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ABSTRACT 
Source code bad smells are usually resolved through the applica-
tion of well-defined solutions, i.e., refactorings. In the literature, 
software metrics are used as indicators of the existence and priori-
tization of resolving bad smells. In this paper, we focus on the 
long method smell (i.e. one of the most frequent and persistent 
bad smells) that can be resolved by the extract method refactoring. 
Until now, the identification of long methods or extract method 
opportunities has been performed based on cohesion, size or 
complexity metrics. However, the empirical validation of these 
metrics has exhibited relatively low accuracy with regard to their 
capacity to indicate the existence of long methods or extract 
method opportunities. Thus, we empirically explore the ability of 
size and cohesion metrics to predict the existence and the refactor-
ing urgency of long method occurrences, through a case study on 
java open-source methods. The results of the study suggest that 
one size and four cohesion metrics are capable of characterizing 
the need and urgency for resolving the long method bad smell, 
with a higher accuracy compared to the previous studies. The 
obtained results are discussed by providing possible interpreta-
tions and implications to practitioners and researchers. 

Categories and Subject Descriptors 
D.2.3 [Coding Tools and Techniques]: Object-Oriented Pro-
gramming, Standards; D.2.8 [Metrics]: Product Metrics; D.2.10 
[Design]: Methodologies. The ACM Computing Classification 
Scheme: http://www.acm.org/class/1998/ 

General Terms 
Measurement; Design; Experimentation 

Keywords 
Long method; metrics; cohesion; size; case study 

1.  INTRODUCTION  
Code bad smells are symptoms indicating that a specific part of 
the source code is neglecting at least one programming principle 
[18]. By definition, bad smells are concrete problems closely 
related to applicable solutions, i.e. refactorings, which can allevi-

ate the caused problems [22], [23]. However, the manual identifi-
cation of such smells or refactorings opportunities is extremely 
challenging in large code bases; manual source code inspection 
would be time prohibitively expensive. To avoid manual source 
code inspection, several methods and tools aim at identifying code 
bad smells or refactoring opportunities. Nevertheless, the applica-
bility of such methods and tools is usually limited due to their 
dependency to specific programming languages or IDEs. Addi-
tionally, in most of the cases, these methods and tools do not 
prioritize the identified bad smell occurrences; this is problematic 
due to the vast number of refactoring opportunities that can be 
identified in a single system. To tackle both problems, several 
generic-scope software metrics [15] have been proposed for rec-
ognizing parts of the code base that need refactoring, and for 
characterizing their urgency (see Section 2). 

In this study we propose such a metric-based approach, focusing 
on one specific bad smell – the long method, which is resolved 
through the extract method refactoring, as defined by Fowler et al. 
[18]. The reasons for working with this smell are:  

• The frequency of its occurrence. Long method is a fre-
quently occurring smell [10]. The case study reported in 
[10], aims to investigate the presence and evolution of 
four types of code smells, i.e., Long Method, Feature En-
vy, State Checking and God Class. The results indicated 
that the long methods were considerably more common 
compared to the other smells. 

• Its persistence during evolution. Long methods are of par-
ticular urgency as they often occur in the early versions of 
software and persist unless targeted refactoring activities 
are performed. Specifically, a case study on an open source 
project (jFlex) revealed that 89.8% of the long methods 
identified in that project remained unresolved in all the ex-
plored versions [10].  

• The lack of metrics, related to long methods. So far only a 
few metrics have been assessed with respect to their capac-
ity to predict the existence of long methods. To the best of 
our knowledge, current approaches achieve a recall rate of 
59% and a precision rate between 39%-66% (see Section 
2). Also the ability of metrics to prioritize the urgency of 
the long methods to be resolved has not been empirically 
investigated yet. 

In order to use a metric-based approach for identifying bad smells 
or refactoring opportunities, one needs to specify unique character-
istics for each bad smell (e.g. a ‘god class’ is large in size), leading 
to the selection of quality properties (i.e., concepts that can be 
directly evaluated by exploring the structure of software elements 
[5]), and subsequently metrics. By definition, the long method 
smell concerns methods large in size, which have a semantic dis-
tance between the major purpose of the method, with respect to a 
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specific functionality, and the degree to which its implementation 
serves this purpose [18]. In other words, we do not perceive all 
methods large in size as ‘long’, but only those whose large size is 
due to the implementation of multiple functionalities. Based on this 
definition, a property that can be used as an indicator of the number 
of functionalities that a module offers is cohesion [26], [31]. 

Therefore, we focus on two quality properties: method size and 
cohesion. Specifically, we will empirically investigate the ability 
of size and cohesion metrics: (a) to predict which methods suffer 
from the long method bad smell, and (b) to prioritize their urgency 
to be resolved, based on the extract method opportunities that they 
present. We note that we assess the urgency of a long method to 
be refactored based on the identified extract method opportunities, 
since Fowler et al. suggest that in 99% of the cases, the extract 
method refactoring (i.e. removal of code chunks from one method 
that can be turned into new methods, whose names explain their 
purpose [18]) is the solution to the long method bad smell. 

In the next section, we present related work that used metrics for 
detecting refactoring opportunities or bad smells. In Section 3 we 
present the quality properties that are associated with the long 
method bad smell and the selected software metrics. In Section 4 
we present the case study design for evaluating these metrics as 
indicators for the prediction and prioritization of long method 
smell. In Section 5 we report the findings of the case study, which 
are discussed in Section 6. Threats to validity are discussed in 
Section 7. Finally, in Section 8 we conclude this paper. 

