest on practices related to Software Process Improvement. As scientific 

software developers learn more about SE practices, it makes sense that studies about how to best 
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assemble those practices into a lifecycle could benefit software development. For instance, we 

have observed an interest in "Collaborative Development”. The prevalence of this topic is 

consistent with the fact that the complexity of most scientific projects requires collaboration 

among multiple developers, often with diverse backgrounds. 

SE Practices per Activity: In Figure 4 we present a map between activities and SE practices.  

 

 

(a) Implementation (b) Architecture 

  

(c) Testing (d) Design 

  

(e) Requirements (f) Project Management 

Figure 4: Frequency of Software Practices per Development Activity (RQ1.1) 

From the results we can make the following observations: 

• During implementation, developers of scientific software are interested in the development 

and reuse of code through libraries, the adoption of programming techniques, the use of 

development frameworks, the collaboration between the developers, and in different 

techniques and methods for improving the quality of the software. 
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• During the architecture/design activity, developers of scientific software are interested in 

reuse through component-based software engineering, the use of models and techniques for 

improving the quality of the software, and reducing the cost of the software (e.g., SPL). 

• Researchers have studied the use of multiple types of testing in software development.  

• During the requirements activity, developers of scientific software focus on gathering 

requirements using various techniques (e.g., interviews, workshops, etc.) from stakeholders 

and building a better understanding for the requirements.  

• During the project management activity, it seems that developers of scientific software are 

focused on peopleware aspects, e.g., practices for managing the human factors to deliver 

projects consistently, efficiently, and on time and within budget.  

We note that the sum of the items in Figure 4 may be larger than reported in Table 10 because 

some studies linked an SE practice to more than one activity. An interesting result is that, while 

a previous study reported testing as one of the most understudied activities in scientific software 

development (Heaton and Carver, 2015), we found, five years later, testing is now one of the 

highest studied activities.  

Finally, we note that some SE practices are cross-cutting, in the sense that they can be applied in 

more than one development activities. For example, “Quality Assurance with or without metrics” 

can be performed during implementation quality assurance through code reviews or linters. At 

the architecture / design phase it can be performed with design reviews or inspections. Finally, at 

testing phase it can be performed through coverage metrics. However, the number of cross-

cutting SE practices is not substantial enough to perform an analysis for checking differences 

among different development activities. 

SE Practices per Application Domain:  Table 11 presents the cross-tabulation of SE practices 

and application domains. Based on the findings of Table 11, we have observed that there are no 

differences in the SE practices that are applied across different application domains. Thus, for 

the rest of this manuscript, we report on the dataset as a whole, without differentiating between 

application domains, or development activities. 

Table 11: Frequency of Software Practices per Application Domain 

Domain Software Practice Freq. Domain Software Practice Freq. 

Biology 

Reuse or Libraries or API 2 

Climate / 

Environment 

DSL 2 

People Management or 

Communication 

2 Release as OSS 2 

Agile Practices, Software 

Architecture, GUI Design, 

Programming Language, 

Development of Compilers, 

Requirements Specification, 

Parallel Programming or 

Distributed Software, 

Requirements Elicitation, 

Design and Architecture 

Modelling 

1 IDE, People Management or 

Communication, Software Development 

Process Improvement or Lifecycle 

Management, requirements elicitation, 

Reuse or Libraries or API, Separation of 

Concerns  

1 
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Domain Software Practice Freq. Domain Software Practice Freq. 

Mathematics 

Programming Technique 3 

Chemistry 

Reuse or Libraries or API 2 

Code Generation 3 Agile Practices, Programming Language, 

Requirements Elicitation 

1 

Separation of Concerns, 

Requirements Management, 

Documentation, Software 

Development Process 

Improvement or Lifecycle 

Management, People 

Management or 

Communication, Development 

Framework (Propose), IDE 

1 

Airborne 

Quality Assurance, with or without Metrics, 

Release as OSS, Programming Language, 

Design and Architecture Modelling, Design 

and Architecture Models, Requirements 

Specification, Development Framework 

(Usage), Development Framework 

(Propose), Cost / Effort Estimation 

1 

Physics 

Development Framework 

(Propose) 

