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ABSTRACT

There are numerous commercial tools and research prototypes that offer support for measuring
technical debt. However, different tools adopt different terms, metrics, and ways to identify and
measure technical debt. These tools offer diverse features, and their popularity / community
support varies significantly. Therefore, (a) practitioners face difficulties when trying to select a tool
matching their needs; and (b) the concept of technical debt and its role in software development
is blurred. We attempt to clarify the situation by comparing the features and popularity of technical
debt measurement tools, and analyzing the existing empirical evidence on their validity. Our
findings can help practitioners to find the most suitable tool for their purposes, and researchers
by highlighting the current tool shortcomings.

Introduction

Technical Debt (TD) has grown to be one of the most important metaphors
[ 1 ] to express development shortcuts, taken for expediency, but
causing the degradation of internal software quality. The metaphor has also served well the
discourse between engineers and management on how to invest resources on maintenance
alongside features and bugs.

Due to its importance, several tools have been released that offer to measure TD through static
code analysis (the most common way of addressing TD). These are both commercial tools and
research prototypes. However, each tool uses different metrics, indices, quality models, static
analysis rules, technical debt remediation models, and definitions of the various technical debt
concepts. This leaves developers baffled as to how to select the most fitting TD tool for the task
at hand. Moreover, many of the tools that proclaim themselves as technical debt measurement
tools, do not even calculate a TD index (TDI) in terms of money or effort, but simply report the
detection of smells or other code issues. This poses the risk that anything wrong in the code will



be considered as TD; thus the technical debt metaphor will be diluted and lose its value as a
means that translates internal quality issues into monetary values (currency or effort) and risks.
Our aim is to provide an overview of the current landscape of TD measurement tools through a
set of objective criteria, related to the offered features and their popularity. Practitioners can use
this overview to assess the tools, understand their strengths and weaknesses, and ultimately
select the most suitable one for their needs. The scope of the comparison is limited to three
specific types of TD, namely: code, design, and architecture as they are the most studied types
of technical debt [ ]. We considered 26 tools and filtered them to select 9 for analysis,
based on whether they actually measure TD either directly or through a proxy. Subsequently, we
used multiple sources to collect information on their features and popularity, and devised a set of
criteria to evaluate each tool. To verify our findings in terms of correctness and completeness, we
asked the corresponding tool vendors to review them, and provide us with feedback.
Acknowledging that users would be reluctant to rely on tools that provide inaccurate results, we
further looked into the way these tools were validated in literature and present the amount of
collected empirical evidence. Finally, to better guide practitioners, we offer our own interpretation
of the findings, by discussing how to select a tool, which tools are best for what, which are popular
in different communities, as well as what is still missing.

Background

Technical debt is a "design or implementation construct that is expedient in the short term, but
sets up a technical context that can make a future change more costly or impossible” and is
‘limited to internal system qualities, primarily maintainability and evolvability” | 1
Technical debt expresses the development of an artifact: (a) in a ‘quick and dirty’ way for the sake
of speeding up development; or (b) optimally, but later rendered sub-optimally because of change
in context (e.g., third-party libraries getting outdated). In any case, this debt may need repayment,
e.g., through refactoring, as maintainability and evolvability become harder. Many types of
technical debt have been studied by researchers and academics, such as Code, Architectural,
Testing and Requirements Debt | ].

The technical debt metaphor relies on two main concepts, borrowed from economics: principal
and interest. Principal refers to the cost of refactoring software artifacts, so that they reach the

desired level of maintainability and evolvability [ ]. Interest is the extra effort that
developers spend when making changes because of the existence of technical debt, e.g. because
of code smells or unnecessarily complex code [ ].

As related work, Arcelli et al., investigated in detail how TD indices are calculated by five tools
[ ], in terms of both their input (e.g., code violations) and output (e.g., remediation cost).
Results showed that not all tools use architectural information, while the estimation of remediation
costs relied predominantly on static analysis. However, to the best of our knowledge, there is no
comprehensive comparison of available TD tools, especially taking into account the overall set of
offered features and their popularity among practitioners and researchers.



