ResearchGate

See discussions, stats, and author profiles for this publication at:

Assessing Code Smell Interest Probability: A Case
Study

Conference Paper - May 2017

CITATIONS READS
0 4
4 authors:
‘ University of Groningen Q University of Groningen
12 PUBLICATIONS 50 CITATIONS 53 PUBLICATIONS 247 CITATIONS
SEE PROFILE SEE PROFILE
W University of Macedonia @ University of Groningen
160 PUBLICATIONS 1,498 CITATIONS 235 PUBLICATIONS 2,588 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject Architecting Embedded Systems

ot Software Quality Assessment

All content following this page was uploaded by on 19 April 2017.

The user has requested enhancement of the downloaded file. All in-text references are added to the original document

and are linked to publications on ResearchGate, letting you access and read them immediately.

https://www.researchgate.net/publication/315729358_Assessing_Code_Smell_Interest_Probability_A_Case_Study?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315729358_Assessing_Code_Smell_Interest_Probability_A_Case_Study?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Architecting-Embedded-Systems?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Quality-Assessment?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sofia_Charalampidou4?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sofia_Charalampidou4?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sofia_Charalampidou4?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Assessing Code Smell Interest Probability: A Case Study

Sofia Charalampidou
Department of Mathematics and Computer Science
University of Groningen
Groningen, The Netherlands
s.charalampidou @rug.nl

Alexander Chatzigeorgiou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece

achat@uom.gr

ABSTRACT

An important parameter in deciding to eliminate technical debt
(TD) is the probability of a module to generate interest along
software evolution. In this study, we explore code smells, which
according to practitioners are the most commonly occurring type
of TD in industry, by assessing the associated interest probability.
As a proxy of smell interest probability we use the frequency of
smell occurrences and the change proneness of the modules in
which they are identified. To achieve this goal we present a case
study on 47,751 methods extracted from two well-known open
source projects. The results of the case study suggest that: (a)
modules in which “code smells” are concentrated are more
change-prone than smell-free modules, (b) there are specific types
of “code smells” that are concentrated in the most change-prone
modules, and (c) interest probability of code clones seems to be
higher than the other two examined code smells. These results can
be useful for both researchers and practitioners, in the sense that
the former can focus their research on resolving “code smells”
that produce more interest, and the latter can improve accordingly
the prioritization of their repayment strategy and their training.

CCS CONCEPTS

« Software and its engineering — Software creation and man-
agement — Software development techniques — Object-oriented
development « Software and its engineering — Software crea-
tion and management — Software verification and validation —
Empirical software validation Software and its engineering —
Software creation and management — Extra-functional properties

KEYWORDS
Change proneness; interest probability; technical debt; case study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from permissions@acm.org
MTD 2017, May 22, 2017, Cologne, Germany

© 2017 ACM. ISBN 978-1-4503-4486-9/17/04...$15.00

DOI: http://dx.doi.org/10.1145/3019612.3019781

Apostolos Ampatzoglou

Department of Mathematics and Computer Science

University of Groningen
Groningen, The Netherlands
a.ampatzoglou@rug.nl

Paris Avgeriou

Department of Mathematics and Computer Science

University of Groningen
Groningen, The Netherlands
paris@cs.rug.nl

1. INTRODUCTION

Technical Debt Items (TDIs) [22] are different types of artifacts,
like modules, design decisions, or requirements that suffer from
technical debt. According to industrial experience [12], complete-
ly eliminating technical debt from all TDIs is unrealistic and
sometimes undesirable. Particularly, technical debt that is concen-
trated on TDIs that are not being maintained, will not produce any
interest in future maintenance activities. Therefore, spending
effort on repaying technical debt from such TDIs will not be cost-
effective. To quantify this varying need for repayment, Seaman et
al. [21] have introduced the term interest probability, which rep-
resents the probability of a TDI to produce interest. Therefore,
interest probability is of great importance in the process of tech-
nical debt management as it helps to prioritize which technical
debt to repay.

In this study, we focus on code TD, which is the most relevant
type of TD in industry [2]. In the case of code TD, when as-
sessing the interest probability of a module, we need to evaluate
its change proneness, i.e., the probability for this module to
change in the future. This includes all possible types of changes:
changes in requirements, changes from bug fixing, and changes
due to ripple effect [3], [7]. The most usual proxy of module
change proneness is its change frequency in past versions (i.e.,
system history) [6]. The most common way to identify code TD is
to detect the existence of code smell occurrences [1].

The goal of this study is to assess the interest probability incurred
by specific code smells. Conceptually, interest probability for a
smell X represents the probability that at least one module of the
system (that contains an occurrence of smell X) will change in
the next version of the system. For example interest probabil-
itysmenn x = 0.5 suggests that there is a 50% chance that at least one
module suffering from smell X will change in the next version of
the system. This offers awareness of which code smells are more
probable to generate interest along maintenance and can thus help
to: (a) prioritize the refactoring of the most risky smells; and (b)
train staff accordingly, in order to prevent their future introduc-
tion into software systems. The interest probability of a code
smell in a specific system can be calculated by considering: (a)
the occurrence frequency of the investigated code smells, and (b)
the change proneness of modules in which code smells reside, and

mailto:achat@uom.gr
mailto:permissions@acm.org
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/312898307_A_Mapping_Study_on_Design-Time_Quality_Attributes_and_Metrics?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/261464424_Using_technical_debt_data_in_decision_making_Potential_decision_approaches?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/220662874_Measuring_and_Monitoring_Technical_Debt?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==

then we will synthesize these results to calculate interest probabil-
ity (for more details see Section 3.4). The code smells that we will
investigate in this study are detectable at the method level. The
selection of the studied smells along with their selection process
is thoroughly discussed in Section 3. In order to achieve the
aforementioned goal, we have performed a case study on 47,751
methods, extracted from two open source projects, namely Spring
Framework and AndEngine. More details on these projects can be
found in Section 4.2.

