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ABSTRACT

Source code bad smells are usually resolved through the applica-
tion of well-defined solutions, i.e., refactorings. In the literature,
software metrics are used as indicators of the existence and priori-
tization of resolving bad smells. In this paper, we focus on the
long method smell (i.e. one of the most frequent and persistent
bad smells) that can be resolved by the extract method refactoring.
Until now, the identification of long methods or extract method
opportunities has been performed based on cohesion, size or
complexity metrics. However, the empirical validation of these
metrics has exhibited relatively low accuracy with regard to their
capacity to indicate the existence of long methods or extract
method opportunities. Thus, we empirically explore the ability of
size and cohesion metrics to predict the existence and the refactor-
ing urgency of long method occurrences, through a case study on
java open-source methods. The results of the study suggest that
one size and four cohesion metrics are capable of characterizing
the need and urgency for resolving the long method bad smell,
with a higher accuracy compared to the previous studies. The
obtained results are discussed by providing possible interpreta-
tions and implications to practitioners and researchers.

Categories and Subject Descriptors

D.2.3 [Coding Tools and Techniques]: Object-Oriented Pro-
gramming, Standards; D.2.8 [Metrics]: Product Metrics; D.2.10
[Design]: Methodologies. The ACM Computing Classification
Scheme: http://www.acm.org/class/1998/

General Terms
Measurement; Design; Experimentation

Keywords

Long method; metrics; cohesion; size; case study

1. INTRODUCTION

Code bad smells are symptoms indicating that a specific part of
the source code is neglecting at least one programming principle
[18]. By definition, bad smells are concrete problems closely
related to applicable solutions, i.e. refactorings, which can allevi-
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ate the caused problems [22], [23]. However, the manual identifi-
cation of such smells or refactorings opportunities is extremely
challenging in large code bases; manual source code inspection
would be time prohibitively expensive. To avoid manual source
code inspection, several methods and tools aim at identifying code
bad smells or refactoring opportunities. Nevertheless, the applica-
bility of such methods and tools is usually limited due to their
dependency to specific programming languages or IDEs. Addi-
tionally, in most of the cases, these methods and tools do not
prioritize the identified bad smell occurrences; this is problematic
due to the vast number of refactoring opportunities that can be
identified in a single system. To tackle both problems, several
generic-scope software metrics [15] have been proposed for rec-
ognizing parts of the code base that need refactoring, and for
characterizing their urgency (see Section 2).

In this study we propose such a metric-based approach, focusing
on one specific bad smell — the long method, which is resolved
through the extract method refactoring, as defined by Fowler et al.
[18]. The reasons for working with this smell are:

* The frequency of its occurrence. Long method is a fre-
quently occurring smell [10]. The case study reported in
[10], aims to investigate the presence and evolution of
four types of code smells, i.e., Long Method, Feature En-
vy, State Checking and God Class. The results indicated
that the long methods were considerably more common
compared to the other smells.

*  Its persistence during evolution. Long methods are of par-
ticular urgency as they often occur in the early versions of
software and persist unless targeted refactoring activities
are performed. Specifically, a case study on an open source
project (jFlex) revealed that 89.8% of the long methods
identified in that project remained unresolved in all the ex-
plored versions [10].

*  The lack of metrics, related to long methods. So far only a
few metrics have been assessed with respect to their capac-
ity to predict the existence of long methods. To the best of
our knowledge, current approaches achieve a recall rate of
59% and a precision rate between 39%-66% (see Section
2). Also the ability of metrics to prioritize the urgency of
the long methods to be resolved has not been empirically
investigated yet.

In order to use a metric-based approach for identifying bad smells
or refactoring opportunities, one needs to specify unique character-
istics for each bad smell (e.g. a ‘god class’ is large in size), leading
to the selection of quality properties (i.e., concepts that can be
directly evaluated by exploring the structure of software elements
[5]), and subsequently metrics. By definition, the long method
smell concerns methods large in size, which have a semantic dis-
tance between the major purpose of the method, with respect to a



specific functionality, and the degree to which its implementation
serves this purpose [18]. In other words, we do not perceive all
methods large in size as ‘long’, but only those whose large size is
due to the implementation of multiple functionalities. Based on this
definition, a property that can be used as an indicator of the number
of functionalities that a module offers is cohesion [26], [31].

Therefore, we focus on two quality properties: method size and
cohesion. Specifically, we will empirically investigate the ability
of size and cohesion metrics: (a) to predict which methods suffer
from the long method bad smell, and (b) to prioritize their urgency
to be resolved, based on the extract method opportunities that they
present. We note that we assess the urgency of a long method to
be refactored based on the identified extract method opportunities,
since Fowler et al. suggest that in 99% of the cases, the extract
method refactoring (i.e. removal of code chunks from one method
that can be turned into new methods, whose names explain their
purpose [18]) is the solution to the long method bad smell.

In the next section, we present related work that used metrics for
detecting refactoring opportunities or bad smells. In Section 3 we
present the quality properties that are associated with the long
method bad smell and the selected software metrics. In Section 4
we present the case study design for evaluating these metrics as
indicators for the prediction and prioritization of long method
smell. In Section 5 we report the findings of the case study, which
are discussed in Section 6. Threats to validity are discussed in
Section 7. Finally, in Section 8 we conclude this paper.

