
A Theoretical Model for Capturing the Impact of Design
Patterns on Quality: The Decorator Case Study

Sofia Charalampidou1, Apostolos Ampatzoglou1, Paris Avgeriou1, Seren Sencer2,
Elvira-Maria Arvanitou1, Ioannis Stamelos3

1 Department of Mathematics and Computer Science, University of Groningen, Netherlands
2 Department of Computer Science & Engineering, Sabanci University, Turkey

3 Department of Informatics, Aristotle University of Thessaloniki, Greece

s.charalampidou@rug.nl, a.ampatzoglou@rug.nl, paris@cs.rug.nl, serensencer@sabanciuniv.edu,
e.m.arvanitou@rug.nl, stamelos@csd.auth.gr

ABSTRACT

Design patterns are widely recognized as reusable solutions that

can be applied for improving design quality. However, empirical

results suggest that patterns may sometimes support and other

times hurt a quality attribute. Thus, there is a need for guidance

on when a pattern is beneficial and when it is not. To provide

such guidance, we propose a theoretical model for understanding

the effect of patterns on quality. The obtained results are expected

to improve the theoretical body of knowledge on design patterns,

and facilitate informed decision making about when to insert or

remove a pattern from a system. As an example, we present and

discuss the results of modeling and exploring the effect of Deco-

rator instances on quality. The results suggest that Decorator in-

stances that are not expected to evolve through the addition of

components in composite objects decrease system cohesion and

therefore, modularity and maintainability are weakened.

Categories and Subject Descriptors

• Software Engineering  Metrics

• Software Design  Methodologies

General Terms

Measurement, Design, Experimentation.

Keywords

Design patterns; software quality; design metrics

1. INTRODUCTION

GoF design patterns [10] are widely adopted as reusable solu-

tions to common design problems. Although these patterns were

not originally explicitly linked to quality attributes, a recent

systematic secondary study [1] identified an extensive corpus of

research aiming at assessing the effect of GoF patterns on quali-

ty. However, the study indicates that GoF patterns cannot be

uniformly evaluated with respect to their effect on quality; spe-

cifically, different empirical studies suggest that the same pat-

tern exhibits exactly the opposite effect on the same quality

attribute [1], e.g., Visitor has been evaluated both as positively

[14] and as negatively (e.g., [16]) related to understandability.

To investigate the aforementioned contradictory results, a few

theoretical approaches have been proposed. These approaches

(see Section 2) develop mathematical models that capture the

effect of patterns on quality, by considering the generic represen-

tation of a pattern, rather than a specific instance. Such approach-

es have modeled the effect of patterns on various qualities. Never-

theless, only limited patterns have been explored, while the effect

of patterns is mostly studied on the directly affected quality at-

tributes (e.g., the effect of patterns involving polymorphism on

the number of polymorphic methods). Therefore, we need to ex-

plore additional patterns, and model their effect on a variety of

qualities, so as to identify possible trade-offs, i.e., positive effect

on one quality attribute and negative effect to others.

The goal of this paper is to thoroughly investigate the effect of the

Decorator pattern on various qualities and study the correspond-

ing trade-offs. To achieve this goal, we reuse and extend a two-

step method [4]: (a) we first develop a theoretical model that cap-

tures the effect of patterns on quality attributes, based on numeri-

cal indicators, and (b) we then simulate all possible pattern in-

stances based on the aforementioned model, in order to explore

changes in the effect of patterns on quality. Specifically, during

the second step of the method we perform statistical analysis to

explore how frequently the pattern has a positive effect on quali-

ty. For patterns that do not have a uniform effect, we ‘dig deeper’

to identify the parameters that constitute the pattern beneficial or

harmful. To demonstrate the method in this manuscript, we com-

pare Decorator to a specific design alternative, and report the

results. In an accompanying technical report1 we present results

on the State/Strategy and the Template Method patterns.

The rest of the paper is organized as follows: in Section 2, we

present related work; in Section 3, we introduce our method for

comparing patterns to alternative solutions. In Section 4 we pre-

sent the application of the method on Decorator, while in Section

5 the obtained results. In Section 6, we discuss the findings and

present implications for researchers and practitioners. Section 7

outlines threats to validity, and Section 8 concludes this paper.

2. RELATED WORK

As related work we have considered studies that investigate the

effect of patterns on quality through theoretical models. First,

Huston [12] studied the effect of three patterns (Mediator, Bridge

1 www.cs.rug.nl/search/uploads/Resources/patterns_TR_20151015.pdf

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permis-

sion and/or a fee. Request permissions from Permissions@acm.org.

SAC 2017, April 03-07, 2017, Marrakech, Morocco

© 2017 ACM. ISBN 978-1-4503-4486-9/17/04...$15.00

DOI: http://dx.doi.org/10.1145/3019612.3019781

mailto:serensencer@sabanciuniv.edu
mailto:e.m.arvanitou@rug.nl
http://www.cs.rug.nl/search/uploads/Resources/patterns_TR_20151015.pdf
mailto:Permissions@acm.org

and Visitor) on coupling, inheritance and size metrics. According

to Huston, there are several thresholds that, when surpassed, the

pattern application is beneficial. The differences between our

work and [12] are that: (a) we explore more qualities, quantified

by different metrics, and (b) we investigate different patterns.