The rest of the paper is organized as follows: In Section 2, we
present related work and in Section 3, we present the studied
types of technical debt and the tools that we have used for their
identification. In Section 4, we present the case study design,
whose results are presented and briefly discussed in Section 5.
Further discussion concerning the implications to researchers and
practitioners is presented in Section 6. Threats to validity are
presented in Section 7, and finally the paper is concluded in Sec-
tion 8.

2. RELATED WORK

As related work to this study we consider papers that investigate
the frequency of “code smells” [13] and the change proneness of
the modules in which smells are identified. Specifically we pre-
sent: (a) studies investigating the frequency of code smell occur-
rences and studies exploring the frequency of applying refactor-
ings; (b) studies on the impact of code smells on change prone-
ness, and (c) the contribution of this paper to the technical debt
field.

Code Smells / Refactoring Application Frequency: In order to
investigate the occurrences of bad smells in real projects, Chat-
zigeorgiou and Manakos conducted a case study to investigate the
presence and evolution of four types of code smells (i.e., Long
Method, Feature Envy, State Checking and God Class) using two
Open Source Systems [9]. According to the results of the study,
the existence of long methods, (i.e. methods of large size, which
have semantic distance between what the method is supposed to
do and how it does it), is the most common smell.

Murphy-Hill et al. [15] conducted an extensive study on the ap-
plication of refactorings, using four data sets and gathering data
from 3,400 version control commits. The findings of the study
showed that refactoring activity is often not reported in commit
logs as assumed in the past, while refactoring tasks are often
blended within other programming changes. Additionally, refac-
toring identification from version systems has been performed by
Ratzinger et al. [17]. Here the authors analyzed five open-source
projects to investigate the relation between refactorings and the
probability of future software defects. To achieve this goal the
authors have analyzed project commit messages and extracted the
required information.

Code Smells and Change proneness: Olbrich et al. [16] investi-
gated the impact of two code smells (God Class and Shotgun
Surgery) on change-proneness, by analyzing the historical data of
two open-source projects. According to their results, there are
different phases in the evolution of code smells during the system
development affecting the change proneness of the components

that suffer by code smells. However, it was observed that the
classes infected by the examined smells suffer more changes than
the non-infected ones.

Similarly, Khomh et al. [14] studied the impact of classes with
code smells on change-proneness, by analyzing two open-source
projects, and additionally investigated fault-proneness, as well as
particular kinds of changes occurring on classes participating in
certain anti-patterns. The results indicated that the likelihood for
classes with code smells to change is in general very high, but
having some combinations of code smells can result to classes
which are more difficult to change and thus, are less change-
prone than others.

Contribution: To the best of our knowledge this is the first study
that investigates the relationship of change proneness and the
existence of code smells in the context of technical debt manage-
ment. This different perspective (TDM instead of smell occur-
rence or change frequency) provides a contextual meaning to our
findings. This is an important contribution, in the sense that it
enables us to discuss the results in a way that they can be directly
exploitable by the technical debt community. Finally, to the best
of our knowledge this is the first study that focuses on the specific
code smells (detectable in the method body), which enables us to
perform a more concrete interpretation of the results that we have
obtained.

3. TYPES OF TECHNICAL DEBT AND
IDENTIFICATION TOOLS

In this section of the paper we discuss the code smells that we
investigate in this study. Upon the selection of these smells, we
will present the tools that can be used for their occurrence identi-
fication, and those selected for this study.

The most popular catalogue of source code smells is the one pre-
sented by Fowler and Kent [13] in the seminal book on software
refactorings. According to Fowler, each refactoring can be
mapped to a “code smell”, which represents a symptom of “bad”
design or implementation. The book presents 22 code smells,
which we categorized based on their scope as follows: (a) smells
spreading across classes (e.g., feature envy), (b) smells spreading
across multiple methods (e.g., message chain), (c) smells related
to the interplay between method and attributes of the same class
(e.g., god class), and (d) smells that are focused on the body of
specific methods (e.g., long method).

In this study, we have selected to investigate code smells that are
limited to the body of a single method (i.e. the fourth category).
Although, we do not imply that the rest of the smells are less im-
portant, or that they are not detectable at the source code level, the
fact that they can be detected by design-level artifacts (e.g., class
or sequence diagrams) make them more ambiguous to categorize
between code or design smells; our scope is clearly on code
smells. The special case of the comments smell (that belongs to
the fourth category) has not been considered since: (a) their cate-
gorization as superfluous or useful would require the processing
of textual information, and (b) the mapping between comments
and the methods that they correspond to could not always be au-

https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221200072_An_Exploratory_Study_of_the_Impact_of_Code_Smells_on_Software_Change-proneness?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/216667103_How_We_Refactor_and_How_We_Know_It?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221495009_The_evolution_and_impact_of_code_smells_A_case_study_of_two_open_source_systems?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221657010_On_the_Relation_of_Refactorings_and_Software_Defect_Prediction?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==

tomated without the manual inspection of the code®. Therefore,
we have selected to investigate three smells:

e Long method. The long method code smell exists when a
method is large in size and holds many responsibilities. This
smell can be resolved by extracting smaller methods from the
long one, so that each one conforms to the single responsibility
principle [13].

e Conditional Complexity. The problem with conditional state-
ments (i.e., if or switch) that perform type checking is essentially
that of duplication. The object-oriented notion of polymorphism
provides an elegant way to deal with this problem [13].

e Code clones exist when the same code structure is identified in
more than one places of the code base. The existence of this
smell hinders maintainability and testability, and it can be re-
solved by applying the extract method refactoring [13].

