
Assessing the Evolution of Quality in Java Libraries 
 

 

Theodore Chaikalis 
 

Department of Applied 
Informatics, 

University of Macedonia, 
Thessaloniki, Greece 

chaikalis@uom.gr 

Alexander 
Chatzigeorgiou 

Department of Applied 
Informatics, 

University of Macedonia, 
Thessaloniki, Greece 

achat@uom.gr 

 

Apostolos Ampatzoglou 

 
Department of Mathematics 

and Computer Science, 
University of Groningen, 

Groningen,  
The Netherlands 

a.ampatzoglou@rug.nl 

 

Ignatios Deligiannis 
 

Department of Information 
Technology 

Technological Education 
Institute, Thessaloniki, 

Greece 

ignatios@it.teithe.gr
  

ABSTRACT 

Libraries are increasingly employed in software practice to speed 

up the development process by reusing available and tested 

components. Software systems, that are available as libraries, are 

expected to be well-designed, because they have to adhere to 

specific principles, in order to accommodate the needs of multiple 

clients in a robust and stable way. Considering that most software 

libraries are continuously upgraded, in this paper we investigate 

the evolution of their quality over time. In particular, we perform 

a systematic case study to assess whether quality, in terms of three 

software metrics (CBO, LCOM, WMC), exhibits clear trends 

during the history of twenty analyzed libraries. The findings 

indicate that the examined software libraries can be considered as 

stable software projects in terms of quality, in the sense that in 

contrast to the general belief about software aging, their quality 

does not degrade over time. 

Categories and Subject Descriptors 

• Software and its engineering ~ Software creation and 

management   • Software and its engineering ~ Software 

evolution   • Software and its engineering ~ Maintaining 

software   • Software and its engineering ~ Object oriented 

development 

Keywords 

Software evolution analysis; case studies, software quality. 

1. INTRODUCTION 
A software library can be defined as a collection of software 

modules for supporting programming through a well-established 

Application Programming Interface (API) [4]. Beyond code, 

libraries entail a specified set of rules and conventions that should 

be applied for accessing the offered functionality. Libraries are 

intended for broad employment by numerous clients that extend 

their functionality by reusing already available code (either in the 

form of source code or as compiled modules).  

Based on their original purpose of use, libraries are considered 

well-designed pieces of code, which adhere to software design 

principles. The main rational beneath this belief is that libraries 

are intended to support a large number of clients, and for this 

reason their external interface should a) allow seamless 

integration with client code, b) remain constant over successive 

versions so as not to ‘break’ client code and c) be extensible to 

allow clients to define their own specific implementations [18]. 

These requirements impose specific constraints on the internal 

software development practices and usually promote a clean, rigid 

and robust software architecture [18].  

As any other software product, libraries are continuously evolving 

by releasing new versions that offer enhanced functionality or 

improved performance. Along the evolution of software systems, 

the general belief is that their quality degrades over time due to 

the need to accommodate several requirements under significant 

time pressure. This phenomenon has been extensively studied in 

the literature of software engineering and is known under different 

names such as software aging [15] or accumulation of technical 

debt [1]. Considering the special characteristics of software 

libraries it would be worth exploring whether software libraries 

suffer from the same symptom. 

In this paper we aim at assessing the evolution of quality in well-

known libraries. To this end, we conducted a case study in which 

we evaluated trends in the evolution of three typical object-

oriented metrics on 20 OSS libraries. The existence of clear trends 

in the evolution of quality has been assessed by appropriate 

statistical tests. The results open up opportunities for discussing 

whether it is worth to transfer the principles underlying the design 

of software libraries to other types of software as well. 

The rest of the paper is organized as follows. In section 2 we 

briefly discuss related work on software evolution analysis and 

assessment of quality in libraries. The design of the case study is 

described in Section 3 while the results are presented and 

discussed in Section 4. Threats to validity are listed in section 5. 

Finally, we conclude in Section 6. 

2. RELATED WORK 
The analysis of evolutionary trends in the history of software 

projects has been extensively studied during the last decade in the 

literature of Software Engineering. The foundations for this area 

have been laid by M. M. Lehman in the 70’s who defined and 

later enhanced the so-called laws of software evolution [12]. A 

good overview of the field as well as trends in software evolution 

research can be found in the book edited by Mens and Demeyer 

[14]. Numerous types of analyses and statistical tools have been 

applied to investigate all aspects of software evolution offering 

answers to practical questions relevant to software practice, as 

well as, interesting insights related to phenomena governing 

software evolution [3], [5], [10]. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee.  