2. RELATED WORK

The related work section concerns studies that evaluate existing
metrics, with respect to their ability of identifying and prioritizing
refactoring opportunities or detecting bad smells. Therefore,
studies which use other approaches for identifying software arti-
facts that suffer from bad smells or present refactoring opportuni-
ties (e.g., inspection of the revision change history [38], or explo-
ration of the cohesion lattice structure [21], or exploitation of
computational slices [44]), have been excluded from this section.
Also, we omitted papers that propose new metrics for identifying
refactoring opportunities or bad smells (e.g. [14] and [42]). Alt-
hough such studies can be considered as indirect related work (our
study uses existing metrics), we preferred not to present them, due
to space limitations. While presenting related work, more empha-
sis is given to studies related to long methods.

Refactoring Identification & Prioritization: Yoshida et al. pro-
posed the division of the source code into functional segments that
could be used as the basis for extracting methods (fragments of
code that concern a unique functionality) and the employment of a
cohesion metric (NCCP, which is based on SCOM [16]) for their
identification [45]. To validate the outcome of the proposed meth-
od the authors performed a single case study on one project with
one of its developers as evaluator. In the optimum application of
the approach, 51 out of 80 unique functionalities were correctly
identified (recall: 59%).

Meananeatra et al. [34] presented a method for prioritizing five
refactorings (Extract Method, Replace Temp with Query, Introduce
Parameter Object, Preserve Whole Object, and Decompose Condi-
tional) with respect to improving maintainability. The method
employs three maintainability metrics (complexity, size, and cohe-
sion) before and after applying the refactoring. Then a set of met-
rics, related to data and control flow graphs, is calculated for se-
lecting applicable refactorings, based on some pre-defined criteria.
The measurement applied after the refactoring, indicates which are
the most capable for optimizing maintainability.

Zhao and Hayes developed a tool for identifying classes in need of
refactorings, however, without specifying the bad smell that they
suffer from [46]. Their approach was based on size and complexity
metrics, combined through a weighted ranking method, for priori-
tizing the most urgent classes to be refactored. The tool was vali-
dated by comparing its results to those obtained through manual
inspection. The outcome of the validation was that the results of
the tool can be supportive for the software development teams.

Demeyer et al. proposed a refactoring detection method by apply-
ing lightweight, object-oriented metrics to successive versions of a
software system [13]. The selected metrics concerned three major
aspects: method size (number of message sends in method body,
number of statements in method body, lines of code in method
body), class size (number of methods in class, number of instance
variables) and inheritance (hierarchy nesting level, number of
immediate children of class, number of inherited methods, number
of overridden methods). The detected refactorings were the fol-
lowing: Split or Merge Superclass / Subclass, Move to other
Class, and Split Method. The approach was validated by three
case studies, suggesting that the refactoring identification strategy
supports reverse engineering, by focusing on the relevant parts of
a system. The precision of this approach ranges from 38% to 66%
for the Split Method refactoring.

Bad Smell Identification: In 2004 Marinescu proposed a mecha-
nism for detecting design problems [33]. In contrast to other
studies that try to infer problems from a set of abnormal metric
values, this approach defines metric-based rules that identify
deviations from good design principles and heuristics. As a result,
it is able to locate classes or methods affected by design flaws.
The approach was validated experimentally on multiple case-
studies by identifying nine design flaws (including God Method).
Concerning the identification of the God Method smell'
Marinescu proposes the use of complexity metrics assuming that
complexity should be uniformly distributed among methods. The
precision of this approach on the identification of God method
smells is 50%.

The aforementioned approach has been applied by Mihancea and
Marinescu, for establishing metrics-based rules, which detect
design flaws in object-oriented systems [35]. The method searches
for thresholds that maximize the number of correctly classified
entities, by combining existing metrics. For validation the God
Class and Data Class flaws were detected. For the identification
of both flaws complexity, cohesion and coupling metrics were
used. Next, in 2006 Lanza and Marinescu collected in a book
entitled “Object Oriented Metrics in Practice” six well-known bad
smells (God Class, Feature Envy, Data Class, Brain Method,
Brain Class and Significant Duplication), which they present in
details, along with strategies for detecting them. These strategies
included the use of 24 of metrics, in total, and thresholds, which
are different for each smell. Thus, their detailed presentation is out
of the scope of this section [27].Mintyld et al. investigated the
identification of bad smells based on possible correlation between
human critics and metrics provided by existing tools [30]. The bad
smells under investigation were the large class, long parameter
list and duplicate code. The results showed no correlation between
the two sources. Khomh et al. proposed a Bayesian network ap-

! Although this approach is able to identify God instead of Long Methods,
we consider it comparable approach to ours, due to smells’ similarity.
The difference between these smells is: “Long Methods have a large
number of LoC. In addition to being long, God Methods have many
branches and use many attributes, parameters, local variables.” [43]



proach for handling the inherent uncertainty in the process of
identifying code or design smells [24]. This study was based on
the detection rules proposed by Moha et al. [36] for the identifica-
tion of the Blob antipattern. As an example, they suggest that
classes with more than 90% of accessor methods can be character-
ized as data classes.

Salehie et al. proposed a metric-based heuristic framework for
detecting and locating object-oriented design flaws [40]. The
framework assesses the design quality of internal and external
structure of a system, at the class level, in two phases. In the first
phase, hotspots are detected using metrics aiming at indicating a
design feature (e.g., high complexity). In the second phase, indi-
vidual design flaws are detected using a proper set of metrics. The
use of the framework is presented for the God Class and the Shot-
gun Surgery flaws, by employing coupling, cohesion and com-
plexity metrics. The framework was applied on the JBoss Appli-
cation Server, i.e., a large size system with pure object-oriented
structure, in order to set threshold values to the used metrics.