To identify methods suffering from the aforementioned code
smells of interest, we used three existing tools (using the default
configuration), which parse Java code, are available online, and
whose accuracy has been evaluated in previous studies. Regard-
ing the identification of long methods we used the SEMI tool
[10][11], which is a standalone tool that calculates the need for a
method to be refactored and proposes potential extract method
opportunities, ranked based on an estimate of their fitness for
extraction. The evaluation of the approach, conducted on both
open source and industrial data, suggested that SEMI was more
accurate than other existing tools serving similar goals (i.e. JDeo-
dorant (Long Method Detector) [24] and JExtract [23])

Concerning the identification of conditional complexity occur-
rences, which corresponds to the lack of polymorphism, we used
JDeodorant (Type Checking Detector) [25]. JDeodorant is an
Eclipse plugin that provides a recommender on refactoring oppor-
tunities that facilitates the use of polymorphism, through type
checking. To the best of our knowledge, no other tools exist on
identifying the corresponding smell. Thus, we did not have the
option to choose among multiple tools. However, in the original
introduction of the JDeodorant methodology, the tool has been
evaluated in three ways: first, in terms of precision and recall,
showing moderate precision and relatively high recall scores;
second according to experts’ opinion about the importance of the
identified refactoring opportunities; and third in terms of scalabil-
ity for analyzing large projects.

Finally, to identify instances of the duplicate code smell, we used
NiCad [19]. NiCad is a command line tool that provides as output
sets of lines of code that have been duplicated in the source code.
Due to the large number of tools that are able to extract duplicate
code statements, we based our selection on the results of an inde-
pendent study that compared 42 clone detection tools and ap-
proaches on 4 different scenarios [18]. By considering the point
system proposed in the paper, we came up with NiCad as the
most prominent tool for the identification of duplicate code.

! Although in some cases comments might reside in a method’s body,
and thus the mapping is evident, we believe that the accuracy of the da-
taset would be threatened by the amount of false-negatives, i.e., com-
ments that refer to a specific method, but are located outside of its body.

4. CASE STUDY DESIGN

The case study presented in this paper, has been designed and is
reported according to the linear-analytic structure template sug-
gested by Runeson et al. [20]. In particular, in the upcoming sec-
tions we present the: (a) research objectives and the correspond-
ing research questions, (b) case and subjects selection process, ()
data collection procedure, and (d) data analysis process.

4.1 Objectives and Research Questions

The of this case study in terms of Goal Question Metric (GQM)
[8] is formulated as follows: “analyze code smells with the pur-
pose of evaluation, with respect to their interest probability (based
on their frequency of occurrence and the change proneness of
modules in which they are identified), from the point of view of
software engineers, in the context of technical debt management”.
This leads to the following main research question (RQ): What is
the interest probability incurred by code smells? To answer this
research question we will first investigate the following sub-
questions:

RQ;: What is the occurrence frequency for each code smell?

This research question will aim at identifying the most commonly
occurring code smells at the method level. The more occurrences
of a code smell exist in the code-base, the more probable it is for
the software engineers to face interest, due to the existence of the
specific smell, while maintaining the software.

RQ,: What is the mean change proneness of the modules in which
each type of code smell is identified?

This research question will explore whether the identified methods
suffering from code smells tend to change frequently, increasing
the chances of producing interest. To answer the research question
we will report on the average change proneness of modules that
suffer from each code smell.

We note that the answer to the main question will be provided
after the answer to RQ; and RQ,, since the calculation of smell
interest probability requires a synthesis of the information gathered
when answering the two sub-questions.

4.2 Case Selection and units of analysis

Our study is an embedded multiple case study that has been con-
ducted on Java open source code. In this study as cases we consid-
er the different projects, whereas as units of analysis we consider
their methods. The reason for restricting our case selection to Java
projects was a limitation of the tools used for identifying code
smell occurrences. The two open source projects that we used in
our study, and the rationale of their selection are presented below:

e Spring is a framework that provides a comprehensive pro-
gramming and configuration model for modern Java-based
enterprise applications on any kind of deployment platform.
Spring is a very successful project with more than 100 re-
leases and 14,000 commits and it can be considered as a
piece of software of good quality since it adheres to well-
known principles and patterns. From Spring Framework, we
have extracted 5,284 classes that offer us 44,746 units of
analysis (i.e., methods).

e AndEngine is a successful engine for developing Android
games. AndEngine holds a substantial history with more

https://www.researchgate.net/publication/239596452_The_goal_question_metric_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/311825980_Identifying_Extract_Method_Refactoring_Opportunities_based_on_Functional_Relevance?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/280611453_Size_and_cohesion_metrics_as_indicators_of_the_long_method_bad_smell_An_empirical_study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222826061_Comparison_and_evaluation_of_code_clone_detection_techniques_and_tools_A_qualitative_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/4349683_NICAD_Accurate_Detection_of_Near-Miss_Intentional_Clones_Using_Flexible_Pretty-Printing_and_Code_Normalization?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260964276_Recommending_Automated_Extract_Method_Refactorings?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/220375665_Identification_of_extract_method_refactoring_opportunities_for_the_decomposition_of_methods?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222825695_Identification_of_refactoring_opportunities_introducing_polymorphism?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==

than 1,800 commits and offered us 459 classes with 3,005
methods. The rationale of selecting a game engine as our se-
cond subject was our motivation not to focus this study only
on “good” quality software. Thus, we selected a project from
the application domain of computer games, which according
to existing literature often lacks in terms of structural quality
[4].
4.3 Data Collection

The data collection process can be divided into two main parts:
(a) the identification of code smell occurrences, and (b) the as-
sessment of method change proneness. The identification of code
smell occurrences has been performed with the tools that have
been presented in Section 3, namely: SEMI, JDeodorant, and
NiCad. The assessment of change proneness has been performed
through a rather simple metric, named Percentage of Commits in
which a Method has Changed (PCMC), calculated through a tool
that has been developed by Arvanitou et al. [5]. On the comple-
tion of data collection the following variables have been recorded
for every unit of analysis (i.e. method):

[V1] Method name: The name of the considered method
[V2] Class name: The class in which the method belongs to

[V3] Long Method: Is the method classified as long by the SEMI
tool (yes / no)?

[V4] Code Clone: Number of clones identified in the method’s
body by NiCad

[V5] Conditional Complexity: Number of conditional statements
in the method that have been flagged as unnecessary (i.e.,
they can be replaced with polymorphism) by Deodorant

[V6] PCMC: Percentage of commits in which the method has
changed. The complete history of the method is considered.

4.4 Data Analysis

In order to answer the research questions set in Section 4.1, we
will statistically analyze the collected data, through descriptive
statistics and hypothesis testing.

