A Theoretical Model for Capturing the Impact of Design

Patterns on Quality: The Decorator Case Study

Sofia Charalampidou?, Apostolos Ampatzoglou?, Paris Avgeriou!, Seren Sencer?,
Elvira-Maria Arvanitou?, loannis Stamelos?®

1Department of Mathematics and Computer Science, University of Groningen, Netherlands
2Department of Computer Science & Engineering, Sabanci University, Turkey
3 Department of Informatics, Aristotle University of Thessaloniki, Greece

s.charalampidou@rug.nl, a.ampatzoglou@rug.nl, paris@cs.rug.nl, serensencer@sabanciuniv.edu,
e.m.arvanitou@rug.nl, stamelos@csd.auth.gr

ABSTRACT

Design patterns are widely recognized as reusable solutions that
can be applied for improving design quality. However, empirical
results suggest that patterns may sometimes support and other
times hurt a quality attribute. Thus, there is a need for guidance
on when a pattern is beneficial and when it is not. To provide
such guidance, we propose a theoretical model for understanding
the effect of patterns on quality. The obtained results are expected
to improve the theoretical body of knowledge on design patterns,
and facilitate informed decision making about when to insert or
remove a pattern from a system. As an example, we present and
discuss the results of modeling and exploring the effect of Deco-
rator instances on quality. The results suggest that Decorator in-
stances that are not expected to evolve through the addition of
components in composite objects decrease system cohesion and
therefore, modularity and maintainability are weakened.

Categories and Subject Descriptors

« Software Engineering - Metrics
« Software Design - Methodologies

General Terms
Measurement, Design, Experimentation.

Keywords
Design patterns; software quality; design metrics

1. INTRODUCTION

GoF design patterns [10] are widely adopted as reusable solu-
tions to common design problems. Although these patterns were
not originally explicitly linked to quality attributes, a recent
systematic secondary study [1] identified an extensive corpus of
research aiming at assessing the effect of GoF patterns on quali-
ty. However, the study indicates that GoF patterns cannot be
uniformly evaluated with respect to their effect on quality; spe-
cifically, different empirical studies suggest that the same pat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Permissions@acm.org.

SAC 2017, April 03-07, 2017, Marrakech, Morocco
© 2017 ACM. ISBN 978-1-4503-4486-9/17/04...$15.00
DOI: http://dx.doi.org/10.1145/3019612.3019781

tern exhibits exactly the opposite effect on the same quality
attribute [1], e.g., Visitor has been evaluated both as positively
[14] and as negatively (e.g., [16]) related to understandability.

To investigate the aforementioned contradictory results, a few
theoretical approaches have been proposed. These approaches
(see Section 2) develop mathematical models that capture the
effect of patterns on quality, by considering the generic represen-
tation of a pattern, rather than a specific instance. Such approach-
es have modeled the effect of patterns on various qualities. Never-
theless, only limited patterns have been explored, while the effect
of patterns is mostly studied on the directly affected quality at-
tributes (e.g., the effect of patterns involving polymorphism on
the number of polymorphic methods). Therefore, we need to ex-
plore additional patterns, and model their effect on a variety of
qualities, so as to identify possible trade-offs, i.e., positive effect
on one quality attribute and negative effect to others.

The goal of this paper is to thoroughly investigate the effect of the
Decorator pattern on various qualities and study the correspond-
ing trade-offs. To achieve this goal, we reuse and extend a two-
step method [4]: (a) we first develop a theoretical model that cap-
tures the effect of patterns on quality attributes, based on numeri-
cal indicators, and (b) we then simulate all possible pattern in-
stances based on the aforementioned model, in order to explore
changes in the effect of patterns on quality. Specifically, during
the second step of the method we perform statistical analysis to
explore how frequently the pattern has a positive effect on quali-
ty. For patterns that do not have a uniform effect, we ‘dig deeper’
to identify the parameters that constitute the pattern beneficial or
harmful. To demonstrate the method in this manuscript, we com-
pare Decorator to a specific design alternative, and report the
results. In an accompanying technical report' we present results
on the State/Strategy and the Template Method patterns.

The rest of the paper is organized as follows: in Section 2, we
present related work; in Section 3, we introduce our method for
comparing patterns to alternative solutions. In Section 4 we pre-
sent the application of the method on Decorator, while in Section
5 the obtained results. In Section 6, we discuss the findings and
present implications for researchers and practitioners. Section 7
outlines threats to validity, and Section 8 concludes this paper.

2. RELATED WORK

As related work we have considered studies that investigate the
effect of patterns on quality through theoretical models. First,
Huston [12] studied the effect of three patterns (Mediator, Bridge

1 www.cs.rug.nl/search/uploads/Resources/patterns TR_20151015.pdf

mailto:serensencer@sabanciuniv.edu
mailto:e.m.arvanitou@rug.nl
http://www.cs.rug.nl/search/uploads/Resources/patterns_TR_20151015.pdf
mailto:Permissions@acm.org

and Visitor) on coupling, inheritance and size metrics. According
to Huston, there are several thresholds that, when surpassed, the
pattern application is beneficial. The differences between our
work and [12] are that: (a) we explore more qualities, quantified
by different metrics, and (b) we investigate different patterns.

The second study by Hsueh et al. [11] investigated the effect of
six patterns on a single quality attribute that each pattern directly
affects (e.g. the effect of: Observer on Coupling, Strategy on Pol-
ymorphism etc.). However, investigating the effect of a pattern on
a single quality attribute can result in neglecting possible trade-
offs that pattern usage induces. For example, when a pattern is
employed, the coupling of the system may decrease, but as a side
effect the size may increase. Compared to Hsueh et al. [11], we
do not limit our study to a single quality attribute, but we examine
all metrics of the selected metric suite. Although both works ex-
amine the Decorator pattern, we advance the state of knowledge
by studying 10 additional quality attributes.

