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Abstract—Extract Method’ is considered one of the most frequently applied and beneficial refactorings, since the
corresponding Long Method smell is among the most common and persistent ones. Although Long Method is conceptually
related to the implementation of diverse functionalities within a method, until now, this relationship has not been utilized while
identifying refactoring opportunities. In this paper we introduce an approach (accompanied by a tool) that aims at identifying
source code chunks that collaborate to provide a specific functionality, and propose their extraction as separate methods. The
accuracy of the proposed approach has been empirically validated both in an industrial and an open-source setting. In the
former case, the approach was capable of identifying functionally related statements within two industrial long methods (approx.
500 LoC each), with a recall rate of 93%. In the latter case, based on a comparative study on open-source data, our approach
ranks better compared to two well-known techniques of the literature. To assist software engineers in the prioritization of the
suggested refactoring opportunities the approach ranks them based on an estimate of their fithess for extraction. The provided
ranking has been validated in both settings and proved to be strongly correlated with experts’ opinion.

Index Terms— D.2.2 Design Tools and Techniques, D.2.3.a Object-oriented programming, D.2.8 Metrics/Measurement

1 INTRODUCTION

he term code smell has been introduced by Kent Beck

[10] in late 1990s to refer to parts of the source code
that suffer from specific problems, usually related to a
quality attribute. The term was widely popularized
through the influential book of Fowler et al. [17] in 1999.
According to Fowler et al. [17], code smells can be re-
solved through the application of refactorings, i.e., trans-
formations that improve certain quality attributes but do
not affect the external behavior of the software.

In their seminal book on refactorings, Fowler et al.
[17] describe 22 possible code smells and the associated
refactorings. In order to investigate the application fre-
quency of refactorings in practice, Murphy-Hill et al. [33]
performed a case study with 99 Java developers that
used the Eclipse IDE refactoring tools. Based on their
results the most commonly applied refactorings (among
those proposed by Fowler et al.) are the Rename Method
and the Extract Method. Similarly, based on the usage
statistics? of JDeodorant (i.e., an Eclipse plugin for
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1 Bad smells, despite its original definition at the implementation level,
is mostly used for higher levels of abstraction, like design [29] and ar-
chitecture [21]. In this paper, we focus on code smells.

2 https:/ /users.encs.concordia.ca/~nikolaos/stats.html

providing refactoring suggestions), the Extract Method
refactoring stands for approximately 45% of the total
refactoring actions performed by the tool.

In a similar context, but by investigating the occur-
rence frequency of code smells in real projects, Chat-
zigeorgiou and Manakos [15] conducted a case study
using past versions of two open source software (OSS)
systems. Specifically, they investigated the presence and
evolution of four types of code smells, i.e.,, Long Method,
Feature Envy, State Checking, and God Class. Their re-
sults indicated that Long Method was considerably more
common than the other smells. In addition, according to
Gregg et al. [22] in real-world applications 35%-55% of
the methods consist of more than 90 statements. Consid-
ering that methods larger than 30 lines of code [27] are
more error prone, one can understand the need for refac-
toring such large methods (longer than 90 statements).
Given the high frequency of both the Long Method smell
and its refactoring (the Extract Method?), this paper fo-
cuses on the suggestion of Extract Method opportunities
that are able to resolve the Long method smell.

The Long Method smell concerns methods of large size
that serve multiple purposes or functionalities. To Extract
Methods out of longer ones we propose the use of the
Single Responsibility Principle (SRP) [29]. SRP is an ob-
ject-oriented principle that has been introduced at the
class or package level and we tailor it so as to apply at
the method level. SRP states that every module (package
or class) should have exactly one responsibility, i.e., be
related to only one functional requirement, and therefore

3 According to Fowler et al. Extract Method is the most appropriate
solution for eliminating Long Method smells. Extract Method suggests
to group functionally related statements into a method, whose name
explains it purpose [20].
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have only one reason to change. The term single respon-
sibility has been inspired by the functional module decom-
position, as introduced by De Marco [17] in 1979. In order
to assess if a class conforms to the SRP, one needs to as-
sess its cohesion [23, 29], which is related to the number
of diverse functionalities that a class is responsible for
[17]. Despite the fact that Long Methods tend to violate
the SRP in their implementations (by serving more than
one unrelated functionalities), to the best of our
knowledge there are no approaches in the literature that
aim at identifying Extract Method opportunities by
checking their conformance to the Single Responsibility
Principle. Although the application of the SRP is not the
only way for extracting methods out of longer ones, we
argue that it can identify large and functionally meaning-
ful parts of a method, in contrast to existing approaches.
As the research state-of-the-art stands, current approach-
es extract rather small methods, mostly involving one
variable, and are not retrieved based on functionality,
but based on other techniques (e.g., abstract syntax tree
parsing, slicing, etc.). A detailed comparison to related
work can be found in Section 2.4.