Related Work Overview & Contributions: From the aforemen-
tioned related work, it becomes clear that only three studies (i.e.,
[13], [33], [45]) have explored the identification of long methods,
through metrics. From these studies only the approach of Yoshida
et al. employs cohesion metrics for this purpose, however by
focusing only on one metric. Therefore the contributions of this
study can be summarized as follows:

¢ Itrelates a variety of cohesion metrics with the existence of
long methods.

¢ It relates cohesion metrics to the prioritization of resolving
long methods.

* It compares size / cohesion metrics, as predictors of the ex-
istence of long methods and their urgency for refactoring.

¢ It provides a method of higher accuracy (precision and re-
call), compared to the state of the art.

¢ Itis one of the few tools that perform identification of long
methods, instead of extract methods opportunities (e.g.,
JDeodorand [44], JExtract [41], etc.).

3. METRICS SELECTION

The first step towards relating long methods and existing software
metrics is to find out which quality properties could be related to it
and subsequently, which metrics could be used for quantifying
those quality properties. According to the definition provided by
Fowler [18], a long method is characterized by: (a) its size, and (b)
the functional distance of the lines of code of its body. First, the
size of a method is a quality property per se, and one way to meas-
ure it is by counting the uncommented lines of code (LOC). Se-
cond, the functional distance is related to cohesion, which is de-
fined as the functional relatedness of the elements of a module
[31]. We note that the relation between cohesion and functional
distance is inverse (i.e., when functional distance increases, cohe-
sion decreases). However, the selection of cohesion metrics that
would be useful indicators of the functional distance in the body of
a method is a complex task, for two reasons:

* The plethora of available cohesion metrics. Al Dallal has
reported 16 class-level metrics [3]. As a result there is a
need for an empirical evaluation of the ability of each met-
ric to indicate the existence of long methods and their re-
factoring priority. This need becomes even more evident
by taking into account that each one of these metrics ad-
dresses a different notion of cohesion [37]. Therefore, it is

beneficial to also investigate if these different aspects of
cohesion lead to different capabilities for long method
identification and prioritization.

*  The lack of cohesion metrics that can be calculated inside
the method body. According to Al Dallal, cohesion metrics
are applicable at class level and are classified into two cat-
egories, namely high-level and low-level cohesion metrics
[3]. For the purpose of this study none of these metrics is
directly applicable, in the sense that they cannot assess co-
hesion inside the method body. Specifically, the high-level
metrics calculate cohesion, based on methods’ parameters,
and thus they cannot be mapped to the method body level.
On the contrary, the low-level metrics, which calculate co-
hesion by characterizing pairs or sets of methods as cohe-
sive, can be transformed to assess the cohesion inside the
method body.

The application of low-level cohesion metrics at the method-level
(i.e., inside the method body) was also discussed by Yoshida et al.
[45], when introducing the NCCP metric, i.e., a new, method-level
cohesion measure, which has been derived from the transformation
of the SCOM metric [16]. In our approach, we have applied a
process, similar to the one proposed by Yoshida et al. [45], for all
13 low-level cohesion metrics collected by Al Dallal [2]. The main
principles for this process are the mapping of:

¢ Lines of code to methods, and
* All variables within the scope of the method (i.e., attrib-
utes, local variables, or parameters) to attributes.

In Table 1 we present the 13 cohesion metrics used in this study,
accompanied by their definitions, after they were transformed to
apply to the method-level. Also, we name the original study in
which the class-level cohesion metric was introduced.

Table 1. Method Level Cohesion Metrics

Cohesion
Metric Application on method level
LCOMI1 LCOMI1 = P, where P is the number of pairs of lines that do
[11] not share variables.
LCOM2 =P -Q,if P - Q >0/ otherwise LCOM2 = 0,
LCOM2 where P is the number of pairs of lines that do not share
[12] variables, and Q is the number of pairs of lines that share
variables.
Number of connected components in a graph, where each
LCOM3 node represents a line of code and each edge the common
[28] use of at least one variable.
LC[%I}M Similar to LCOM3. Method calls are treated as edges.
LCOMS5 LCOMS=(a-nl)/(1-nl)
(191 where n is the number of lines, a is the number of variables
used in a line, and 1 is the total number of variables.
Coh=1-(1-1/n) LCOMS5
Coh [9] where n is the number of lines
TCC=NDC /NP
Tight Class where NDC the number of directly connected pairs of lines
Cohesion . . R . s .
(TCC) (i.e. accessing a common variable either within the line or
7] within the body of a method invoked in that line directly or
transitively), and NP the maximum possible number of
direct connections in a method.