Finally, in [4] the authors used the methodology proposed by
Huston [12] and Hsueh et al. [11], to perform a comprehensive
evaluation on the effect of three patterns (Bridge, Abstract Facto-
ry, and Visitor) on various qualities. The results of that study
validated the existence of thresholds (named as “cut-off points™)
that when surpassed pattern application becomes beneficial. Our
current work is based on this work, i.e., [4], investigating a new
pattern and using additional pattern-related characteristics.

3. METHOD

In this section we describe the method we applied for the needs of
our study. The method is an enhanced version of the one intro-
duced by Ampatzoglou et al. [4]. Our method is based on three
fundamental observations, made on GoF patterns:

- Existence of a set of comparable solutions: For each pattern,
we can propose several alternative design solutions (i.e. pat-
tern and non-pattern) that can substitute its functionality and
can be used in cases when the pattern is not beneficial [3].

- Existence of characteristics related to software quality at-
tributes: GoF patterns contain certain structural characteris-
tics that are related to quality. For example, in Bridge, such
characteristics (i.e., class hierarchies, polymorphic method
behavior, and class composition) improve maintainability and
flexibility of the design [2]. Hence, measures on pattern-
related characteristics, which evolve during maintenance,
such as the number of polymorphic methods, or the classes in
a hierarchy, can be used as parameters to our method to pre-
dict the effect on these qualities.

- Different instances of patterns vary with respect to the pre-
viously mentioned characteristics: Depending on how the
patterns are instantiated in a particular system, measures of
their structural characteristics may differ substantially, e.g.,
number of participating classes [5]. This might be an objec-
tive factor for the varying effect of different pattern instances
on the same quality attribute.

Based on these observations, we developed a method consisting
of two parts. In the first part (model construction) we derive
equations that calculate quality metric scores for different pattern
instances as a function of pattern-related characteristics. In the
second part (analytical exploration) we use statistical analysis on
these models, to compare pattern and alternative design solutions.

Part A — Model Construction

1) Identification of Alternatives: Derive one or more alternative
design solutions from literature, open-source solutions or de-
signers’ personal experiences.

2) Identification of Pattern-related Parameters: Identify the
major modification operations, with respect to structural char-
acteristics (i.e., add classes in hierarchies, or add pattern-
related methods). Based on the modification operations that
can be applied on the pattern, extract a list of pattern-related
parameters (numerical indicators) that can characterize a spe-
cific instance. For example, in the Template Method, there is
one parameter related to the number of concrete classes (al-
tered through the add concrete subclasses modification opera-
tion) and two parameters related to methods: the number of
template methods (add inherited methods) and the number of
primitive operations (add overridden methods).

3) Modeling of Solutions: Model the alternative solutions identi-
fied in step 1, based on all the involved parameters of step 2.

4) Quality model selection: Select a quality model that fits the
designer’s needs, or simply a set of metrics. Any development
team can select if they want to evaluate their solutions with
respect to an existing quality model, or a customized model,
or just a set of metrics that are not aggregated or composed.

5) Construction of equations: Construct equations that calculate
quality attributes/metric scores as functions of pattern-related
parameters (see step 2 and step 3).

Part B — Analytical Exploration

6) Statistical Analysis: Substitute the variables of the equations
with the values that the pattern-related parameters are ex-
pected to get along pattern evolution. Perform descriptive sta-
tistics and hypothesis testing on the dataset.

7) Cut-off Points Analysis: If the results of the statistical analysis
do not indicate which design solution is better, compare the
equations of step 5 and identify the cut-off points (i.e., the so-
lutions of the inequalities). The identified cut-off points sug-
gest the values of pattern-related parameters for which each
design solution (pattern or alternative) is beneficial.

The major difference between this method, compared to the origi-
nal one [4], which considered only one class-related parameter?
(i.e., number of concrete subclasses) [15], lies on the identifica-
tion of additional parameters® (i.e., number of pattern-related
methods). Especially for the case of Decorator, studying pattern-
related methods is important, since according to Di Penta et al. [8]
adding and removing methods is the most frequently applied
modification operation. Instead of using the number of pattern-
related methods, we decided to use more fine-grained parameters,
based on the type of the method: (a) number of abstract methods,
(b) number of overridden methods, and (c) number of inherited
methods. The rationale of this decision is based on the fact that
for some patterns (e.g., Strategy) the basic criterion for applying
them can be the number of inherited methods compared to the
number of overridden ones. In particular, if the number of over-

N

We have not considered the “add clients” [15] parameter due to its
uniform effect on both solutions. “Adding abstract classes” [15] was not
considered, since the addition of an abstract class in a pattern instance
would create a coupled pattern.

This does not imply that the results of [4] are invalidated, since for all
examined patterns in [4], the number of pattern-related methods is asso-
ciated to the number of concrete subclasses.

w

ridden methods (varying behavior) is negligible compared to in-
herited methods (common behavior), then an alternative design
(e.g., set of i f-statements) might be preferable.

4. MODEL CONSTRUCTION

This section presents the application of the proposed method on
Decorator, organized based on the first five steps of the method
that correspond to the model construction. The last two steps
(analytical exploration) are presented in Section 5.

4.1 ldentify alternatives

Decorator is used for “adding behavior or state to individual ob-
jects at run-time” [10]. We selected to demonstrate the method on
Decorator, due to its inherent complex structure and the fact that
method-related parameters cannot be subsumed by the number of
classes. The class diagram of a typical Decorator is presented in
Figure 1, whereas an alternative design is presented in Figure 2.
While building the alternative, we replaced: (a) the composition
to objects of the superclass (i.e., link between Component and
Decorator) With direct compositions to all leafs (i.e., link be-
tween Leaf1 and Decorator, etc.), which can be considered as a
common design decision from novice software developers; and
(b) the use of polymorphism (Decorator hierarchy) with condi-
tional statements, based on the value of the decoratorType
variable. Similarly, this is a common design decision—see refac-
toring: “prefer conditional over polymorphism” [9].