In this study we propose an approach called SRP-
based Extract Method Identification (SEMI). In particu-
lar, the approach recognizes fragments of code that col-
laborate for providing functionality by calculating the
cohesion between pairs of statements. The extraction of
such code fragments can reduce the size of the initial
method, and subsequently increase the cohesion of the
resulting methods (i.e., after extraction); therefore, it can
produce more SRP-compliant methods, since the number
of diverse functionalities is decreased. To validate the
ability of the proposed approach to extract parts of a
Long Method that concern a specific functionality, we
conducted:

e an industrial case study in a large company pro-
ducing printers in Netherlands. Specifically, we
applied the proposed approach to two Long
Methods (approximately 1,000 lines in total) and
validated the appropriateness of the proposed re-
factoring opportunities with three software engi-
neers. The study’s outcome suggests that the
proposed approach is able to perform method ex-
traction based on functionality with a high recall
rate.

e a comparative case study on open source soft-
ware. In particular, we applied SEMI on five
benchmark software systems (obtained from the
literature) and compared the accuracy (in terms
of precision and recall) of our approach to two
state-of-the-art tools (namely JDeodorant [38]
and JExtract [37]). The outcome of this study
suggested that our approach achieves the best
combination of recall and precision (i.e., F-
measure) among the examined tools. Addition-
aly, it scales better in terms of accuracy compared
to other approaches/tools (i.e., its accuracy is al-
most uniform for medium- and large-sized
methods).
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The organization of the rest of the paper is as follows:
In Section 2 we present related work, whereas in Section
3 we present in detail the rationale of the proposed ap-
proach. In Section 4, we discuss the industrial case study
design and present its results, and in Section 5 we pre-
sent the design and the results of our comparative case
study. Next, in Section 6 we discuss the main findings,
and in Section 7 the threats to validity. Finally, in Section
8 we conclude the paper.

2 RELATED WORK

In the literature there are two different types of studies
dealing with refactoring opportunities. The first type of
studies concerns the introduction of new approaches
aiming to identify refactoring opportunities for a single
bad smell, while the second type, uses existing ap-
proaches (usually identifying different types of refactor-
ing opportunities) aiming at investigating the issues of
ranking or prioritizing the identified opportunities (e.g.,
[39], [31], [35)).

In this section we will focus only on the first type of
studies, and specifically on studies that propose ap-
proaches for identifying Extract Method opportunities
(see Section 2.1) or Extract Class opportunities (see Sec-
tion 2.2). Both are considered related to our study, in the
sense that they both focus on extracting parts of the code
on a new artifact at a different level of granularity (i.e.,
method and class). Additionally, we will present studies
that are indirectly related work, in the sense that they
aim at feature or functionality identification (see Section
2.3). These studies are considered related to ours, as the
proposed approach aims to identify code fragments that
provide a specific functionality. Finally, in Section 2.4,
we will compare related work to our study.

2.1 Extract Method Identification

Tsantalis and Chatzigeorgiou [38], suggest an approach
that uses complete computational slices (i.e., the code
fragments that are cooperating in order to compute the
value of a variable) for identifying Extract Method op-
portunities. The evaluation of the approach consists of
qualitative and quantitative assessment for an open-
source project. Specifically, the authors have investigat-
ed: (a) the soundness and usefulness of the extracted
slices, (b) their impact on slice-based cohesion metrics,
and (c) their impact on the external behavior of the pro-
gram. Additionally, as part of the evaluation process
precision and recall metrics have been calculated, against
the findings of independent evaluators on two research
projects. The precision and recall has been calculated for
28 methods and ranged from 50-52% and from 63-75%
respectively.

Yang et al. [40] suggest that the code of the Long
Method should be decomposed either based on control
structures (i.e. for-statements, if-statements, etc.) or code
styling (i.e., blank lines in the code). The approach sug-
gests that the composition of Extract Method opportuni-
ties should basically consider the size of the created
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method, by setting appropriate thresholds. Later the cal-
culation of coupling metrics is used in order to rank the
Extract Method opportunities. The evaluation of the
study aims at investigating three aspects: (a) the accura-
cy of the proposed approach, (b) its impact on refactor-
ing cost, and (c) its impact on software quality. To
achieve these evaluation goals, the authors conducted a
case study using an open source software system of
about 20,000 lines of code, spread into 269 classes. The
results of the case study showed that the proposed ap-
proach achieves an accuracy of 92.82% (i.e. recommend-
ed fragments that were accepted without any adjust-
ments) and achieves up to 40% cost reduction, in the
sense of less working hours due to the automation of the
process. The impact on software quality is calculated
through 10 metrics and the results show improvement
after the Extract Method refactoring is applied. We note
that the accuracy, as calculated by Yang et al. is not
comparable to precision and recall, since the independ-
ent evaluator assesses the results obtained by the pro-
vided tool and has not built a golden standard to carry
out the assessment before obtaining the results of the
method.