2. RELATED WORK 
The related work section concerns studies that evaluate existing 
metrics, with respect to their ability of identifying and prioritizing 
refactoring opportunities or detecting bad smells. Therefore, 
studies which use other approaches for identifying software arti-
facts that suffer from bad smells or present refactoring opportuni-
ties (e.g., inspection of the revision change history [38], or explo-
ration of the cohesion lattice structure [21], or exploitation of 
computational slices [44]), have been excluded from this section. 
Also, we omitted papers that propose new metrics for identifying 
refactoring opportunities or bad smells (e.g. [14] and [42]). Alt-
hough such studies can be considered as indirect related work (our 
study uses existing metrics), we preferred not to present them, due 
to space limitations. While presenting related work, more empha-
sis is given to studies related to long methods. 

Refactoring Identification & Prioritization: Yoshida et al. pro-
posed the division of the source code into functional segments that 
could be used as the basis for extracting methods (fragments of 
code that concern a unique functionality) and the employment of a 
cohesion metric (NCCP, which is based on SCOM [16]) for their 
identification [45]. To validate the outcome of the proposed meth-
od the authors performed a single case study on one project with 
one of its developers as evaluator. In the optimum application of 
the approach, 51 out of 80 unique functionalities were correctly 
identified (recall: 59%).   

Meananeatra et al. [34] presented a method for prioritizing five 
refactorings (Extract Method, Replace Temp with Query, Introduce 
Parameter Object, Preserve Whole Object, and Decompose Condi-
tional) with respect to improving maintainability. The method 
employs three maintainability metrics (complexity, size, and cohe-
sion) before and after applying the refactoring. Then a set of met-
rics, related to data and control flow graphs, is calculated for se-
lecting applicable refactorings, based on some pre-defined criteria. 
The measurement applied after the refactoring, indicates which are 
the most capable for optimizing maintainability. 

Zhao and Hayes developed a tool for identifying classes in need of 
refactorings, however, without specifying the bad smell that they 
suffer from [46]. Their approach was based on size and complexity 
metrics, combined through a weighted ranking method, for priori-
tizing the most urgent classes to be refactored. The tool was vali-
dated by comparing its results to those obtained through manual 
inspection. The outcome of the validation was that the results of 
the tool can be supportive for the software development teams. 

Demeyer et al. proposed a refactoring detection method by apply-
ing lightweight, object-oriented metrics to successive versions of a 
software system [13]. The selected metrics concerned three major 
aspects: method size (number of message sends in method body, 
number of statements in method body, lines of code in method 
body), class size (number of methods in class, number of instance 
variables) and inheritance (hierarchy nesting level, number of 
immediate children of class, number of inherited methods, number 
of overridden methods). The detected refactorings were the fol-
lowing: Split or Merge Superclass / Subclass, Move to other 
Class, and Split Method. The approach was validated by three 
case studies, suggesting that the refactoring identification strategy 
supports reverse engineering, by focusing on the relevant parts of 
a system. The precision of this approach ranges from 38% to 66% 
for the Split Method refactoring. 

Bad Smell Identification: In 2004 Marinescu proposed a mecha-
nism for detecting design problems [33]. In contrast to other 
studies that try to infer problems from a set of abnormal metric 
values, this approach defines metric-based rules that identify 
deviations from good design principles and heuristics. As a result, 
it is able to locate classes or methods affected by design flaws. 
The approach was validated experimentally on multiple case-
studies by identifying nine design flaws (including God Method). 
Concerning the identification of the God Method smell1 
Marinescu proposes the use of complexity metrics assuming that 
complexity should be uniformly distributed among methods. The 
precision of this approach on the identification of God method 
smells is 50%. 

The aforementioned approach has been applied by Mihancea and 
Marinescu, for establishing metrics-based rules, which detect 
design flaws in object-oriented systems [35]. The method searches 
for thresholds that maximize the number of correctly classified 
entities, by combining existing metrics. For validation the God 
Class and Data Class flaws were detected. For the identification 
of both flaws complexity, cohesion and coupling metrics were 
used. Next, in 2006 Lanza and Marinescu collected in a book 
entitled “Object Oriented Metrics in Practice” six well-known bad 
smells (God Class, Feature Envy, Data Class, Brain Method, 
Brain Class and Significant Duplication), which they present in 
details, along with strategies for detecting them. These strategies 
included the use of 24 of metrics, in total, and thresholds, which 
are different for each smell. Thus, their detailed presentation is out 
of the scope of this section [27].Mäntylä et al. investigated the 
identification of bad smells based on possible correlation between 
human critics and metrics provided by existing tools [30]. The bad 
smells under investigation were the large class, long parameter 
list and duplicate code. The results showed no correlation between 
the two sources. Khomh et al. proposed a Bayesian network ap-

                                                
1  Although this approach is able to identify God instead of Long Methods, 

we consider it comparable approach to ours, due to smells’ similarity. 
The difference between these smells is: “Long Methods have a large 
number of LoC. In addition to being long, God Methods have many 
branches and use many attributes, parameters, local variables.” [43] 



proach for handling the inherent uncertainty in the process of 
identifying code or design smells [24]. This study was based on 
the detection rules proposed by Moha et al. [36] for the identifica-
tion of the Blob antipattern. As an example, they suggest that 
classes with more than 90% of accessor methods can be character-
ized as data classes. 

Salehie et al. proposed a metric-based heuristic framework for 
detecting and locating object-oriented design flaws [40]. The 
framework assesses the design quality of internal and external 
structure of a system, at the class level, in two phases. In the first 
phase, hotspots are detected using metrics aiming at indicating a 
design feature (e.g., high complexity). In the second phase, indi-
vidual design flaws are detected using a proper set of metrics. The 
use of the framework is presented for the God Class and the Shot-
gun Surgery flaws, by employing coupling, cohesion and com-
plexity metrics. The framework was applied on the JBoss Appli-
cation Server, i.e., a large size system with pure object-oriented 
structure, in order to set threshold values to the used metrics.  