We note that the specific alternative is not a pattern variant, but
an artificial design constructed by ignoring some pattern princi-
ples. We acknowledge that the results reported in this paper de-
pend on this alternative, and would be different if we used a dif-
ferent alternative (see threats to validity in Section 8). In any case,
one who wishes to apply the proposed method with another de-
sign alternative can reproduce the steps of the method, as illus-
trated in Section 4 to compare any set of design options.

4.2 ldentify pattern-related parameters

In the structure of the Decorator design pattern we have identified
six pattern-related parameters (see Figure 1): three based on the
class hierarchies and three based on methods.

Client Component
Ko————— comp —|

- comp : ArrayList<Component> _—

 operion 1() 1 vad + operation 1() : void
-) + operation 2 () : void
+ otherOperation () : void — — — » |

+ operation 2 () ; void
+ otherOperation (] : void
CA - —
pafts Leaf1 !
1
Decorator : !
+ operation 1 () : void 1
+ oper: voi
- parts : ArrayList<Component> aperation 2(}: vold :
M « — — —| +operation1(): void — ~n
+ operation 2 () : void Leaf2 1
+addParts ¢ : Component) : void 1
+ removeParts (¢ : Component) : void I
+ operation 1 () : void 1
T ‘T + operation 2 () : void 1
L)
P 4= = = ConcreteDecoratorA1 ConcreteDecoratorAZ = = b q
+ operation 1 () : void + operation 1 () : void
+ operation 2 () : void + operation 2 () : void
+ additionalOperationA1_1(): void _{ _y~
+ additionalOperationAl1_2 () : void

Figure 1. Decorator Design Pattern Class Diagram

Number of Classes
e Let n be the number of Leaf: in the design.

e Let p be the number of concretebDecoratoral;—those that
provide additional methods than the ones provided by the giv-
en methods of the hierarchy.

e Let g be the number of concretebecoratora2;—those that
only exhibit different behavior on the given methods of the
hierarchy, without providing new ones.

Number of Methods

e Let m be the number of operation; methods—abstract
methods in the becorator class hierarchy.

e Let k be the number of otherOperation methods—non-
abstract (inherited) methods in the Component class.

e Let r be the number of additionalOperation methods,
offered by ConcreteDecoratoral; classes.

In Figure 1 we demonstrate how the specific pattern-related pa-
rameters are mapped to the Decorator UML class diagram.

4.3 Model solutions based on parameters

As explained in Section 4.1 the Decorator Design Alternative
holds different lists for each type of Leaf, in order to provide
equal functionality on the aggregation to Component class in the
design pattern. In order for the decorator to change type during
run-time, the becorator class holds a decoratorType attribute
that takes (p + q) possible values. Inside the (m) operation, we
placed (p+q) if statements, to handle all possible concreteDec-
orator; classes. The way that the pattern-related parameters are
mapped into the alternative UML class diagram is depicted in
Figure 2. We note that (p) and (q) are not represented, since if-
statements are not visible at class diagrams.

Client |

Component

- comp : ArrayList<Component>

comp

+ operation 1 () : void
+ operation 2 () : void
+ otherOperation () : void

+ operation 1 () : void
+ operation 2 () : void
+ otherOperation () : void= = = = ¢

I
Decorator Leafl

- decoratorType:String 11
- If1 : ArrayList<Leafl> + operation 1 () : void
- If2 : Arraylist<Leaf2> + operation 2 () : void
+ addLeaf1(c:Leaf1) : void n
+ removeleafl(c:Leaf1) : void
+addLeaf2(c:Leaf2) : void Leaf2
+ removeleaf2(c:Leaf2) : void
m - + operation 1 () : void >—1f2 & operation 1 () : void |1
4+ operation 2 () : void + operation 2 () : void
I' « — 4+ additionalOperationA1_1() : void -

Figure 2. Decorator Design Alternative Class Diagram
4.4 Select a metric suite

For this study, we used the QMOOD metrics [6]. These metrics
can directly quantify a set of low-level Quality Attributes (QA)—
e.g., coupling, cohesion, etc., which in turn can be grouped to
assess high-level ones (e.g., reusability, etc.). These low-level
qualities and the metrics that quantify them are presented in Table
1 [6]. We note that in this study we use only the QMOOD metric
definitions and their positive/negative relationship to high level
quality attributes, rather than the mathematical formulas that are
suggested for their quantification, so as not to raise a threat to
construct validity [11] (see Section 7).

Table 1. QMOOD Metrics and Low-Level Quality Attributes

Low-Level QA Metric Description
Design Size | Design Size in Classes (DSC) - Count of classes.
Messaging Class Interface Size (CIS) - Count of public methods
Polymorhism Number of Polymor_phic Methods_(NOP) - Number of
methods that can exhibit polymorphic behavior

Low-Level QA Metric Description
Abstraction Average Number of Ance_stors (ANA) - A_verage
number of classes from which a class inherits.
Encansulation Data Access Metric (DAM) - Ratio of the number of
P private/protected fields to the total number of fields
Counlin Direct Class Coupling (DCC) - Number of other
piing classes that the class is directly related to.
i, Measure of Aggregation (MOA) - Number of data
Composition - -
declarations whose types are user defined classes.
Measure of Functional Abstraction (MFA) - Ratio of
Inheritance | number of methods inherited by total number of
accessible methods.
Cohesion Among Methods (CAMC) - Sum of the
Cohesion intersection of a method parameters with the maximum
set of all parameter types in the class.
. . Number of Hierarchies (NOH) - Count of hierarchies
Hierarcies - :
in the design.
. Number of Methods (NOM) - Number of methods in
Complexity
the class.