3 

Geoscience / 

Cosmology 

Reuse or Libraries or API 2 

Project Management 2 Quality Optimizations 2 

People Management or 

Communication 

2 Requirements Elicitation 2 

Reuse or Libraries or API, 

Quality Optimizations, Risk 

Management, Agile Practices, 

Component-Based Software 

Development, Requirements 

Elicitation, Parallel 

Programming or Distributed 

Software, Design and 

Architecture Modelling 

1 Collaborative Software 

Development/Version 

Control/Configuration Management, 

Programming Technique, Requirements 

Specification, Release as OSS, Quality 

Assurance, with or without Metrics 

1 

4.3 RQ2 –Quality Attributes relevant to Scientific Software Development 

In response to RQ2, Table 12 lists the frequencies of quality attributes targeted by the primary 

studies. Performance is the most studied quality attribute. This result makes sense because 

developers of scientific software need to obtain their data and/or analysis results as quickly as 

possible (García et al., 2013). The second ranked quality attribute is Productivity, which refers 

to development efficiency: explaining the focus on reuse (libraries and CBSE)—interestingly, 

reusability is ranked low. This indicates that the goal of scientific software developers is not on 

systematic reuse, but on reducing development time. The following attribute is 

Maintainability, which is a rationale outcome in the sense that such applications change 

frequently, and therefore it is desirable to reduce the effort for updating the software. Finally, an 

interesting observation is that portability is the fourth most frequently studied quality attribute, 

since developers of scientific software are interested in developing applications that are portable 

to parallel development environments (Watson and De Bardeleben, 2006).  

 

 



 

- 18 - 

 

Table 12: Frequency of Targeted Quality Attributes  

Quality Attribute Freq. Quality Attribute Freq. 

Performance 67 Robustness (also referenced as Fault Tolerance) 12 

Productivity 33 
Complexity (also referenced as 

Understandability) 
10 

Maintainability (also referenced as Extensibility or 

Flexibility or Changeability) 
28 Interoperability, Usability 7 

Portability 26 Energy and Memory Efficiency 6 

Scalability 24 Security or Safety 5 

Correctness (also referenced as Accuracy or 

Reliability) 
18 

Modularity, Testability (also referenced as 

Verifiability) 
3 

Reusability 13   

In response to RQ2.1, Figure 5 presents the QAs of interest for each development activity.  

  

(a) Implementation (b) Architecture 

  

(c) Testing (d) Design 

  

(e) Project Management (f) Deployment 

Figure 5: Frequency of Quality Attributes per Development Activity (RQ1.1)  
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Based on this information, we can note that Maintainability is of interest in all development 

activities except for deployment. As explained before, scientific software developers are interested 

in efficiently maintaining their code because of the need to make minor adjustments across 

versions and perform corrective maintenance. These needs have made maintainability important 

across multiple development activities, including early activities like project management and 

architecture, when the impact of considering maintenance can be far-reaching. 

In response to RQ2.2, Table 13 lists the quality attributes associated with each of the top-20 most 

common software practices. In a parenthesis (when applicable) we denote the number of studies 

that report a negative or neutral impact of the SE practice on the quality attribute. We note that 

as negative we also designate cases in which a study reveals that the effect is not uniform, i.e., 

there are cases when the SE practice has a positive effect and others that it is negative. Based on 

the results, we can claim that researchers publish positive results more frequently than negative 

results (less than 2% of the studies report negative results). This finding is expected due to the 

phenomenon termed publication bias (Ampatzoglou et al., 2019). The tendency to publish only 

positive results has also been identified in traditional software engineering research. Thus, the 

number of venues that explicitly state (in their call for papers) that they accept negative results 

is increasing.  

Additionally, in traditional software engineering, there is no design decision or application of a 

practice that does not come without a cost (Ampatzoglou et al., 2021). Thus, any decision-maker 

needs to consider various quality attributes and explore possible quality trade-offs between them 

(i.e., one QA is improved, whereas another deteriorates) (Bass et al., 2003). By seeking for 

explicit trade-off analysis studies in our dataset, we have identified only one (Naughton et al., 

2018) study that identifies trade-offs and only two ((Abdullin et al., 2017) and (Sapuan et al., 

2018)) that identify cut-off points (i.e., the same practice can have both positive and negative 

impact, based on some parameters). 