The second study by Hsueh et al. [11] investigated the effect of

six patterns on a single quality attribute that each pattern directly

affects (e.g. the effect of: Observer on Coupling, Strategy on Pol-

ymorphism etc.). However, investigating the effect of a pattern on

a single quality attribute can result in neglecting possible trade-

offs that pattern usage induces. For example, when a pattern is

employed, the coupling of the system may decrease, but as a side

effect the size may increase. Compared to Hsueh et al. [11], we

do not limit our study to a single quality attribute, but we examine

all metrics of the selected metric suite. Although both works ex-

amine the Decorator pattern, we advance the state of knowledge

by studying 10 additional quality attributes.

Finally, in [4] the authors used the methodology proposed by

Huston [12] and Hsueh et al. [11], to perform a comprehensive

evaluation on the effect of three patterns (Bridge, Abstract Facto-

ry, and Visitor) on various qualities. The results of that study

validated the existence of thresholds (named as “cut-off points”)

that when surpassed pattern application becomes beneficial. Our

current work is based on this work, i.e., [4], investigating a new

pattern and using additional pattern-related characteristics.

3. METHOD

In this section we describe the method we applied for the needs of

our study. The method is an enhanced version of the one intro-

duced by Ampatzoglou et al. [4]. Our method is based on three

fundamental observations, made on GoF patterns:

- Existence of a set of comparable solutions: For each pattern,

we can propose several alternative design solutions (i.e. pat-

tern and non-pattern) that can substitute its functionality and

can be used in cases when the pattern is not beneficial [3].

- Existence of characteristics related to software quality at-

tributes: GoF patterns contain certain structural characteris-

tics that are related to quality. For example, in Bridge, such

characteristics (i.e., class hierarchies, polymorphic method

behavior, and class composition) improve maintainability and

flexibility of the design [2]. Hence, measures on pattern-

related characteristics, which evolve during maintenance,

such as the number of polymorphic methods, or the classes in

a hierarchy, can be used as parameters to our method to pre-

dict the effect on these qualities.

- Different instances of patterns vary with respect to the pre-

viously mentioned characteristics: Depending on how the

patterns are instantiated in a particular system, measures of

their structural characteristics may differ substantially, e.g.,

number of participating classes [5]. This might be an objec-

tive factor for the varying effect of different pattern instances

on the same quality attribute.

Based on these observations, we developed a method consisting

of two parts. In the first part (model construction) we derive

equations that calculate quality metric scores for different pattern

instances as a function of pattern-related characteristics. In the

second part (analytical exploration) we use statistical analysis on

these models, to compare pattern and alternative design solutions.

Part A – Model Construction

1) Identification of Alternatives: Derive one or more alternative

design solutions from literature, open-source solutions or de-

signers’ personal experiences.

2) Identification of Pattern-related Parameters: Identify the

major modification operations, with respect to structural char-

acteristics (i.e., add classes in hierarchies, or add pattern-

related methods). Based on the modification operations that

can be applied on the pattern, extract a list of pattern-related

parameters (numerical indicators) that can characterize a spe-

cific instance. For example, in the Template Method, there is

one parameter related to the number of concrete classes (al-

tered through the add concrete subclasses modification opera-

tion) and two parameters related to methods: the number of

template methods (add inherited methods) and the number of

primitive operations (add overridden methods).

3) Modeling of Solutions: Model the alternative solutions identi-

fied in step 1, based on all the involved parameters of step 2.

4) Quality model selection: Select a quality model that fits the

designer’s needs, or simply a set of metrics. Any development

team can select if they want to evaluate their solutions with

respect to an existing quality model, or a customized model,

or just a set of metrics that are not aggregated or composed.

5) Construction of equations: Construct equations that calculate

quality attributes/metric scores as functions of pattern-related

parameters (see step 2 and step 3).

Part B – Analytical Exploration

6) Statistical Analysis: Substitute the variables of the equations

with the values that the pattern-related parameters are ex-

pected to get along pattern evolution. Perform descriptive sta-

tistics and hypothesis testing on the dataset.

7) Cut-off Points Analysis: If the results of the statistical analysis

do not indicate which design solution is better, compare the

equations of step 5 and identify the cut-off points (i.e., the so-

lutions of the inequalities). The identified cut-off points sug-

gest the values of pattern-related parameters for which each

design solution (pattern or alternative) is beneficial.

The major difference between this method, compared to the origi-

nal one [4], which considered only one class-related parameter2

(i.e., number of concrete subclasses) [15], lies on the identifica-

tion of additional parameters3 (i.e., number of pattern-related

methods). Especially for the case of Decorator, studying pattern-

related methods is important, since according to Di Penta et al. [8]

adding and removing methods is the most frequently applied

modification operation. Instead of using the number of pattern-

related methods, we decided to use more fine-grained parameters,

based on the type of the method: (a) number of abstract methods,

(b) number of overridden methods, and (c) number of inherited

methods. The rationale of this decision is based on the fact that

for some patterns (e.g., Strategy) the basic criterion for applying

them can be the number of inherited methods compared to the

number of overridden ones. In particular, if the number of over-

2 We have not considered the “add clients” [15] parameter due to its

uniform effect on both solutions. “Adding abstract classes” [15] was not

considered, since the addition of an abstract class in a pattern instance

would create a coupled pattern.
3 This does not imply that the results of [4] are invalidated, since for all

examined patterns in [4], the number of pattern-related methods is asso-
ciated to the number of concrete subclasses.

ridden methods (varying behavior) is negligible compared to in-

herited methods (common behavior), then an alternative design

(e.g., set of if-statements) might be preferable.

4. MODEL CONSTRUCTION

This section presents the application of the proposed method on

Decorator, organized based on the first five steps of the method

that correspond to the model construction. The last two steps

(analytical exploration) are presented in Section 5.