4.5 Construct equations

By calculating the metric presented in Table 1 on the designs of
Section 4.1, we formulated the metric scores for low-level quality
attributes, for both solutions (£ (x) for the pattern and g (x) for
the alternative). The calculations are reported together with the
obtained results for two additional patterns (i.e., Strategy and
Template Method), in an accompanying technical report?, due to
space limitations. However, to enhance the readers’ understanda-
bility, we provide the calculation of one metric (DCC) for the
pattern (Decorator) solution, as an example. We clarify that to
aggregate metric scores from the class level to the pattern level
we use the average function. More specifically the numerator is
calculated as the sum of the DCC of all classes, whereas the de-
nominator equals the number of classes.

According to the class diagram presented in Figure 1, for the pat-
tern solution, the numerator is calculated as follows: The client
class includes an object, of type Component, so its DCC equals
1. Similarly, the component class includes an object, of type
Decorator, SO its DCC also equals 1. The (n) Leaf: classes
inherit from the component class, so their DCC equals 1. Simi-
larly, the (p) ConcreDecoratoral; classes and the (q) con-
creDecoratora2; inherit from the Decorator class, so their
DCC equals 1. The DCC of the pecorator class equals 0 since it
does not include any dependencies. The denominator on the other
hand, as already mentioned above is the number of classes in the
pattern solution, i.e., the sum of the number of Leaf: classes (n),
the number of ConcreDecoratoral: classes (p), the number of
ConcreDecoratorA2: classes (), plus 3 (i.e. Decorator, Com-
ponent and Client). Thus,

1+1+@*n)+(1*p)+(1*q)

PATTERN ¢ = Tinapig

Similarly, we calculate the metric for the alternative solution, by
considering the classes and methods of the respective design.

5. ANALYTICAL RESULTS

In this section we present the results obtained while applying the
second part of our method, in which we analyze the theoretical
models constructed in Section 4. In Section 5.1 we present the
results of the performed statistical analysis, so as to present quali-
ty attributes for which the pattern or the alternative solution is
always beneficial (step 6). In Section 5.2 we explore the cases

that no optimal design solution could be identified, by investigat-
ing the range values of pattern-related parameters for which each
design solution is beneficial (step 7).

5.1 Statistical Analysis

In this section we present the results of our study obtained by
substituting the variables of the equations with the most common
values of pattern-related parameters, according to the literature®.
In particular, based on a case study performed by Ampatzoglou et
al. [5] on 108 open source projects, Decorator instances tend to
have on average 13 classes. Additionally, regarding the method-
related parameters, literature suggests that classes (regardless of
their pattern participation) rarely have more than 15 methods [13].
Based on the aforementioned claims, we can assume that:

. n+p+qg+ 3=13

e =n, q p = I(1, 8]
. m, k, r g [1, 13]
. max (m + k + r) <15

By using the aforementioned rules as a way to obtain a sample
that represents the most frequently occurring pattern instances, we
developed a dataset consisting of 16,500 cases. By exploring this
dataset using statistical analysis we aim at identifying the exist-
ence of differences between the two solutions in the most com-
mon design pattern occurrences.

In Table 2 each row represents one low-level quality attribute,
whereas in the columns we present: (a) the mean value and the
standard deviation of both the pattern and the alternative solution,
(b) the results of the Wilcoxon test “Z” that check the statistical
significance of differences (we omit the sig. values since for all
cases the obtained results have been statistically significant), and
(c) the frequency of cases when the pattern “P” or the alternative
“A” have higher metric scores, as well as the frequency of ties
“T”. The cases when one design solution clearly has higher values
compared to the other are highlighted with grey cell shading in
the table. From Table 2 we have excluded the values for encapsu-
lation (DAM) and hierarchies (NOH) attributes, since their
scores are equal for both solutions (these metrics are not affected
by any pattern-related parameter).

Table 2. Effect of Decorator on low-level Quality Attributes

Pattern Alternative Solutions
Quality z P A T
Attribute | Mean | STD [Mean| STD % % | %

Size 13,000| 0,09 | 6,330| 1,97 |-111,2 |99,99| 0,01 | 0,00

Inheritance | 0,352| 0,16 | 0,425| 0,20 | -49,2 |38,01| 61,92 | 0,06

Coupling 0,922| 0,02 | 1,307| 0,20 | -110,8 0 100 0

Cohesion 0,401| 0,16 | 0,437| 0,17 | -255 |40,23| 55,18 | 4,57
Polymorphism| 0,615| 0,41 | 0,693| 0,52 | -32,9 |41,66| 58,33 | 0

Messaging 5,794 | 2,49 | 7,039| 2,37 | -101,4 | 8,65 | 91,27 | 0,07

Complexity | 5,794| 2,49 | 7,039| 2,38 | -101,3 | 8,65 | 91,27 | 0,07

Composition | 0,154| 0,02 | 0,653| 0,10 |-111,1 | 0,01 | 9999 | 0

Abstraction 1,615| 0,26 | 0,653| 0,10 | -110,8 | 100 0 0

Based on the results of Table 2, we observe that for Inheritance,
Cohesion and Polymorphism the frequency of occurrences that
Decorator has lower metric scores than the alternative solution is
close to a 60%-40% distribution. Additionally, concerning Mes-

4 Since the aim of this study is not the evaluation of a specific system, we
used the most common values of pattern-related parameters, so that our
results to be as generic, and as close to practice as possible.

saging and Complexity the alternative solution shows 90% higher
scores. On the other hand, concerning Size, Coupling, Composi-
tion and Abstraction the pattern solution has, to a large extent,
higher metric scores compared to the alternative solution. A pos-
sible interpretation of the higher Size (DSC) and Abstraction
(ANA) values is the increase of the depth of the inheritance tree,
and the extra classes placed on the last level of the tree. The result
concerning Composition (MOA) and Coupling (DCC) is intuitive
in the sense that in the alternative design the direct composition of
Leaf: t0 the Decorator was preferred. We note that concerning:
(a) some metrics (e.g., Coupling) the optimal solution is not the
one achieving the highest score, since it is a negative quality indi-
cator; and (b) the same metric can have a different effect on dif-
ferent quality attributes (e.g., DSC is beneficial concerning func-
tionality, but worsens the understandability of the design) [6].
Finally, the results show that ties are negligible, since they occur
rarely (max: approx. 5% for cohesion).

