
A Bayesian Belief Network for Modeling Open Source
Software Maintenance Productivity

Stamatia Bibi1, Apostolos Ampatzoglou2, and Ioannis Stamelos3
1 Department of Informatics & Telecommunications, University of Western Macedonia, Greece

2 Department of Computer Science, University of Groningen, Netherlands
3 Department of Computer Science, Aristotle University of Thessaloniki, Greece

sbibi@uowm.gr, a.ampatzoglou@rug.nl, stamelos@csd.auth.gr

Abstract. Maintenance is one of the most effort consuming activities in the
software development lifecycle. Efficient maintenance within short release cy-
cles depends highly on the underlying source code structure, in the sense that
complex modules are more difficult to maintain. In this paper we attempt to un-
veil and discuss relationships between maintenance productivity, the structural
quality of the source code and process metrics like the type of a release and the
number of downloads. To achieve this goal, we developed a Bayesian Belief
Network (BBN) involving several maintainability predictors and three manage-
rial indices for maintenance (i.e., duration, production, and productivity) on 20
open source software projects. The results suggest that maintenance duration
depends on inheritance, coupling, and process metrics. On the other hand
maintenance production and productivity depend mostly on code quality met-
rics.
Keywords: maintenance; productivity; software metrics; Bayesian networks.

1 Introduction
Software maintenance is, according to van Vliet [27], one of the most effort and

time intensive activities in the software lifecycle, since it consumes 50-75% of the
overall project resources. According to ISO 14764-2006 the most common mainte-
nance activities include the adaptation of a system to new environments, the imple-
mentation of additional requirements, the improvement of run- or design-time quality
properties, or the identification of latent defects. It is expected that the worse the in-
ternal quality of a system is, the more difficult to maintain the software will be [2].
However, there are several precautionary actions that managers can take (e.g., soft-
ware refactorings [10]) so as to improve the structural quality of the software, which
in turn will lead to decreased maintenance effort and cost. Nevertheless, the time
budget that is usually allocated on such maintenance activities is usually limited.
Thus, it should be cautiously allocated to the modules that suffer from the most im-
portant bad smells [10].

In this study we focus on the relationship between structural software quality char-
acteristics (expressed through metrics), maintenance production (i.e., software units

maintained) and duration. Although we acknowledge the fact that structural quality is
not the only parameter that should be used in such a model (i.e., a complete model
should consider the number of changing requirements, number of defects, etc.), we
isolate software structure, in order to explore its influence exclusively. In classical
economics production and duration are combined through the measure of productivi-
ty, which is defined as an average measure of production in the unit of time [6]. In
this line of thought, we define maintenance productivity as the average lines of code
that are being maintained (software units maintained) in a given time unit. Although
the exploration of the relationship between software units maintained and structural
quality measures is not novel (see Section 2), to the best of our knowledge this is the
first study that considers maintenance productivity. To achieve this goal we used a
Bayesian Belief Network (BBN) to model the relationships between the input (struc-
tural software metrics) and output parameters (maintenance production, maintenance
duration, and maintenance productivity). The network has been trained through a case
study on 454 versions of 20 Open Source Software (OSS). The rest of the paper is
organized as follows: Section 2 presents research efforts on studies related to mainte-
nance production; Section 3 presents background information on BBN and the metrics
that have been used in the developed network; Section 4 presents the case study de-
sign; in Sections 5, we present and discuss our results and the implications to the re-
searchers and practitioners; in Section 6 we present threats to validity and finally, and
in Section 7 we conclude the paper.
2 Related Work

Research on software maintenance effort can be categorized into two groups: (a)
development of effort estimation models, and (b) development of methods that im-
prove the maintenance outcomes.

Among popular effort estimation models we can find Estimation by Analogy
(EbA) and estimation based on Regression. Shepperd et al. [24] suggested EbA for
allocating staff in software maintenance projects based on similar completed histori-
cal maintenance projects. De Lucia et al. [16] use multiple regression analysis to con-
struct corrective maintenance effort estimation models. The results show that the per-
formance of the model is improved when the different types of maintenance tasks are
included. The use of function points are proposed for estimating the effort of software
maintenance projects [1]. Bayesian Networks are also used in Software Maintenance
[26]. Van Koten and Gray [26] use Bayesian Networks to predict the maintainability
measured as the change in software lines of code between subsequent releases. The
results are improved compared to regression models. In [19] BBNs aim to predict
delays in software maintenance tasks. Bayesian Networks have been also applied in
software fault prediction [9] and cost estimation [25]. The application of the method
indicated certain advantages regarding their ability to be combined with expert
judgement and provide flexible and informative estimates.