Cohesion
Metric Application on method level
LCC = (NDC + NIC) /NP
Loose
Class where NDC and NP as defined above, and NIC the number
Cohesion | of indirectly connected pairs of lines. A pair of lines is
(LCC)[7] | indirectly connected, if they access no common variables,
but there is a line directly connected to both lines of the pair.
DCp =[Ep|/[n* (n—1)/2]
D f
CS}%:::?OE— where E;, the number of edges in a graph connecting directly

Direct related lines of code (i.e. as defined for TCC or in cases that
the lines directly or transitively invoke the same method),

(DCp) [4] .
and n the number of lines of a method.
DC =E|/[n*(n—-1)/2]
Degree of . L
Cohesion- | Where Er the number of edges in a graph connecting indi-
Indirect rectly related lines of code (i.e. as defined for LCC or in
(DCI) [4] cases that the lines directly or transitively invoke the same
method), and n the number of lines of a method.
T
1(n—2)! V], .
Class == 2w
Cohesion ' i=1 ¢
(CO) 8] where n the number of lines of a method, [IV|]. is the total
number of variables used by two lines and |[IV|. the number
of common variables used by both lines.
2 = v card(li n Ij) *card(l; U 1))
SCOM = —Z Z -
Class n(n—1) Ly L min(card (I;), card (I})) * a
Cohesion
Metric where n is the number of lines of a method, card(l; N Ij)=
(SCOM) [IV|]. as defined for CC, card(ll- U Ij)= [IV]. as defined for

[16] cc, min(card (I;), card (I;)) is the minimum number of
variables accessed between the two lines, and a is the
number of variables accessed in the method.

Low-level 0 i 1=0 and n>1
design LSCC = 21 . __if (I>0 and n=0) or n=1
Similarity- n(n-1) L Xieians(G)) otherwise
based
Class where n is the number of lines, 1 the number of variables in
Cohesion the method of interest, and ns the normalized similarity
(LSCC) [3] | between a pair of lines.

4. CASE STUDY DESIGN

The objective of this case study is to investigate the ability of one
size (lines of code — LOC) and 13 cohesion metrics (presented in
Section 3) to provide indications on the existence of long methods,
and their urgency to be resolved. The case study has been designed
and reported according to the template suggested by Runeson et al.
[39]. The next sections contain the four parts of the research de-
sign, i.e., Objectives and Research Questions, Case Selection and
Units of Analysis, Data Collection, Pre-Processing, and Analysis.

4.1 Objectives and Research Questions

The goal of the study is described using the Goal-Question-Metric
(GQM) approach [6], as follows: “analyze thirteen cohesion and
one size metric for the purpose of evaluation, with respect to their
ability to: (a) predict the existence of long method, and (b) priori-
tize the urgency for applying the extract method refactoring on
them, from the viewpoint of sofiware engineers, in the context of
Jjava open source software”. According to the aforementioned goal,
we have derived two research questions that will guide the case
study design and the reporting of the results.

RQy: Which metrics can be used to predict the existence of the
long method smell?

This research question aims at identifying metrics that could poten-
tially be used for predicting the existence of long methods in the
complete codebase of software projects. In large codebases, the
manual identification of long methods, might be a time consuming
or even unrealistic task.

RQy: Which metrics can be used for prioritizing long methods,
with respect to their urgency for applying the extract method
refactoring (in terms of extracted lines)?

This research question aims at investigating which metrics could
be used for prioritizing the identified long method smells, accord-
ing to their urgency to get refactored. In large-scale software sys-
tems, it is likely that many methods could benefit from an extract
method refactoring. However, applying all these refactoring oppor-
tunities is not feasible and maybe even unnecessary. Answering
this research question can provide guidance on which of the exist-
ing long method bad smells should be initially refactored.

As urgency we define the average number of lines to be extracted
by applying one extract method opportunity in the long method.
We expect that the larger the methods to be extracted, the more
important it is to refactor the long method. For example consider
the two extract method opportunities of Figure 1 and the use of the
LCOM]I metric (see Table 1). For simplicity, in Figure 1, we de-
note sets of lines of code that are 100% cohesive (i.e., all lines all
cohesive to each other), with the same fill pattern. Also, we con-
sider that lines with different fill patterns are 100% non-cohesive
(i.e., no variable is shared). In this case, LCOM] for the left meth-
od is 38, and we compare two extract method opportunities: (a)
which extracts the block of 4 LoC, and (b) which extracts the block
of 2 LoC. The outcome of (a) is method of LCOM1 equals 10,
whereas the outcome of (b) is a method of LCOMI equals 20.
Therefore, the benefit from extracting a larger number of cohesive
lines of code is higher. Although in this example we describe an
extreme scenario, the effect is similar in other cases.

2 lines of code 2 lines of code

(a) 3 lines of code
4 lines of code mmmmm)

2 lines of code

3 lines of code

(b)
2 lines of code )

4

2 lines of code

4 lines of code

3 lines of code

Figure 1. Extract Method Benefit

4.2 Case Selection and Units of Analysis

This study is a holistic multiple case study, in the sense that meth-
ods are both the cases and the units of analysis. As subjects for this
study, we selected Java projects (listed in Table 2), based on our
accessibility to their developers. In particular all selected projects
are research tools for which we could ask one of their developers to
indicate the existing long methods. Due to the effort required for
manual long method detection, we investigated a rather small
number of software projects, for which manual code inspection
was feasible. The reason for restricting our case selection to Java
projects was a limitation of the used tools for identifying extract
method opportunities (see Section 4.3). Specifically, the tool that
we used for identifying the extract method opportunities is able of
parsing only Eclipse projects. On the completion of the process, we



ended up with a dataset of four Java projects, which provided us
with 1,850 methods.