To answer RQ; we will use frequency tables and a heatmap as a
means of visualization. To assess the occurrence frequency of
each smell we will use: (a) the actual values for comparison
among types of code smells, and (b) the occurrences per mile (%o)
to check the reliability of our findings across the two projects. We
note that for answering RQ;, the number of occurrences of the
same smell in the same method is irrelevant, because even the
existence of one smell type in a method, would generate interest
upon the method’s change. To avoid confusion, we note that in
methods that involve multiple smells, the interest amount would
increase, in the sense that the effort required to maintain the code
would be higher. However interest probability would remain the
same independently of the number of smells. Thus, the existence
of any number of smells should be equally counted as a reason for
increasing interest probability. Therefore regarding [V4] and [V5]
we only count the number of methods for which the values are >
1, rather than summing-up the actual occurrences.

To answer RQ, we will perform both descriptive statistics and
hypothesis testing. To provide a fair comparison of the relatively

small amount of methods that suffer from code smells, compared
to those that do not, we have avoided the use of independent sam-
ple t-testing. Thus, we have preferred to calculate the mean
change proneness ([V6]) of all methods per system and perform
one-sample testing against this value. In this way, we can observe
if the change proneness of methods that suffer from one smell is
statistically different from the change proneness of the population
(regardless of the existence/absence of code smells). In order to
perform this analysis, for each type of smell, we filtered out
methods that do not suffer from the corresponding smell. An
overview of our data analysis plan (test, variables used, and notes)
is presented in Table I.

Table I. Data Analysis Overview

Question | Variables Statistical Analysis

[v3] Frequency Table (actual value)

RQ. [v4] Heatmap (per mille)
[va]
[V3] One-sample Hypothesis Testing of [\V6]
[v4] against the mean [V6] of all project’s

R

Q2 V5] methods

[V6] Select cases based on [V3], [V4], or [V5]

Finally, to calculate the smell interest probability based on the
results obtained from answering RQ; and RQ,, we will calculate
the joint probability of events. Specifically, as an event we con-
sider the action of maintaining a module that suffers from a spe-
cific smell. This event holds a specific probability to occur. The
probability that at least one of the modules suffering from the
same smell will change (i.e., the interest probability of the smell),
is calculated as the joint probability of any maintenance event to
occur. The calculation of smell interest probability (vertical axis),
contrasted with TDI interest probability (horizontal axis) is pre-
sented in Fig. 1. For example, for Smell-2, we can observe that its
occurrence frequency is 3/n, since it appears in three modules
(i.e., 2, 3 and n) and the mean change proneness of the modules it
appears inis: (cp, + cps + cp.) / 3.

Smell-1 Smell-2 ... Smell-m -_
Module-1(change_praneness: cp,)
Module-2 (change_proneness: cp,)
Module-3 (change_proneness: cp,)
Interest
Interest Probability g,

Probability;p,;

Module-n (change_proneness: cp,)

Interest Probabilityq, .,

Fig. 1: Smell Interest Probability

To calculate the joint probability, we will use the data obtained
from RQ; and RQ,. In particular, the answer from RQ; will pro-

https://www.researchgate.net/publication/259715394_An_Embedded_Multiple-Case_Study_on_OSS_Design_Quality_Assessment_across_Domains?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==

vide us with the number of smells in the system. In terms of the
calculation, this will correspond to the number of events, in the
sense that there can be one maintenance action for resolving each
smell occurrence. The answer to RQ, will provide us with the
probability of each maintenance event to occur (i.e., the proba-
bility of each module that contains the smell to change and pro-
duce interest). Based on the mathematical formula, the joint prob-
ability of two events is calculated as follows, and accordingly
scales to more than two events:

P(A|B) = P(A) + P(B) — P(A)*P(B)

5. RESULTS

In this section, first we present the answers to RQ; and RQ, (see
Section 5.1) and then a synthesis of these results as an answer to
the main research question (see Section 5.2).

5.1 Smell Interest Probability Factors

5.1.1 Occurrence Frequency of Code Smells (RQ;)

Table I1 presents the actual count of methods in which we have
identified smell occurrences, whereas in Fig. 2, we visualize a
different view of the same information through a heatmap, by
considering the frequency of smells per thousand methods. Fig. 2
allows to filter out project size, since the Spring Framework is
substantially larger than the AndEngine. Based on the above, the
results of Table Il can be used only for within project interpreta-
tion, whereas the results of Fig. 2, for within smell interpretation.

Table I1. Number of methods with smell occurrences

Long Conditional Code
Project Method Complexity Clones Total
Spring 166 28 1689 1883
AndEngine 5 20 45 70

The results of Table Il suggest that code clones are in both pro-
jects the most frequently detected code smell, while the ranking
of long methods and conditional complexity smells (in terms of
occurrence frequency) differs between the two projects. This
outcome suggests that most of the code TD items (i.e. methods)
identified into the projects suffer from code duplication.

By observing the findings presented in Fig. 2, and contrasting
them to those of Table Il, we can claim that the difference in the
number of identified long methods across the two projects is not
as large as it seems from the actual values. In particular, the level
of magnitude for long methods is not substantially different, in
the sense that we have identified approximately 4 long methods
for every thousand methods for the Spring Framework, and 2 for
every thousand methods of the AndEngine. However, the results
for the Conditional Complexity are quite different: 0.6%o for
Spring and 6.6%o for the AndEngine. The same happens for the
total number of smells, as well: approx. 44%. for Spring and 24%o
for AndEngine. A possible interpretation of this result is the (nec-
essarily) higher complexity of the Spring Framework compared to
the AndEngine. However, we note that this comparison is out of
the scope of this manuscript, which basically aims at the compari-
son of different types of smells.

Total

Long Method

Conditional{ 6.66%o 0.63%o0

Code Clones—| 14.98%o

AndEngine Spring

Fig. 2: Smell Frequency per Thousand Methods

The most frequent type of code TD is code clones. However, their
frequency-level is project-related. Concerning long methods,
approximately 2-4 can be identified in a thousand methods. The
frequency of Conditional Complexity is also project related since
it varies between less than one to 6 per mile in the two projects.