Table 13: Frequency of Quality Attributes per Software Practice 

Software Practice  Quality Attribute Freq. 

Reuse or Libraries or 

API 

Performance 9 

Portability  3 

Scalability 3 

Robustness (also referenced as Fault Tolerance), Productivity, Reusability, Maintainability 

(also referenced as Extensibility or Flexibility or Changeability) 

2 

Programming Technique Performance 7 

Maintainability (also referenced as Extensibility or Flexibility or Changeability), 

Productivity 

3 

Scalability 3 

Reusability, Complexity (also referenced as Understandability), Correctness (also 

referenced as Accuracy or Reliability) 

2 

Parallel Programming or 

Distributed Software 

Performance 8 (1) 

Portability 5 

Scalability 4 

Correctness (also referenced as Accuracy or Reliability), Maintainability (also referenced 3 
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Software Practice  Quality Attribute Freq. 

as Extensibility or Flexibility or Changeability) 

Productivity 2 

Software Development 

Process Improvement or 

Lifecycle Management 

Performance 5 

Productivity, Maintainability (also referenced as Extensibility or Flexibility or 

Changeability), Portability 

3 

Usability 2 

Component-Based 

Software Development 

Performance 8 

Portability  3 (1) 

Maintainability (also referenced as Extensibility or Flexibility or Changeability), 

Reusability 

3 

Modularity, Scalability 2 

Testing, Regression or 

Automated Testing, 

Testing without oracle 

Performance, Correctness (also referenced as Accuracy or Reliability), Portability, 

Scalability, Productivity 

2 

Development Framework 

(propose) 

Portability, Performance 4 

Productivity, Scalability 3 

Maintainability (also referenced as Extensibility or Flexibility or Changeability), Energy or 

Memory Efficiency, Correctness (also referenced as Accuracy or Reliability), 

Interoperability, Robustness (also referenced as Fault Tolerance) 

2 

Quality Assurance, with 

or without Metrics 

Productivity, Complexity (also referenced as Understandability) 2 

Design and Architecture 

Models 

Performance 3 

Reusability, Maintainability (also referenced as Extensibility or Flexibility or 

Changeability) 

2 

Programming Language Performance 6 (2) 

Productivity 4 

Quality Optimizations Maintainability (also referenced as Extensibility or Flexibility or Changeability) 5 

Performance 4 

Productivity 2 

Agile Practices Maintainability (also referenced as Extensibility or Flexibility or Changeability), 

Performance, Security, Safety 
2 

Productivity 2 (1) 

Domain Specific 

Language 

Reusability 3 

Productivity 2 

Code Generation Performance 4 (1) 

Productivity 2 

Project Management Productivity 3 

Formal Testing Methods Robustness or Fault Tolerance 2 

Performance 2 (1) 

Software Architecture Performance 4 

People Management or 

Communication 

Productivity, Robustness (also referenced as Fault Tolerance) 2 
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In response to RQ2.3, we present two views of empirical validation methods. In Figure 6, we 

present a bubble chart representing the frequency with which each QA is evaluated by every 

empirical method. In Figure 7, we visualize the frequency with which the impact of each SE 

practice has been validated.  

Figure 6 provides an overview of the level of validation that exists for each pair. The results show 

that: (a) researchers have studied performance (18%), scalability (28%), correctness (29%), and 

complexity (10%) most rigorously, based on the lowest percentage studies without any validation 

(excluding the quality attributes with only one study); and (b) reusability (54%), usability (50%), 

energy consumption (50%), and robustness (42%) need more empirical evidence because they 

have the lowest percentage of validation studies. 