Meananeatra et al. [30] propose the decomposition of
source code using the abstract syntax tree (i.e., data flow
and control flow graphs) and the proposition of Extract
Method opportunities based on the calculation of com-
plexity and/or cohesion metrics. Specifically, Meanane-
atra et al., proposed an approach aiming at resolving the
Long Method smell by applying several refactorings (not
only the Extract Method one). Their approach consists of
four steps. Initially they calculate a set of metrics with
regard to the maintainability of the software. In the sec-
ond step they calculate another set of metrics to find
candidate refactorings. Candidate refactorings are also
found using a set of predefined filtering conditions. Dur-
ing the third step they apply the refactorings and re-
compute the maintainability metrics, in order to compare
them with the initial measurements. In the final step, the
refactoring that can achieve the better maintainability
improvement is proposed. The effectiveness of this ap-
proach has been evaluated through a toy example pro-
vided by Fowler’s book on refactorings [17]. Through
this illustration no recall and precision measures could
be obtained.

Finally, Silva at al. [37] proposes the use of the ab-
stract syntax tree and the creation of all possible combi-
nations of lines within the blocks as candidates for ex-
traction. These candidates are subsequently filtered
based on syntactical and behavioral preconditions, and
finally ranked by using their structural dependencies to
the rest of the method. The precision and recall of the
algorithm is evaluated through two case studies: (a) one
with a system that has been developed from the authors
for this reason (wWhere Long Methods have been deliber-
ately created), and (b) on two OSS projects (JUnit and
JHotDraw). Concerning precision and recall, in the au-
thor-developed system the approach achieved a preci-
sion of 50% and a recall of 85%, whereas for the two OSS

projects the precision varied from under 20% to 48%, and
recall from 38% to 48%.

2.2 Extract Class Identification

Bavota et al. [8] created an extract class refactoring ap-
proach based on graph theory that exploits structural
and semantic relationships between methods. Specifical-
ly, the proposed method uses a weighted graph to repre-
sent a class to be refactored, where each node represents
a method of the class. The weight of an edge that con-
nects two nodes (methods) is a measure of the structural
and semantic relationship between two methods that
contribute to class cohesion. A MaxFlow-MinCut algo-
rithm is used to split the built graph in two sub-graphs,
cutting a minimum number of edges with a low weight.
These two sub-graphs can be used to build two new
classes having higher cohesion than the original class.
The attributes of the original class are also distributed
among the extracted classes according to how they are
used by the methods in the new classes. The method was
empirically evaluated through two case studies. The first
case study was performed on three open source projects
(ArgoUML, Eclipse, and JHotDraw) and aimed at ana-
lyzing the impact of the configuration parameters on the
performance of the proposed approach as well as verify-
ing whether or not the combination of structural and
semantic measures is valuable for the identification of
refactoring opportunities. The second case study was
based on a real usage scenario and focused on the user’s
opinion while refactoring classes with low cohesion. The
results of the empirical evaluation highlighted the bene-
fits provided by the combination of semantic and struc-
tural measures and the potential usefulness of the pro-
posed method as a feature for software development
environments. The approach has been evaluated using F-
measure, which has been calculated as approximately
0.75 for all examined applications.

Fokaefs et al. [19] implemented an Eclipse plugin that
identifies extract class refactoring opportunities, ranks
them based on the improvement each one is expected to
bring to the system design, and applies the refactoring
chosen by the developer, in a fully automated way. The
first step of the approach relies on an agglomerative
clustering algorithm, which identifies cohesive sets of
class members within the system classes, while the sec-
ond step relies on the Entity Placement metric as a
measure of design quality. The approach was evaluated
on various systems in terms of precision and recall,
while it was also assessed by an expert and through the
use of metrics. The evaluation showed that the method
can produce meaningful and conceptually correct sug-
gestions and extract classes that developers would rec-
ognize as meaningful concepts that improve the design
quality of the underlying system. The accuracy of the
proposed approach has been evaluated on six open
source classes, leading to a precision of 77% and a recall
rate of 87%.

Bavota et al. [9] proposed an approach recommend-
ing extract class refactoring opportunities, based on



game theory. Given a class to be refactored, the approach
models a non-cooperative game with the aim of improv-
ing the cohesion of the original class. A preliminary
evaluation, which was inspired by mutation testing (i.e.
merging two classes and then trying to recreate the orig-
inal classes using an extract class approach), was per-
formed using two open source projects (ArgoUML and
JHotDraw). The evaluation aimed at comparing: (a) the
results derived using the Nash equilibrium and the Pare-
to optimum, as well as (b) the results of the proposed
approach to state-of-the-art. The comparison has been
performed based on F-measure [18], the applicability and
the benefits of the proposed approach were demonstrat-
ed. The mean F-measure for the two projects was rang-
ing from 84%-89%, exceling compared to the other two
approaches.

2.3 Feature/ Functionality Identification

In this subsection, we present research efforts that at-
tempt to identify parts of the source code that are
providing a specific functionality through static analysis.
Although in the literature there are several studies using
information retrieval techniques aiming to connect fea-
tures to computational units in the source code (e.g., [43],
[44]), such a mapping has the opposite direction com-
pared to our approach, and therefore, are omitted from
this section. In addition to that, the majority of these
studies use dynamic analysis in contrast to our approach
which employs static analysis.