Related Work Overview & Contributions: From the aforemen-
tioned related work, it becomes clear that only three studies (i.e., 
[13], [33], [45]) have explored the identification of long methods, 
through metrics. From these studies only the approach of Yoshida 
et al. employs cohesion metrics for this purpose, however by 
focusing only on one metric. Therefore the contributions of this 
study can be summarized as follows: 

• It relates a variety of cohesion metrics with the existence of 
long methods. 

• It relates cohesion metrics to the prioritization of resolving 
long methods. 

• It compares size / cohesion metrics, as predictors of the ex-
istence of long methods and their urgency for refactoring. 

• It provides a method of higher accuracy (precision and re-
call), compared to the state of the art. 

• It is one of the few tools that perform identification of long 
methods, instead of extract methods opportunities (e.g., 
JDeodorand [44], JExtract [41], etc.). 

3. METRICS SELECTION  
The first step towards relating long methods and existing software 
metrics is to find out which quality properties could be related to it 
and subsequently, which metrics could be used for quantifying 
those quality properties. According to the definition provided by 
Fowler [18], a long method is characterized by: (a) its size, and (b) 
the functional distance of the lines of code of its body. First, the 
size of a method is a quality property per se, and one way to meas-
ure it is by counting the uncommented lines of code (LOC). Se-
cond, the functional distance is related to cohesion, which is de-
fined as the functional relatedness of the elements of a module 
[31]. We note that the relation between cohesion and functional 
distance is inverse (i.e., when functional distance increases, cohe-
sion decreases). However, the selection of cohesion metrics that 
would be useful indicators of the functional distance in the body of 
a method is a complex task, for two reasons:  

• The plethora of available cohesion metrics. Al Dallal has 
reported 16 class-level metrics [3]. As a result there is a 
need for an empirical evaluation of the ability of each met-
ric to indicate the existence of long methods and their re-
factoring priority. This need becomes even more evident 
by taking into account that each one of these metrics ad-
dresses a different notion of cohesion [37]. Therefore, it is 

beneficial to also investigate if these different aspects of 
cohesion lead to different capabilities for long method 
identification and prioritization. 

• The lack of cohesion metrics that can be calculated inside 
the method body. According to Al Dallal, cohesion metrics 
are applicable at class level and are classified into two cat-
egories, namely high-level and low-level cohesion metrics 
[3]. For the purpose of this study none of these metrics is 
directly applicable, in the sense that they cannot assess co-
hesion inside the method body. Specifically, the high-level 
metrics calculate cohesion, based on methods’ parameters, 
and thus they cannot be mapped to the method body level. 
On the contrary, the low-level metrics, which calculate co-
hesion by characterizing pairs or sets of methods as cohe-
sive, can be transformed to assess the cohesion inside the 
method body.  

The application of low-level cohesion metrics at the method-level 
(i.e., inside the method body) was also discussed by Yoshida et al. 
[45], when introducing the NCCP metric, i.e., a new, method-level 
cohesion measure, which has been derived from the transformation 
of the SCOM metric [16]. In our approach, we have applied a 
process, similar to the one proposed by Yoshida et al. [45], for all 
13 low-level cohesion metrics collected by Al Dallal [2]. The main 
principles for this process are the mapping of:  

• Lines of code to methods, and  
• All variables within the scope of the method (i.e., attrib-

utes, local variables, or parameters) to attributes.  

In Table 1 we present the 13 cohesion metrics used in this study, 
accompanied by their definitions, after they were transformed to 
apply to the method-level. Also, we name the original study in 
which the class-level cohesion metric was introduced. 

Table 1. Method Level Cohesion Metrics 
Cohesion 

Metric Application on method level 

LCOM1 
[11] 

LCOM1 = P, where P is the number of pairs of lines that do 
not share variables. 

LCOM2 
[12] 

LCOM2 = P – Q, if P − Q ≥ 0 / otherwise LCOM2 = 0, 

where P is the number of pairs of lines that do not share 
variables, and Q is the number of pairs of lines that share 
variables. 

LCOM3 
[28] 

Number of connected components in a graph, where each 
node represents a line of code and each edge the common 
use of at least one variable.  

LCOM4 
[20] Similar to LCOM3. Method calls are treated as edges. 

LCOM5 
[19] 

 
 

LCOM5 = (a - nl ) / (l - nl ) 

where n is the number of lines, a is the number of variables 
used in a line, and l is the total number of variables. 

Coh [9] 
Coh = 1 – (1 – 1/n) LCOM5 

where n is the number of lines 

Tight Class 
Cohesion 

(TCC) 
[7] 

 

TCC = NDC / NP 

where NDC the number of directly connected pairs of lines 
(i.e. accessing a common variable either within the line or 
within the body of a method invoked in that line directly or 
transitively), and NP the maximum possible number of 
direct connections in a method.  



Cohesion 
Metric Application on method level 

Loose 
Class 

Cohesion 
(LCC) [7] 

 

LCC = (NDC + NIC) / NP 

where NDC and NP as defined above, and NIC the number 
of indirectly connected pairs of lines. A pair of lines is 
indirectly connected, if they access no common variables, 
but there is a line directly connected to both lines of the pair.  

Degree of 
Cohesion-

Direct 
(DCD) [4] 

DCD =|ED| / [n * (n – 1) / 2] 

where ED the number of edges in a graph connecting directly 
related lines of code (i.e. as defined for TCC or in cases that 
the lines directly or transitively invoke the same method), 
and n the number of lines of a method. 