512 Change Proneness of Code Smells

(RQ2)
To perform one sample t-tests, we first needed to calculate the
mean change proneness of all classes of the Spring Framework
and the And Engine. Then, we could compare the change prone-
ness of technical debt items (i.e., methods) suffering from each
smell individually, to the specific value, and we check the exist-
ence of a statistically significant difference. The results of the
hypothesis testing are presented in Table IV and Table V, respec-
tively. In each table, we denote the significant differences with
italic fonts in the sig. column.

Table 1V. Change proneness of methods of Spring
(test value: 0.39) — in 14,000 commits

Std. . 95% conf. interval
1l M .
Sme ean Dev. Sig Low Up
Long Method 2.00 4549 | .000 0.91 231
Conditional | 5 56 | 3793 | 011 | 050 3.44
Complexity
Code Clones 0.45 1.434 .106 -0.01 0.12

Table V. Change proneness of methods of AndEngine
(test value: 0.72) — in 1,800 commits

Std. 95% conf. interval

Smell Mean sig.
Dev. g Low Up

Long Method 3.60 4615 | .235 -2.85 8.61

Conditional | 357 | 3735 | 009 0.69 4.29
Complexity

Code Clones 1.86 3.921 .060 -0.05 2.34

The results of both tables suggest that methods suffering from the
Conditional Complexity smell are more change prone than the
average method of a system, and this finding has proven to be
statistically significant for both projects. On the other hand, Code
Clones are usually identified into parts of the system whose

change proneness is not statistically different than the rest of the
methods of the system. Finally, technical debt items that suffer
from the Long Method smell, are significantly more change prone
in the Spring Framework, but not in the AndEngine. However,
even regarding the AndEngine the Long Methods are in average
located to the most change prone methods of the system. The fact
that this difference is not statistically significant is probably due
to the small number of smells identified in the AndEngine (N=5).
This observation can be explained by the fact that long methods
serve more than one functionality. Thus, they subject to more
“reasons to change” leading to a higher change proneness.

Methods that suffer from code smells are more change prone than
TD-free methods. Among specific types of code smells, long
methods and the use of conditionals instead of polymorphism are
usually encountered in change prone methods. On the other hand
code clones are usually positioned in system parts that do not
change frequently.

scenario—i.e., AndEngine, there is an almost 4.5% probability
that at least one method with a code clone (out of 45) will change
in every commit, along system maintenance. The aforementioned
results are considered intuitive in the sense that a single code
clone is spread into multiple methods. Therefore, the same smell
occurrence is affecting more than one method, whereas concern-
ing the rest smells, each occurrence is located in a single TDI. By
considering that, based on our observations, each clone is on av-
erage spread across 3.5 methods, the code clone occurrences are
approximately at the same levels as the other two smells. Howev-
er, we need to note that interest probability is correctly presented
at method level rather than smell-occurrence level, because all
clones will need to be updated (interest presence), even if one
method of the clone is changed. Additionally, we can observe that
the long method smell is the one showing the smallest deviation
in terms of smell interest probability, in the examined projects,
suggesting that this result is more reliable than the others.

5.2 Calculation of Smell Interest Probability

To assess interest probability of various types of code TD, we
have quantified two parameters: (a) how many items suffer from
each code smell (i.e., type of TD), and (b) what is the probability
of each item to change in an upcoming commit, based on change
history. Based on the outcome of RQ1 and RQ2 the two parame-
ters do not uniformly rank the encountered code smells (e.g., code
clones are the most frequently occurring smells, but are identified
in the least change prone methods). Therefore there is a need of
synthesizing the two pieces of information so as to assess the
interest probability for each smell (as explained in Section 3.4).
Based on the above information, we will calculate the interest
probability for the studied systems. The results are presented in
Table VI (Spring Framework) and Table VII (AndEngine).

Table VI. Interest Probability per Code-Smell (Spring)

Long | Conditional | Code
Method | Complexity | Clones

#TDlIs (#events) 166 28 1689
Mean Change Probability
(mean probability of event 0.14¢3 0.16e* 0.03¢*
to occur)
Interest Probability 2.07% 0.44% 14.34%

Table VII. Interest Probability per Code-Smell (AndEngine)

Long | Conditional | Code
Method | Complexity | Clones

#TDIs (#events) 5 20 45
Mean Change Probability
(mean probability of event 2.00¢* 1.78¢* 1.03¢*
to occur)
Interest Probability 0.99% 3.50% 4.53%

Based on the results of Table VI and VII, we can observe that
interest probability can significantly vary for different projects.
The interpretation of the results is as follows: in the best case

Code clones is the smell that has the higher probability to pro-
duce interest in future maintenance activities in the two examined
projects. This characteristic is mostly attributed to the smell oc-
currence frequency rather than its identification in change prone
methods. The long method smell is the code TD type that presents
the most similar smell interest probability in the examined pro-
jects

6. DISCUSSION

In this section we discuss the main findings of the case study and
present the implications that this study provides to researchers
and practitioners. In parallel we present interesting future work
opportunities. The findings of the study suggest that:

e Long Methods are code smells of which 1.6 — 3.7 occur-
rences can be identified per mille methods, which however
are changing 0.14 — 2.00 times per mile commits. Leading
to an interest probability of 1.0%-2.0% per commit.

e Conditional Complexity is a smell that occurs in approxi-
mately 0.6 — 6.7 occurrences per mile methods, which are
changing 0.16 — 1.78 times per mile commits. Leading to an
interest probability of 0.5%-3.5% per commit.

e Code Clones is the most frequently occurring smell, since
we have identified 14.9 — 37.7 occurrences per thousand
methods. These methods were changing 0.03 — 1.03 times
per thousand commits. Leading to an interest probability of
4.5%-14.0% per commit.