The approach proposed by Yoshida et al. [41] consists
of three steps. The first involves syntax analysis of the
source code into fragments, creating a syntax tree where
the program syntax consist the nodes, and the code
fragments the leaves. The second involves the extraction
of functional elements, i.e., code fragments that work in
cooperation. The extent to which code fragments coop-
erate is calculated using the Normalized Cohesion of
Code fragments (NCOCP;) metric and the results are
compared to a threshold set in the same study. Finally,
as last step, the approach proposes the combination of
functional elements that show high cohesion. To verify
the outcomes proposed by the approach, the authors
conducted a case study using one software system of
3,641 lines of code, 70 classes, and 600 methods. The de-
veloper of the software was responsible for confirming
the outcomes of the approach, which achieved to identi-
fy 51 out of the 80 functionalities (i.e., recall 63.7%),
however, the precision of the approach is not provided
by the authors.

Additionally, Antioniol et al. [4] compared the use of
two different information retrieval approaches, one us-
ing a probabilistic and the other a vector space approach,
aiming at associating high-level concepts with program
concepts. To evaluate the two approaches they per-
formed two case studies, one of which aimed at tracing
source code to functional requirements using a Java sys-
tem, consisting of 95 classes and about 20,000 lines of
code. The validation of the study was performed based
on experts who identified 58 correct functionalities
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among the 420 that had been suggested by the approach.
The results of the study showed that both approaches
can score about 13% - 48% precision for achieving a recall
rate between 100% - 50%.

2.4 Comparison to Related Work

In this section, we compare SEMI with the approaches
discussed in Section 2.1, from two perspectives: (a) in
terms of the rationale of the approach, and (b) in terms of
empirical validation.

Approach Rationale. First we discuss possible limita-
tions of the approaches presented in Section 2.1, for ex-
tracting functionally coherent code blocks. We note that
these limitations do not imply that the specific approach-
es are not adequate for suggesting relevant Extract
Method opportunities, but we only discuss them against
their fitness for creating SRP-compliant methods. To
make this section more readable, we group the state-of-
the-art approaches based on the rationale of their extrac-
tion algorithm, as follows:

e Approaches based on complete computation slic-
ing (i.e., identification of code fragments that are
cooperating in order to compute the value of a
variable) [38] — The complete computation slice of
a variable considers only cases when the variable
changes value, without considering the lines
where the variable is used, although such lines
might participate in a code fragment serving a
“larger” functionality. To our understanding,
“large” functionalities are not easy to be offered
by calculating only one variable, but sets of them.
In that sense, the use of complete computation
slicing is expected to only identify rather “small”
functionalities, whereas the proposed approach
can incorporate multiple calculations in the ex-
tracted fragments of code. We note that there are
some slicing approaches taking also into account
the use of variables (see e.g. [32]). However, none
of these approaches has been exploited for the
purpose of identifying extract method opportuni-
ties.

e Approaches based on code styling (e.g., blank
lines in the code) [40] —Depending on code styl-
ing assumptions, like the separation of code
fragments that concern unique functionalities us-
ing an empty line, is considered as a threat to the
validity of the approach proposed by Yang et al.
In particular, such approaches cannot be accurate
for cases in which the assumption does not hold,
e.g., a developer makes excessive or limited use of
blank lines.

o Approaches based only on the abstract syntax
tree (i.e., the iteration and decision nodes of the
code) [41] and [30]—Approaches that are only
based on the abstract syntax tree, might miss Ex-
tract Method opportunities, since some potential-
ly large code fragments are considered as blocks
and are not further examined. For example, con-
sider the case that a method consists of multiple
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statements, offering two different functionalities
by every branch of an if-statement. In such cases,
since these nodes are not further decomposed, po-
tential Extract Method opportunities, which cap-
ture functionalities, may not be identified.

e Approaches based on the abstract syntax tree &
all possible combinations of lines within the
blocks [37]—An exhaustive set of all possible
combinations of continuous lines within the syn-
tax blocks may cause an enormous number of Ex-
tract Method opportunities, which have not been
selected based on any quality characteristic. Alt-
hough most of the functionalities will be identi-
fied, this exhaustive tactic is not considered as op-
timal.

Empirical Validation. In terms of empirical validation,
we compare our study to existing state-of-the-art based
on the following criteria: (a) research setting (e.g., indus-
trial, open source, etc.), and (b) size of examined meth-
ods. The results of this comparison are presented in Ta-
ble I.