4.1 Identify alternatives
Decorator is used for “adding behavior or state to individual ob-

jects at run-time” [10]. We selected to demonstrate the method on

Decorator, due to its inherent complex structure and the fact that

method-related parameters cannot be subsumed by the number of

classes. The class diagram of a typical Decorator is presented in

Figure 1, whereas an alternative design is presented in Figure 2.

While building the alternative, we replaced: (a) the composition

to objects of the superclass (i.e., link between Component and

Decorator) with direct compositions to all leafs (i.e., link be-

tween Leaf1 and Decorator, etc.), which can be considered as a

common design decision from novice software developers; and

(b) the use of polymorphism (Decorator hierarchy) with condi-

tional statements, based on the value of the decoratorType

variable. Similarly, this is a common design decision—see refac-

toring: “prefer conditional over polymorphism” [9].

We note that the specific alternative is not a pattern variant, but

an artificial design constructed by ignoring some pattern princi-

ples. We acknowledge that the results reported in this paper de-

pend on this alternative, and would be different if we used a dif-

ferent alternative (see threats to validity in Section 8). In any case,

one who wishes to apply the proposed method with another de-

sign alternative can reproduce the steps of the method, as illus-

trated in Section 4 to compare any set of design options.

4.2 Identify pattern-related parameters
In the structure of the Decorator design pattern we have identified

six pattern-related parameters (see Figure 1): three based on the

class hierarchies and three based on methods.

Figure 1. Decorator Design Pattern Class Diagram

Number of Classes

 Let n be the number of Leafi in the design.

 Let p be the number of ConcreteDecoratorA1i—those that

provide additional methods than the ones provided by the giv-

en methods of the hierarchy.

 Let q be the number of ConcreteDecoratorA2i—those that

only exhibit different behavior on the given methods of the

hierarchy, without providing new ones.

Number of Methods

 Let m be the number of operationi methods—abstract

methods in the Decorator class hierarchy.

 Let k be the number of otherOperation methods—non-

abstract (inherited) methods in the Component class.

 Let r be the number of additionalOperation methods,

offered by ConcreteDecoratorA1i classes.

In Figure 1 we demonstrate how the specific pattern-related pa-

rameters are mapped to the Decorator UML class diagram.

4.3 Model solutions based on parameters

As explained in Section 4.1 the Decorator Design Alternative

holds different lists for each type of Leaf, in order to provide

equal functionality on the aggregation to Component class in the

design pattern. In order for the decorator to change type during

run-time, the Decorator class holds a decoratorType attribute

that takes (p + q) possible values. Inside the (m) operation, we

placed (p+q) if statements, to handle all possible ConcreteDec-

oratori classes. The way that the pattern-related parameters are

mapped into the alternative UML class diagram is depicted in

Figure 2. We note that (p) and (q) are not represented, since if-

statements are not visible at class diagrams.

Figure 2. Decorator Design Alternative Class Diagram

4.4 Select a metric suite

For this study, we used the QMOOD metrics [6]. These metrics

can directly quantify a set of low-level Quality Attributes (QA)—

e.g., coupling, cohesion, etc., which in turn can be grouped to

assess high-level ones (e.g., reusability, etc.). These low-level

qualities and the metrics that quantify them are presented in Table

1 [6]. We note that in this study we use only the QMOOD metric

definitions and their positive/negative relationship to high level

quality attributes, rather than the mathematical formulas that are

suggested for their quantification, so as not to raise a threat to

construct validity [11] (see Section 7).

Table 1. QMOOD Metrics and Low-Level Quality Attributes

Low-Level QA Metric Description

Design Size Design Size in Classes (DSC) - Count of classes.

Messaging Class Interface Size (CIS) - Count of public methods

 Polymorhism
Number of Polymorphic Methods (NOP) - Number of

methods that can exhibit polymorphic behavior

Low-Level QA Metric Description

Abstraction
Average Number of Ancestors (ANA) - Average

number of classes from which a class inherits.

Encapsulation
Data Access Metric (DAM) - Ratio of the number of

private/protected fields to the total number of fields

Coupling
Direct Class Coupling (DCC) - Number of other

classes that the class is directly related to.

Composition
Measure of Aggregation (MOA) - Number of data

declarations whose types are user defined classes.

Inheritance

Measure of Functional Abstraction (MFA) - Ratio of

number of methods inherited by total number of

accessible methods.

Cohesion

Cohesion Among Methods (CAMC) - Sum of the

intersection of a method parameters with the maximum

set of all parameter types in the class.

Hierarcies
Number of Hierarchies (NOH) - Count of hierarchies

in the design.

Complexity
Number of Methods (NOM) - Number of methods in

the class.

4.5 Construct equations

By calculating the metric presented in Table 1 on the designs of

Section 4.1, we formulated the metric scores for low-level quality

attributes, for both solutions (f(x) for the pattern and g(x) for

the alternative). The calculations are reported together with the

obtained results for two additional patterns (i.e., Strategy and

Template Method), in an accompanying technical report1, due to

space limitations. However, to enhance the readers’ understanda-

bility, we provide the calculation of one metric (DCC) for the

pattern (Decorator) solution, as an example. We clarify that to

aggregate metric scores from the class level to the pattern level

we use the average function. More specifically the numerator is

calculated as the sum of the DCC of all classes, whereas the de-

nominator equals the number of classes.