Setting the Stage

To systematically perform the tool comparison, we have set up an empirical study, comprising
five steps. For the first step (identify relevant tools), we performed an academic literature search
and a web search:

e Literature search: We relied on the IEEE Xplore and ACM Digital Library search engines.
Our search string was applied on the title and abstract and had the following form:
“technical debt” AND (measurement OR assessment OR estimation) AND (tool OR
platform). We gathered the studies that resulted from the aforementioned search and
filtered out those that neither introduced nor mentioned any TD tool. We then checked the
papers that cite them (forward snowballing).

e Web search: We used major search engines such as Google, Bing, and Yahoo, using the
same query, as in the literature search. The results led us either to the landing pages of
the websites of companies that own the tools, or to articles introducing tools for assessing
TD.

We note that although many synonyms (or near synonyms) of technical debt could be used in the
search string, we opt not to broaden it using terms similar to Technical Debt symptoms or
remediation actions, such as refactorings, code smells, anti-patterns, etc. This could lead to
multiple, narrow-scoped tools that would be later on excluded because they do not aim at
estimating the effort required to eliminate the identified inefficiencies.

In order to ensure we did not miss relevant tools, we manually cross-checked with: (a) the tool
demo sessions of the 15t and 2" International Conference on Technical Debt, in 2018 and 2019
respectively; (b) all tools mentioned in a tertiary study on technical debt management [ ].
No additional tools were identified through cross-check. The complete list of tools from this step
is available in the replication package.

For the second step (tool filtering), we checked the aforementioned list of tools against the
following criteria:

e Inclusion criterion: The tool calculates an aggregate measure of the system’s technical
debt principal and/or interest either directly (in terms of money or effort) or as a proxy,
based on static code analysis.

e Exclusion criterion: The tool is not accessible, e.g. not being able to download or install
it, lack of documentation for installation/deployment, inactive website.

The inclusion criterion ensures that the selected tools match the scope of the paper: they actually
estimate the key concepts of the TD metaphor (interest and principal). Tools that identify code
smells, without any assessment of the time that is required to resolve them, fail this criterion. By
proxy of TD principal and interest, we refer to any measure that does not directly represent TD
principal or interest but is correlated to them. For example, DV8 does not provide a complete TD
interest index, but an accompanying study [ ] explains how the extra time spent on
fixing bugs due to the presence of TD was used as a proxy of TD interest. After applying the
inclusion/exclusion criteria, nine tools were retained for data extraction (see Table 1).

For the third step (tool assessment criteria), we performed a focus group discussion (among
the authors of this paper) to derive a set of criteria that can be used by practitioners to assess the
strengths and weaknesses of each solution. The selected criteria can be classified into three main
groups: features, popularity, and validation. The offered features were collected by inspecting
the documentation and websites of the tools, and by trying them out (whenever a demo license




was available). The major criteria are shown in Table 1 (see [ ] for the full set of 18
criteria). The authors worked in groups of either 2 or 3 researchers to collect data, whereas we
discussed in plenary how to classify calculated measures into principal and interest. The second
group of criteria refers to the industrial and research popularity of tools. We evaluated popularity
in terms of how much the tools are mentioned in public online sources. The following sources
were investigated:

e Online Media: We investigated a number of channels used by practitioners to share
information online (posts, tags, users, groups or websites pertaining to the tools). In
particular, we searched the tools’ own communities, LinkedIn and Google groups, as well
as the number of appearances in commonly used communities and discussion forums
such as StackOverflow, Reddit, DZone, and Medium.

e Scientific Literature: We used Google Scholar and Scopus to investigate the popularity of
each tool by applying the following search string on all fields including title, abstract, body,
and references:

(“tool_Name” or “tool_url’) AND “Technical Debt”.
In the case of tools with different names (e.g., CAST), we considered all variants in the
“‘OR” term, e.g. (“CAST software” OR “Castsoftware” OR “CAST AIP”). Two authors
independently evaluated the relevance of each publication reported by Google Scholar
and Scopus, so as to exclude non-English papers, false positives or papers from different
domains. In case of disagreement, a third author provided his/her opinion.
For the fourth step (verifying our analysis), we contacted the tool vendors by email, and asked
them to assess the correctness of our analysis and update any data point that was incorrectly
recorded. During this process all tool vendors responded, and only minor corrections were
suggested.
For the fifth step, (empirical evidence on the accuracy of each tool), we have performed a
multivocal literature review [ ], including peer-reviewed (Scopus and Google Scholar)
and grey literature. In both cases we applied the following search string: “tool_name AND
(evaluation OR empirical OR validation OR accuracy OR assess*)”. For the keyword “tool_name”,
we adopted the same combinations of keywords used for the popularity search. We also asked
the tool vendors to send us any related documents. The origin of each paper (peer-reviewed, grey
literature, or from a vendor) is referenced in the replication package.

Findings on Features

Table 1 reports our key findings regarding the tools selected for comparison (tools are sorted in
chronological order). The table comprises two parts: (a) the characteristics of the different TD
indices, and (b) additional tool features (such as export, integration with other tools, and
customizability).

For every index we look into Interest, Principal, and measurement method (which factors are used
to compute the index value). Interestingly, not all the tools consider interest, but all (except
CodeMRI) compute principal. The latter is usually identified with a heuristic based in some cases
on software metrics and in other cases on the effort needed to fix the identified software violations,
expressed in either effort (in minutes) or in monetary form.

In general, every selected tool is able to inspect both sources and binaries of a given software
project and to analyze at different granularity levels: project, package, class, method and line of



code. The analysis usually results in the identification of violations and anomalies, which are
highlighted in the code through the tools own user interface, or in the IDEs that support plugins
for six out of nine of the analyzed tools.

All tools have different degrees of customization. All the tools in the study allow developers to
select the rules for the analysis. In addition, five tools (CAST, NDepend, SonarGraph, CodeMRl,
and SonarQube) allow users to add rules (e.g. define a new metric) and customize their
thresholds, one tool (Symphonylnsight) allows only customizing the thresholds, and two tools
(Code Inspector and DV8) do not allow adding rules or customizing thresholds. Finally, all the
tools, except NDepend and CodeMRI allow creating new plugins.

Furthermore, all tools address additional quality attributes. We report the names of the qualities
as reported by the vendors in Table 1, and also provide a mapping to the software quality
standards that the qualities refer to in the replication package [ ].

Table 1: Characteristics of TD indices and other features in the analyzed tools

CHARACTERISTICS OF TECHNICAL DEBT INDICES
Name (Release | Type Principal Interest Index
Year)
CAST Architectural, Time to remove issues Yes Violations * rule criticality * effort
(1998) Design, Code
Sonargraph Architectural, Computation of several No structural debt index * minutes to fix
(2006) Design metrics
NDepend Architectural, Estimated man-time to Yes Violations * fix effort
(2007) Design, Code fix issues
SonarQube Code Time to remove issues No Cost to develop 1 LOCe * Number of lines of
(2007) code.
Squore (2010) Design, Code Time to remove issues No No
CodeMRI (2013) | Design Not estimated Yes Interest - Not mentioned
Code Inspector | Architectural, Effort needed to avoid No A function of violations, duplications,
(2019) Design, Code high TD readability/maintainability issues.
DV8 (2019) Architectural Number of affected files Yes Penalties: additional bugs and/or changes in
and lines of code lines of code.
Symfonylnsight | Code Time to remove issues No Number of issues * time needed to remove the
(2019) issue