TABLE I. Comparison to Related Work

Research Average Examined
Study Setting Method Size

[38] 0ss 33.68
[40] 0ss 41.32
[30] Mlustration 46.00
[37] [lustration 8.75
0ss 48.40

Our Study | Industrial & OSS 525.00

Contributions. Therefore, our work advances the state-
of-the-art, as follows:

e itis the first study that investigates the functional
relevance of source code fragments to identify Ex-
tract Method opportunities. Extracting methods
based on the offered functionality is considered a
benefit, since it is conceptually closer to system
design and modularization principles.

e it is the first study that is empirically validated with
methods of hundreds of lines of code. Validating
an approach in a different order of magnitude is
important for two reasons: (a) it tests the scalabil-
ity of the approach, (b) it offers a more realistic
validation environment than toy examples, as for
methods of maximum 50 lines of code the assis-
tance that a software engineer needs is minimum.

e it is the first study that is empirically evaluated in
an industrial setting by professional software engi-
neers. This aspect is important since industrial ex-
perts are more experienced, aware of the prob-
lems that specific methods have, and contribute to
increasing the realism of the empirical setting.

3  THE SEMI APPROACH

In this section we discuss the proposed approach for
identifying Extract Method opportunities, based on the

single responsibility principle. The approach can be de-
composed into two major parts that for simplicity are
discussed in separate subsections: (a) the identification of
candidate Extract Method opportunities, based on the
functional relevance of code statements (see Section 3.1),
and (b) the grouping and ranking of these candidates
(see Section 3.2). Step (b) of the approach is important
since the list of Extract Method opportunities can be
large and may contain multiple overlapping suggestions.

3.1 Identification of candidate Extract Method

opportunities

In the first part of the SEMI approach we are interested
in identifying successive statements that are cooperating
in order to provide a specific functionality to the system.
According to De Marco et al. [17], cohesion is character-
ized as a proxy of the number of distinct functionalities
that a module is responsible for. In this paper, we are
interested in cohesion at method level and specifically in
the coherence of statements. Therefore, as coherent we
characterize two statements if they [14]*

e are accessing the same variable. This choice is
based on the definition of all method-attribute co-
hesion metrics [1], in which cohesion is calculated
based on whether two methods are accessing a
common class attribute. We note that in the con-
text of this study, as variables we consider attrib-
utes, local variables and method parameters (i.e.,
every variable that is accessible through all state-
ments in one method’s body); or

o are calling a method for the same object. This
choice is based on the previous one, by taking into
account the fact that objects are a special case of
variables. This type of cohesion is named commu-
nication/information cohesion [42], according to
which modules that are grouped together because
they work on the same data, are coherent; or

o are calling the same method for a different object
of the same type. This choice is based on the defi-
nition of several cohesion metrics (e.g., LCOM4
(Lack of Cohesion Of Methods) [24], TCC (Tight
Class Cohesion) and LCC (Loose Class Cohesion)
[11], DCD (Degree of Cohesion-Direct) and DCI
(Degree of Cohesion-Indirect) [5]) that consider
two statements as coherent if they call the same
method for a different object. The rationale of such
metrics lies on the fact that although a function is
performed on different data the two statements
are related, since they are in need of the same ser-
vice. Specifically, by calling the same method (e.g.,
start()) on two different objects (e.g.,
rightAirplaneEngine and leftAirplaneEn-
gine), the same functionality is performed on dif-
ferent data. However, the two lines provide exact-
ly the same functionality (in our example, starting
first the right and then the left engine of the same

4 This definition is in accordance to the cohesion among methods of a
class, based on which two methods are coherent if they access the
same attribute.



plane). Therefore, they should be considered func-
tionally relevant (which is exactly the goal of our
approach—i.e., identifying which lines are func-
tionally coherent). We need to note that the two
objects (left and right) are instances of the
same class (e.g., AirplaneEngine), and therefore
share the same set of possible method invocations.
Finally, based on our previous work [14] that em-
pirically explored the ability of cohesion metrics
to predict the existence and the refactoring urgen-
cy of long method occurrences, LCOM,; and DCD
have been found to be among the most efficient
indicators.

Based on this definition we identify all possible sets of
successive statements that are coherent to each other (re-
gardless of their size). To achieve this goal, we follow the
process described in the flow chart of Fig. 1. We note that
the final state of Fig. 1 does not correspond to the end of
the approach, but only to the end of its first part (i.e.,
Identification of candidate Extract Method oppor-

tunities).
B Have all variables
Is step N been processed?
method size? No

No Read the next variable
or method call
!

‘ Get the statements where
the variable is used

|

Create clusters of ‘

Increase
step

Add in the list of
candidate
refactorings, both
the original and the
merged clusters
A

Yes

Remove
Duplicates

statements, for which
distance <= size

Filter based
on Abstract
Syntax Tree

.

Merge clusters
that overlap
Fig. 1: Flow chart of Extract Method opportunities algorithm

A detailed explanation for each step of the aforemen-
tioned process will be presented through an illustrative
example as follows: Suppose we are applying the pro-
posed approach to the source code of a sample method,
as presented in Fig. 2. In Fig. 2 all variables which are
accessible by the method’s statements (i.e., local varia-
bles, attributes, and parameters) and method calls have
been underlined, in order to ease the calculation of the
cohesion between statements. We note that we are only
focusing on distinct accessible variables and method calls
per statement, i.e., in cases that a variable or method call
appears more than once in a single statement, we consid-
er it only once. For example, the use of variable i in line
3 is underlined only once.