Degree of 
Cohesion-

Indirect 
(DCI) [4] 

DCI =|EI| / [n * (n – 1) / 2] 

where EI the number of edges in a graph connecting indi-
rectly related lines of code (i.e. as defined for LCC or in 
cases that the lines directly or transitively invoke the same 
method), and n the number of lines of a method. 

Class 
Cohesion 
(CC) [8] 

 

𝐶𝐶 =
1 𝑛 − 2 !

𝑛!
|𝐼𝑉|!
|𝐼𝑉|!

𝑖

!!
! !!! !

!!!

 

where n the number of lines of a method, |IV|t  is the total 
number of variables used by two lines and |IV|c the number 
of common variables used by both lines.  

Class 
Cohesion 

Metric 
(SCOM) 

[16] 
 

𝑆𝐶𝑂𝑀 =   
2

𝑛(𝑛 − 1)
𝑐𝑎𝑟𝑑 𝐼! ∩ 𝐼! ∗ 𝑐𝑎𝑟𝑑(𝐼! ∪ 𝐼!)
min 𝑐𝑎𝑟𝑑  (𝐼! , 𝑐𝑎𝑟𝑑  (𝐼!)) ∗ 𝑎

!

!!!!!

!!!

!!!

 

where n is the number of lines of a method, 𝑐𝑎𝑟𝑑 𝐼! ∩ 𝐼! = 
|IV|c as defined for CC,   𝑐𝑎𝑟𝑑 𝐼! ∪ 𝐼! = |IV|t as defined for 
CC,  min card  (I! , card  (I!)) is the minimum number of 
variables accessed between the two lines, and a is the 
number of variables accessed in the method. 

Low-level 
design 

Similarity-
based 
Class 

Cohesion 
(LSCC) [3] 

𝐿𝑆𝐶𝐶 =
0                                                                          
1                                                                          
!

!(!!!)
𝑛𝑠(𝑖, 𝑗)!

!!!!!
!!!
!!!

 

where n is the number of lines, l  the number of variables in 
the method of interest, and ns the normalized similarity 
between a pair of lines. 

4. CASE STUDY DESIGN 
The objective of this case study is to investigate the ability of one 
size (lines of code – LOC) and 13 cohesion metrics (presented in 
Section 3) to provide indications on the existence of long methods, 
and their urgency to be resolved. The case study has been designed 
and reported according to the template suggested by Runeson et al. 
[39]. The next sections contain the four parts of the research de-
sign, i.e., Objectives and Research Questions, Case Selection and 
Units of Analysis, Data Collection, Pre-Processing, and Analysis. 

4.1 Objectives and Research Questions 
The goal of the study is described using the Goal-Question-Metric 
(GQM) approach [6], as follows: “analyze thirteen cohesion and 
one size metric for the purpose of evaluation, with respect to their 
ability to: (a) predict the existence of long method, and (b) priori-
tize the urgency for applying the extract method refactoring on 
them, from the viewpoint of software engineers, in the context of 
java open source software”. According to the aforementioned goal, 
we have derived two research questions that will guide the case 
study design and the reporting of the results. 

RQ1:  Which metrics can be used to predict the existence of the 
long method smell? 

This research question aims at identifying metrics that could poten-
tially be used for predicting the existence of long methods in the 
complete codebase of software projects. In large codebases, the 
manual identification of long methods, might be a time consuming 
or even unrealistic task. 

RQ2:  Which metrics can be used for prioritizing long methods, 
with respect to their urgency for applying the extract method 
refactoring (in terms of extracted lines)? 

This research question aims at investigating which metrics could 
be used for prioritizing the identified long method smells, accord-
ing to their urgency to get refactored. In large-scale software sys-
tems, it is likely that many methods could benefit from an extract 
method refactoring. However, applying all these refactoring oppor-
tunities is not feasible and maybe even unnecessary. Answering 
this research question can provide guidance on which of the exist-
ing long method bad smells should be initially refactored.  

As urgency we define the average number of lines to be extracted 
by applying one extract method opportunity in the long method. 
We expect that the larger the methods to be extracted, the more 
important it is to refactor the long method. For example consider 
the two extract method opportunities of Figure 1 and the use of the 
LCOM1 metric (see Table 1). For simplicity, in Figure 1, we de-
note sets of lines of code that are 100% cohesive (i.e., all lines all 
cohesive to each other), with the same fill pattern. Also, we con-
sider that lines with different fill patterns are 100% non-cohesive 
(i.e., no variable is shared). In this case, LCOM1 for the left meth-
od is 38, and we compare two extract method opportunities: (a) 
which extracts the block of 4 LoC, and (b) which extracts the block 
of 2 LoC. The outcome of (a) is method of LCOM1 equals 10, 
whereas the outcome of (b) is a method of LCOM1 equals 20. 
Therefore, the benefit from extracting a larger number of cohesive 
lines of code is higher. Although in this example we describe an 
extreme scenario, the effect is similar in other cases.  

  
Figure 1. Extract Method Benefit 

4.2 Case Selection and Units of Analysis 
This study is a holistic multiple case study, in the sense that meth-
ods are both the cases and the units of analysis. As subjects for this 
study, we selected Java projects (listed in Table 2), based on our 
accessibility to their developers. In particular all selected projects 
are research tools for which we could ask one of their developers to 
indicate the existing long methods. Due to the effort required for 
manual long method detection, we investigated a rather small 
number of software projects, for which manual code inspection 
was feasible. The reason for restricting our case selection to Java 
projects was a limitation of the used tools for identifying extract 
method opportunities (see Section 4.3). Specifically, the tool that 
we used for identifying the extract method opportunities is able of 
parsing only Eclipse projects. On the completion of the process, we 

if (l>0 and n=0) or n=1 

if l=0 and n>1 

otherwise 



ended up with a dataset of four Java projects, which provided us 
with 1,850 methods. 