Summing up, the results of the statistical analysis reveal that for
Size and Abstraction the Decorator pattern solution has higher
scores than the alternative solution, while for Coupling, Composi-
tion, Messaging and Complexity the opposite applies. Finally,
although for Inheritance, Cohesion, and Polymorphism the alter-
native solution shows more frequently higher scores, the cut-off
points split the problem space almost in the middle (60% vs.
40%), suggesting that it is not possible to state if the pattern or the
alternative solution is more beneficial, and thus each problem
should be individually considered (see Section 5.2).

5.2 ldentification of Cut-off Points

To further investigate the cases where no conclusion can be de-
rived by statistical analysis one needs to work on the model level.
By using the equations defined in Section 4.5 we subtract the
alternative from the pattern function for every quality at-
tribute. In this way, we define a new function (dif£) that detects
when a solution gets better, with respect to this quality attribute:

diff (n, p, g, m, k, r) = pattern (n, p, g, m, k, r) — alternative (n, m, k, r) >0 (1)

diff (n, p, g, m, k, r) <0

The existence of solutions to the aforementioned inequalities (1)
suggests that there are multiple cut-off points, where the design
pattern solution is getting better or worse than the alternative
solution, with respect to a quality attribute®. In particular, positive
values of diff denote that the pattern version presents higher
metric scores, while negative values suggest the opposite. Alt-
hough in the majority of cases (e.g., cohesion), higher metric
scores suggest better levels of the quality attributes, in some cases
(e.g., coupling) higher scores imply declined quality. In other
words, concerning coupling, which has a negative effect on quali-
ty, when diff is positive the design alternative is better than the
pattern, while when dealing with cohesion, a positive diff im-
plies that the pattern excels. Presenting the mathematical repre-
sentation of such cut-off points is out of the scope of this manu-
script, due to their large number and complexity. Nevertheless,
we visualize the existence of these cut-off points by demonstrat-
ing a tool created for this purpose.

To assist practitioners in using the proposed method, we have
extended the DesignPAD tool [4], by adding functionality related

5 Despite the fact that these solutions cannot be defined as single points,
we prefer to use this term to ensure consistency with previous work [4].
In practice the solutions to such equations are cut-off surfaces.

to the three newly studied design patterns and by migrating it to
the web. Currently, DesignPAD is available as a web-service
through the Percerons platformé. The tool requires as input the
type of design pattern that the user is interested in (Bridge, Ab-
stract Factory, Visitor, Template Method, State, Strategy, or Dec-
orator), a set of quality metrics or a quality model, and a set of
values for the pattern-related parameters (single values or range
of values). The tool provides as output descriptive statistics on the
metric scores, as well as a visualization of the cut-off points. The
results can guide software engineers to make a decision on
whether pattern application is beneficial or not.

For example, in Figure 3 our method is applied on a Decorator
instance with 1 Leaf and 1 Concrete Decorator. In this ex-
ample the pecorator hierarchy offers 1 polymorphic method
and 3 inherited ones, while the concrete Decorator extends
the functionality of the hierarchy by offering 1-8 additional opera-
tions. The results of the tool suggest, that the pattern solution
gradually becomes more understandable than the alternative, and
surpasses it when the solution has 5 additional operations. This
finding is according to the intent of the Decorator pattern, which
is expected to be useful when adding extra responsibilities to an
object (increase of Additional Operations (r)). We note that
concerning Decorator at this stage the tool is able to simulate
instances of only one alternative (the one presented in this study),
but in the future we plan to update the tool with further alterna-
tives for all patterns.

Pattern Instance Configuration Descriptive Statistics

Decorator Alternative-1

decorator A

1
1
o
1
1

1
<
rete Decorator B © Mean Reusability
Fr o1 4.267 3.887
Additional Operations From To:[o —
Other Operati ¥ 3 To:[3 Azl 208
er Opes :
« Operations - ° Mean Understandability
Metrie (for line chart) Understandability 2 -2.840 28
Refresh! Mean Extendibility
240 0.467 0.147
Mean Effectiveness
50 0.587 0.559
Mean Flexibility
60 0.500 0.475

Figure 3 — Percerons Design Pattern Advisor Output

The most interesting findings on the identification of cut-off
points for the Decorator pattern are presented below. We remind
that the results correspond to the comparison between the Decora-
tor pattern and the alternative design presented in Section 4.1.
Functions representing abstraction (quantified through the ANA
metric), size (DSC), composition (MOA), and coupling (DCC) do
not present any cut-off points (i.e. the direction of the inequality
does not change among different pattern instances) as indicated
by the statistical analysis (see Table 2).

Concerning cohesion (CAMC), the obtained results suggest that
the larger the number of Leaf: classes (n), the more probable the
alternative design solution to become more coherent. Additional-
ly, we observe that as the number of Decorator operation:
methods (m) increases the alternative solution becomes more

6 http://www.percerons.com

http://www.percerons.com/

prominent, whereas the opposite applies when adding addition-
alOperations t0 ConcreteDecoratoraAl; classes (i.e. in-
creasing (r)). This behavior is caused by the addition of the non-
coherent methods of a class. For example, in the pattern, opera-
tion: are not coherent with addrParts and removeParts.
Therefore, as we add such methods, lack of cohesion increases.

During system evolution along two change parameters (adding
Leaf: and operation:) the use of the pattern leads to less cohe-
sive solutions, whereas when the pattern evolves through the ad-
dition of additionalOperations, the cohesion increases.

and Decorators have very similar behavior) the use of Decora-
tor, might just be too complex for the designer’s needs. Also, the
results indicate that some parameters affect more strongly the
results. For example, as both (m) and (k) increase the pattern
solution becomes less prominent, which suggests that the effect of
(K) is stronger, like the aggregate effect of (r) and (k). Finally, the
results when all parameters are increased simultaneously show
that the effect caused by the addition of otheroperation (K) is
stronger than the joint effect of both adding operation;: (m) and
additionalOperation methods (r).