As an initialization step, a table that contains an index
of used variables/called methods per statement is devel-
oped (see Table II). We note that, similarly to a program
dependence graph for the special case of conditional
statements, the else and the else-if statements include
an indirect use of the variables used in the condition
(e.g., the else statement in line 7 suggests that the value
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of variable rcs should be considered). Therefore, the var-
iables or method calls used in conditions are copied to all
branches of the statement.

l.public Resource[][] grabManifests (Resource[] rcs) {

2 Resource[] [] manifests = new Resource[rcs.length][] ;

3 for (int i=0; i<rcs.length; i++) {

4 Resource[] [] rec = null;

5 if (rcs[i] instanceof FileSet) {

6. rec = grabRes(new FileSet[] {(FileSet)rcs[i]});

7 } else {

8 rec = grabNonFileSetRes (new Resource []{ rcs[i] });
9 }

10. for(int j=0; j<_rec[O0].length; j++) {

11. String name = rec[0][j].getName () .replace('\\',"/");
12. if (rcs[i] instanceof ArchiveFileSet) {

13. ArchiveFileSet afs = (ArchiveFileSet) rcs[i];
14. if (!"".equals(afs.getFullpath(getProj()))) {
15. name.afs.getFullpath (getProj());

16. } else if(!"".equals(afs.getPref (getProj()))) {
17. String pr = afs.getPref(getProj());

18. if (!pr.endsWith("/") && !pr.endsWith("\\")) {
19. pr += "/";

20. }

21. name = pr + name;

22. }

23. }

24. if (name.equalsIgnoreCase (MANIFEST_NAME)) {

25. manifests[i] = new Resource[] {rec[0][J]};

26. break;

27. }

28. }

29. if (manifests[i] == null) {

30. manifests[i] = new Resource[0];

31. }

32. }

33. return manifests;

34.)
Fig. 2: Example Code
TABLE Il. Variable/Method Call Index in Example
#Line Accessed Variables / Called Method

manifests; rcs.length; rcs; length

i; rcs.length; rcs; length

rec

rec; grabRes; rcs; i

rcs; i

3
4
5 rcs; i
6
7
8

rec; grabNonFileSetRes; rcs; i

10 j; rec.length; rec; length

11 name; rec.getName.replace; j; rec; getName.replace;
getName;replace

12 rcs; i

13 afs; rcs; i

14 rcs; i; equals; afs.getFullpath; getProj; afs; getFullpath

15 name.afs.getFullpath; getProj; name; afs.getFullpath;

afs; getFullpath
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#Line Accessed Variables / Called Method
16 rcs; i; equals; afs.getFullpath; getProj; afs.getPref; afs;

getFullpath; getPref

17 pr; afs.getPref; getProj; afs; getPref

18 rcs; i; equals; afs.getFullpath; getProj; afs.getPref; afs;
getFullpath; getPref; pr.endsWith; pr; endsWith

19 pr

21 name; pr

24 name.equalsIgnoreCase; name; equalsignoreCase

25 manifests; i; rec; j

29 manifests; i

30 manifests; i
33 Manifests

Next, and in order to ease the comprehension of the
next steps of the algorithm, we visualize the information
of Table II in a matrix (see Fig. 3). In the matrix, as lines
we add all accessible variables and called methods, as
columns the corresponding source code line (for simplic-
ity, in the example we assume that each line has only one
statement), whereas in the cells we denote the use of a
specific variable or method call in the corresponding

statement.
12345678 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 M

manifests a f w]x x
rcs AnEnnne wlx|x x x
length | P
rcs.length alx]
1 IROEBDNe wlx|x [ x I | w|x
rec e [a| (x| [alx %
grabRes x
grabNonFileSetRes 111 x
3 x|« %
name | | ® x L} x |
rec.getName.replace x
getName.replace x
getName f
replace x
afs 11 ARnnnn ™
equals x x x
afs.getFullpath x| |n x
getFullpath x| x|n x
getProj: x| | x
name.afs.getFullpath x
afs.getPref; | alnlx
getPref | w | % x
pr ane x
pr.endsWith 11 x
endsWith [ x |
name.equalsIgnoreCase x
equalslgnoreCase 11 | f
rec.length x

Fig. 3: Matrix visualization of accessible variables and
method calls per statement

In the initialization of the iterative part of the algo-
rithm, we begin with a step that equals one (step=1).
With this step, the algorithm creates clusters of all the
successive statements that access at least one common
variable or call the same method, as shown in Fig. 4.