 

 

Figure 6: Frequency of Empirical Methods for the Validation of QAs 

Based on Figure 7, we can draw some observations. By focusing on the extreme cases: two out of 

the three studies that address “People Management”, 42% of studies that focus on “Software 

Lifecycle Improvement” (SDLC) and 40% of studies that study “Software Architectures” do not 

provide any empirical validation. One possible explanation for this observation is that earlier 

stage activities (in which not many artifacts have been developed) may be more difficult to 

evaluate; due to the need of more advance qualitative approaches. On the other hand, 94% of 

studies that focus on “Parallelization or Distribution” of code have rigorous validation. This 

result can be explained by the fact that in most of the cases, the performance indicator for this 

practice is the time required to execute the software, which is relatively easy to obtain.  
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Figure 7: Frequency of Empirical Methods for the Validation of SE Practices 

5. Discussion 

5.1 Overview and Interpretation of Results  

The results of our mapping study are consistent with prior studies. The software practices 

identified as the most studied match prior results as follows: Odun-Avo et al (2018) also 

highlighted the importance of process improvement, multiple studies noted the importance of 

testing (Heaton and Carver, 2015), (Johanson et al., 2018), and (Farhoodi et al., 2013), as well as 

multiple studies noted the importance of focusing on application development and programming 

languages (Odun-Avo, et al., 2018), (Assiroj, et al., 2018), and (Farhoodi, et al., 2013). By having 

a closer look at the more frequently used SE practices, one can observe that their majority deals 

with implementation and testing tasks:  

• Ease of Development. Papers report multiple practices that aim to ease and speedup 

software development including reusable code identification algorithms, use of 3rd party 

libraries, software development frameworks, and developing applications that can evolve. This 

emphasis can be explained by the fact that often scientific applications share common 

functionalities, therefore, reuse is an appealing way of improving productivity. A similar 

productivity increase can be achieved through the use of tools, frameworks and libraries. 

• Testing. Papers reported two practices related to testing: test-driven development and 

specific types of testing (e.g., regression and automated testing). This outcome suggests that 

scientific software developers see a need to produce correct results, especially in cases of 

simulations related to critical software systems. For example, when implementing 
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optimization algorithms (e.g., simulation of CO2 emission (Damartzis et al., 2018)), scientific 

software developers prioritize finding a solution that is a global optimum rather than a local 

one over the time required to produce that solution. To ensure this goal, the developers need 

exhaustive validation.  

• Coding. In addition to practices that aim at making development easier, more efficient, and 

more productive, another research direction is the study of programming languages, 

compilers, code generation, and code management strategies. All the identified practices 

suggest that scientific software developers view coding tasks as very important, yet still 

struggle with them. Therefore, researches invest substantial effort in providing scientific 

software developers with tools that support coding. 

• Project Management. The scientific software domain seems to be in need of project 

management practices. To this end, software development processes are the 2nd most studied 

SE practice. Such measures that do not focus on a specific activity (e.g., the application of 

standardized development practice, rather than an ad-hoc one) is an interesting topic for 

scientific software researchers, because they expect these practices to yield various benefits 

(e.g., higher quality software and increased productivity). 

• Quality Assurance. Finally, the literature shows that scientific software researchers are 

interested in software quality assurance procedures that focus on non-functional 

requirements, in addition to testing (described above), which focus on functional 

requirements.  

By further focusing on the most-studied in the scientific software development literature, we see 

that performance is the top-priority for scientific software developers. The next quality attributes 

of interest appear to be maintainability and development productivity. This finding suggests that 

developers of scientific software are highly interested in decreasing the effort they spend in 

software development. In particular, they need solutions that make software construction more 

productive, but also decrease their maintenance effort, since they appear to deem it as non-

negligible. Finally, the next quality attributes are those that are primarily improved by the used 

practices (reusability, correctness, and reliability), the size of the software (probably as a proxy of 

effort as well), and portability. Portability is a sub-characteristic of maintainability that seems 

important in scientific software development, in the sense that it is related to performance. For 

instance, to decrease execution time in many cases solution architects move certain calculations 

to GPU (from CPU). To ease such a tailoring the original code must be portable to other types of 

processors, hardware, operation systems, etc. The results on the importance of quality attributes 

comply with those of Johanson et al. (2018), who suggested that the main quality drivers of 

scientific software applications are performance, maintainability, portability, and correctness. 