Table 2. OSS Project Selection Outcome

Project Project Description #Methods
CKIM? Calculates qualiFy metrics for Java 173
projects.
ClassInstabili tyg Calculates the REM metric for Java 1389
projects. ’
Parses the abstract syntax tree of Java
Im_tool* projects and identifies functionally 128
related code chunks.
SSAS Detects design pattern instances from 160
Java binary classes.

4.3 Data Collection and Pre-Processing

The dataset used in this study consists of 1,850 rows, which corre-
spond to methods of the selected Java projects. For every method,
we recorded the following variables:

* V1-V3: Method demographics (project name, class name,
method name). This set of variables is not used in the anal-
ysis, but only for characterization purposes.

* V4 - V16: Cohesion metrics (see metrics described in Ta-
ble 1). This set consists of the independent variables to be
analyzed.

* V17: Method Size (uncommented lines of code inside the
method). This variable is also used as an independent vari-
able.

* V18: Long Method (yes / no). This variable was assigned a
binary score from the developer of each project. This vari-
able is going to be used as dependent variable in RQ;.

* V19: Extract Method Urgency. This variable corresponds
to the average number of lines to be extracted if the extract
method refactoring is applied. The variable is extracted by
using a tool (see below). This variable is going to be used
as dependent variable in RQ,.

The software metrics (V4 — V17) were calculated by a tool devel-
oped by the authors for the needs of this study®, whereas, as men-
tioned earlier, variable V18 was manually recorded, based on
experts’ opinion (developers of the subject Java projects). The
extract method opportunities (V19) were obtained using an existing
tool, namely, JDeodorant [44]. JDeodorant is an Eclipse plugin that
detects four types of refactoring opportunities, including extract
method. The tool identifies refactoring opportunities by applying
two different techniques for calculating static slices and uses the
union of their results. The first technique calculates the complete
computation slice of primitive data types or object references,
which concerns a given variable, whose value is modified through-
out the original method. The second technique calculates the object
state slice, which consists of all statements modifying the state of a
given object in the original method. For this purpose a set of slice-
based metrics have been used (i.e., tightness, overlap, and cover-
age). These metrics are not directly related to any of the cohesion
or size metrics used in our approach. Therefore, they do not affect
the results of this case study.

Additionally, we need to clarify the basic difference between JDe-

http://www.spinellis.gr/sw/ckjm/
http://iwi.eldoc.ub.rug.nl/root/2014/ClassInstability/
* www.cs.rug.nl/search/uploads/Resources/lm_tool.zip
> http://java.uom.gr/~nikos/pattern-detection.html

¢ www.cs.rug.nl/search/uploads/Resources/SEMI.zip

%)

odorant and our method is that they serve different goals: one
identifying long methods and the other identifying extract method
opportunities. Although the two goals are related, they differ in the
sense that the existence of an extract method opportunity does not
automatically constitute the method as ‘long’. Details on the vali-
dation of JDeodorant are presented in Section 7. Finally, we note
that we preferred to assess urgency for refactoring through the
outcome of an automated tool, rather than expert opinion for two
reasons: (a) the cohesion benefit obtained from extracting larger
parts of code is an objective success criterion, and (b) the compari-
son of refactoring opportunities from different projects is not feasi-
ble in the sense that no developer had an overview of all examined
projects. We preferred not to split the dataset into four sub-datasets
(one dataset for each developer), as this would reduce the size of
our sample, and consequently confidence in the obtained results.

On the completion of data collection, a pre-processing step took
place. In particular, we filtered out of the dataset methods that were
less prone to suffer from the long method bad smell. The rationale
for this decision was to have a balanced dataset with respect to the
number of methods that are in need of refactoring and those that
are not. Having a balanced dataset makes the null model (i.e., a
model without any independent variable) to provide a classification
accuracy near 50% (i.e., close to the probability of a random guess-
ing). According to King and Zeng [25], applying predictive models
(e.g. regression) in rare events datasets (in our case 10%), can
benefit from case selection strategies that reduce the number of
negative events (in our cases methods that are not in need for
refactoring). Therefore, we filtered out methods of size smaller
than 30 lines of code, in alignment with Lippert and Roock [29],
who suggest that a method is prone to suffer from bad smells if its
size exceeds 30 lines of code. After applying this filter, the dataset
was comprised of 79 units of analysis (including 40.5% of negative
events). Although the number of cases seems rather small for a
study in the domain of source code analysis, the number of cases is
limited due to the involvement of human experts and the manual
processing of source code.

4.4 Data Analysis

In order to answer the research questions set in Section 4.1, we
will statistically analyze the collected data, through regression
analysis, correlation analysis and visualization [17].

To answer RQ; we will investigate the ability of cohesion and size
metrics (see Section 4.3) to act as potential predictors of the long
methods. To this end, we will perform a logistic regression, which
is used for predicting the value of a binary variable (in this case:
V18 — long method), from a set of numerical predictors (in this
case: metric score [V4-V17]). We note that although, some related
work employs metrics combinations instead of using metrics in
isolation, we believe that treating each metric separately is the first
step towards creating a more complex model for the identification
of long methods or extract method opportunities, in the sense that
the most fitting metrics can be fed to such models. The generic
form of a logistic regression equation is as follows:

1

1+e —(bo+by*metric_score)

f (metric_score) =

For each metric, the equation coefficients by and b will be calcu-
lated by performing the regression analysis [17]. Next, in order to
use the regression equation the metric score has to be substituted,
and the value of f{metric_score), will assess the probability of the
method to be in need of refactoring. Specifically, the closer the
value of f(metric_score) is to 1.0, the larger the probability of the



method to be long’. After creating the equations, the fitness of the
models (i.e., the ability of each metric to predict the need for
refactoring), will be assessed by three well-known measures:
accuracy, precision, and recall [17)]. Accuracy evaluates the ratio
of correctly classified methods either positively or negatively (i.e.,
TP + TN) against all classified methods (n), precision quantifies
the positive predictive power of the model (i.e., TP / (TP + FP),
and recall evaluates the extent to which the model captures all
long methods (i.e., TP / (TP + FN)®.