AN —— L 9 —=

1234567891011 1213/34151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ¥ B M
x x x]x x

annn afu]x x x

Tl ===

rec [
grabRes x

grablonFilesetRes x

.replace

Fig. 4: Selection of statements using the same attribute or
calling the same method, with step=1

The identification of Extract Method opportunities
continues by increasing the step by one in each iteration.
So, with step=2, new clusters are formed by treating
statements with distance equal to 2 as successive. The
newly clustered lines are presented in Fig. 5 with dark
shading. Next, the algorithm performs a merging activity
based on the agglomerative hierarchical clustering ap-
proach [23]. The criterion used for merging two clusters
is the existence of an overlap between statements. In oth-
er words, the algorithm merges clusters that include
even one common statement. To derive these Extract
Method opportunities, the overlapping sets of statements
are merged, as presented in Fig. 6. Concerning merging,
as an example, we can look at that the cluster including
statements 2-8 and the cluster including statements 4-11.
The clusters are merged in a larger cluster of statements,
since statements 4-8 are common in both clusters. We
note that as candidate Extract Method opportunities we
include both the original (i.e., 2-8 and 4-11) and the
merged (2-11) clusters. This process can merge sets of
statements that are only indirectly relevant. For example,
statements 2-11 are only indirectly related, through the
use of variable rec and method call rcs.

1234567 8910111213 14151617 18152021 22 23 425 26 17 28 29 0 31 2 B M

x

grabRes x

ame. replace

lsIgnoreCase
Case

Fig. 5: Selection of statements accessing the same variable or

calling the same method, with step=2

1 1

r [ 1
12345 67 8 9 10111213 3415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 12 13 M
x x =[x x

rec I
grabRes x
qrabNonFileSetRes %

name
rec.getName.replace
getName.replace
getName

replace

e [ e [ |3 [ [0

Fig. 6: Extract Method opportunities, derived with step=2

The algorithm continues to iterate until we reach the
maximum step, i.e. method size. After all possible Ex-
tract Method opportunities have been identified, the al-
gorithm removes the duplicate and the invalid clusters.
This second task is very important because in many cases
extracting a set of statements from a code would create



compile errors by violating syntactical or semantic pre-
conditions, or behavioral inconsistencies [37].

The syntactical preconditions taken into consideration
require that the selected fragment to be extracted should
consist only by complete blocks of sequential statements.
For example, if we want to extract statements A and B,
but statement A is just before the block of an if statement
and statement B inside the block of this if statement, then
the extracted code should include all statements starting
from statement A, until the closing statement of the if
block. These preconditions guarantee that the recommen-
dations provided by our approach can be directly ap-
plied to methods, without statement reordering. In addi-
tion, preservation of the syntax in combination with the
fact that the extracted continuous statements are re-
placed by a method invocation, eliminate the possibility
of breaking program semantics. In particular, according
to the definition of Komondoor et al. [26] two methods
are syntactically equivalent, if when they are called in the
same state (i.e., same values for all variables) they pro-
duce the same output; this is true for our approach, since
the sequence of statement execution and variable values
are not altered compared to the original method. Finally,
a set of behavioral preconditions should apply to ensure
the preservation of functionality. For example, it should
not be possible to extract a fragment in which two or
more primitive variables are assigned that are also used
by other statements out of this fragment. The reason be-
hind this precondition is that due to Java restrictions, it is
not possible to return the value of two variables.

The rationale of checking if a set of statements is valid
for extraction has been exhaustively discussed in the lit-
erature (e.g., [37], [38]) and is for simplicity not discussed
in this section. An example of such a case, is shown in
Fig. 2, where the proposed set of statements suggested to
be extracted (i.e., 25 - 33) is not valid, because it does not
include complete blocks of code. Similarly, to Silva et al.
[37], as blocks of code we refer to a sequence of continu-
ous statements that follow a linear control flow. In par-
ticular, blocks 24-27 and 2-33 are only partially included.
We note that in order to assist in the process of identify-
ing the input and output parameters of the proposed
extract method opportunity, the tool makes all required
calculations, so that the values of the variables are not
lost when invoking the new method.

3.2 Extract Method Opportunity Grouping/
Ranking

Once a list of all candidate Extract Method opportunities
is created, the SEMI algorithm first groups them and
then ranks them. The main idea for grouping Extract
Method opportunities is that every two opportunities
that are heavily overlapping and are of similar size® are
highly probable to offer the same functionality. In par-
ticular, we expect that sets of statements of different size

5 The thresholds for characterizing two extract method opportunities as
heavily overlapping and being similar in size are parameters of the
algorithm. These two, along with other parameters of the algorithm
are discussed just after its high-level description.
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(i.e., number of statements) are not able to provide the
same functionality. For example, suppose a set of 100
instructions that rotate a matrix clock-wise, perform a
transformation on it, and then rotate it counter-clock-
wise, so as to bring it in the original position. Let us as-
sume that a set of 30 instructions that perform the clock-
wise rotation overlaps with the identified set of 100 in-
structions. The opportunity to extract the 30 instructions
cannot be considered as an alternative opportunity to the
extraction of the entire set of 100 instructions, since it is
not reasonable to assume that these 30 instructions can
deliver the same functionality.