Table 2. OSS Project Selection Outcome 
Project Project Description #Methods 

CKJM2 Calculates quality metrics for Java 
projects. 173 

ClassInstability3 Calculates the REM metric for Java 
projects. 1,389 

lm_tool4 
Parses the abstract syntax tree of Java 

projects and identifies functionally 
related code chunks. 

128 

SSA5 Detects design pattern instances from 
Java binary classes. 160 

4.3 Data Collection and Pre-Processing 
The dataset used in this study consists of 1,850 rows, which corre-
spond to methods of the selected Java projects. For every method, 
we recorded the following variables: 

• V1 – V3: Method demographics (project name, class name, 
method name). This set of variables is not used in the anal-
ysis, but only for characterization purposes. 

• V4 – V16: Cohesion metrics (see metrics described in Ta-
ble 1). This set consists of the independent variables to be 
analyzed. 

• V17: Method Size (uncommented lines of code inside the 
method). This variable is also used as an independent vari-
able. 

• V18: Long Method (yes / no). This variable was assigned a 
binary score from the developer of each project. This vari-
able is going to be used as dependent variable in RQ1. 

• V19: Extract Method Urgency. This variable corresponds 
to the average number of lines to be extracted if the extract 
method refactoring is applied. The variable is extracted by 
using a tool (see below). This variable is going to be used 
as dependent variable in RQ2.  

The software metrics (V4 – V17) were calculated by a tool devel-
oped by the authors for the needs of this study6, whereas, as men-
tioned earlier, variable V18 was manually recorded, based on 
experts’ opinion (developers of the subject Java projects). The 
extract method opportunities (V19) were obtained using an existing 
tool, namely, JDeodorant [44]. JDeodorant is an Eclipse plugin that 
detects four types of refactoring opportunities, including extract 
method. The tool identifies refactoring opportunities by applying 
two different techniques for calculating static slices and uses the 
union of their results. The first technique calculates the complete 
computation slice of primitive data types or object references, 
which concerns a given variable, whose value is modified through-
out the original method. The second technique calculates the object 
state slice, which consists of all statements modifying the state of a 
given object in the original method. For this purpose a set of slice-
based metrics have been used (i.e., tightness, overlap, and cover-
age). These metrics are not directly related to any of the cohesion 
or size metrics used in our approach. Therefore, they do not affect 
the results of this case study.  

Additionally, we need to clarify the basic difference between JDe-
                                                

2  http://www.spinellis.gr/sw/ckjm/ 
3  http://iwi.eldoc.ub.rug.nl/root/2014/ClassInstability/ 
4  www.cs.rug.nl/search/uploads/Resources/lm_tool.zip 
5  http://java.uom.gr/~nikos/pattern-detection.html 
6   www.cs.rug.nl/search/uploads/Resources/SEMI.zip 

odorant and our method is that they serve different goals: one 
identifying long methods and the other identifying extract method 
opportunities. Although the two goals are related, they differ in the 
sense that the existence of an extract method opportunity does not 
automatically constitute the method as ‘long’. Details on the vali-
dation of JDeodorant are presented in Section 7. Finally, we note 
that we preferred to assess urgency for refactoring through the 
outcome of an automated tool, rather than expert opinion for two 
reasons: (a) the cohesion benefit obtained from extracting larger 
parts of code is an objective success criterion, and (b) the compari-
son of refactoring opportunities from different projects is not feasi-
ble in the sense that no developer had an overview of all examined 
projects. We preferred not to split the dataset into four sub-datasets 
(one dataset for each developer), as this would reduce the size of 
our sample, and consequently confidence in the obtained results. 

On the completion of data collection, a pre-processing step took 
place. In particular, we filtered out of the dataset methods that were 
less prone to suffer from the long method bad smell. The rationale 
for this decision was to have a balanced dataset with respect to the 
number of methods that are in need of refactoring and those that 
are not. Having a balanced dataset makes the null model (i.e., a 
model without any independent variable) to provide a classification 
accuracy near 50% (i.e., close to the probability of a random guess-
ing). According to King and Zeng [25], applying predictive models 
(e.g. regression) in rare events datasets (in our case 10%), can 
benefit from case selection strategies that reduce the number of 
negative events (in our cases methods that are not in need for 
refactoring). Therefore, we filtered out methods of size smaller 
than 30 lines of code, in alignment with Lippert and Roock [29], 
who suggest that a method is prone to suffer from bad smells if its 
size exceeds 30 lines of code. After applying this filter, the dataset 
was comprised of 79 units of analysis (including 40.5% of negative 
events). Although the number of cases seems rather small for a 
study in the domain of source code analysis, the number of cases is 
limited due to the involvement of human experts and the manual 
processing of source code. 

4.4 Data Analysis 
In order to answer the research questions set in Section 4.1, we 
will statistically analyze the collected data, through regression 
analysis, correlation analysis and visualization [17].  