5.2 Implications to Researchers and Practitioners  

The main benefit of this study for practitioners is guidance in selecting the most fitting SE 

practices for improving quality attributes for each development activity. To illustrate how a 

practitioner can use the results, we first need to develop a synthesized view of the results. 

• Selection of development activity. First, the practitioner needs to specify the software 

development activity of interest. Based on this selection he/she can identify the most studied 

SE practices for this activity from the answer to RQ1.1 in Figure 4.  



 

- 24 - 

 

• Selection of quality attributes. Then, to limit the SE practices of interest, the developer needs 

to identify which practices are related to the quality attribute of interest, for each 

development activity based on the answers to RQ2.1 and RQ2.2.  

Figure 8 presents a portion of a matrix we developed to illustrate the results. It includes 

development activities, SE practices, and quality attributes (as dimensions) and inside each cell 

the effect of the practice on the quality attribute. Due to the size of the matrix, we show only an 

example here. The full matrix is available in Appendix C. To reduce the complexity of the 

representation, we mapped development activity and SE practices in the matrix rows via nesting. 

The first two columns present the most studied SE practices for each development activity. Then, 

in the remaining columns, we highlight which SE practices are related to each quality attribute. 

Developers can use this figure to choose which SE practices are most relevant when developing 

scientific software.  
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Reuse or Libraries or API X  X X X  X X X X      

Programming Technique X X X X X X X  X       

Development Framework 

(propose) 

X X X X X   X  X X X    

Parallel or Distributed Software X X X X X X          

Programming Language  X X   X    X     X  

Quality Assurance X X   X X X  X      X 

Code Generation X X              
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CBSE X  X X X  X       X  

Design and Architecture Models X  X   X X X  X X X X   

Software Architecture X   X   X   X      

Parallel or Distributed Software X  X   X          

Domain Specific Language                

Programming Technique     X X X         

Figure 8: Illustrative Example 

As an example, suppose a practitioner wants to select the most studied SE practices for 

improving maintainability and portability during implementation / architecture. Based on 

Figure 8, there are four SE practices (marked with a blue rectangle) that can be used for 

improving both quality attributes in the aforementioned activities, namely: Component-Based 

Software Development, Reuse or Libraries or APIs, Programming Techniques, and Development of 

Parallel or Distributed Systems. However, the practitioner can also use other SE practices for 

improving portability or maintainability in isolation (marked with red rectangle). For 

example, he/she can develop software architecture models to address portability. Based on the 

above observation and through a mental qualitative synthesis process, the software engineer 
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understands that the development should be based on reuse: i.e., building component-based 

architecture, which should be specified through relevant models, and while proceeding at the 

implementation level he/she should first attempt to reuse code artifacts, such as COTS, third-

party libraries etc. Additionally, parallel or distributed architectures should also be considered. 

From a research perspective, it is clear that any research effort must take into account 

performance. Even when other quality attributes are of primary interest, the impact of the 

proposed approach or tool on performance has to be considered. Additionally, we advise 

researchers not to compromise performance in benefit of other quality attributes. For example, a 

study focused on the potential benefits of refactoring must also consider the impact on 

performance. If both effects are present, the researcher should conduct a cost-benefit analysis. 

The previous statement extends to other quality attributes in the sense that research works, 

should not only consider one QA, but multiple ones, when proposing an approach or the 

application of an SE practice. Therefore, we highly advise researchers to seek for trade-off and 

cut-off analysis in their studies, in the sense that any SE is seldomly comes without side-

effects, or has a uniform impact across different cases. 