On the other hand there are studies found in literature that examine the factors that
affect software maintenance effort. System size, system age, number of input/output
data items, application type, and programming language are among the parameters
that can affect software maintenance effort according to [1] and [12]. Also there is a

vast literature on code metrics that affect the maintainability of software and conse-
quently the corresponding effort required. According to Riaz et al. [22] the metric
suites proposed by Li and Henry [15] and Chidamber and Kemerer [8] are the most
accurate ones for assessing software maintainability. On the other hand there are stud-
ies that explore the specific parameters that affect open source project development,
quality and evolution [14], [20], [21]. Developer participation, core team size, code
ownership, productivity, defect density, and problem resolution intervals were exam-
ined in these studies leading to the conclusion among others that defect density and
productivity benefit from the large open source community of testers and bug fixers.
Speed of releases seems to require highly modularized software. To the best of our
knowledge this is the first study that considers maintenance productivity.
3 Background Information

In this section we present some background information that is needed to compre-
hend this study. In particular, we provide information related to Bayesian Belief Net-
works, and structural quality metrics associated to maintainability.

Bayesian Belief Networks are Directed Acyclic Graphs (DAGs), which are causal
networks that consist of a set of nodes and a set of directed links between them, in a
way that they do not form a cycle [13]. Each node represents a random variable that
can take mutually exclusive values according to a probability distribution, which can
be different for each node. Each link expresses probabilistic cause-effect relations
among the linked variables and is depicted by an arc starting from the influencing
variable (parent node) and terminating on the influenced variable (child node). The
relation between the two nodes is based on Bayes’ Rule:

 (1)
A simple BBN example is presented in Figure 1. The model consists of two nodes.

The first node (NOC) represents the number of classes in a software package and the
second node (Maintenance Effort) represents the effort required for package mainte-
nance measured in Person- Months widely reported in literature as Man-Months
(MMs). We consider that the values of these two nodes fall into two discrete catego-
ries (Low and High). For the node NOC, let’s suppose that Low values range between
1 class and 10 classes (Similarly for Maintenance Effort values). For example the first
column of the Node Probability Table states that if the number of classes is low then
there is 70% probability that the maintenance effort will be low and 30% percent
probability that the maintenance effort will be high. The algorithm used for learning
Bayesian Networks is analytically presented in [7].

 NOC
(Number of classes)

Low
(1-10

classes)
High

(10-30
classes)

Maintenance
Effort

Low (1-3MM) 0.7 0.45
High(>3MM) 0.3 0.55

Fig. 1. a. A BBN for maintenance effort b. Node Probability table for Fig 1a

)(
)()|()|(BP

APABPBAP 

The tool used for constructing the networks and the classifier can be found in the
web (http://www.cs.ualberta.ca/~jcheng/bnpc.htm).

Maintainability Predictors: In this study we focus on metrics that are the most ac-
curate software maintainability predictors. According to Riaz et al. [22] the metric
suites proposed by Li and Henry [15] and Chidamber and Kemerer [8] are the most
accurate ones, while the model of van Koten and Gray [26] is the most stable one
[22]. The metric suite that is used from the aforementioned study is presented in Table
1. In order to automate the calculation of software quality metrics we used Percerons
Client (http://www.percerons.com), i.e., a tool developed in our research group.

Table 1. Maintainability Predictors
Metric / Description Phase

Quality
Attribute (QA)

Depth of Inheritence Tree (DIT). Inheritence level number, 0 for the root class. design inheritance
Number of Children Classes (NoCC). Number of sub-classes that the class has. design inheritance
Message Passing Coupling (MPC). Number of send statements defined in the class. code coupling
Response For a Class (RFC). Number of local methods plus the number of methods
called by local methods in the class. code coupling
Lack of Cohesion of Methods (LCOM). Number of disjoint sets of methods (number
of sets of methods that do not interact with each other), in the class. code cohesion
Data Abstraction Coupling (DAC). Number of abstract types defined in the class. design coupling
Weighted Method per Class (WMC). Average cyclomatic complexity of all methods. code complexity
Number of Methods (NOM). Number of methods in the class. design size
Lines of Code (SIZE1/LoC). Number of semicolons in the class. code size
Number of Properties (SIZE2). Number of attributes and methods in the class design size
Coupling Between Objects (CBO). Number of classes that one class depends on design coupling
Average Method Size (AMS). Avereage number of semicolons in a method code complexity