To answer RQ1 we will investigate the ability of cohesion and size 
metrics (see Section 4.3) to act as potential predictors of the long 
methods. To this end, we will perform a logistic regression, which 
is used for predicting the value of a binary variable (in this case: 
V18 – long method), from a set of numerical predictors (in this 
case: metric score [V4–V17]). We note that although, some related 
work employs metrics combinations instead of using metrics in 
isolation, we believe that treating each metric separately is the first 
step towards creating a more complex model for the identification 
of long methods or extract method opportunities, in the sense that 
the most fitting metrics can be fed to such models. The generic 
form of a logistic regression equation is as follows: 

𝑓 𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑐𝑜𝑟𝑒 =   
1

1 + 𝑒!(!!!!!∗!"#$%&_!"#$%)
 

For each metric, the equation coefficients b0 and b1 will be calcu-
lated by performing the regression analysis [17]. Next, in order to 
use the regression equation the metric score has to be substituted, 
and the value of f(metric_score), will assess the probability of the 
method to be in need of refactoring. Specifically, the closer the 
value of f(metric_score) is to 1.0, the larger the probability of the 



method to be long7. After creating the equations, the fitness of the 
models (i.e., the ability of each metric to predict the need for 
refactoring), will be assessed by three well-known measures: 
accuracy, precision, and recall [17]. Accuracy evaluates the ratio 
of correctly classified methods either positively or negatively (i.e., 
TP + TN) against all classified methods (n), precision quantifies 
the positive predictive power of the model (i.e., TP / (TP + FP), 
and recall evaluates the extent to which the model captures all 
long methods (i.e., TP / (TP + FN)8. 

To answer RQ2 we will apply a correlation test between the cohe-
sion/size metrics, and the average number of lines to be extracted, 
when a refactoring is applied. These tests will aim at identifying 
indicators on the urgency of refactoring a method, with respect to 
the average number of extracted lines of code. As explained 
above, it is expected that the benefit of extracting larger, cohesive 
methods should help reduce the negative effect of the long method 
smell. Even in cases that the smell is not totally mitigated (e.g., 
extraction of a relatively small code fragment, from a large meth-
od) the method is improved with respect to its long size.  

The decision to apply a correlation test (i.e., Spearman correla-
tion), is based on the 1061 IEEE Standard for Software Quality 
Metrics Methodology [1], which suggests that a sufficiently strong 
correlation “determines whether a metric can accurately rank, by 
quality, a set of products or processes (in the case of this study: a 
set of methods)”. We note that we performed a Spearman rather 
than a Pearson correlation, since our data were not normally dis-
tributed and we were interested in ranking them. Additionally, in 
order to visualize the relations between the corresponding varia-
bles, and potentially mine underlying patterns, we will plot the 
dataset using scatter plots. Scatter plots are the default mean of 
visualization for exploring the correlation between two numerical 
variables [17]. A summary of data analysis techniques is present-
ed in Table 3. 

Table 3. Data Analysis Overview 

Question Variables Statistical Analysis 

RQ1 
Cohesion metrics 
Size 
 Long method (yes / no) 

Logistic Regression 
 

RQ2 
Cohesion metrics 
Size 
Extract Method Urgency 

Spearman Correlation 
Scatter-plots 

5. RESULTS 
In this section we present the results that have been obtained from 
data analysis, organized by research question. Due to space limita-
tions and the public availability of the extracted dataset for data 
analysis replication, in both sections, we present only results that 
are statistically significant. Interpretation of the results and impli-
cations to researchers and practitioners are provided in Section 6. 

5.1 Metrics for predicting the existence of 
long methods 

To assess the ability of metrics to predict whether a method suf-
fers from the long method smell (RQ1), we present, in Table 4, the 
results of the corresponding regression analysis. Specifically we 

                                                
7  The cut-off point has been set to 0.5 (default value in SPSS for binary 

values) 
8 TP: true positive, TN: true negative, FP: false positive, FN: false nega-

tive 

present two sets of measures: the first is related to the construction 
of the prediction model (i.e., beta values and significance), where-
as the second is related to its evaluation (accuracy, precision, and 
recall). In the table we present only metrics that have a predictive 
power at a statistically significant level, i.e. lower or equal to 5%. 

Table 4. Cohesion Metrics – Long Method (Predictive Power) 

Metric 
Prediction Model Predictive Power 

b0 b1 sig. Accuracy Precision Recall 

LOC -4.491 0.103 0.00 84.8% 80.85% 92.68% 

LCOM1 -1.281 0.002 0.00 79.7% 74.47% 89.74% 

LCOM2 -0.809 0.002 0.00 70.9% 68.09% 80.00% 

LCOM4 -0.536 0.113 0.01 68.4% 76.60% 72.00% 

COH 1.392 -10.200 0.03 62.0% 89.36% 62.69% 

CC 0.996 -5.362 0.05 68.4% 95.74% 66.18% 

The results of Table 4 suggest that in total six metrics are able to 
predict which methods are in need for refactoring. We observe 
that LOC (i.e., lines of code), and three not normalized cohesion 
metrics (i.e., LCOM1, LCOM2, and LCOM4), form a group of 
measures significant at the 1% level. Finally, we can observe that 
two normalized cohesion metrics (COH and CC) are able to 
predict methods that are in need of extract method refactoring 
with a precision around 90%. As expected, these two metrics 
misclassify a larger number of false-negatives compared to the 
rest of the metrics, leading to a slightly decreased recall rate. 
5.2 Metrics for long method prioritization 
For answering RQ2, we summarize the results of the Spearman 
correlation test in Table 5. Specifically, we present the ability of 
the examined metrics to rank methods, based on the average 
number of lines that will be extracted, if a proposed refactoring is 
applied. We note that the sign of the correlation depends on 
whether the metric expresses cohesion (e.g., COH), or lack of 
cohesion (e.g., LCOM1). Concerning LOC, the sign is positive, 
due to its direct relation to the number of extract method opportu-
nities. From Table 5, we excluded metrics that: (a) were not sig-
nificantly correlated to the corresponding variable at least at the 
5% level, or (b) were correlated with strength lower than 0.2. 
According to Marg, correlations with r < 0.2 present weak or non-
existing relations [32]. 

Table 5. Metrics – Average Lines to be Extracted  

Metric 
Correl. 

Coefficient Sig. 

LOC 0.463 0.00 

LCOM1 0.472 0.00 

LCOM2 0.385 0.00 

LSCC -0.326 0.00 

COH -0.303 0.00 

CC -0.268 0.02 

DCD -0.254 0.02 



Metric 
Correl. 