According to the class diagram presented in Figure 1, for the pat-

tern solution, the numerator is calculated as follows: The Client

class includes an object, of type Component, so its DCC equals

1. Similarly, the Component class includes an object, of type

Decorator, so its DCC also equals 1. The (n) Leafi classes

inherit from the Component class, so their DCC equals 1. Simi-

larly, the (p) ConcreDecoratorA1i classes and the (q) Con-

creDecoratorA2i inherit from the Decorator class, so their

DCC equals 1. The DCC of the Decorator class equals 0 since it

does not include any dependencies. The denominator on the other

hand, as already mentioned above is the number of classes in the

pattern solution, i.e., the sum of the number of Leafi classes (n),

the number of ConcreDecoratorA1i classes (p), the number of

ConcreDecoratorA2i classes (q), plus 3 (i.e. Decorator, Com-

ponent and Client). Thus,

qpn

qpn
PATTERNDCC






3

)*1()*1()*1(11

Similarly, we calculate the metric for the alternative solution, by

considering the classes and methods of the respective design.

5. ANALYTICAL RESULTS
In this section we present the results obtained while applying the

second part of our method, in which we analyze the theoretical

models constructed in Section 4. In Section 5.1 we present the

results of the performed statistical analysis, so as to present quali-

ty attributes for which the pattern or the alternative solution is

always beneficial (step 6). In Section 5.2 we explore the cases

that no optimal design solution could be identified, by investigat-

ing the range values of pattern-related parameters for which each

design solution is beneficial (step 7).

5.1 Statistical Analysis
In this section we present the results of our study obtained by

substituting the variables of the equations with the most common

values of pattern-related parameters, according to the literature4.

In particular, based on a case study performed by Ampatzoglou et

al. [5] on 108 open source projects, Decorator instances tend to

have on average 13 classes. Additionally, regarding the method-

related parameters, literature suggests that classes (regardless of

their pattern participation) rarely have more than 15 methods [13].
Based on the aforementioned claims, we can assume that:

 n + p + q + 3 = 13

 n, q, p [1, 8]

 m, k, r [1, 13]

 max (m + k + r) ≤15

By using the aforementioned rules as a way to obtain a sample

that represents the most frequently occurring pattern instances, we

developed a dataset consisting of 16,500 cases. By exploring this

dataset using statistical analysis we aim at identifying the exist-

ence of differences between the two solutions in the most com-

mon design pattern occurrences.

In Table 2 each row represents one low-level quality attribute,

whereas in the columns we present: (a) the mean value and the

standard deviation of both the pattern and the alternative solution,

(b) the results of the Wilcoxon test “Z” that check the statistical

significance of differences (we omit the sig. values since for all

cases the obtained results have been statistically significant), and

(c) the frequency of cases when the pattern “P” or the alternative

“A” have higher metric scores, as well as the frequency of ties

“T”. The cases when one design solution clearly has higher values

compared to the other are highlighted with grey cell shading in

the table. From Table 2 we have excluded the values for encapsu-

lation (DAM) and hierarchies (NOH) attributes, since their

scores are equal for both solutions (these metrics are not affected

by any pattern-related parameter).

Table 2. Effect of Decorator on low-level Quality Attributes

Quality

Attribute

Pattern Alternative

Z

Solutions

Mean STD Mean STD

P

%

A

%

T

%

Size 13,000 0,09 6,330 1,97 -111,2 99,99 0,01 0,00

Inheritance 0,352 0,16 0,425 0,20 -49,2 38,01 61,92 0,06

Coupling 0,922 0,02 1,307 0,20 -110,8 0 100 0

Cohesion 0,401 0,16 0,437 0,17 -25,5 40,23 55,18 4,57

Polymorphism 0,615 0,41 0,693 0,52 -32,9 41,66 58,33 0

Messaging 5,794 2,49 7,039 2,37 -101,4 8,65 91,27 0,07

Complexity 5,794 2,49 7,039 2,38 -101,3 8,65 91,27 0,07

Composition 0,154 0,02 0,653 0,10 -111,1 0,01 99,99 0

Abstraction 1,615 0,26 0,653 0,10 -110,8 100 0 0

Based on the results of Table 2, we observe that for Inheritance,

Cohesion and Polymorphism the frequency of occurrences that

Decorator has lower metric scores than the alternative solution is

close to a 60%-40% distribution. Additionally, concerning Mes-

4 Since the aim of this study is not the evaluation of a specific system, we
used the most common values of pattern-related parameters, so that our

results to be as generic, and as close to practice as possible.

saging and Complexity the alternative solution shows 90% higher

scores. On the other hand, concerning Size, Coupling, Composi-

tion and Abstraction the pattern solution has, to a large extent,

higher metric scores compared to the alternative solution. A pos-

sible interpretation of the higher Size (DSC) and Abstraction

(ANA) values is the increase of the depth of the inheritance tree,

and the extra classes placed on the last level of the tree. The result

concerning Composition (MOA) and Coupling (DCC) is intuitive

in the sense that in the alternative design the direct composition of

Leafi to the Decorator was preferred. We note that concerning:

(a) some metrics (e.g., Coupling) the optimal solution is not the

one achieving the highest score, since it is a negative quality indi-

cator; and (b) the same metric can have a different effect on dif-

ferent quality attributes (e.g., DSC is beneficial concerning func-

tionality, but worsens the understandability of the design) [6].

Finally, the results show that ties are negligible, since they occur

rarely (max: approx. 5% for cohesion).

Summing up, the results of the statistical analysis reveal that for

Size and Abstraction the Decorator pattern solution has higher

scores than the alternative solution, while for Coupling, Composi-

tion, Messaging and Complexity the opposite applies. Finally,

although for Inheritance, Cohesion, and Polymorphism the alter-

native solution shows more frequently higher scores, the cut-off

points split the problem space almost in the middle (60% vs.