To answer RQ, we will apply a correlation test between the cohe-
sion/size metrics, and the average number of lines to be extracted,
when a refactoring is applied. These tests will aim at identifying
indicators on the urgency of refactoring a method, with respect to
the average number of extracted lines of code. As explained
above, it is expected that the benefit of extracting larger, cohesive
methods should help reduce the negative effect of the long method
smell. Even in cases that the smell is not totally mitigated (e.g.,
extraction of a relatively small code fragment, from a large meth-
od) the method is improved with respect to its long size.

The decision to apply a correlation test (i.e., Spearman correla-
tion), is based on the 1061 IEEE Standard for Software Quality
Metrics Methodology [1], which suggests that a sufficiently strong
correlation “determines whether a metric can accurately rank, by
quality, a set of products or processes (in the case of this study: a
set of methods)”. We note that we performed a Spearman rather
than a Pearson correlation, since our data were not normally dis-
tributed and we were interested in ranking them. Additionally, in
order to visualize the relations between the corresponding varia-
bles, and potentially mine underlying patterns, we will plot the
dataset using scatter plots. Scatter plots are the default mean of
visualization for exploring the correlation between two numerical
variables [17]. A summary of data analysis techniques is present-
ed in Table 3.

Table 3. Data Analysis Overview

Question Variables Statistical Analysis

Cohesion metrics
RQ; Size
Long method (yes / no)

Logistic Regression

Cohesion metrics
RQ; Size
Extract Method Urgency

Spearman Correlation
Scatter-plots

5. RESULTS

In this section we present the results that have been obtained from
data analysis, organized by research question. Due to space limita-
tions and the public availability of the extracted dataset for data
analysis replication, in both sections, we present only results that
are statistically significant. Interpretation of the results and impli-
cations to researchers and practitioners are provided in Section 6.

5.1 Metrics for predicting the existence of
long methods

To assess the ability of metrics to predict whether a method suf-
fers from the long method smell (RQ,), we present, in Table 4, the
results of the corresponding regression analysis. Specifically we

7 The cut-off point has been set to 0.5 (default value in SPSS for binary
values)

8 TP: true positive, TN: true negative, FP: false positive, FN: false nega-
tive

present two sets of measures: the first is related to the construction
of the prediction model (i.e., beta values and significance), where-
as the second is related to its evaluation (accuracy, precision, and
recall). In the table we present only metrics that have a predictive
power at a statistically significant level, i.e. lower or equal to 5%.

Table 4. Cohesion Metrics — Long Method (Predictive Power)

Prediction Model Predictive Power

Metric

b0 b1 sig.  |Accuracy | Precision| Recall

LOC -4.491 | 0.103 0.00 84.8% | 80.85% | 92.68%

LCOM1 | -1.281 | 0.002 0.00 79.7% | 74.47% | 89.74%

LCOM2 | -0.809 | 0.002 0.00 70.9% | 68.09% | 80.00%

LCOM4 | -0.536 | 0.113 0.01 68.4% | 76.60% | 72.00%

COH 1.392 | -10.200 0.03 62.0% | 89.36% | 62.69%

cC 0.996 | -5.362 0.05 68.4% | 95.74% | 66.18%

The results of Table 4 suggest that in total six metrics are able to
predict which methods are in need for refactoring. We observe
that LOC (i.e., lines of code), and three not normalized cohesion
metrics (i.e., LCOMI, LCOM2, and LCOM4), form a group of
measures significant at the 1% level. Finally, we can observe that
two normalized cohesion metrics (COH and CC) are able to
predict methods that are in need of extract method refactoring
with a precision around 90%. As expected, these two metrics
misclassify a larger number of false-negatives compared to the
rest of the metrics, leading to a slightly decreased recall rate.

5.2 Metrics for long method prioritization

For answering RQ,, we summarize the results of the Spearman
correlation test in Table 5. Specifically, we present the ability of
the examined metrics to rank methods, based on the average
number of lines that will be extracted, if a proposed refactoring is
applied. We note that the sign of the correlation depends on
whether the metric expresses cohesion (e.g., COH), or lack of
cohesion (e.g., LCOM1). Concerning LOC, the sign is positive,
due to its direct relation to the number of extract method opportu-
nities. From Table 5, we excluded metrics that: (a) were not sig-
nificantly correlated to the corresponding variable at least at the
5% level, or (b) were correlated with strength lower than 0.2.
According to Marg, correlations with r < 0.2 present weak or non-
existing relations [32].