Next, we present the obtained results regarding the Class Inter-
face Size (CIS) and Complexity (NOM). The results on these two
metrics are presented together, since their values are equal due to
the fact that the pattern does not impose the use of any private or
protected methods. For these metrics we can observe that for
larger values of (r), i.e., adding additonalOperations meth-
ods, there are specific combinations of number of classes that the
pattern solution offers a larger interface (more methods) per class.
Nevertheless, the increase of (r) is not the only condition for the
pattern solution to exhibit more methods, since the existence of a
high number of concretebecoratoral: classes (p) is required.
This result can be explained by the fact that the addition of extra
methods in ConcreteDecoratoral; classes increase the sys-
tem’s average CIS/NOM only in the pattern solution (the changes
in ConcreteDecoratora2; are reflected in the alternative as
well); thus, the more classes of this role are added, the more the
two metrics increase. The existence of public methods is usually
considered as a proxy of functionality, and the probability of reus-
ing a specific class in a different system.

Thus, to understand the effect of Decorator on the use of inher-
itance one should consider if along evolution the architect expects
the addition of operation: methods that are the same in all
Leaf; and Decorators. As the number of such methods increas-
es, the pattern becomes less beneficial concerning polymorphism.

Therefore, although small pattern instances (i.e., small number of
ConcreDecoratorAl: classes (p) and additionalOperation
methods (r)) are offering smaller interfaces than the equivalent
alternative designs, along evolution the pattern solution tends to
excel in this characteristic.

Concerning polymorphism (NOP), the only parameter that affects
the extent of its use in any of the two designs is the number of
classes. Specifically, small numbers of ConcreteDecoratoral:
(p) and ConcreteDecoratora2;: (q) lead to limited polymor-
phism in the alternative solution, and therefore the use of the pat-
tern is preferable. On the other hand, when along evolution more
classes are added to the system, the alternative solution takes
advantage of polymorphism. However, if the major change is the
addition of Leaf: (n), then the pattern becomes more beneficial.
This result is expected since polymorphism is present in the
Leaf: classes. Nevertheless, since the use of polymorphism is one
of the cornerstones of the object-orientation, designs that make
use of it excel in terms of efficiency and extendibility.

Similarly to cohesion, decisions that are based on polymorphism
should take into account the most anticipated extension scenarios.
Thus, when the number of Concrebecoratoral; classes (p) and
ConcreDecoratorA2; classes (q) is small and the number of
Leaf; classes (n) is large, the pattern solution is beneficial.

Finally, concerning the use of inheritance (MFA), we can suggest
that the addition of operation: (M) and additionalOpera-
tion methods (r) leads to a more extensive use of inheritance in
the pattern solution. On the other hand, the larger the number of
otherOperation (K) methods, the better the alternative solution
becomes. This outcome can be considered as intuitive since when
there is no room for the application of polymorphism (all Leaf:

6. DISCUSSION

In this section we discuss the main findings of this study and pre-
sent implications to researchers and practitioners. In Section 6.1
we synthesize our findings to assess six high-level quality attrib-
utes, while in Section 6.2, we elaborate on the potential value of
our method for researchers and practitioners.

6.1 Synthesis of Results

To facilitate the discussion on high-level quality attributes, we
summarize the main outcomes of Section 5, in a synthesized form
in Figure 4. In particular, we present six radar charts (one for each
high-level quality attribute of QMOOD [6]). For each metric that
is used to assess a quality attribute we present the percentage of
cases when each design solution is optimal (PAT: green line,
ALT: blue line—by considering the score and the relation be-
tween the metric and the QA), based on the results presented in
Table 2. We note that from the radar charts we have omitted the
metrics that are equal in both solutions (i.e., NOH and DAM).
Specifically, the larger the number of metrics that the two lines
are close (e.g., CAMC), the larger the gain from using the meth-
od, in the sense that the designers can make informed decisions
based on the values of the pattern-related parameters.

reusability flexibility understandability
DsSC DCC
100 100
gg 80
a0 6 NOM
20 o
cs
. bec
CAMC NoP MOA CAMC
extendibility functionality effectiveness

DSC ANA

CAMC NOP

MFA NOP MFA
Figure 4. Effect of Decorator on Quality Attributes

The aforementioned results suggest that in most of the cases, the
application of the pattern enhances the quality attribute of interest.
For example, concerning Extendibility, we observe that the de-
sign pattern solution improves the values for two out of four met-
rics. Extendibility is the only high-level quality attribute for
which the alternative solution does not excel concerning any fac-
tor. This result is in accordance to the literature [1], which sug-

gests that Decorator application eases any future maintenance
activity. However, there are special cases that some aspects of
design quality might be weakened. For example, concerning Un-
derstandability the pattern is always beneficial concerning NOM
and DCC. In approximately 40% of the examined cases it is also
beneficial concerning CAMC, and in 60% of cases concerning
NOP. However, there is no case where the pattern solution is
better concerning ANA and DSC. Thus, it becomes clear that
since the values of factors influencing understandability are so
mixed, we are unable to derive a conclusion on the effect of the
pattern using statistics. This result provides a solid explanation on
the contradictive results concerning the effect of Decorator on
understandability [5]. In particular Ampatzoglou et al. [5] report
that one study has negatively evaluated the effect of Decorator on
understandability, whereas two other have reported a positive
relation. For such cases further analysis is required.