ADDITIONAL FEATURES
Name Platform Integration Output Other Quality Attributes Execute
CAST Windows Jenkins, Maven API, GUI | Security, Efficiency, Changeability, async
Robustness, Transferability,
Sonargraph Independent Eclipse, Gradle, IntelliJ GUI Changeability real-time
Jenkins, Maven, VS
NDepend Windows Azure, Jenkins, VS GUI Changeability, Robustness, async
Testability
SonarQube Independent Eclipse, IntelliJ, VS ALL®) Security, Reliability real-time
Squore Independent No API, GUI | Changeability, Reliability, Efficiency, async
Portability, Security, Testability
CodeMRI Windows, Linux | No CLI Security, Efficiency, Robustness, async
Portability, Testability
Code Inspector Independent Github, Gitlab, Bitbucket API Security, Changeability, Portability, async
Jenkins, Travis Testability, Maintainability
DVv8 Windows, MAC Depends, Jenkins GUI Maintainability,Evolvability, Security | real-time
Symfonylnsight | Independent No GUI, ClI | Security, Maintainability, Reliability async
() ALL refers to API, GUI, Command Line Interface(CLI), and Continuous Integration (CI)

Findings on Popularity

In Figure 1 (in the chord diagram) we report the results related to the popularity of the tools in
Stack Overflow, LinkedIn and Google groups as well as other popular sites such as Reddit, Dzone
and Medium. Search strings and raw data are available online in the replication package
[ ]. Please note that the results are normalized against the number of years since the
introduction of each tool.

SonarQube is by far the most popular tool and it is visible in all the channels. In most cases,
NDepend comes second, being present in all the channels as well, but with lower magnitude than
SonarQube. SonarGraph covers almost all channels, although with fewer hits than NDepend and
SonarQube, while it does not have tags in Stack Overflow. CAST scores only a few hits in Stack
Overflow and other channels, while it has a large community on Linkedin compared to the other
tools (although it is still second after SonarQube).DV8, Codelnspector, CodeMRI, SQUORE and
Symfonylinsights are finally the least popular tools, with only a handful of posts.



As for the popularity in scientific literature (radial bar charts in Figure 1), SonarQube and CAST
are clearly the most popular tools, matching the results reported earlier (see [Lenarduzzi2018]).

Combining the findings from research literature and online media, it is clear that SonarQube is

the most popular tool, whereas the results for CAST and Sonargraph are comparable. In the case
of NDepend, it seems to be more popular in industry than academia.
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Figure 1: Infographic depicting popularity in the scientific literature (radial bar charts normalized
per tool), popularity on the web (chord chart) and the empirical validation of TD tools in the
literature (Sankey diagram). All values in the radial diagrams and chord chart are in # of hits
divided by the number of years.



Findings on Validation

Applying the search string returned a total of 5,313 publications. Next, we filtered the obtained
studies, based on their relevance to technical debt and in particular to the evaluation of the
proposed indices for TD principal or interest, obtaining a list of 122 papers for more detailed
inspection. As a final step of study inclusion/exclusion, we proceeded to a full-text reading,
through which we excluded 72 additional studies as irrelevant.

The data extraction was performed on the remaining 50 studies. These papers were classified
based on the relevance of the empirical evaluation. A full relevance point was given to papers
that evaluate the TD principal or interest index, with respect to its accuracy of measurement in
terms of the used unit (i.e., effort or money); a partial point was assigned to papers that assess
the relation of TD principal or interest index to other qualities (e.g., maintainability, reliability, etc.).
This aligns with the scope of this paper, i.e. the ability of the tools to provide indices for TD
principal and/or interest. All raw data extracted during this process are available in the replication
package.