Table 5. Metrics — Average Lines to be Extracted

Correl.
Metric Coefficient Sig.
LOC 0.463 0.00
LCOM1 0.472 0.00
LCOM2 0.385 0.00
LsSCC -0.326 0.00
COH -0.303 0.00
CcC -0.268 0.02
DCD -0.254 0.02




average (extracted lines)

average (extracted lines)

Correl.
Metric Coefficient Sig.
SCOM -0.253 0.02
LCOMS 0.244 0.03

The results of the table suggest that the results are similar to those
of RQj, in the sense that LOC, LCOM1, and LCOM?2, are the top
ranked indicators of the urgency for refactoring, followed by COH
and CC. An additional finding from comparing the results of RQ,
to those of RQ); is the fact that LSCC, DCD, SCOM, and LCOMS
are valid indicators for the urgency for refactoring, but not for the
existence of extract method opportunities. On the other hand,
LCOMH4 is not able to rank long methods’ urgency, despite the
fact that it is a statistically significant predictor of their existence.

Finally, to visualize the aforementioned results, we produced
scatter-plots for LOC, LCOM1, LCOM?2, LSCC, and COH (top
ranked indicators for refactoring urgency), and the average size of
extract method opportunities. Based on Fig. 2, we have been able
to verify the existence of a trend in our data, represented by a line.
For example, concerning LOC (see top-left scatter plot), which is
expected to have a positive correlation to the average number of
extracted lines, we can observe an increasing trend.
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6. DISCUSSION

In this section, we discuss the main findings of this case study,
from two perspectives: (a) possible explanations for the obtained
results (Section 6.1), and (b) implications for practitioners and
researchers (Section 6.2).

6.1 Interpretation of results

Based on the results of this study, we argue that cohesion is a
quality property that should be used for the identification of extract
method opportunities, and subsequently for the mining of long
method bad smell instances. This is a rather intuitive result, in the
sense that cohesion (i.e., the functional relatedness of source code
modules — in this case lines of code) has been already associated in
the literature as an indicator of the number of distinct functionali-
ties that the module offers [26], which can be extracted in a new
method [18].

Compared to the existing approaches for long method or extract
method identification, our cohesion-based approach presents the
highest precision. Specifically, the precision of the cohesion met-
rics, proposed in this study, ranges from 68% to 96%, whereas
related work reports 50% precision of complexity [33] and 38-66%
precision of size metrics [13]. The precision of size, based on our
results is 81%. We note that the calculation of recall for [13] and
[33] was not possible because the relevant data were not provided.
Based on our results CC and COH present the highest precision.
However, we note that a safe comparison of the aforementioned
findings can only be accomplished by applying all the approaches
on a common dataset.

Comparing the ability of size and cohesion metrics to indicate if a
method is in need of extract method refactoring, and therefore if it
is long, the results cannot lead to safe conclusions, in the sense that
4 metrics (i.e., the size metric and 3 cohesion metrics) seem to
outperform the rest, without large differences among them. How-
ever, we need to note that two of the top two cohesion metrics (i.e.,
LCOM]I and LCOM?2) are correlated to size (LOC), in the sense
that they are open-ended metrics, whose upper limit is calculated
as the count of combinations by two for the number of lines of
code — the range of values for LCOM1 and LCOM2 is [0, (*°)].
Nevertheless, regarding only precision two normalized cohesion
metrics (i.e., COH and CC) are the optimal predictors. Therefore, if
one is interested in capturing as many long methods as possible,
one should prefer size or not normalized cohesion metrics, whereas
if one is interested to get as fewer false positives as possible, then
one should prefer normalized cohesion metrics.

Additionally, by comparing cohesion metrics, we can identify four
main groups of metrics:

e LCOMI, LCOM?2 which are the top ranked indicators for
predicting and prioritizing extract method opportunities.

¢ (COH and CC, which have the highest precision when used
for predicting the existence of extract method opportuni-
ties, but are ranked lower than the first group, concerning
prioritization.

¢ LCOM4 which is a useful indicator only concerning identi-
fication of long method.

e LCOMS, LSCC, DCD, and SCOM, which are useful indica-
tors only concerning the urgency for refactoring a long
method.

* LCOM3, TCC, LCC, and DCI, which appear to be unable
to indicate either the existence, or the urgency of applying
the extract method refactoring.

From the aforementioned findings, we can highlight the following
observations:

¢ The metrics that quantify lack of cohesion, instead of co-
hesion (i.e., LCOMI, LCOM2, and LCOM4), appear to



have higher predictive power concerning extract method
opportunities compared to the rest of the metrics. This re-
sult is especially interesting since LCOMI and LCOM?2
have until now received much criticism in the literature
(e.g., [8], [9], [16]). However, the results of this case study
suggest that the fact that they are open-ended and that they
are to some extent related to method size, provides them
with a comparative advantage for the identification and
prioritization of methods that are in need of refactoring.

¢ The metrics that invelve method invocations in their calcu-
lation (i.e., LCOM4, TCC, LCC, DCD, and DCI) appear to
provide lower ranking power, than those that omit them.
Thus, we assume that the semantic distance between two
lines is not related to whether they call the same method,
but only to whether they access common variables.

* The metrics SCOM and CC, that are similar in their calcu-
lation, appear to produce similar results in terms of ranking
and predictive power’.

¢ Although COH is calculated as a function of LCOMS, it
provides better results with respect to every research ques-
tion, implying that the suggested normalization by Briand
et al. (which drops the assumption that each attribute is ref-
erenced by at least one method) is more fitting than the
original one [9].

¢ Similarly to O’ Cinneide et al. [37], we suggest that the dif-
ferent aspects of cohesion that various metrics quantify,
lead to different predictive and ranking power. However,
as discussed before, some grouping for closely related met-
rics (e.g., LCOMI and LCOM2, and SCOM and CC) is
possible.