From the above information it becomes clear that the most fre-
quently occurring bad smells (i.e., code clones) are placed in the
least change prone parts of the system, whereas long methods,
which are the rarest have been identified in the most frequently
changing ones. The synthesis of the results suggests that code
clones, despite their identification in less change prone methods,
are the smell with the highest interest probability. The findings of
this study can be used by practitioners in the following ways:

e Existence of smells and method change proneness. Alt-
hough this case study was not meant to explore whether
heavy maintenance is responsible for introducing smells, or

if the existence of smells is responsible for the change fre-
quency of the methods, we have revealed that a relation be-
tween the two exists. More particularly, more smells exist in
more change-prone methods. Thus, we advise practitioners
to be careful in the development and maintenance of
change-prone modules, so as not to introduce code smells to
them.

e Training in TD repayment. The findings of this case study
suggest that the interest probability for method-level smells
is quite high (ranging from 9% to 16%, by summing up the
probabilities of all smells). This finding suggests that the
maintenance cost indeed increases due to code smells and
that technical debt does not only lie in parts of the system
that are not maintained. Thus, we advise practitioners to
train on: (a) ways to prevent the creation of TD at the
source code level, and (b) techniques to repay technical debt
(e.g., refactorings).

e Alert on types of code TD. Based on the results of this case
study, we advise quality managers to alert developers, espe-
cially concerning the frequency of code clones occurrences.
The amount of clones and the fact that a single smell occur-
rence can trigger interest on the modification of various
modules, renders this type of code TD as one of paramount
importance.

Regarding researchers, the methodology of this study has provid-
ed a structured way to assess the interest probability of various
types of technical debt. The methodology can be reused / tailored
in many ways, as follows:

o more smells. The methodology can be applied to more code
smells that are described in the book of Fowler et al. [13].
Applying the method to more smells would: (a) provide a
holistic evaluation of code smells, and (b) make the results
of such a study more accurate in the sense that in the current
study we considered as TD-free the modules that do not in-
volve instances of the three bad smells under investigation.

o different levels of granularity. The methodology can be tai-
lored to fit different levels of granularity, such as require-
ments, or architecture. Such an analysis would be of great
importance in the sense that TD is a multi-perspective no-
tion that spans across all development phases.

e more projects. The application of the method to more pro-
jects would increase the reliability of the presented results.
Also, it could possibly unveil differences in the interest
probability of smell types in projects with different charac-
teristics (e.g., size, maturity, history, levels of quality, etc.).
An interesting special case of such an extension would be
the application of the proposed approach to industrial pro-
jects, checking if there are differences compared to OSS.

7. THREATS TO VALIDITY

In this section, we present and discuss construct, reliability, exter-
nal, and internal validity threats for this study.

Construct validity reflects to what extent the phenomenon under
study really represents what is investigated according to the re-

search questions [20]. Thus, concerning construct validity, the
potential threats are related to the accuracy of the tools used to
assess the change proneness of methods and to detect code smells
(TD) in the source code. This is a construct validity threat in the
sense that inaccurate results might lead to measuring a different
phenomenon than the one that we originally intended to investi-
gate. However, to mitigate this threat we used tools that have
been evaluated in previous studies in terms of accuracy of the
results they provide. Additionally we should mention that a poten-
tial threat is related to our definition of TD-free methods. As men-
tioned in Section 6, in this study as TD-free methods we consider
methods that present none of the three studied smells. Thus, if
additional code smells were studied this number would differ. In
terms of external validity, i.e. possible threats while generalizing
the findings derived from the sample to a general population [20],
three potential threats have been identified. First, in our study we
used systems written in Java and there is a possibility that the
results would be different for other object-oriented languages.
Second, results cannot be generalized to other code smells, or
other types of TD, e.g., design, architecture etc. Finally, since the
results have been obtained by studying two open source projects
they cannot be generalized to the compete OSS population.

The reliability of the case study concerns the replicability of the
collected data and the analysis performed, so that same results to
be reproduced [20]. The study has limited reliability threats, since
all research questions were answered by statistical analysis of
automatically generated results, which involves no researcher
bias. However, to assure the correct data analysis, two researchers
collaborated and the one double-checked the results of the data
analysis performed by the other researcher. Finally, all primitive
data can be reproduced by using the dataset collected by GitHub
(i.e. source code of the two projects and their evolution data), and
the tools mentioned in Section 3. Nevertheless, we need to
acknowledge that a replication with different tools for identifying
code smell occurrences, might lead to different results. However,
as mentioned before the accuracy of the employed tools has been
successfully validated in empirical ways. Finally, internal validity
is related to the identification of confounding factors, i.e., factors
other than the independent variables that might influence the val-
ue of the dependent variable [20]. Internal validity is not relevant
for our study since no causal relationships have been explored.

8. CONCLUSIONS

Efficient technical debt management requires the prioritization of
repayment activities, since the complete repayment of technical
debt is not feasible with limited resources. A rule of thumb for the
selection of which technical debt items should be refactored and
which should remain intact, suggests that quality assurance teams
should first refactor modules that are more prone to produce in-
terest, i.e., be maintained in the future. The quality attribute that
assesses this possibility is change proneness.

In this study we performed an exploratory case study to identify
the types of code TD that are more commonly placed in spots of
the system that tend to change more frequently. In this way, we
assess the interest probability of each type of TD, so as to aid
quality managers in their decision making process. To achieve
this goal we have studied more than 45,000 methods retrieved

https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==

from two well-known open source projects. The projects have
been statically analyzed with state-of-the-art tools to identify code
smell occurrences and assess the change proneness of the corre-
sponding methods. The results of the study have indicated that
source code spots, in which code smells are concentrated, present
a higher probability to change compared to TD-free parts of the
system. Additionally, the obtained results suggested that TDIs
suffering from code clones present the highest interest probability
(max: approximately 35%) compared to other types of code
smells. Based on the findings of this study valuable implications
to researchers and practitioners have been reported.

ACKNOWLEDGMENT

This research has been partially funded by the ITEA2 project
11013 PROMES.

REFERENCES

[1] N.S. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola, F.

[2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

Shull, and C. Seaman, “Identification and management of technical
debt: A systematic mapping study,” Information and Software
Technology, vol. 70, pp.100-121, 2016.