BCI’15, September 02-04, 2015, Craiova, Romania. 

© 2015 ACM. ISBN 978-1-4503-3335-1/15/09 $15.00  

DOI: http://dx.doi.org/10.1145/2801081.2801097 

mailto:a.ampatzoglou@rug.nl
mailto:ignatios@it.teithe.gr


The challenges in designing stable and reliable libraries have been 

addressed and systematically documented in the form of good 

practices for API design [4], [18]. Raemaekers et al. [16] 

evaluated the stability of third party libraries in terms of method 

removals, changes in the implementation and method additions. 

McDonnell et al. [13] studied the pace at which libraries in the 

android ecosystem evolve along with the client adoption, 

observing that clients usually do not catch up with the API 

evolution. API changes of four frameworks and one library have 

been studied by Dig and Johnson [9] discovering that API-

breaking changes indeed occur during the history of libraries.  

With respect to the design quality of libraries, an application of an 

operations research methodology (Data Envelopment Analysis) 

revealed that libraries exhibit superior quality compared to 

software applications [7]. However to the best of our knowledge, 

no case study has been performed to formally assess trends in the 

evolution of quality in libraries by means of metrics. 

3. CASE STUDY DESIGN 
The design of the case study regarding the evolution of software 

libraries will be described briefly due to space limitations 

according to the guidelines proposed by Runeson et al. [17] 

Objective and Research Questions 
Using the Goal-Question-Metric (GQM) formulation  [2], the goal 

of this study can be expressed as: “to analyze successive versions 

of software libraries for the purpose of evaluating the evolution 

of their quality with respect to the trend of basic object-oriented 

design metrics from the perspective of researchers in the context 

of  20 open source libraries. Based on this goal the research 

question under investigation is: 

RQ: Do software libraries exhibit an observable trend in the 

evolution of their quality? 

Selection of Cases 
To ensure the selection of well-known, mature and reliable open 

source libraries as cases for our study we employed the following 

approach: We have selected open source software systems 

(applications) which a) are written in Java, b) evolved over a 

number of versions, c) have a large developer and user 

community, and d) are among the most downloaded products in 

their domain. With these criteria we aimed at collecting a set of 

mature and reliable software products. Then we extracted the 

libraries on which these systems rely. The corresponding 

assumption is that since the selected applications fulfill certain 

criteria, the corresponding libraries will meet similar standards. 

The selected libraries are listed in Table I. 

Data Collection 
For each version of the analyzed projects we obtained the 

following measures from the Metrics Suite proposed by 

Chidamber and Kemerer [8]. Although these metrics are among 

the oldest in the literature of object-oriented design they have 

been repeatedly applied to assess software design quality and their 

interpretation is straightforward [11]. From the metrics that are 

offered in the Chidamber and Kemerer metrics suite, we picked 

one metric from each quality property, i.e., coupling, cohesion 

and complexity, as follows: 

CBO – Coupling Between Objects: The number of other classes 

to which a class is coupled. 

LCOM- Lack of Cohesion in Methods: Quantification of lack of 

cohesion based on the number of cohesive and non-cohesive 

method pairs.  

WMC- Weighted methods per class: The sum of the complexities 

of a class’ methods. 

The aggregation function of all metrics to obtain values at the 

system level has been set to average. 

The extracted data form time series for each metric and for each 

project. The evolution of metrics for each project has been 

obtained using the SEAgle platform [6] developed by the authors. 

SEAgle enables effortless software evolution analysis where the 

user provides only the git repository of the project that he/she 

wishes to analyze. In response, the platform provides a wide 

spectrum of results concerning the analyzed project, through a 

web interface. Analyses includes various metrics, i.e., metrics 

concerning repository activity, as well as, metrics related to the 

object-oriented structure of the systems. All metrics are presented 

in the form of a series of values over the successive versions that 

have been analyzed. SEAgle is accessible as a web application 

and as a RESTful Web Service. 