To assist the process of design solution selection when cut-off
points exist, in Table 3 we provide a more fine-grained analysis
on the factors that influence the effect of patterns on software
quality. Specifically, every row of the table presents a metric that
is used for the quantification of high-level quality attributes (and
presents cut-off points), whereas every column a pattern-related
parameter (as presented in Section 4.2). Every cell of the table
denotes which design is beneficial with respect to the specific
metric, whenever one parameter is increasing (i.e., when we ex-
tent the system by adding a corresponding class or method). For
example, the results of CAMC metric indicate that the alternative
solution is more beneficial when the number of Leaf: or the
number of operation: methods increase, while the pattern
solution is preferable in the case that the additionalOperation
methods increase. We remind that concerning ANA and DSC the
pattern solution is always having higher scores than the alterna-
tive; regarding MOA and DCC the opposite applies, whereas for
DAM and NOH they are always equal (see Section 5.1).

Table 3. Effect of Decorator Parameters

Modification Parameters
Metric | (n) (p) () (m) (k) (r)
CAMC ALT ALT PAT
CIS PAT PAT
NOM PAT PAT
NOP PAT | ALT | ALT
MFA PAT ALT | PAT
Total 2 3 1 2 1 4

Based on Table 3 and the radar charts of Figure 4, we can guide
practitioners in making pattern-related decisions, based on their
preference on different quality attributes as follows:

Reusability. We can observe that 2/4 metrics that influence reusa-
bility (DSC and DCC) are always favored by the use of the pat-
tern. Concerning the other two (CIS and CAMC), we can observe
that in majority the alternative design is more beneficial. Howev-
er, in the special case that along evolution, the practitioner ex-
pects an increase in the number of concrete decorators (p),
which offer increased number of class-specific opera-
tions (r), then the use of the pattern seems like a better choice.

Flexibility. One metric (DCC) supports the use of the pattern,
another (MOA) supports the alternative, and one (NOH) is neu-
tral. The fourth metric that presents cut-off points (NOP), shows a
balanced behavior. The use of the pattern can be suggested when
more types of components are expected to be added inside the
decorator container (Nn), or more concrete decorators that
offer class-specific operations (p). Nevertheless, accord-

ing to Di Penta et al. [8] adding classes to an existing Decorator
instance is not the most frequently applied modification opera-
tion. This observation can partially explain the negative effect of
Decorator on adaptability, reported in the literature [1].

Understandability. Similarly to reusability, the existence of cut-
off points is important, since 2/6 relevant metrics (DCC and
NOM) are always positively affected by the use of the pattern and
two metrics (DSC and ANA) are always favored by the alterna-
tive. For the rest (CAMC and NOP), we observe that adding con-
crete decorators that offer class-specific operations (p) makes the
pattern more beneficial in terms of understandability, whereas
adding concrete decorators that do not offer class-specific
operations (Q) Of operation; methods (m), favor the appli-
cation of the alternative solution.

Functionality. Concerning this quality attribute only one metric
(DSC) is always positively affected by the pattern, and three oth-
ers (CAMC, NOP, and CIS) exhibit cut-off points. The rules that
apply for functionality are the same as for understandability (high
number of ConcreDecoratoral; classes (p): benefit from pat-
tern, high number of ConcrebDecoratora2; classes (q) or oper-
ation: methods (m): benefit from alternative).

Effectiveness. This quality attribute is related to two metrics that
present cut-off points (MFA and NOP). These metrics, in most of
the cases, benefit from the alternative design. However, they are
influenced by completely different parameters (NOP is influenced
by class-related parameters, whereas MFA by method-related
parameters), and therefore, they cannot be discussed uniformly
and every evolution scenario should be treated individually. For
the other two metrics that influence effectiveness one favors pat-
tern (ANA) application and other the alternative (MOA).

Extendibility. This is the only quality attribute that the alternative
solution does not present higher scores for any of the metrics that
influence it. Therefore, we can assume that for the majority of the
cases the design pattern solution can be more easily extended.
The two metrics presenting cut-off points (MFA and NOP) are
exactly the same as in the case of effectiveness and therefore the
same observations apply.

6.2 Implications to Researchers/Practitioners
Based on the aforementioned discussion on the effect of the Dec-
orator pattern on quality attributes, we can highlight that design
quality is diminishing by the addition of concrete decorators that
do not offer class-specific operations (g) or methods that are
common in all decorators (k) and in such cases alternative de-
signs should be preferred. A possible explanation is that these
types of change do not conform to the rationale of the pattern. For
example, if the majority of methods that exist in the hierarchy are
the same, then its benefit is limited to a small number of poly-
morphic methods. The results of the study lead us to some useful
implications for researchers and practitioners, as follows:

e Researchers can use the proposed method (subjected to some
modifications) for studying similar issues in the design phase,
e.g. formulating the effect of refactorings on software quality.

e Researchers can generalize the method so as to be able to
compare equivalent design solutions, across software evolu-
tion, regardless of pattern participation.

e Researchers can use the proposed analytical method for inves-
tigating the effect of patterns on source code metrics.

e Practitioners can use the derived formulas for making design
decisions during both Greenfield and Brownfield develop-
ment. In the first case (during design) the designer can con-
sider factors, like the number of the pattern-participating clas-

ses of an instance to decide prior to the application of a pat-
tern whether this would be beneficial. In the case of Brown-
field development, the same approach can be used during the
maintenance phase, for scheduling a refactoring of a pattern-
based solution to an alternative one, or vice versa. In both
cases the obtained benefit is the capability to evaluate pattern-
related design decisions before they are implemented, con-
tributing to reduced development or maintenance costs.

7. THREATS TO VALIDITY

In this section we discuss threats to validity. Concerning construct
validity, the mapping between quality attributes and metrics, as
provided by QMOOD, is acknowledged as a threat. However,
QMOOD has been rigorously validated during its introduction
[6]. Nevertheless, we note that the riskiest part of the model (i.e.,
assignments of weights to low-level metrics) has been omitted.
Additionally, the conducted experiments do not necessarily cap-
ture the construct of design evolution accurately, since it is possi-
ble that design may evolve in certain directions, but our sample
scenarios count as if they are all equally probable to happen.
Thus, it is possible some of the generated data points to represent
infeasible evolutions, but contribute equally to the results.