40%), suggesting that it is not possible to state if the pattern or the

alternative solution is more beneficial, and thus each problem

should be individually considered (see Section 5.2).

5.2 Identification of Cut-off Points

To further investigate the cases where no conclusion can be de-

rived by statistical analysis one needs to work on the model level.

By using the equations defined in Section 4.5 we subtract the

alternative from the pattern function for every quality at-

tribute. In this way, we define a new function (diff) that detects
when a solution gets better, with respect to this quality attribute:

diff (n, p, q, m, k, r) = pattern (n, p, q, m, k, r) – alternative (n, m, k, r) > 0
(1)

diff (n, p, q, m, k, r) <0

The existence of solutions to the aforementioned inequalities (1)

suggests that there are multiple cut-off points, where the design

pattern solution is getting better or worse than the alternative

solution, with respect to a quality attribute5. In particular, positive

values of diff denote that the pattern version presents higher

metric scores, while negative values suggest the opposite. Alt-

hough in the majority of cases (e.g., cohesion), higher metric

scores suggest better levels of the quality attributes, in some cases

(e.g., coupling) higher scores imply declined quality. In other

words, concerning coupling, which has a negative effect on quali-

ty, when diff is positive the design alternative is better than the

pattern, while when dealing with cohesion, a positive diff im-

plies that the pattern excels. Presenting the mathematical repre-

sentation of such cut-off points is out of the scope of this manu-

script, due to their large number and complexity. Nevertheless,

we visualize the existence of these cut-off points by demonstrat-

ing a tool created for this purpose.

To assist practitioners in using the proposed method, we have

extended the DesignPAD tool [4], by adding functionality related

5 Despite the fact that these solutions cannot be defined as single points,

we prefer to use this term to ensure consistency with previous work [4].

In practice the solutions to such equations are cut-off surfaces.

to the three newly studied design patterns and by migrating it to

the web. Currently, DesignPAD is available as a web-service

through the Percerons platform6. The tool requires as input the

type of design pattern that the user is interested in (Bridge, Ab-

stract Factory, Visitor, Template Method, State, Strategy, or Dec-

orator), a set of quality metrics or a quality model, and a set of

values for the pattern-related parameters (single values or range

of values). The tool provides as output descriptive statistics on the

metric scores, as well as a visualization of the cut-off points. The

results can guide software engineers to make a decision on

whether pattern application is beneficial or not.

For example, in Figure 3 our method is applied on a Decorator

instance with 1 Leaf and 1 Concrete Decorator. In this ex-

ample the Decorator hierarchy offers 1 polymorphic method

and 3 inherited ones, while the Concrete Decorator extends

the functionality of the hierarchy by offering 1-8 additional opera-

tions. The results of the tool suggest, that the pattern solution

gradually becomes more understandable than the alternative, and

surpasses it when the solution has 5 additional operations. This

finding is according to the intent of the Decorator pattern, which

is expected to be useful when adding extra responsibilities to an

object (increase of Additional Operations (r)). We note that

concerning Decorator at this stage the tool is able to simulate

instances of only one alternative (the one presented in this study),

but in the future we plan to update the tool with further alterna-

tives for all patterns.

Figure 3 – Percerons Design Pattern Advisor Output

The most interesting findings on the identification of cut-off

points for the Decorator pattern are presented below. We remind

that the results correspond to the comparison between the Decora-

tor pattern and the alternative design presented in Section 4.1.

Functions representing abstraction (quantified through the ANA

metric), size (DSC), composition (MOA), and coupling (DCC) do

not present any cut-off points (i.e. the direction of the inequality

does not change among different pattern instances) as indicated

by the statistical analysis (see Table 2).

Concerning cohesion (CAMC), the obtained results suggest that

the larger the number of Leafi classes (n), the more probable the

alternative design solution to become more coherent. Additional-

ly, we observe that as the number of Decorator operationi

methods (m) increases the alternative solution becomes more

6 http://www.percerons.com

http://www.percerons.com/

prominent, whereas the opposite applies when adding addition-

alOperations to ConcreteDecoratorA1i classes (i.e. in-

creasing (r)). This behavior is caused by the addition of the non-

coherent methods of a class. For example, in the pattern, opera-

tioni are not coherent with addParts and removeParts.

Therefore, as we add such methods, lack of cohesion increases.

During system evolution along two change parameters (adding

Leafi and operationi) the use of the pattern leads to less cohe-

sive solutions, whereas when the pattern evolves through the ad-

dition of additionalOperations, the cohesion increases.

Next, we present the obtained results regarding the Class Inter-

face Size (CIS) and Complexity (NOM). The results on these two

metrics are presented together, since their values are equal due to

the fact that the pattern does not impose the use of any private or

protected methods. For these metrics we can observe that for

larger values of (r), i.e., adding additonalOperations meth-

ods, there are specific combinations of number of classes that the

pattern solution offers a larger interface (more methods) per class.

Nevertheless, the increase of (r) is not the only condition for the

pattern solution to exhibit more methods, since the existence of a

high number of ConcreteDecoratorA1i classes (p) is required.

This result can be explained by the fact that the addition of extra

methods in ConcreteDecoratorA1i classes increase the sys-

tem’s average CIS/NOM only in the pattern solution (the changes

in ConcreteDecoratorA2i are reflected in the alternative as

well); thus, the more classes of this role are added, the more the

two metrics increase. The existence of public methods is usually

considered as a proxy of functionality, and the probability of reus-

ing a specific class in a different system.