Table 1. Analyzed libraries 

# Name Description Versions 

1 ant Library for the building of Java applications 9 

2 antlr4 
Parser generator for reading, processing, executing, or 

translating structured text or binary files 
6 

3 axis2 Apache implementation of SOAP for Web Services 10 

4 checkstyle 
Tool to help programmers write Java code that adheres 

to a coding standard. 
30 

5 commons-io 
Library of utilities to assist with developing IO 

functionality. 
8 

6 
commons-

lang 

Library that provides extra methods for the 

manipulation of Core Java Classes. 
12 

7 guava 
Collection of core java libraries used by Google for 

their java-based projects. 
17 

8 hazelcast Open Source In-Memory Data Grid 40 

9 jackson-core 
Core part of Jackson JSON Processor that defines 

Streaming API and basic shared abstractions 
29 

10 
jackson-

databind 

General data-binding package for Jackson JSON 

Processor 
31 

11 joda-time Replacement library for the Java date and time classes. 16 

12 junit A programmer-oriented testing framework for Java. 16 

13 log4j Logging library by the Apache Software Foundation. 73 

14 mockito Mocking framework for unit tests written in Java. 26 

15 netty 
Event-driven asynchronous network application 

framework 
8 

16 ognl Object Graph Navigation Library 9 

17 pdfbox 
Library for the creation of new, and manipulation of 

existing PDF documents. 
21 

18 sisu 
Implementation of JSR 330 

(Context and Dependency Injection) 
25 

19 smack 
Open Source Extensible Messaging and Presence 

Protocol Client Library written in Java 
12 

20 zookeeper 
Librar to develop and maintain an open-source server 

which enables highly reliable distributed coordination 
11 

* Further information on the selected libraries can be found in SEAgle. 

Data Analysis 
In order to investigate the research question that has been set, we 

will perform a trend test on each time series. Trend analysis aims 

at determining whether the values of a series of temporal 

observations generally increase or decrease. In statistical terms a 

trend test assesses whether the probability distribution from which 

the analyzed values come from, has changed over time. The 

corresponding null hypothesis can be stated as: 

H0: there is no trend in the evolution of the observed metric 



Thus, the goal of the statistical analysis is to accept or reject this 

null hypothesis. An established approach for conducting a trend 

test is to fit a linear function on the observed data (linear 

regression) and determine the slope of this trendline in case the 

corresponding p-value of the linear regression analysis implies a 

statistically significant result. However, linear regression is a 

parametric approach and a number of conditions have to be 

satisfied to be able to apply it. These assumptions include: 

 Absence of significant outliers, 

 independence of observations 

 homoscedasticity and, 

 approximately normally distributed residuals. 

These assumption can be formally checked by appropriate 

statistical tests. For example, the independence of observations, 

i.e. that data exhibit little or no autocorrelation, can be tested with 

Durbin-Watson's test. After applying the relevant tests to our 

dataset (timeseries of metrics for the examined projects) we found 

that none of the cases could be fitted to linear regression models, 

since one or more of the preconditions were not met. Therefore, to 

provide robust statistical results we performed the Mann-Kendall 

non-parametric trend test which assesses whether there is a 

monotonic upward or downward trend of the independent variable 

(i.e. metric). This test does not impose the preconditions, 

especially with regard to the normal distribution of residuals. We 

calculated the corresponding statistic using the R language [20]. 

The dataset on which the statistical tests have been applied as well 

as the corresponding R scripts can be found in the accompanying 

web page [19]. 

For the cases where a trend is statistically evident we calculated 

the slope of the corresponding trendline. To enable the 

comparison of trends between different projects and metrics a 

scale invariant measure of slope should be extracted. To this end, 

we normalized the original data by dividing each value with the 

maximum value in the timeseries. Moreover, expressing the slope 

as a percentage, enables an intuitive interpretation of the steepness 

of observed trends. 

Table 2. Trend tests and slopes for CBO, LCOM and WMC 

Name 
CBO LCOM WMC 

Sig. Trend Slope Sig. Trend Slope Sig. Trend Slope 

ant 0.009  4.00% 0.348   0.602   

antlr 1.000   0.338   0.008 
 

1.47% 

axis2 0.177   0.785   0.210   

checkstyle 0.629   0.068 
 

 0.000 
 

-0.53% 

commons-io 0.462   0.221   0.806   

commons-lang 0.318   0.002 
 

0.96% 0.901   

guava 0.543   0.022 
 
-1.87% 0.692 

 
 

hazelcast 0.002  0.62% 0.000 
 
-0.18% 0.000 

 
-0.60% 

jackson-core 0.000  0.09% 0.000 
 

0.23% 0.148   

jackson-databind 0.042  -0.04% 0.000  -0.17% 0.035 
 

-0.03% 

joda-time 0.000  1.42% 0.030 
 
-0.43% 0.000 

 
1.40% 

junit 0.000  -0.75% 0.377 
 

 0.000 
 

-0.76% 

log4j 0.004  -0.23% 0.966 
 

 0.563 
 

 