Furthermore, one of the most prominent (an unexpected) results of this SMS is the community’s 

focus on reuse. In contrast to traditional software engineering, where reuse is mostly ad-hoc, or 

highly systematic (e.g., SPLs) (Lambropoulos et al., 2018), in scientific software development 

reuse relies mostly on library reuse. In particular, it seems that there are many research 

endeavors to develop for reuse, in many cases with documented impact on qualities of interest 

(e.g., performance). However, it is not evident that this rich pool of software is visible. Thus, we 

believe that the development of a repository of reusable artifacts (such as Maven repository) 

would highly benefit the community. Finally, we believe that an endeavor to catalogue 

programming techniques, as well as their benefits and drawbacks would be helpful to the 

community, in the sense that the current state-of-research suggests an experimentation with a 

wide range of techniques, with limited reoccurrence. This finding suggests that almost all 

programming techniques are far from be considered as a state-of-practice in scientific software 

development. 

6. Threats to Validity 

We organize the threats to validity around the guidelines provided by Ampatzoglou et al. (2019). 

In Section 6.1, we report threats to validity related to study selection. In Section 6.2, we report 

threats related to data validity. Finally, in Section 6.3, we report threats related to research va-

lidity. 

6.1 Study Selection Validity 

Study selection validity concerns the early phases of the research, i.e., the search process and the 

filtering of studies. To guarantee that our search process adequately identified all relevant stud-

ies, we used a well-defined protocol to select the primary studies, based on strict guidelines 

(Kitchenham and Charters, 2007). The identification process consisted of an automated search of 

the most-known DLs. We used a broad search string that only included keywords and synonyms 

related to two domains, SE and scientific software development. However, it is possible that the 

search process returned some candidate primary studies that are related to HPC, but are not to 

scientific software. However, based on the literature more than 70% of HPC apps are non-
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computer science apps, but scientific software. By considering that also some of the computer 

science applications can also be used for scientific purposes (e.g., data science), the percentage of 

false-positives becomes even lower. We believe that this threat is minor in the sense that the vast 

majority of applications that are deployed in HPC are science-related (Schmidberger and Brügge, 

2012). Additionally, as a means for verification, we have contrasted our dataset to the primary 

studies of the broader previous secondary study in the literature. In particular, we manually 

checked and verified that all papers included in the work of Farhoodi et al. (2013) and published 

in the four DLs of interest are included in our pool of primary studies. 

Next, during the inclusion / exclusion phase, it is always possible to accidentally exclude relevant 

studies. To mitigate this threat, we first extensively discussed the criteria to ensure clarity and a 

common understanding. Then, we used two authors to conduct this process. These two discussed 

any potential conflicts. After this process, a third author randomly screening a subset (10%) of 

the studies chosen for inclusion to verify the choice, without identifying any problems. Further-

more, from our searching space we have excluded grey literature, since the goal of the study fo-

cuses on the use of empirical evidence, which are almost never published in grey literature. 

We were careful to remove any duplicated results, keeping the most extensive version in our set. 

Also, our study is not suffering from missing non-English papers and the papers published in a 

limited number of journals and conferences, since our search process was aiming at a large num-

ber of publication venues (including DLs as a whole) all publishing papers only in English. Final-

ly, we were able to access all publications because our institutions provide access to DLs. 

6.2 Data Validity 

The primary data validity threat is related to data extraction bias. The first author extracted and 

manually recorded all relevant data. Due to the potential for subjectivity in this process, two 

other authors further inspected and refined the collected data, re-validating them. After this pro-

cedure, the results were discussed among the first three authors and they resolved any conflicts.  

The next potential threat to data validity is publication bias. There are two types of publication 

bias: (a) bias caused by the fact that primary studies are published by a closed and small circle of 

researchers; and (b) caused by the tendency of publishing positive rather than negative results 

(Ampatzoglou et al., 2019). In this study, the first type of publication bias is not present because 

our broad search identified studies from a large group of researchers. Regarding the second type 

of publication bias, due to the nature of this study we acknowledge the existence of the threat.  

Therefore, it is likely that our sample of papers overemphasizes positive results simply because 

many negative results are not published in the peer-reviewed literature. Given that, readers 

should take care to examine the results in the papers in case they are interested in a particular 

SE practice to be applied. 