Therefore, although small pattern instances (i.e., small number of

ConcreDecoratorA1i classes (p) and additionalOperation

methods (r)) are offering smaller interfaces than the equivalent

alternative designs, along evolution the pattern solution tends to

excel in this characteristic.

Concerning polymorphism (NOP), the only parameter that affects

the extent of its use in any of the two designs is the number of

classes. Specifically, small numbers of ConcreteDecoratorA1i

(p) and ConcreteDecoratorA2i (q) lead to limited polymor-

phism in the alternative solution, and therefore the use of the pat-

tern is preferable. On the other hand, when along evolution more

classes are added to the system, the alternative solution takes

advantage of polymorphism. However, if the major change is the

addition of Leafi (n), then the pattern becomes more beneficial.

This result is expected since polymorphism is present in the

Leafi classes. Nevertheless, since the use of polymorphism is one

of the cornerstones of the object-orientation, designs that make

use of it excel in terms of efficiency and extendibility.

Similarly to cohesion, decisions that are based on polymorphism

should take into account the most anticipated extension scenarios.

Thus, when the number of ConcreDecoratorA1i classes (p) and

ConcreDecoratorA2i classes (q) is small and the number of

Leafi classes (n) is large, the pattern solution is beneficial.

Finally, concerning the use of inheritance (MFA), we can suggest

that the addition of operationi (m) and additionalOpera-

tion methods (r) leads to a more extensive use of inheritance in

the pattern solution. On the other hand, the larger the number of

otherOperation (k) methods, the better the alternative solution

becomes. This outcome can be considered as intuitive since when

there is no room for the application of polymorphism (all Leafi

and Decorators have very similar behavior) the use of Decora-

tor, might just be too complex for the designer’s needs. Also, the

results indicate that some parameters affect more strongly the

results. For example, as both (m) and (k) increase the pattern

solution becomes less prominent, which suggests that the effect of

(k) is stronger, like the aggregate effect of (r) and (k). Finally, the

results when all parameters are increased simultaneously show

that the effect caused by the addition of otherOperation (k) is

stronger than the joint effect of both adding operationi (m) and

additionalOperation methods (r).

Thus, to understand the effect of Decorator on the use of inher-

itance one should consider if along evolution the architect expects

the addition of operationi methods that are the same in all

Leafi and Decorators. As the number of such methods increas-

es, the pattern becomes less beneficial concerning polymorphism.

6. DISCUSSION
In this section we discuss the main findings of this study and pre-

sent implications to researchers and practitioners. In Section 6.1

we synthesize our findings to assess six high-level quality attrib-

utes, while in Section 6.2, we elaborate on the potential value of

our method for researchers and practitioners.

6.1 Synthesis of Results

To facilitate the discussion on high-level quality attributes, we

summarize the main outcomes of Section 5, in a synthesized form

in Figure 4. In particular, we present six radar charts (one for each

high-level quality attribute of QMOOD [6]). For each metric that

is used to assess a quality attribute we present the percentage of

cases when each design solution is optimal (PAT: green line,

ALT: blue line—by considering the score and the relation be-

tween the metric and the QA), based on the results presented in

Table 2. We note that from the radar charts we have omitted the

metrics that are equal in both solutions (i.e., NOH and DAM).

Specifically, the larger the number of metrics that the two lines

are close (e.g., CAMC), the larger the gain from using the meth-

od, in the sense that the designers can make informed decisions

based on the values of the pattern-related parameters.

Figure 4. Effect of Decorator on Quality Attributes

The aforementioned results suggest that in most of the cases, the

application of the pattern enhances the quality attribute of interest.

For example, concerning Extendibility, we observe that the de-

sign pattern solution improves the values for two out of four met-

rics. Extendibility is the only high-level quality attribute for

which the alternative solution does not excel concerning any fac-

tor. This result is in accordance to the literature [1], which sug-

gests that Decorator application eases any future maintenance

activity. However, there are special cases that some aspects of

design quality might be weakened. For example, concerning Un-

derstandability the pattern is always beneficial concerning NOM

and DCC. In approximately 40% of the examined cases it is also

beneficial concerning CAMC, and in 60% of cases concerning

NOP. However, there is no case where the pattern solution is

better concerning ANA and DSC. Thus, it becomes clear that

since the values of factors influencing understandability are so

mixed, we are unable to derive a conclusion on the effect of the

pattern using statistics. This result provides a solid explanation on

the contradictive results concerning the effect of Decorator on

understandability [5]. In particular Ampatzoglou et al. [5] report

that one study has negatively evaluated the effect of Decorator on

understandability, whereas two other have reported a positive

relation. For such cases further analysis is required.

To assist the process of design solution selection when cut-off

points exist, in Table 3 we provide a more fine-grained analysis

on the factors that influence the effect of patterns on software

quality. Specifically, every row of the table presents a metric that

is used for the quantification of high-level quality attributes (and

presents cut-off points), whereas every column a pattern-related

parameter (as presented in Section 4.2). Every cell of the table

denotes which design is beneficial with respect to the specific

metric, whenever one parameter is increasing (i.e., when we ex-

tent the system by adding a corresponding class or method). For

example, the results of CAMC metric indicate that the alternative

solution is more beneficial when the number of Leafi or the

number of operationi methods increase, while the pattern

solution is preferable in the case that the additionalOperation

methods increase. We remind that concerning ANA and DSC the

pattern solution is always having higher scores than the alterna-

tive; regarding MOA and DCC the opposite applies, whereas for

DAM and NOH they are always equal (see Section 5.1).