mockito 0.697   0.697 
 

 0.000 
 

-0.34% 

netty 0.001  2.02% 0.012 
 

1.70% 0.035 
 

2.50% 

ognl 0.002  -0.36% 0.004 
 

1.78% 0.529   

pdfbox 0.001  -0.10% 0.000 
 

0.70% 0.000 
 

0.34% 

sisu 0.006  -2.2% 0.000 
 
-0.41% 0.001 

 
-2.51% 

smack 1.000   0.136   0.782   

zookeeper 0.220   0.027 
 
-1.12% 0.462   

* Statistical significance level is set to 0.05 

4. RESULTS AND DISCUSSION 
The results concerning the statistical tests on whether metric time 

series exhibit trends or not are summarized in Table 2. The first 

column lists the project’s name, while the rest of the columns 

summarize the findings for each of the three metrics. For each 

metric, the table reports the significance value of the Mann 

Kendall trend test. In case the corresponding sig. value is less than 

0.05 the trend is considered statistically significant and in these 

cases a down/up pointing arrow implies an 

improving/deteriorating quality over time. 

It should be noted that for the selected metrics, an improvement is 

reflected by a decrease in the metric values. For the cases where a 

trend cannot be determined based on the statistical test, we plotted 

a horizontal right pointing arrow. When a trend is present, the 

slope of the corresponding trendline is listed in the last column for 

each metric. As it can be observed, in about half of the cases no 

trend is present and thus no definite answer can be provided to the 

research question of this study. However, by focusing on the cases 

where the results imply stability or improvement the picture 

becomes more clear. In particular, in 16 of the 20 projects w.r.t. 

CBO, 15 of the projects w.r.t. LCOM and 16 of the projects w.r.t. 

WMC (in ~78% of the cases) metric values either remained stable 

or improved during the evolution of the libraries. Thus, one could 

claim that libraries indeed exhibit signs of resilient object-oriented 

design which in turn is reflected on non-deteriorating metric 

values. It is worth mentioning, that in several projects quality is 

improving over time, sometimes at a significant pace. For 

example, project sisu improves in terms of all three examined 

metrics by 2.2, 0.41 and 2.51 per cent, for CBO, LCOM and 



WMC, respectively. On the other hand, there are limited cases 

where degradation is observable in more than one aspects of 

quality. An exception is project netty whose values deteriorate in 

all three metrics.  

As a result, libraries not only exhibit a superior design quality 

when assessed statically (i.e. when analyzing individual versions 

as it has been performed in previous approaches [7]) but also 

perform well in terms of stability and robustness over time. Such 

findings imply that their development teams indeed strive for 

conformance to proper design principles resulting in high quality 

architectures. We believe that software design research and 

practice could benefit by focusing on such well-constructed 

libraries and export the knowledge and techniques reflected in 

their internal structure. 

5. THREATS TO VALIDITY 
As in any case study the findings suffer from threats to external 

validity in the sense that the conclusions reflect only the particular 

libraries which have been analyzed. However, we believe that this 

threat is partially mitigated by the inclusion of 20 libraries 

covering different domains. With respect to construct validity 

which is related to the degree by which the employed measures 

reflect the phenomenon under investigation (i.e. the quality of 

libraries), two threats arise from the selection of projects and three 

particular metrics. On the one hand, the characterization of a 

software system as library cannot be absolute, in the sense that 

some libraries act also as frameworks/tools. On the other hand, a 

particular set of metrics does not necessarily reflect all aspects of 

quality. Obviously, further research in this area is required to 

validate the findings.  

6. CONCLUSIONS 
In this paper we presented the results of a case study aiming at the 

analysis of the evolution of software libraries. The motivation 

stems from the general belief that libraries excel in terms of their 

design quality. The analysis consisted in the examination of 

whether a trend is present in the evolution of three well-known 

object-oriented metrics for twenty open-source libraries. Although 

a definite conclusion could not be reached on whether an overall 

trend exists, the findings clearly revealed that libraries either 

remain stable or gradually improve in terms of quality.  

ACKNOWLEDGMENTS 
This research work is co-founded by the European Social Fund 

and National Resources, ESPA 2007-2013, EDULLL, 

“Archimedes III” program. 