A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou,
P. Abrahamsson, A. Martini, U. Zdun, and K. Systa. The Perception
of Technical Debt in the Embedded Systems Domain: An Industrial
Case Study. In 8th International Workshop on Managing Technical
Debt (MTD’ 2016). IEEE Computer Society, 2016.

A. Ampatzoglou, A. Chatzigergiou, S. Charalampidou, and P.
Avgeriou. The Effect of GoF Design Patterns on Stability: A Case
Study. IEEE Transactions on Software Engineering, 2015.

A. Ampatzoglou, A. Gkortzis, S. Charalampidou, and P. Avgeriou.
An Embedded Multiple-Case Study on OSS Design Quality
Assessment across Domains. In Proceedings of the 2013
International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE Computer Society, pages 255-258,
2013.

E. M. Arvanitou, A. Ampatzoglou, A. Chatziogeorgiou, and P.
Avgeriou, “A Method for Assessing Class Change Proneness”,
Evaluation and Assessment in Software Engineering, ACM,
Karlskrona, Sweden, 15-16 June 2017.

E. M Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster,
and P. Avgeriou. “A Mapping Study on Design-Time Quality
Attributes and Metrics”. Journal of Systems and Software,
127(5):52-77, 2017.

E. M. Arvanitou, A. Ampatzoglou, A. Chatziogeorgiou, and P.
Avgeriou. Introducing a Ripple Effect Measure: A Theoretical and
Empirical Validation. In 9th International Symposium on Empirical
Software Engineering and Measurement (ESEM” 15). IEEE, 2015.

V. Basili, G. Caldiera, D. Rombach, “The Goal Question Metric
Approach”, Encyclopedia of Software Engineering, John Wiley &
Sons, pp. 528-532. 1994

A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of
code smells in object-oriented systems”, Innov. Syst. Softw. Eng.
10(1) , pp. 3-18. March 2014.

S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A.
Gkortzis, and P. Avgeriou. Identifying Extract Method Refactoring

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Opportunities based on Functional Relevance. IEEE Transactions on
Software Engineering, 43, 2017

S. Charalampidou, A. Ampatzoglou, and P. Avgeriou. Size and
cohesion metrics as indicators of the long method bad smell: An
empirical study. In 11th International Conference on Predictive
Models and Data Analytics in Software Engineering (PROMISE
2015). ACM, 2015.

R. Eisenberg, “Management of Technical Debt: A Lockheed Martin
Experience Report,” 3™ International Workshop on Managing
Technical Debt (MTD’ 13), Baltimore, USA, 2013.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.Roberts,
“Refactoring: Improving the Design of Existing Code”, Addison-
Wesley Professional, 1 edition. July 1999.

F. Khomh, M. Di Penta, Y-G Guéhéneuc, “An exploratory study of
the impact of code smells on software change-proneness”, In:
Proceedings of the 16th working conference on reverse engineering
(WCRE). IEEE Computer Society Press, Piscataway. 2009

E. Murphy-Hill, C. Parnin, A.P.Black. How we refactor, and
how we know it. In: Proceedings of 31% IEEE international
conference on software engineering (ICSE’09), Vancouver,
Canada, pp 287-297, 2009

S. Olbrich, D.S. Cruzes, V. Basili, N. Zazworka. The evolution
and impact of code smells: a case study of two open source
systems. In: Proceedings of 3rd international symposium on
empirical software engineering and measurement (ESEM’09),
Florida,USA, pp 390-400, 2009

J. Ratzinger, T. Sigmund, H.C. Gall. On the relation of
refactorings and software defect prediction. In: Proceedings of
5thworking conference on mining software repositories
(MSR’2008), Leipzig, Germany, pp 35-38, 2008

C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,
Science of Computer Programming, Volume 74, Issue 7, 2009,
Pages 470-495

C. K. Roy and J. R. Cordy, "NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code
Normalization," 2008 16th IEEE International Conference on
Program Comprehension, Amsterdam, 2008, pp. 172-181.

P. Runeson, M. Host, A. Rainer, B. Regnell, “Case Study Research
in Software Engineering: Guidelines and Examples”, John Wiley
and Sons, Inc. 2012.

C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. lzurieta, Y. Cai, and
A.Vetro. “Using technical debt data in decision making: Potential
decision approaches”. In: 3" International Workshop on Managing
Technical Debt (MTD’ 12), IEEE Computer Society, 2012

C. Seaman, Y.Guo. “Measuring and Monitoring Technical Debt”.
Advances in Computers, Vol 82, pp. 25-46. Elsevier. 2011

D. Silva, R. Terra, M. T. Valente, “Recommending automated
extract method refactorings”. In Proceedings of the 22nd
International Conference on Program Comprehension (ICPC 2014),
ACM, New York, NY, USA, pp.146-156. 2014.

N. Tsantalis, A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods”, Journal
of Systems and Software, 84 (10), pp. 1757-1782. October 2011.

N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring
opportunities introducing polymorphism, Journal of Systems and
Software, Volume 83, Issue 3, pp. 391-404, March 2010