Table 3. Effect of Decorator Parameters

Metric

Modification Parameters

(n) (p) (q) (m) (k) (r)
CAMC ALT ALT PAT

CIS PAT PAT

NOM PAT PAT

NOP PAT ALT ALT

MFA PAT ALT PAT

Total 2 3 1 2 1 4

Based on Table 3 and the radar charts of Figure 4, we can guide

practitioners in making pattern-related decisions, based on their

preference on different quality attributes as follows:

Reusability. We can observe that 2/4 metrics that influence reusa-

bility (DSC and DCC) are always favored by the use of the pat-

tern. Concerning the other two (CIS and CAMC), we can observe

that in majority the alternative design is more beneficial. Howev-

er, in the special case that along evolution, the practitioner ex-

pects an increase in the number of concrete decorators (p),

which offer increased number of class-specific opera-

tions (r), then the use of the pattern seems like a better choice.

Flexibility. One metric (DCC) supports the use of the pattern,

another (MOA) supports the alternative, and one (NOH) is neu-

tral. The fourth metric that presents cut-off points (NOP), shows a

balanced behavior. The use of the pattern can be suggested when

more types of components are expected to be added inside the

decorator container (n), or more concrete decorators that

offer class-specific operations (p). Nevertheless, accord-

ing to Di Penta et al. [8] adding classes to an existing Decorator

instance is not the most frequently applied modification opera-

tion. This observation can partially explain the negative effect of

Decorator on adaptability, reported in the literature [1].

Understandability. Similarly to reusability, the existence of cut-

off points is important, since 2/6 relevant metrics (DCC and

NOM) are always positively affected by the use of the pattern and

two metrics (DSC and ANA) are always favored by the alterna-

tive. For the rest (CAMC and NOP), we observe that adding con-

crete decorators that offer class-specific operations (p) makes the

pattern more beneficial in terms of understandability, whereas

adding concrete decorators that do not offer class-specific

operations (q) or operationi methods (m), favor the appli-

cation of the alternative solution.

Functionality. Concerning this quality attribute only one metric

(DSC) is always positively affected by the pattern, and three oth-

ers (CAMC, NOP, and CIS) exhibit cut-off points. The rules that

apply for functionality are the same as for understandability (high

number of ConcreDecoratorA1i classes (p): benefit from pat-

tern, high number of ConcreDecoratorA2i classes (q) or oper-

ationi methods (m): benefit from alternative).

Effectiveness. This quality attribute is related to two metrics that

present cut-off points (MFA and NOP). These metrics, in most of

the cases, benefit from the alternative design. However, they are

influenced by completely different parameters (NOP is influenced

by class-related parameters, whereas MFA by method-related

parameters), and therefore, they cannot be discussed uniformly

and every evolution scenario should be treated individually. For

the other two metrics that influence effectiveness one favors pat-

tern (ANA) application and other the alternative (MOA).

Extendibility. This is the only quality attribute that the alternative

solution does not present higher scores for any of the metrics that

influence it. Therefore, we can assume that for the majority of the

cases the design pattern solution can be more easily extended.

The two metrics presenting cut-off points (MFA and NOP) are

exactly the same as in the case of effectiveness and therefore the

same observations apply.

6.2 Implications to Researchers/Practitioners
Based on the aforementioned discussion on the effect of the Dec-

orator pattern on quality attributes, we can highlight that design

quality is diminishing by the addition of concrete decorators that

do not offer class-specific operations (q) or methods that are

common in all decorators (k) and in such cases alternative de-

signs should be preferred. A possible explanation is that these

types of change do not conform to the rationale of the pattern. For

example, if the majority of methods that exist in the hierarchy are

the same, then its benefit is limited to a small number of poly-

morphic methods. The results of the study lead us to some useful

implications for researchers and practitioners, as follows:

 Researchers can use the proposed method (subjected to some

modifications) for studying similar issues in the design phase,

e.g. formulating the effect of refactorings on software quality.

 Researchers can generalize the method so as to be able to

compare equivalent design solutions, across software evolu-

tion, regardless of pattern participation.

 Researchers can use the proposed analytical method for inves-

tigating the effect of patterns on source code metrics.

 Practitioners can use the derived formulas for making design

decisions during both Greenfield and Brownfield develop-

ment. In the first case (during design) the designer can con-

sider factors, like the number of the pattern-participating clas-

ses of an instance to decide prior to the application of a pat-

tern whether this would be beneficial. In the case of Brown-

field development, the same approach can be used during the

maintenance phase, for scheduling a refactoring of a pattern-

based solution to an alternative one, or vice versa. In both

cases the obtained benefit is the capability to evaluate pattern-

related design decisions before they are implemented, con-

tributing to reduced development or maintenance costs.

7. THREATS TO VALIDITY
In this section we discuss threats to validity. Concerning construct

validity, the mapping between quality attributes and metrics, as

provided by QMOOD, is acknowledged as a threat. However,

QMOOD has been rigorously validated during its introduction

[6]. Nevertheless, we note that the riskiest part of the model (i.e.,

assignments of weights to low-level metrics) has been omitted.

Additionally, the conducted experiments do not necessarily cap-

ture the construct of design evolution accurately, since it is possi-

ble that design may evolve in certain directions, but our sample

scenarios count as if they are all equally probable to happen.

Thus, it is possible some of the generated data points to represent

infeasible evolutions, but contribute equally to the results.
In terms of external validity, the use of the QMOOD suite certain-

ly poses some threats, since the use of a different model might

produce different results. Similarly, the generalizability of our

results is influenced by the use of specific design alternatives,

expecting that alternatives with poor design could result to even

better scores for the pattern solution. However, we note that the

applicability of the method depends neither on the use of the se-

lected model nor the selected alternative. The method can be used

with any metric suite that takes into account some pattern parame-

ters (e.g., [7]), as well as with any alternative solution that is

equivalent to a GoF design pattern; the selection of the design

solutions depends on the judgment of the software engineer who

applies the method. Thus, we do not imply that the selected alter-

native is the best Decorator alternative; after all there is no objec-

tive way to compare all available solutions.