Coefficient Sig. 

SCOM -0.253 0.02 

LCOM5 0.244 0.03 

The results of the table suggest that the results are similar to those 
of RQ1, in the sense that LOC, LCOM1, and LCOM2, are the top 
ranked indicators of the urgency for refactoring, followed by COH 
and CC. An additional finding from comparing the results of RQ1 
to those of RQ2 is the fact that LSCC, DCD, SCOM, and LCOM5 
are valid indicators for the urgency for refactoring, but not for the 
existence of extract method opportunities. On the other hand, 
LCOM4 is not able to rank long methods’ urgency, despite the 
fact that it is a statistically significant predictor of their existence. 

Finally, to visualize the aforementioned results, we produced 
scatter-plots for LOC, LCOM1, LCOM2, LSCC, and COH (top 
ranked indicators for refactoring urgency), and the average size of 
extract method opportunities. Based on Fig. 2, we have been able 
to verify the existence of a trend in our data, represented by a line. 
For example, concerning LOC (see top-left scatter plot), which is 
expected to have a positive correlation to the average number of 
extracted lines, we can observe an increasing trend. 

  

  

 
Figure 2. Visualization of Cohesion Metrics – Number of 

Extract Method Opportunities 

6. DISCUSSION 
In this section, we discuss the main findings of this case study, 
from two perspectives: (a) possible explanations for the obtained 
results (Section 6.1), and (b) implications for practitioners and 
researchers (Section 6.2). 

6.1 Interpretation of results 

Based on the results of this study, we argue that cohesion is a 
quality property that should be used for the identification of extract 
method opportunities, and subsequently for the mining of long 
method bad smell instances. This is a rather intuitive result, in the 
sense that cohesion (i.e., the functional relatedness of source code 
modules – in this case lines of code) has been already associated in 
the literature as an indicator of the number of distinct functionali-
ties that the module offers [26], which can be extracted in a new 
method [18].  

Compared to the existing approaches for long method or extract 
method identification, our cohesion-based approach presents the 
highest precision. Specifically, the precision of the cohesion met-
rics, proposed in this study, ranges from 68% to 96%, whereas 
related work reports 50% precision of complexity [33] and 38-66% 
precision of size metrics [13]. The precision of size, based on our 
results is 81%. We note that the calculation of recall for [13] and 
[33] was not possible because the relevant data were not provided. 
Based on our results CC and COH present the highest precision. 
However, we note that a safe comparison of the aforementioned 
findings can only be accomplished by applying all the approaches 
on a common dataset. 

Comparing the ability of size and cohesion metrics to indicate if a 
method is in need of extract method refactoring, and therefore if it 
is long, the results cannot lead to safe conclusions, in the sense that 
4 metrics (i.e., the size metric and 3 cohesion metrics) seem to 
outperform the rest, without large differences among them. How-
ever, we need to note that two of the top two cohesion metrics (i.e., 
LCOM1 and LCOM2) are correlated to size (LOC), in the sense 
that they are open-ended metrics, whose upper limit is calculated 
as the count of combinations by two for the number of lines of 
code – the range of values for LCOM1 and LCOM2 is [0, !"#

! ]. 
Nevertheless, regarding only precision two normalized cohesion 
metrics (i.e., COH and CC) are the optimal predictors. Therefore, if 
one is interested in capturing as many long methods as possible, 
one should prefer size or not normalized cohesion metrics, whereas 
if one is interested to get as fewer false positives as possible, then 
one should prefer normalized cohesion metrics. 

Additionally, by comparing cohesion metrics, we can identify four 
main groups of metrics:  

• LCOM1, LCOM2 which are the top ranked indicators for 
predicting and prioritizing extract method opportunities. 

• COH and CC, which have the highest precision when used 
for predicting the existence of extract method opportuni-
ties, but are ranked lower than the first group, concerning 
prioritization. 

• LCOM4 which is a useful indicator only concerning identi-
fication of long method. 

• LCOM5, LSCC, DCD, and SCOM, which are useful indica-
tors only concerning the urgency for refactoring a long 
method.  

• LCOM3, TCC, LCC, and DCI, which appear to be unable 
to indicate either the existence, or the urgency of applying 
the extract method refactoring.  

From the aforementioned findings, we can highlight the following 
observations: 

• The metrics that quantify lack of cohesion, instead of co-
hesion (i.e., LCOM1, LCOM2, and LCOM4), appear to 



have higher predictive power concerning extract method 
opportunities compared to the rest of the metrics. This re-
sult is especially interesting since LCOM1 and LCOM2 
have until now received much criticism in the literature 
(e.g., [8], [9], [16]). However, the results of this case study 
suggest that the fact that they are open-ended and that they 
are to some extent related to method size, provides them 
with a comparative advantage for the identification and 
prioritization of methods that are in need of refactoring.  

• The metrics that involve method invocations in their calcu-
lation (i.e., LCOM4, TCC, LCC, DCD, and DCI) appear to 
provide lower ranking power, than those that omit them. 
Thus, we assume that the semantic distance between two 
lines is not related to whether they call the same method, 
but only to whether they access common variables. 

• The metrics SCOM and CC, that are similar in their calcu-
lation, appear to produce similar results in terms of ranking 
and predictive power9. 

• Although COH is calculated as a function of LCOM5, it 
provides better results with respect to every research ques-
tion, implying that the suggested normalization by Briand 
et al. (which drops the assumption that each attribute is ref-
erenced by at least one method) is more fitting than the 
original one [9]. 