7. REFERENCES 
[1] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and 

P. Avgeriou, “The financial aspect of managing technical 

debt: A systematic literature review,” Inf. Softw. Technol., 

vol. 64, pp. 52–73, Aug. 2015. 

[2] V. Basili, G. Caldiera, and H. D. Rombach, “Goal 

Question Metric (GQM) Approach,” in Encyclopedia of 

Software Engineering, John Wiley & Sons, Inc., 2002. 

[3] J. Bevan, E. J. Whitehead,Jr., S. Kim, and M. Godfrey, 

“Facilitating Software Evolution Research with Kenyon,” 

in Proceedings of the 10th European Software 

Engineering Conference Held Jointly with 13th ACM 

SIGSOFT International Symposium on Foundations of 

Software Engineering, New York, NY, USA, 2005, pp. 

177–186. 

[4] J. Bloch, “How to Design a Good API and Why It 

Matters,” in Companion to the 21st ACM SIGPLAN 

Symposium on Object-oriented Programming Systems, 

Languages, and Applications, New York, NY, USA, 2006, 

pp. 506–507. 

[5] T. Chaikalis and A. Chatzigeorgiou, “Forecasting Java 

Software Evolution Trends employing Network Models,” 

IEEE Trans. Softw. Eng., vol. PP, no. 99, pp. 1–1, 2015. 

[6] T. Chaikalis, G. Melas, E. Ligu, and A. Chatzigeorgiou, 

“Seagle: Effortless Software Evolution Analysis,” 

presented at the 30th International Conference on Software 

Maintenance and Evolution (ICSME’2014), Victoria, 

British Columbia, Canada, 2014, pp. 581–584. 

[7] A. Chatzigeorgiou and E. Stiakakis, “Benchmarking library 

and application software with Data Envelopment 

Analysis,” Softw. Qual. J., vol. 19, no. 3, pp. 553–578, 

Sep. 2011. 

[8] S. R. Chidamber and C. F. Kemerer, “A metrics suite for 

object oriented design,” IEEE Trans. Softw. Eng., vol. 20, 

no. 6, pp. 476–493, Jun. 1994. 

[9] D. Dig and R. Johnson, “How do APIs evolve? A story of 

refactoring,” J. Softw. Maint. Evol. Res. Pract., vol. 18, no. 

2, pp. 83–107, Mar. 2006. 

[10] M. W. Godfrey and D. M. German, “The past, present, and 

future of software evolution,” in Frontiers of Software 

Maintenance, 2008. FoSM 2008., 2008, pp. 129–138. 

[11] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, 

“Empirical evidence on the link between object-oriented 

measures and external quality attributes: a systematic 

literature review,” Empir. Softw. Eng., pp. 1–54, Mar. 

2014. 

[12] M. M. Lehman, “Programs, life cycles, and laws of 

software evolution,” Proc. IEEE, vol. 68, no. 9, pp. 1060–

1076, Sep. 1980. 

[13] T. McDonnell, B. Ray, and M. Kim, “An Empirical Study 

of API Stability and Adoption in the Android Ecosystem,” 

in Proceedings of the 2013 IEEE International Conference 

on Software Maintenance, Washington, DC, USA, 2013, 

pp. 70–79. 

[14] T. Mens and S. Demeyer, Software Evolution. Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2008. 

[15] D. L. Parnas, “Software Aging,” in Proceedings of the 16th 

International Conference on Software Engineering, Los 

Alamitos, CA, USA, 1994, pp. 279–287. 

[16] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring 

software library stability through historical version 

analysis,” in 2012 28th IEEE International Conference on 

Software Maintenance (ICSM), 2012, pp. 378–387. 

[17] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case 

Study Research in Software Engineering: Guidelines and 

Examples, 1 edition. Hoboken, N.J: Wiley, 2012. 

[18] J. Tulach, Practical API design: confessions of a Java 

framework architect. [New York]; New York: Apress ; 

Distributed to the book trade worldwide by Springer 

Science+Business Media New York, 2012. 

[19] “Trends in Software Libraries,” Trends in Software 

Libraries, 30-Mar-2015. [Online]. Available: 

http://se.uom.gr/index.php/trends-in-software-libraries/. 

[Accessed: 30-Mar-2015]. 



[20] “R: The R Project for Statistical Computing,” The R 

Project for Statistical Computing. [Online]. Available: 

www.r-project.org. [Accessed: 27-Mar-2015]. 

 