4 Case Study Design
In order to investigate the influence of structural quality in several managerial

maintenance indices (i.e., duration, effort and productivity), we performed a case
study on 20 open-source software (OSS) projects. The case study is designed and
reported according to the guidelines of Runeson et al. [23].
4.1 Objectives and Research Questions

The objective of this study is to analyze software metrics and investigate their in-
fluence on the maintenance production, duration and productivity. In particular we
investigate three research questions:
RQ1: Which quality metrics are related to the duration of maintenance among two

successive releases?
This question aims at identifying the metrics that mostly influence the time re-
quired for developing a new version of an OSS project measured in days

elapsed from one release to another. Quick successive releases may indicate
the level of readiness of the project community, the tendency to launch quick
releases, and short time to fix bugs or add functionality.

RQ2: Which quality metrics are related to the production of maintenance among two
successive releases?
The objective of this question is to reveal which quality metrics are more asso-
ciated to the production of the maintenance in OSS, measured as the number of
lines of code added from previous release. The target of this analysis is to iden-
tify the quality characteristics whose levels enable a substantial change in a
single version. We expect that low values of coupling and complexity, and
high values of cohesion, will yield for projects in which maintenance produc-
tion is large and efficient.

RQ3: Which quality metrics are related to the productivity of maintenance among
two successive releases?
This research question is relevant to productivity. Productivity is calculated as
the ratio between production and duration. We note that this calculation of
productivity deviates from the typical one, because duration in OSS develop-
ment might include idle time, when developers are inactive. However, to the
best of our knowledge, the actual development time cannot be retrieved from
source code repositories. The objective is to confirm if high levels of quality
lead to increased productivity, and to some extent eliminate the bias caused by
change load.

4.2 Case Selection & Data Processing
To collect subjects for our case study we retrieved a set of popular and active OSS

projects. In particular, we selected only projects that were active in 2014 (i.e., pub-
lished at least one version), and when sorted by popularity (based on the default
sourceforge.net measure) they were among the top ranked ones. Additionally, we
selected projects containing more than 300 classes to ensure that sufficient units of
analysis will participate in the study and that toy-applications would be excluded.
Therefore, we downloaded and collected metrics data from 20 popular OSS projects
so as to build a dataset that is adequate for statistical analysis. Some demographics for
these projects are presented in Table 2.

Table 2. Case Study Subjects
Name NOC Versions Cases Name NOC Versions Cases

AoI 749 31 27 iText 645 22 20
Azureus 3,888 24 22 Java Game Library 654 40 33
Checkstyle 1,186 32 16 ZDF MediaThek 617 40 33
Dr Java 3,464 55 43 Pixelator 827 33 33
File Bot 7,466 20 17 Mondrian 1,471 32 25
FreeCol 794 40 33 Open Rocket 3,018 26 21
FreeMind 443 41 35 Subsonic 4,688 40 11
Hibernate 3,821 48 31 Sweet Home 3D 341 24 17
Home Player 457 30 25 UMS 5,499 50 9
Html Unit 920 27 25 Tux Guitar 745 17 11

The case study is an embedded multiple-case study, in the sense that for every
OSS project (i.e., case), we analyze every transition between two versions (i.e., units
of analysis) [23]. For each release of the projects presented in Table 2, we collected
three sets of data: the structural quality metrics presented in Table 1(see Section 3),
the targeted maintenance managerial indices (see Section 4.1), and some process met-
rics. The obtained process metrics include the date each release was uploaded, the
sequential number of release that indicates the maturity of the project (i.e., if we are
in the beginning of the project lifecycle or not), and the number of downloads record-
ed for each release (considering the previous version each time) from the date
launched to 01/01/2015. At this point the resulting project releases were further fil-
tered to exclude releases that presented negative values in the production variable
(deletion of functionality) and releases that presented zero duration time (releases
uploaded all at once). After this pre-processing phase the remaining project releases
were selected for analysis. Descriptive statistics for all dependent variables of our
analysis are presented in Table 3.

Table 3. Descriptive Statistics for Maintenance Indices
Maintenance Index N Mean Minimum Maximum Std. Dev.