• Similarly to O’ Cinneide et al. [37], we suggest that the dif-
ferent aspects of cohesion that various metrics quantify, 
lead to different predictive and ranking power. However, 
as discussed before, some grouping for closely related met-
rics (e.g., LCOM1 and LCOM2, and SCOM and CC) is 
possible. 

6.2 Implications to researchers & practitioners 
Implications to practitioners. Based on our results we suggest 
that software engineers can: 

• Include method-level cohesion metrics in their quality 
monitoring process, especially in cases that bad smell de-
tection tool support is not available for their programming 
environments. 

• Prioritize manual method code inspections, with respect 
to refactoring identification, based on the COH, LCOM1 
and LCOM2 metrics, in the sense that they are strongly 
correlated to the urgency to apply extract method opportu-
nities. 

Implications to researchers. Similarly, based on our results we 
propose that researchers: 

• Develop approaches that aim at the identification of extract 
method opportunities, based on method-level cohesion 
metrics. 

• Explore the potential of additional size metrics (e.g., num-
ber of accessible variables in a method) to indicate the ex-
istence and prioritization of extract method opportunities. 

• Explore the potentially improved predictive and ranking 
power of approaches that combine size and cohesion met-
rics (e.g. by using multivariate regression models, multi-

                                                
9  In terms of predictive power, SCOM presents the following results: 

precision 93.6%, recall 62.7% (sig: 0.13). The results are not present-
ed in Table 5, since they are not statistically significant (sig > 0.05) 

criteria methods like the analytic hierarchy process (AHP), 
or Bayesian networks). 

• Investigate the possibility of identifying thresholds, for the 
six metrics presenting the highest predictive power, that 
when surpassed a method can be classified as in need for 
extract method refactoring. 

• Investigate if method-level cohesion metrics can be used 
for the development of feature identification algorithms. 
The inherent relation between lack of cohesion and the 
number of functionalities that offers a software module 
might lead to a promising way for exploring the field of 
feature extraction. 

7. THREATS TO VALIDITY 
In this section we will present potential threats to validity for our 
study following the guidelines proposed by Runeson et al. [39]. 
According to Runeson et al., there are four types of threats to 
validity: construct, reliability, external, and internal validity threats. 
Specifically, construct validity concerns the degree to which the 
study answers explicitly the research questions, alleviating any 
doubts with regard to the appropriateness of the used methods. 
Reliability concerns the capability of reproducing the study and 
getting the same results. External validity deals with any potential 
limitations that would prevent or threaten the general application of 
the proposed method or the derived results. Finally, internal validi-
ty concerns the investigation of whether a causal conclusion is 
warranted. In this study internal validity will not be considered, 
since causal relations are not in the scope of this study. 

Construct Validity. Regarding construct validity, the first two 
threats concern the use of the two automated tools for creating our 
dataset. JDeodorant is a third-party tool, which was used for 
counting extract method opportunities detected in the studied 
methods. The tool is considered as trustworthy due to the exten-
sive validation process and provided evidence [44]. Specifically 
according to the authors the tool has been evaluated in two differ-
ent ways: (a) using a well-known open source project for as-
sessing the soundness and usefulness of the identified refactoring 
opportunities, and also investigating their impact on the slice-
based cohesion metrics and the external behavior of the program, 
and (b) by comparing the results of their tool to those of inde-
pendent evaluators, on projects developed by themselves. The 
second tool, which was used for calculating the metrics, is a cus-
tom-made tool developed by the authors of this paper for the 
needs of the study. To mitigate the potential threat of miscalculat-
ing the metrics, we verified the tool by manually calculating the 
metrics for random units of analysis and crosschecked them with 
those of the tool; we found no inconsistences. Finally, a third 
potential threat to construct validity is the applicability of the 
selected metrics to measure method cohesion. However, as de-
scribed in Section 3, the proposed metrics are produced by trans-
forming well-established class-level cohesion metrics to method-
level metrics. By taking into account that we used an exact trans-
formation, without omitting any rules or making further assump-
tions, we believe that the method-level metrics retain their ability 
for assessing cohesion. 
Reliability. To mitigate threats to reliability, two different re-
searchers conducted the data collection and data analysis process, 
to double-check the derived results. All raw data can be reproduced 
by following the process described in Section 4, and by using the 
mentioned tools. A threat to reliability is that for each project we 
used only one external evaluator. To mitigate this threat we select-
ed to involve the lead developer of each project. 



External Validity. With regard to external validity there are three 
potential threats. First, the study was conducted analyzing only 
Java projects and thus the results cannot be directly applied to other 
languages. Second, the subjects of our case study are only research 
projects, so we cannot generalize the applicability of results to 
industrial source code. Third, the study focused on 14 specific 
metrics and the results cannot be generalized to other metrics 
quantifying the same or different quality properties. 

8. CONCLUSIONS 
Extract method refactoring aims at alleviating the negative impact 
of one of the most common and persistent code bad smells, i.e., the 
long method. Although, tools and approaches on the identification 
of long methods and extract method opportunities exist in the 
literature, their applicability is limited, and none of them deal with 
the prioritization of methods in need for refactoring; whereas 
existing metric-based approaches present a relatively low accura-
cy. Therefore, in this study, we explored the potential ability of 
cohesion and size metrics to: (a) predict which methods are long 
and which are not, and (b) rank methods, with respect to their 
urgency of applying extract method refactorings. 

The results of the study suggested that the used size metric (i.e., 
LOC) and three cohesion metrics (i.e., LCOM1, LCOM2, and 
COH) are the most prominent metrics with respect to their predic-
tive and ranking power. The study results confirms the intuitive 
connection among cohesion and the long method bad smell, un-
veils a significant dimension on the possible use of the LCOM1 
and LCOM2 metrics that have until now received criticism in the 
literature, and point out several implications for researchers and 
practitioners. 
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