6.2 Implications to researchers & practitioners

Implications to practitioners. Based on our results we suggest
that software engineers can:

* Include method-level cohesion metrics in their quality
monitoring process, especially in cases that bad smell de-
tection tool support is not available for their programming
environments.

®  Prioritize manual method code inspections, with respect
to refactoring identification, based on the COH, LCOM1
and LCOM?2 metrics, in the sense that they are strongly
correlated to the urgency to apply extract method opportu-
nities.

Implications to researchers. Similarly, based on our results we
propose that researchers:

* Develop approaches that aim at the identification of extract
method opportunities, based on method-level cohesion
metrics.

* Explore the potential of additional size metrics (e.g., num-
ber of accessible variables in a method) to indicate the ex-
istence and prioritization of extract method opportunities.

* Explore the potentially improved predictive and ranking
power of approaches that combine size and cohesion met-
rics (e.g. by using multivariate regression models, multi-

In terms of predictive power, SCOM presents the following results:
precision 93.6%, recall 62.7% (sig: 0.13). The results are not present-
ed in Table 5, since they are not statistically significant (sig > 0.05)

criteria methods like the analytic hierarchy process (AHP),
or Bayesian networks).

* Investigate the possibility of identifying thresholds, for the
six metrics presenting the highest predictive power, that
when surpassed a method can be classified as in need for
extract method refactoring.

* Investigate if method-level cohesion metrics can be used
for the development of feature identification algorithms.
The inherent relation between lack of cohesion and the
number of functionalities that offers a software module
might lead to a promising way for exploring the field of
feature extraction.

7. THREATS TO VALIDITY

In this section we will present potential threats to validity for our
study following the guidelines proposed by Runeson et al. [39].
According to Runeson et al., there are four types of threats to
validity: construct, reliability, external, and internal validity threats.
Specifically, construct validity concerns the degree to which the
study answers explicitly the research questions, alleviating any
doubts with regard to the appropriateness of the used methods.
Reliability concerns the capability of reproducing the study and
getting the same results. External validity deals with any potential
limitations that would prevent or threaten the general application of
the proposed method or the derived results. Finally, internal validi-
ty concerns the investigation of whether a causal conclusion is
warranted. In this study internal validity will not be considered,
since causal relations are not in the scope of this study.

Construct Validity. Regarding construct validity, the first two
threats concern the use of the two automated tools for creating our
dataset. JDeodorant is a third-party tool, which was used for
counting extract method opportunities detected in the studied
methods. The tool is considered as trustworthy due to the exten-
sive validation process and provided evidence [44]. Specifically
according to the authors the tool has been evaluated in two differ-
ent ways: (a) using a well-known open source project for as-
sessing the soundness and usefulness of the identified refactoring
opportunities, and also investigating their impact on the slice-
based cohesion metrics and the external behavior of the program,
and (b) by comparing the results of their tool to those of inde-
pendent evaluators, on projects developed by themselves. The
second tool, which was used for calculating the metrics, is a cus-
tom-made tool developed by the authors of this paper for the
needs of the study. To mitigate the potential threat of miscalculat-
ing the metrics, we verified the tool by manually calculating the
metrics for random units of analysis and crosschecked them with
those of the tool; we found no inconsistences. Finally, a third
potential threat to construct validity is the applicability of the
selected metrics to measure method cohesion. However, as de-
scribed in Section 3, the proposed metrics are produced by trans-
forming well-established class-level cohesion metrics to method-
level metrics. By taking into account that we used an exact trans-
formation, without omitting any rules or making further assump-
tions, we believe that the method-level metrics retain their ability
for assessing cohesion.

Reliability. To mitigate threats to reliability, two different re-
searchers conducted the data collection and data analysis process,
to double-check the derived results. All raw data can be reproduced
by following the process described in Section 4, and by using the
mentioned tools. A threat to reliability is that for each project we
used only one external evaluator. To mitigate this threat we select-
ed to involve the lead developer of each project.



External Validity. With regard to external validity there are three
potential threats. First, the study was conducted analyzing only
Java projects and thus the results cannot be directly applied to other
languages. Second, the subjects of our case study are only research
projects, so we cannot generalize the applicability of results to
industrial source code. Third, the study focused on 14 specific
metrics and the results cannot be generalized to other metrics
quantifying the same or different quality properties.

8. CONCLUSIONS

Extract method refactoring aims at alleviating the negative impact
of one of the most common and persistent code bad smells, i.e., the
long method. Although, tools and approaches on the identification
of long methods and extract method opportunities exist in the
literature, their applicability is limited, and none of them deal with
the prioritization of methods in need for refactoring; whereas
existing metric-based approaches present a relatively low accura-
¢y. Therefore, in this study, we explored the potential ability of
cohesion and size metrics to: (a) predict which methods are long
and which are not, and (b) rank methods, with respect to their
urgency of applying extract method refactorings.

The results of the study suggested that the used size metric (i.e.,
LOC) and three cohesion metrics (i.e., LCOM1, LCOM?2, and
COH) are the most prominent metrics with respect to their predic-
tive and ranking power. The study results confirms the intuitive
connection among cohesion and the long method bad smell, un-
veils a significant dimension on the possible use of the LCOM1
and LCOM?2 metrics that have until now received criticism in the
literature, and point out several implications for researchers and
practitioners.
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