In terms of external validity, the use of the QMOOD suite certain-
ly poses some threats, since the use of a different model might
produce different results. Similarly, the generalizability of our
results is influenced by the use of specific design alternatives,
expecting that alternatives with poor design could result to even
better scores for the pattern solution. However, we note that the
applicability of the method depends neither on the use of the se-
lected model nor the selected alternative. The method can be used
with any metric suite that takes into account some pattern parame-
ters (e.g., [7]), as well as with any alternative solution that is
equivalent to a GoF design pattern; the selection of the design
solutions depends on the judgment of the software engineer who
applies the method. Thus, we do not imply that the selected alter-
native is the best Decorator alternative; after all there is no objec-
tive way to compare all available solutions.

The study has limited reliability threats, since all research ques-
tions were answered by mathematical operations, which involve
no researcher bias. Although, the selection of the pattern related
parameter ranges is subjective, it is based on empirical results
obtained from OSS development. Finally, internal validity may
be influenced by the pattern related parameters selection, in the
sense that omitted parameters can be considered as confounding
factors. However, in this study we selected to explore the most
frequently changing parameters, according to Ng et al. [15].

8. CONCLUSIONS

This study aimed at developing a method that can provide guid-
ance to designers while making pattern-related decisions, driven
by qualities. The results of applying the method on decorator
highlighted that in most cases pattern application is beneficial for
the design-time qualities; however, there are specific cases when
alternative solutions should be considered. In particular, we pro-
vided evidence that when the decorator pattern is applied in the
right context, i.e., many concrete decorators, with high variability
of offered functionalities (methods), it positively affects quality.
On the other hand, in cases that the pattern is extended by con-
crete decorators, which inherit most of their offered functionali-
ties, some quality attributes diminish. Based on the above we can
claim that the provided method can be useful to practitioners, and
at the same time it opens some interesting research directions.

As future work we plan to: (a) empirically investigate the accura-
cy of the theoretical results on OSS projects, (b) replicate the
study with different alternatives so as to evaluate the sensitivity of
our results to various alternative designs, (c) investigate the 3™
axis of change proposed by Ng et al. [15] (i.e. the usefulness of
the number of clients, as a predictor of software quality), to con-
firm whether evolution through this axis is uniform in pattern and
non-pattern solutions, (d) compare the effect of similar parame-
ters of different patterns (e.g., if the addition of subclasses in
Bridge has a similar effect to the addition of Leafs in Decorator.

REFERENCES

[1] A. Ampatzoglou, S. Charalampidou, and 1. Stamelos, “Research State
of the Art on GoF Design Patterns: A Mapping Study”, Journal of
Systems and Software, Elsevier, 86 (7), pp. 1945-1964, July 2013.

[2] A. Ampatzoglou, and A. Chatzigeorgiou, “Evaluation of object-
oriented design patterns in game development”, Information and
Software Technology, Elsevier, 49 (5), pp.445-454, May 2007.

[3] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Design Pattern
Alternatives: What to do when a GoF pattern fails”, 17" PanHellenic
Conference on Informatics (PCI’ 13), Association for Computing
Machinery, Greece, September 2013.

[4] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, "A Methodology
to Assess the Impact of Design Patterns on Software Quality", Infor-
mation and Software Technology, 54 (4), pp. 331-346, April 2012.

[5] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Investigating
the Use of Object-Oriented Design Patterns in Open-Source Soft-
ware: A Case Study”, Evaluation of Novel Approaches to Software
Engineering (ENASE’ 11), pp. 106-120, Greece, 2011.

[6] J. Bansiya, and C. Davis, “A hierarchical model for object-oriented
design quality assessment”, Transaction on Software Engineering,
IEEE, 28 (1), pp. 4-17, January 2002

[7] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design”, Transactions on Software Engineering, IEEE, 20 (6), pp.
476-493, June 1994,

[8] M. Di Penta, L. Cerulo, Y. Guéhéneuc, and G. Antoniol, "An empiri-
cal study of the relationships between design pattern roles and class
change proneness”, 24" International Conference on Software
Maintenance (ICSM” 08), IEEE, pp. 217-226, China, Sept. 2008.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.Roberts, “Refactor-
ing: Improving the Design of Existing Code”, Addison-Wesley Pro-
fessional, 1st Edition, July 1999.

[10] E. Gamma, R. Helms, R. Johnson, J. Vlissides, “Design Patterns: El-
ements of Reusable Object-Oriented Software”, Addison - Wesley,
1995.

[11] N.L. Hsueh, P.H. Chu, W. Chu, “A quantitative approach for evaluat-
ing the quality of design patterns”, Journal of Systems and Software,
81 (8), pp.1430-1439. 2008

[12] B. Huston, “The effects of design pattern application on metric
scores”, Journal of Systems and Software, 58 pp. 261-269. 2001.

[13] J. Kalpana and K. Arvinder, “Effect of software evolution on soft-
ware metrics: an open source case study”, Software Engineering
Notes, ACM, 36 (5), pp. 1-8, September 2011.

[14] F. Khomh and Y. G. Guéhéneuc, “Do Design Patterns Impact Soft-
ware Quality Positively”, 12" European Conference on Software
Maintenance and Reengineering (CSMR’08), IEEE, pp. 274-278,
Greece, 1-4 April 2008.

[15] T.H. Ng, S.C. Cheung, W.K. Chan, and Y.T. Yu, “Do maintainers
utilize deployed design patterns effectively?”, 29" International Con-
ference on Software Engineering (ICSE’07), IEEE, pp. 168-177,
USA, May 2007.

[16] M. Vokac, W. Tichy, D. L. K. Sjeberg , E. Arisholm and M. Aldrin,
“A Controlled Experiment Comparing the Maintainability of Pro-
grams Designed with and without Design Patterns: A Replication in a
Real Programming Environment”, Empirical Software Engineering,
Springer, 9 (3), pp. 149-195, September 2004.