As shown in Figure 1 (Sankey diagram at the bottom), SonarQube is the tool whose measures
have been considered more in empirical evaluations, followed by DV8 and CAST. However, when
considering the accuracy of the TD Index, only DV8, SonarGraph, and SonarQube have been
considered in empirical studies. Based on these results, we find that TD quantification in units of
effort is still lacking empirical validation regarding its accuracy; this may lead to practitioners not
having full confidence in the remediation effort and order proposed. However, we argue that the
existing tools can be safely used for TD refactoring, since they are able to identify TD items, in
some meaningful (and actionable) way.

Discussion

How to select a tool? There is no clear “winner” that is the best option for all uses and
organizations - different tools better fit different purposes. We provide some tips on how teams
can select a tool, according to their needs.

First, it is important to think whether measurement of TD principal and interest (or at least their
proxies) is required to perform TD analysis. Some teams may simply require tools that analyze
their codebase to find code smells and calculate quality metrics; numerous tools serve this
purpose |[ ]. If however principal and interest are a “must have”, as indicated in recent
studies in several companies [ ], one should restrict the selection to the tools reported
in this paper. The tools listed in Table 1 calculate principal and interest differently; we advise
teams to choose tools based on what helps them the most to prioritize refactoring.

Next, individual developers usually need tools that measure code debt only, but when the analysis
involves larger or multiple teams, then tools analyzing the architectural debt are highly
recommended. Other contextual factors that are useful to narrow down the selection of a tool:
languages, IDEs, platforms, the license, and the architecture (server or client side).

Finally, the involvement of tools in research articles, might provide the practitioners with further
insights on the reliability of the studied tools, in some cases supported by empirical evidence.

Which tools are best for what? All tools (but one) calculate Principal, but only four of them
calculate interest: NDepend, CAST, DV8, CodeMRI; so these should be the tools of choice for
developers interested in estimating extra maintenance effort required in future iterations. For



practitioners interested in Security, both CAST and SonarQube offer support, although CAST
analyzes a higher number of security rules. Changeability, and more generally speaking
Maintainability, is considered by all the tools; however the front-runners are CAST, NDepend, and
SQUORE, offering elaborated functionality to manage Maintainability at multiple levels through
advanced features, such as custom component dependency violation, dependency graph
analysis, and control flow analysis. For detailed architectural analysis, CAST, NDepend, and
Sonargraph provide several features that aid the user in gauging whether the intended
architecture of the system matches the actual one. Users that manage code bases with a plethora
of programming languages, should definitely consider SonarQube, which is able to analyse the
largest number of languages (26). DV8 takes into account not just the source code of a specific
version but also version history and issue trackers. Such approach renders the analysis richer by
using more sources of data to measure evolutionary coupling (coupling discovered via co-
changes in different snapshots) and its interest in terms of penalties incurred during bug fixing;
using historical data also strengthens the reliability of its results.

Which tools are popular among practitioners and researchers? We observed that the communities
behind the analyzed tools differ significantly. In particular, SonarQube and NDepend are the only
tools discussed in the Stack Overflow community, with SonarQube being by far the one with the
most questions asked and answered. The organization behind SonarQube seems to invest in
supporting the TD community by creating posts, tags and answers to users’ questions. However,
in the majority of cases, the posts are not explicitly related to technical debt, but more related to
setting up and customizing the tool.

Examining the communities on Linkedin, numerous members discuss SonarQube, and to a lesser
extent CAST, while SonarGraph seems to have a small community in Google groups. However,
the presence in these communities can be seen both as a sign of popularity but also as a way of
the tools to create visibility for marketing purposes. In summary, SonarQube seems to have a
strong community behind the tool, while NDepend and CAST are present in selected channels,
and to less extent SonarGraph. The remaining tools do not seem to have an online community
supporting them.

Although popularity cannot be considered a quality index per se (less precise tools can become
more popular due to better marketing), we believe that a tool that is widely used by practitioners
inherently gives them some value or it would not be used and discussed at alll.