Production (ΔLOC) 454 2629.16 1 162429 10748.11
Duration (in days) 454 79.85 1 1055 91.6

Productivity 454 76.03 0.01 9962 522.47
To apply the BBN analysis we had to further process the gathered metrics, since

quality metrics present continuous arithmetic values. In particular, continuous values
had to be transformed to categorical ones, so as to be utilized in BBN analysis. The
transformation method used was the equal frequency binning [28]. This method au-
tomatically sets the boundaries of each bin (category), so as to ensure that all of them
have an equal number of observations. Each metric that is represented in a categorical
form has five distinct categories (VL—Very Low, L—Low, A—Average, H—High,
and VH—Very High).
4.3 Data Analysis

On the completion of the aforementioned process we applied the Bayesian Net-
work analysis and utilized heatmaps to graphically represent our data. Our goal was to
better depict the influence of the independent variables on the dependent ones.

The first step of the analysis includes the selection and tuning of the variables that
affect the structure of the BBN. In this step expert input is required to set the order of
the variables that will affect the causal relationships that the model will define. Met-
rics order was selected taking into account two considerations: (a) the development
phase, when the values of the metrics will be available in the sense that we first de-
fine certain design metrics, while some time afterwards certain source code metrics
are available, and (b) the relatedness of metrics, based on their calculation method.
For example coupling metrics like CBO and MPC are closely related. In the model
CBO precedes MPC, in the sense that the value of CBO “includes” the value of MPC.

After extracting the model we employed heatmaps to visualize the obtained out-
come. Heatmaps are graphical representations that use color intensity in order to de-

note occurrence frequency. While applying heatmaps to our results set, we developed
a matrix, in which row represents a value of the dependent variable (e.g., low mainte-
nance duration) and a column a value of the independent variable (e.g., systems with
a very low level of polymorphism). Each cell is a percentage that shows the probabil-
ity that the independent variable will present a certain value according to the value of
the dependent variable (e.g., 10% of the cases with a very low level of polymorphism
are maintained very quickly— low maintenance duration).
5 Results & Discussion

In this section we present the results obtained from the BBN analysis, organized by
research question. The extracted network including all structural quality metrics, pro-
cess measures, and managerial maintenance indices is presented in Figure 2. We note
that since this study aims to investigate the interdependencies between the nodes of the
graph, the estimation accuracy of the network is not explored. A discussion / interpre-
tation of the most important relationships presented in the network is provided later in
this section, while answering each research question.

Figure 2. Maintenance Indices Bayesian Belief Network

5.1 Duration
In this section we identify the structural properties that are related to maintenance
duration (RQ1). From Figure 2, we can observe that variables that are directly con-
nected to DURATION are Number of downloads, Depth of Inheritance Tree (DIT),
and Message Passing Coupling (MPC). The heatmaps visualizing the relationships of
these variables to the duration of the maintenance activities is presented in Table 4.
By interpreting the left-most part of the heatmap, we can observe that as the number
of downloads increases, the maintenance duration becomes larger. This result can
be intuitively interpreted by the fact that projects with many downloads are expected
to serve larger communities, leading to the creation of more feature requests and bug
fixing activities. The number of extra requirements that are requested in each mainte-

PRODUCTION

nance cycle increases their duration. Based on the central part of the heatmap, our
results suggest that an average depth of inheritance tree offers shorter maintenance
cycles. On the other hand, extensive or limited inheritance leads to larger mainte-
nance cycles. Again, this can be characterized as an expected result, in the sense that:
(a) using very large inheritance trees decreases software understandability since the
full list of accessible variables and metrics from a class can spread to many classes,
and (b) using limited inheritance does not make use of one of the most important ben-
efits from using the object-oriented paradigm, and at the same time hinders the ap-
plicability of well-known object-oriented principles (e.g., open-closed principle [17])
and design patterns (e.g., template method, state/strategy, etc. [11]) that have been
reported as beneficial to maintainability.