https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/284070211_Identification_and_Management_of_Technical_Debt_A_Systematic_Mapping_Study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/259715394_An_Embedded_Multiple-Case_Study_on_OSS_Design_Quality_Assessment_across_Domains?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/259715394_An_Embedded_Multiple-Case_Study_on_OSS_Design_Quality_Assessment_across_Domains?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/259715394_An_Embedded_Multiple-Case_Study_on_OSS_Design_Quality_Assessment_across_Domains?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/259715394_An_Embedded_Multiple-Case_Study_on_OSS_Design_Quality_Assessment_across_Domains?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/259715394_An_Embedded_Multiple-Case_Study_on_OSS_Design_Quality_Assessment_across_Domains?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/259715394_An_Embedded_Multiple-Case_Study_on_OSS_Design_Quality_Assessment_across_Domains?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/312898307_A_Mapping_Study_on_Design-Time_Quality_Attributes_and_Metrics?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/312898307_A_Mapping_Study_on_Design-Time_Quality_Attributes_and_Metrics?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/312898307_A_Mapping_Study_on_Design-Time_Quality_Attributes_and_Metrics?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/312898307_A_Mapping_Study_on_Design-Time_Quality_Attributes_and_Metrics?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/239596452_The_goal_question_metric_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/239596452_The_goal_question_metric_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/239596452_The_goal_question_metric_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/311825980_Identifying_Extract_Method_Refactoring_Opportunities_based_on_Functional_Relevance?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/311825980_Identifying_Extract_Method_Refactoring_Opportunities_based_on_Functional_Relevance?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/311825980_Identifying_Extract_Method_Refactoring_Opportunities_based_on_Functional_Relevance?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/311825980_Identifying_Extract_Method_Refactoring_Opportunities_based_on_Functional_Relevance?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/280611453_Size_and_cohesion_metrics_as_indicators_of_the_long_method_bad_smell_An_empirical_study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/280611453_Size_and_cohesion_metrics_as_indicators_of_the_long_method_bad_smell_An_empirical_study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/280611453_Size_and_cohesion_metrics_as_indicators_of_the_long_method_bad_smell_An_empirical_study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/280611453_Size_and_cohesion_metrics_as_indicators_of_the_long_method_bad_smell_An_empirical_study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/280611453_Size_and_cohesion_metrics_as_indicators_of_the_long_method_bad_smell_An_empirical_study?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/271528890_Refactoring_Improving_the_Design_of_Existing_Code?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221200072_An_Exploratory_Study_of_the_Impact_of_Code_Smells_on_Software_Change-proneness?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221200072_An_Exploratory_Study_of_the_Impact_of_Code_Smells_on_Software_Change-proneness?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221200072_An_Exploratory_Study_of_the_Impact_of_Code_Smells_on_Software_Change-proneness?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221200072_An_Exploratory_Study_of_the_Impact_of_Code_Smells_on_Software_Change-proneness?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/216667103_How_We_Refactor_and_How_We_Know_It?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/216667103_How_We_Refactor_and_How_We_Know_It?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/216667103_How_We_Refactor_and_How_We_Know_It?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/216667103_How_We_Refactor_and_How_We_Know_It?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/216667103_How_We_Refactor_and_How_We_Know_It?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/216667103_How_We_Refactor_and_How_We_Know_It?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221495009_The_evolution_and_impact_of_code_smells_A_case_study_of_two_open_source_systems?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221495009_The_evolution_and_impact_of_code_smells_A_case_study_of_two_open_source_systems?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221495009_The_evolution_and_impact_of_code_smells_A_case_study_of_two_open_source_systems?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221495009_The_evolution_and_impact_of_code_smells_A_case_study_of_two_open_source_systems?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221495009_The_evolution_and_impact_of_code_smells_A_case_study_of_two_open_source_systems?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221657010_On_the_Relation_of_Refactorings_and_Software_Defect_Prediction?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221657010_On_the_Relation_of_Refactorings_and_Software_Defect_Prediction?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221657010_On_the_Relation_of_Refactorings_and_Software_Defect_Prediction?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/221657010_On_the_Relation_of_Refactorings_and_Software_Defect_Prediction?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222826061_Comparison_and_evaluation_of_code_clone_detection_techniques_and_tools_A_qualitative_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222826061_Comparison_and_evaluation_of_code_clone_detection_techniques_and_tools_A_qualitative_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222826061_Comparison_and_evaluation_of_code_clone_detection_techniques_and_tools_A_qualitative_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222826061_Comparison_and_evaluation_of_code_clone_detection_techniques_and_tools_A_qualitative_approach?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/4349683_NICAD_Accurate_Detection_of_Near-Miss_Intentional_Clones_Using_Flexible_Pretty-Printing_and_Code_Normalization?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/4349683_NICAD_Accurate_Detection_of_Near-Miss_Intentional_Clones_Using_Flexible_Pretty-Printing_and_Code_Normalization?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/4349683_NICAD_Accurate_Detection_of_Near-Miss_Intentional_Clones_Using_Flexible_Pretty-Printing_and_Code_Normalization?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/4349683_NICAD_Accurate_Detection_of_Near-Miss_Intentional_Clones_Using_Flexible_Pretty-Printing_and_Code_Normalization?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260246082_Case_Study_Research_in_Software_Engineering_--_Guidelines_and_Examples?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/261464424_Using_technical_debt_data_in_decision_making_Potential_decision_approaches?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/261464424_Using_technical_debt_data_in_decision_making_Potential_decision_approaches?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/261464424_Using_technical_debt_data_in_decision_making_Potential_decision_approaches?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/261464424_Using_technical_debt_data_in_decision_making_Potential_decision_approaches?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/261464424_Using_technical_debt_data_in_decision_making_Potential_decision_approaches?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/261464424_Using_technical_debt_data_in_decision_making_Potential_decision_approaches?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/220662874_Measuring_and_Monitoring_Technical_Debt?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/220662874_Measuring_and_Monitoring_Technical_Debt?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260964276_Recommending_Automated_Extract_Method_Refactorings?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260964276_Recommending_Automated_Extract_Method_Refactorings?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260964276_Recommending_Automated_Extract_Method_Refactorings?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/260964276_Recommending_Automated_Extract_Method_Refactorings?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/220375665_Identification_of_extract_method_refactoring_opportunities_for_the_decomposition_of_methods?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/220375665_Identification_of_extract_method_refactoring_opportunities_for_the_decomposition_of_methods?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/220375665_Identification_of_extract_method_refactoring_opportunities_for_the_decomposition_of_methods?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222825695_Identification_of_refactoring_opportunities_introducing_polymorphism?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222825695_Identification_of_refactoring_opportunities_introducing_polymorphism?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/222825695_Identification_of_refactoring_opportunities_introducing_polymorphism?el=1_x_8&enrichId=rgreq-1defc3813885be075bd3b5d01731bdef-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcyOTM1ODtBUzo0ODQ3NzcwNDk0OTc2MDJAMTQ5MjU5MTI2MzQyNA==
https://www.researchgate.net/publication/315729358