What is still missing? First, all analyzed tools quantify the level of maintainability issues (i.e., the
principal), but not all tools focus on the consequence of these issues (i.e., the interest). This
weakens the use of TD as a communication medium: practitioners can communicate the
existence of the problem (principal), but they do not have numbers on extra maintenance costs
(interest) nor the probability of additional maintenance (interest probability) to argue about
repaying TD. It is crucial that all dimensions of the TD metaphor are represented.

Second, all analyzed tools but one (DV8) consider only static analysis in their TD calculation
models. However, current software development practices entail additional rich sources of
information (e.g., version history, issue trackers, email exchanges, etc); these can be exploited
for improving the accuracy of indicators, or providing different perspectives. Third, all tools focus
on a limited set of types of technical debt: they work predominantly on code technical debt, to a




lesser extent design debt and in a rather limited sense architectural debt. This is not a
coincidence: code and design debt are the easiest types to detect and usually to repair. However,
we argue that architectural debt has a much larger impact on maintenance efforts than other types
[ I.

Last but not least, there is no commonly-agreed and validated set of rules and metrics to measure
Technical Debt. Instead, each tool uses its own set of rules and metrics without detailed
explanation or motivation. Thus, there might exist discrepancies among the tools regarding the
rules, the output remediation time, and creates confusion on which rules are important and how
to customize their severity to match one’s needs.

Limitations

The results of this work are subject to some limitations. The first one is the narrow search string
we applied. We are aware that using different synonyms or relaxing the search string might have
yielded more results. However, we aimed at using the terminology adopted by the TD community.
The choice of our inclusion/exclusion criteria also affected the selection of tools. We have aligned
the inclusion criteria with the scope of the paper, thus only tools that directly or indirectly measure
TD were included.

As for data extraction, different researchers collected the information for different tools, and
therefore possibly obtained information differently. We mitigated this threat by first assigning data
collection per tool to at least two researchers with experience on that tool; any differences in
opinion among them were discussed and resolved. Subsequently, the tool vendors were
requested to inspect the results. Furthermore, the online popularity of the tools could be biased
by the activity of their respective communities: we compared the number of posts and not the
number of tool users. Some tools may have very active, but small communities; others may be
widely used but not largely discussed online. In addition, for some tools, the discussion may
happen elsewhere, such as in mailing lists or forums. In addition, the results rely mostly on
guantitative indicators to provide useful insights about the tools, but we warn against using such
numbers as an absolute way to assess their quality. To mitigate this limitation, we have added an
extensive discussion, based on the researchers’ qualitative interpretation gathered during the
assessment procedure.

Finally, despite our best efforts, our personal experience using the analyzed tools might have
biased the data analysis. Specifically, we have extensive experience with SonarQube (18
published papers), some experience with CAST (3 papers), with Sonargraph (2 papers) and with
Squore (1 paper); we had no experience with the other tools. We mitigated this by collecting
objective data instead of user opinions, and by making all the data for this study freely available
online, so as to allow other researchers to replicate this work [ I

Conclusions and future work
In this paper, we highlighted the current state of the market for TD tools, focusing on those
providing an estimation of TD principal and/or interest. These tools have been selected through



a rigorous process and were analyzed regarding their offered features, popularity and
accompanying evidence.

The studied tools offer a comprehensive variety of functionalities that cover multiple languages,
levels of analysis, artifacts, as well as different computations of technical debt principal and
interest. They can, to some extent, identify, measure, and monitor technical debt as well as
provide suggestions for repayment. More importantly, they support the communication of
technical debt through monetary values, both horizontally, between the technical teams, and
vertically, between the technical and the management teams.

Our analysis offers practitioners a clearer overview of the current landscape of TD tools and
highlights their differences in offered features, popularity, empirical validation, as well as current
shortcomings. Our results allow to compare the tools against each other and make an informed
choice on which tool best suits the needs of individual developers or their teams.

As follow-up of this work, we plan to conduct a user study with practitioners to compare the tools
based on concrete TD management tasks. This would complement the current study with
information on the tools usability and usefulness.
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