Table 4. Parameters influencing maintenance duration
Duration

#Downloads DIT MPC
VS S A H VH VS S A H VH VS S A H VH

Very Small 28 23 18 16 15 19 16 24 17 20 22 19 22 21 16
Small 21 21 18 21 18 18 18 24 21 18 17 19 25 20 19
Average 15 24 22 20 19 22 23 19 21 19 18 24 17 21 18
High 18 17 22 21 23 23 22 18 18 20 19 24 17 19 23
Very High 18 15 20 22 25 18 21 15 23 23 24 14 19 19 24
Finally, very high coupling leads to high or very high maintenance duration (see
right-most part of the heatmap). This result is expected in the sense that according to
the high coupling principle [17] dense inter-connection of classes reduces their under-
standability, increases the probability of initiating a ripple effect, and reduces their
changeability. On the other hand, by focusing on very small coupling we get interest-
ing results. Intuitively one would expect that very small coupling would increase
modularity (low ripple effect, increase changeability) and therefore be connected to
quick maintenance cycles, but this is the 2nd most frequent event. The most frequent
event is that very small coupling is connected to large maintenance cycles. This result,
although initially surprising, can be interpreted by the inherent relationship/trade-off
between coupling and cohesion (as it is confirmed by the network of Figure 2). Spe-
cifically, it is expected that low coupling can also lead to bad design, in cases that
specific classes are growing so large that they do not need to call methods from other
classes (they are self-contained). This leads to reduced coupling, but probably these
classes are assigned to more than one responsibility. This decision overrules the Sin-
gle Responsibility Principle, which according to Martin [17], in turn leads to main-
tainability problems, especially focused on understandability and change proneness.
5.2 Production

In this section, we explore the BBN for mining relationship related to RQ2, i.e.,
metrics that are related to maintenance production, measured as lines of code added
from one version to the other. Similarly to Section 5.1, in Table 5, we present the
heatmap for the two variables that are directly related to maintenance production.
Interestingly, we can observe that the two most important parameters are: one com-
plexity metric (namely AMS) and the same coupling metric as in Table 4 (namely
MPC). This is considered important from two perspectives:

(a) Average Method Size (AMS) has, until now, not been explored as a possible
maintainability predictor, although it appears to be related to maintenance produc-
tion. However this result can be considered intuitive, in the sense that the size of
the method is related to one the most persistent and frequently occurring bad
smells, namely Long Method [10]. According to the literature methods of large
size are very difficult to understand, modify and extend, leading to difficulties in
increasing maintenance production.

(b) Message Passing Coupling (MPC) is consistently the coupling metric that can be
used as the optimal maintainability index. The superiority of MPC with regard to
assessing ripple effects (a significant aspect of maintainability) compared to the
other examined coupling metrics is also discussed by Arvanitou et al. [5]. In par-
ticular MPC is the only (among the investigated metrics) that captures both cou-
pling volume (number of relationships) and coupling intensity (how closely con-
nected the two classes are). An additional important characteristic of MPC is that
it counts coupling intensity using the discrete count function, and therefore is not
biased from the number of times one method is being called [4].

Table 5. Parameters influencing maintenance production
Production

AMS MPC

VS S A H VH VS S A H VH
Very Small 16 27 25 20 13 15 22 23 17 22
Small 21 23 18 21 17 25 20 25 14 17
Average 21 17 15 21 26 23 21 19 21 16
High 24 15 17 22 22 20 19 15 23 24
Very High 19 16 24 20 20 18 18 19 24 21
5.3 Productivity

Similarly to RQ1 and RQ2, in Table 6, we present the heatmap that visualizes the
parameters that are more closely related to maintenance productivity. By comparing
the results of Table 6, with those of Tables 4 and 5, we can observe that productivity
is more closely related to maintenance production rather than maintenance duration.

Table 6. Parameters influencing maintenance productivity
Productivity

AMS MPC
VS S A H VH VS S A H VH

Very Small 19 26 21 20 14 16 27 22 13 23
Small 19 22 19 19 21 23 23 22 14 18
Average 23 20 14 22 20 19 17 24 18 22
High 17 12 16 28 27 27 15 13 28 17
Very High 25 16 28 14 17 15 18 22 28 18

In particular we observe that the only metric that is consistently among the optimal
maintenance predictors is MPC, whereas AMS is only related to maintenance produc-
tion and productivity. Concerning the range of values for these variables we can reach
the following conclusions: According to Martin [23], the average method size should
not exceed 5 lines of code. Based on the findings of this case study, very small meth-
ods provide a maximum productivity in 42% of the cases, which is a rather intuitive
result. The counter point, as discussed by Fowler [10] (i.e., long methods are hard to

maintain) cannot be discussed based on our results, since in order for such an investi-
gation to be possible, it would be required to count the number of long method bad
smells and not an aggregated/average measure. Concerning MPC, we can observe that
tightly coupled systems are exhibiting small and very small productivity rates—a
result that is expected based on the negative effect of coupling on maintainability.
5.4 Implications to Practitioners & Researchers