The study has limited reliability threats, since all research ques-

tions were answered by mathematical operations, which involve

no researcher bias. Although, the selection of the pattern related

parameter ranges is subjective, it is based on empirical results

obtained from OSS development. Finally, internal validity may

be influenced by the pattern related parameters selection, in the

sense that omitted parameters can be considered as confounding

factors. However, in this study we selected to explore the most

frequently changing parameters, according to Ng et al. [15].

8. CONCLUSIONS

This study aimed at developing a method that can provide guid-

ance to designers while making pattern-related decisions, driven

by qualities. The results of applying the method on decorator

highlighted that in most cases pattern application is beneficial for

the design-time qualities; however, there are specific cases when

alternative solutions should be considered. In particular, we pro-

vided evidence that when the decorator pattern is applied in the

right context, i.e., many concrete decorators, with high variability

of offered functionalities (methods), it positively affects quality.

On the other hand, in cases that the pattern is extended by con-

crete decorators, which inherit most of their offered functionali-

ties, some quality attributes diminish. Based on the above we can

claim that the provided method can be useful to practitioners, and

at the same time it opens some interesting research directions.

As future work we plan to: (a) empirically investigate the accura-

cy of the theoretical results on OSS projects, (b) replicate the

study with different alternatives so as to evaluate the sensitivity of

our results to various alternative designs, (c) investigate the 3rd

axis of change proposed by Ng et al. [15] (i.e. the usefulness of

the number of clients, as a predictor of software quality), to con-

firm whether evolution through this axis is uniform in pattern and

non-pattern solutions, (d) compare the effect of similar parame-

ters of different patterns (e.g., if the addition of subclasses in

Bridge has a similar effect to the addition of Leafs in Decorator.

REFERENCES
[1] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research State

of the Art on GoF Design Patterns: A Mapping Study”, Journal of

Systems and Software, Elsevier, 86 (7), pp. 1945–1964, July 2013.

[2] A. Ampatzoglou, and A. Chatzigeorgiou, “Evaluation of object-

oriented design patterns in game development”, Information and

Software Technology, Elsevier, 49 (5), pp.445-454, May 2007.

[3] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Design Pattern

Alternatives: What to do when a GoF pattern fails”, 17th PanHellenic
Conference on Informatics (PCI’ 13), Association for Computing

Machinery, Greece, September 2013.

[4] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, "A Methodology

to Assess the Impact of Design Patterns on Software Quality", Infor-
mation and Software Technology, 54 (4), pp. 331-346, April 2012.

[5] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Investigating

the Use of Object-Oriented Design Patterns in Open-Source Soft-

ware: A Case Study”, Evaluation of Novel Approaches to Software
Engineering (ENASE’ 11), pp. 106–120, Greece, 2011.

[6] J. Bansiya, and C. Davis, “A hierarchical model for object-oriented

design quality assessment”, Transaction on Software Engineering,

IEEE, 28 (1), pp. 4–17, January 2002

[7] S. Chidamber and C. Kemerer, “A metrics suite for object oriented

design”, Transactions on Software Engineering, IEEE, 20 (6), pp.

476–493, June 1994.

[8] M. Di Penta, L. Cerulo, Y. Guéhéneuc, and G. Antoniol, "An empiri-

cal study of the relationships between design pattern roles and class
change proneness", 24th International Conference on Software

Maintenance (ICSM’ 08), IEEE, pp. 217-226, China, Sept. 2008.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.Roberts, “Refactor-

ing: Improving the Design of Existing Code”, Addison-Wesley Pro-
fessional, 1st Edition, July 1999.

[10] E. Gamma, R. Helms, R. Johnson, J. Vlissides, “Design Patterns: El-

ements of Reusable Object-Oriented Software”, Addison - Wesley,

1995.

[11] N.L. Hsueh, P.H. Chu, W. Chu, “A quantitative approach for evaluat-

ing the quality of design patterns”, Journal of Systems and Software,

81 (8), pp.1430–1439. 2008

[12] B. Huston, “The effects of design pattern application on metric

scores”, Journal of Systems and Software, 58 pp. 261–269. 2001.

[13] J. Kalpana and K. Arvinder, “Effect of software evolution on soft-

ware metrics: an open source case study”, Software Engineering

Notes, ACM, 36 (5), pp. 1-8, September 2011.

[14] F. Khomh and Y. G. Guéhéneuc, “Do Design Patterns Impact Soft-

ware Quality Positively”, 12th European Conference on Software

Maintenance and Reengineering (CSMR’08), IEEE, pp. 274-278,

Greece, 1-4 April 2008.

[15] T.H. Ng, S.C. Cheung, W.K. Chan, and Y.T. Yu, “Do maintainers

utilize deployed design patterns effectively?”, 29th International Con-

ference on Software Engineering (ICSE’07), IEEE, pp. 168-177,

USA, May 2007.

[16] M. Vokác, W. Tichy, D. I. K. Sjøberg , E. Arisholm and M. Aldrin,

“A Controlled Experiment Comparing the Maintainability of Pro-

grams Designed with and without Design Patterns: A Replication in a

Real Programming Environment”, Empirical Software Engineering,
Springer, 9 (3), pp. 149-195, September 2004.