In addition, there are other potential threats to data validity that could affect our study. First, 

small sample size is not of concern because we analyzed close to 3,000 studies. Second, lack of 

relationships is not a threat because our study was not aiming to identify any relationships 

among data, but only to classify. Third, low quality of primary studies is a potential threat be-

cause, based on the SMS guidelines (Petersen et al., 2008), we did not perform any type of quality 

assessment because we did not have an explicit research question related to quality. Therefore, 

because we counted all studies the same in the analysis, regardless of their quality, it is possible 

that our counts reflect a biased overall picture. Fourth, selection of variables to be extracted is not 
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a threat because the straightforward research questions of our study did not raise any conflicts in 

the discussions among authors on which variables should be extracted. Fifth, we did not identify 

issues with the use of statistical analysis, in the sense that the nature of our research questions 

did not require hypothesis testing, but only basic statistical analysis (descriptive statistics). 

Sixth, to mitigate the researchers’ bias in data interpretation and analysis, the authors discussed 

the data clustering for the SE practices and the qualities of interest. Finally, we note that the 

findings in this mapping study only summarize the state-of-research in this field and not neces-

sarily the state-of-practice. In other words, the study cannot guarantee that the reported results 

can be generalized as a reflection of industrial practices. 

6.3 Research Validity 

For the first threat in this category, research method bias, the authors are experienced with con-

ducting secondary studies having conducted and reviewed a large number of such studies. There-

fore, this threat is minimal. A possible threat to validity of this the selection of the wrong type of 

research method to answer the research questions. Thus, one concern might be that RQ2.2 and 

RQ2.3 have aspects of SLR-questions, because they demand some synthesis. This issue does not 

threaten the validity of this study, in the sense that in the literature there are various cases (e.g., 

(Galster et al., 2014) and (Kitchenham et al., 2010)) of hybrid secondary studies—i.e., uses one 

research method and answers (usually) one RQ, based on the other design. Nevertheless, we note 

that in our study, the reporting of empirical methods is not done in full detail, i.e., we are only 

recognizing the type of the empirical method, and not get into details of data collection / analysis 

methods, samples, etc. which would indeed require more synthesis. For the second threat in this 

category, repeatability, by following a detailed review process we enable the reliability and repli-

cation of our study. This manuscript describes the review procedures in detail. Multiple authors 

were involved in all phases of the process to reduce potential bias. Finally, we have made all ex-

tracted data publicly available7 to enable the comparison and validation of the results.  

Additionally, through discussion among the authors we have defined two main research ques-

tions that accurately and holistically map to the study goal. This is clearly depicted by the map-

ping of each research question to the research sub-goals/objectives. Therefore, there was no bias 

in the selection of specific research questions. Furthermore, in the literature we have been able to 

identify a substantial amount of related works that can be used for comparison to our results. In 

particular, for this reason we used related studies from the SE and scientific software develop-

ment literature. Additionally, the selection of the research method is adequate for the goal of this 

study and no deviations from the guidelines have been made. 

7.  Summary 

Scientists are increasingly turning to the development of software to help them reach their re-

search goals which require the use of large-scale simulations, models, and big data analysis. The 

size and complexity of these software applications, the need to reuse code for improving produc-

tivity, and the need for continuous maintenance have required scientific software developers to 

become more familiar with SE practices and use them in their projects. This mapping study pro-

vided some insight into how and why scientific software developers use SE practices. To obtain as 

many relevant studies as possible, we search four well-known digital libraries using a well-

 
7  https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx     

https://se.uom.gr/wp-content/uploads/SLR_HPC_SE.xlsx
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constructed search string resulting in approximately 1000 articles initially identified. Using a 

rigorous filtering process, we reduced that total to 359 primary studies, which we analyzed. 

The results showed scientific software development teams are mostly interested in software im-

plementation and testing activities. However, we also found a number of practices that aid in 

achieving a better architecture and implementation; having a special focus on reuse, either 

through libraries or components. Also, apart from the understandable focus on performance, 

maintainability and development productivity stand out as important quality drivers for scien-

tific software developers. To make the results of this study more actionable, we provide an illus-

tration of their usage in a scenario from the perspective of both researchers and practitioners. 

Finally, we provided researchers of both the SE and scientific software development domains 

with multiple implications and interesting future work opportunities.  
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