The results of our case study have provided some interesting insights and implica-
tions to both practitioners and researchers. Concerning practitioners, our study pro-
vides evidence that indeed structural quality metrics are affecting maintenance indi-
ces. However, from the vast amount of metrics that are available, only a limited num-
ber of them are highly influential. As expected the most significant metrics cover the
most frequently quantified quality attributes, directly or indirectly, i.e., complexity,
cohesion, coupling, and inheritance. In particular, the study pointed out that practi-
tioners should pay attention on balancing the values of the following metrics: Average
Method Size (AMS), Message Passing Coupling (MPC), and Depth of Inheritance
Tree (DIT). Thus, practitioners should not only include these metrics in their quality
dashboards, but also manage their natural trade-off (e.g., optimizing coupling on the
expense of cohesion).

Furthermore, the outcome of this study indicated some interesting future research
directions. First a replication of the case study can be performed including metrics of
different categories and suites (e.g., architecture level) and also metrics that describe
the communication and message exchange of the OSS developers’ community. Sec-
ondly, the development of a complete estimation model that additionally takes into
account factors other than software structure is expected to fully capture and predict
all aspects of software maintenance productivity. Finally, tailoring the proposed mod-
el in an industrial context is necessary for the adoption of such approaches in closed
source software development.
6 Threats to validity

In this section we discuss the threats to validity of our case study, based on the cat-
egorization described by Runeson et al. [23]. With regard to internal validity, we
need to clarify that the relationships obtained through the network are influenced by
some confounding factors. For example, the load of high-level changes from one
version of the system to another (e.g., new features, number of fixed bugs, etc.) is not
considered in this study. However, we believe that the large size of our dataset im-
posed a normal distribution of actual changes that minimizes the effect of the con-
founding factor. Additionally, we remind that the investigation of the strength of rela-
tionships is out of the scope of this study, since it only aims at their identification.

Concerning external validity, we have identified two threats to generalization.
First, since all the examined projects come from one source code repository the re-
sults cannot be generalized to the OSS population. Second, since we only explored
Java projects (due to the limitation of the used tool) the results cannot be generalized
to other programming languages. However, we believe that projects popularity and
size are indicative factors of successful OSS projects.

Regarding reliability, based on the fact that our study is purely quantitative and the
developed protocol (see Section 4) is thoroughly described, we believe that the pro-
cess is easily replicable by other researchers. Though, concerning construct validity,
Bayesian network model construction includes by its nature many subjective deci-
sions made by the modeler. The parameters of the model such as the selection of the
binning method for the discretization of the values of the continuous variables and the
ordering of the independent variables may also affect the model extracted. This pro-
vides an interesting direction for future studies that could include additionally sensi-
tivity analysis regarding the parameters of the model.
7 Conclusions
Long-term monitoring of maintenance effort requires a measurement process of re-
spective attributes that affect software maintenance and a model to represent the inter-
relations of the attributes gathered. Open source software is a suitable paradigm of
continuous, sustainable maintenance efforts. Understanding why each system requires
more or less maintenance effort is necessary for better monitoring software mainte-
nance process and releases launch. In this study we have performed an empirical
study on the factors that affect software maintenance duration, production and
productivity on 20 open source software projects. We suggest Bayesian Networks as a
tool to model all attributes and factors that can affect maintenance efforts. The created
model included structural quality and process metrics, and managerial indices. The
results indicate that maintenance duration is affected by the popularity of a project
and DIT (a design metric) and MPC (a source code metric). On the other hand Pro-
duction and Productivity are solely affected by quality metrics AMS and MPC.
References

1. A. Abran, H. Nguyenkim, “Measurement of the Maintenance Process from a Demand-
based Perspective,” Journal of Software Maintenance: Research and Practice, 5 (2), 1993.

2. A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The Financial
Aspect of Managing Technical Debt: A Systematic Literature Review”, Information and
Software Technology, Elsevier, 64 (8), pp. 52 – 73, August 2015.

3. A. Ampatzoglou, O. Michou, and I. Stamelos, “Building and mining a repository of design
pattern instances: Practical and research benefits”, Entertainment Computing, Elsevier, 4
(2), pp. 131–142, April 2013.

4. A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and P. Avgeriou, “The Effect of
GoF Design Patterns on Stability: A Case Study”, Transactions on Software Engineering,
IEEE Computer Society, 41 (8), pp. 781 – 802, August 2015.

5. E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “Introducing a
Ripple Effect Measure: A Theoretical and Empirical Validation”, 9th International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM' 15), IEEE Computer
Society, 22-23 October 2015, Beijing, China.

6. B. W. Boehm. Software Engineering Economics (1st ed.). Prentice Hall PTR, 1981.
7. J. Cheng, R. Greiner, Learning Bayesian Belief Network Classifiers: Algorithms and Sys-

tem. 14th Canadian conference on artificial intelligence (AI'2001), 2001.
8. S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial Use of Metrics for Object

Oriented Software: An Exploratory Analysis”, Transactions on Software Engineering,

IEEE Computer Society, 24 (8), pp. 629-639, August 1998.
9. N. Fenton, M., Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause and R. Mishra, “Predict-

ing software defects in varying development lifecycles using Bayesian Nets”, Information
and Software Technology, 49 (1), January 2007,pp. 32-43

10. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring: Improving the
Design of Existing Code”, Addison-Wesley Professional, 1st Edition, July 1999

11. E. Gamma, R. Helms, R. Johnson, and J. Vlissides, “Design patterns: elements of reusable
Object-Oriented software”, Addison-Wesley Professional, 1995

12. M. Ghods, K.M. Nelson, “Contributors to quality during software maintenance”, Decision
Support Systems, 23 (4), pp. 361–369, October 1998.

13. F. Jensen, “Bayesian Networks and Decision Graphs”, Springer, 2002.
14. S. Koch, and C. Neumann. "Exploring the effects of process characteristics on product

quality in open source software development." Principle Advancements in Database Man-
agement Technologies: New Applications and Frameworks (2009): 132.

15. W. Li and S. Henry, “Object-Oriented Metrics that Predict Maintainability”, Journal of
Systems and Software, Elsevier, 23 (2), pp. 111-122, November 1993.

16. A. de Lucia, E. Pompella, S. Stefanucci, “Assessing effort estimation models for corrective software maintenance through empirical studies”, Information and Software Technology, Elsevier, 47 (1), pp. 3–15, 2005.
17. R.C. Martin “Agile software development: principles, patterns and practices”, Prentice

Hall, New Jersey. 2003
18. R. C. Martin. 2008. “Clean Code: A Handbook of Agile Software Craftsmanship”, Pren-

tice Hall PTR, 1st Edition, Upper Saddle River, NJ, USA.
19. A. C. V. de Melo and A. de J. Sanchez. “Bayesian networks in software maintenance man-

agement”, 31st International Conference on Theory and Practice of Computer Science
(SOFSEM'05), pp. 394-398, 2005.

20. V. Midha and A. Bhattacherjee, “Governance practices and software maintenance: A study
of open source projects”, Decision Support Systems, 54 (1), pp. 23-32, December 2012.

21. A. Mockus, R. Fielding, J. Herbsleb, “Two case studies of open source software develop-ment: Apache and Mozilla”, Transactions on Software Engineering and Methodology, ACM, 11 (3), pp. 309–346, 2002.
22. M. Riaz, E. Mendes, and E. Tempero, “A systematic review on software maintainability

prediction and metrics”, 3rd International Symposium on Empirical Software Engineering
and Measurement (ESEM’09), IEEE Computer Society, pp. 367-377 ,2009, USA.

23. P. Runeson, M. Host, A. Rainer, and B. Regnell, “Case Study Research in Software Engi-
neering: Guidelines and Examples”, John Wiley & Sons, 2012.

24. M. Shepperd, C. Schofield, B. Kitchenham, “Effort estimation using analogy”, 18th Inter-national Conference on Software Engineering (ICSE’ 96), ACM, pp. 170–17, 1996.
25. I. Stamelos, L. Angelis, P. Dimou, E. Sakellaris, “On the use of Bayesian belief networks for the prediction of software productivity”, Information and Software Technology, Else-vier, 45, pp. 51-60, 2002.
26. A. van Koten and A.R. Gray, “An Application of Bayesian Network for Predicting Object - Oriented Software Maintainability”, Information and Software Technology, Elsevier, 48 (1), pp. 59 – 67, January 2006.
27. H. van Vliet, “Software Engineering: Principles and Practice”, John Wiley & Sons, 2008.
28. I. Witten and E. Frank, “Data Mining: Practical machine learning tools and techniques”,

Morgan Kaufmann, 2nd Edition, 2005.