1. FOR each opportunity IN opportunity list

2 IF (opportunity.isAlreadyAnAlternative()) THEN

3 SKIP to next opportunity

4 END IF

5. FOR each other_ opp IN opportunity list

6 IF

7 NotSimilarSize (opportunity, other opp) AND

8 SignificantlyOverlapping (opportunity, other opp)
9 AND other_ opp.isAlreadyAnAlternative ()==false)
10. THEN

11. IF

12. (opportunity.HasMoreBenefitThan (other_ opp))
13. THEN

14. opportunity.alternatives.Add (other_opp)

15. set other opp.isAlternative = true

16. ELSE

17. other_opp.alternatives.Add (opportunity)

18. set opportunity.isAlternative = true

23. END IF

24. END IF

25. END FOR

26. END FOR

Fig. 7: Extract Method Opportunity Grouping Algorithm

For every group of Extract Method opportunities, the
optimal opportunity is set as the primary suggestion for
extraction, and the rest are characterized as its alterna-
tives. As optimal opportunity we consider the one that
offers the highest benefit in terms of a specific fitness
function (the selection of this fitness function is dis-
cussed in detail later in this section). The definition of the
benefit that a software engineer would get from splitting
a long method cannot be strictly defined, since it heavily
depends on his perception. In particular, the benefit can
range from purely measurable source code quality as-
pects (such as size, lack of cohesion, etc.) to more abstract
ones (e.g., understandability, maintainability, etc.). This
approach is based on measureable aspects, such as the
cohesion metrics discussed in Section 3.1, which never-
theless affect the more abstract ones. The steps followed
for executing this process are outlined in the pseudocode
of Fig. 7. The pseudocode of Fig. 7, includes five parame-
ters provided by the user at the execution time:

max_size_difference: The maximum allowed difference
in size between two opportunities so as to be considered
valid for grouping (see Notsimilarsize—statement 7).
The difference in size is calculated as the ratio of absolute
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difference of the two Extract Method opportunities, over
the size of the smaller method:

|A.LoC - B.LoC|

DITfEI‘EHCE_iH_SfZE‘(A, E) = m

For example, if max_size_difference is set to 0.2, and the
size of the two opportunities is 15 and 10, respectively,
the difference in size can be calculated as (15-10) /
10 = 0.5, which is larger than the maximum allowed dif-
ference. As a default max_size difference in this pa-
per we use 0.2, i.e., a method is considered to be of simi-
lar size if it is £20% larger or smaller. The use of a smaller
default value (e.g., #10%) would not be fitting for a ra-
ther small opportunity, since opportunities of size<10
would not be able to group with any other opportunity.
The fact that the selection of these thresholds does not
heavily influence the achieved accuracy of the proposed
approach is discussed in Section 5.1 and the threats to
validity section.

min_overlap: The minimum allowed overlap in the
range of two opportunities so as to be considered valid
for grouping (see significantlyOverlapping— state-
ment 8). The overlap between two Extract Method op-
portunities is calculated as the percentage of overlapping
statements, as follows:

|B.end — B.start + 1|,
A.start < B.start A A.end = B.end

|A.end — A.start + 1],
A.start = B.start A\ A.end < B.end

|A.end — B.start|,
A.start < B.start \ A.start < B.end A\
A.end = B.start

overlap(A,B) =

|A.start — B.end|,
A.start < B.start A A.end = B.start/\
A.start < B.end

overlap(A,B)

Overlap =——"""—"—""—
MAX(A.LoC,B.LoC)

We note that (A|B).start and (A |B).end correspond to
the starting and ending statement numbers. To better
facilitate the understanding of the four cases in which
Extract Method opportunities A and B can overlap, we
visualize all possible relations in Fig. 8. In this work as a
default value for min overlap we set 0.1. Therefore,
even slightly overlapping opportunities can be grouped.
This decision has been taken so as to reduce as much as
possible the suggestions that are provided to the users.

CC)IC0 )

B A B_A

Oy )

Fig. 8: Cases of Extract Method Overlap

significant_difference_threshold: The minimum differ-
ence in the benefit incurred by the two opportunities, so
as to decide which one is the optimal. There are two
measures of benefit outlined below (a primary and a sec-
ondary one). First, we check the difference between the
primary benefit scores by calculating the normalized
absolute difference:

|A.benefit—B.benefit|
MAX(A.benefit,B.benefit)

Difference_Between_Benefits =

In case it is lower than the threshold for characterizing
differences as significant, the secondary measure is used.
In this study, we used 0.01 as the default value for the
significant difference threshold. The value has
been selected as the default strict value for checking sig-
nificance in most statistical tests.

primary_measure_of_benefit: The method body cohe-
sion metric that is used for comparing two opportunities.
The term method body cohesion metric refers to
measures that quantify the relevance/coherence of
statements inside a single method [14]. We note that the
selection of one metric as a primary measure of benefit is
a choice of the software engineer, based on his personal
intuition (a sample catalog is provided in [14]). However,
for this study we selected to use LCOM:® for the follow-
ing reasons:

e it is a metric that although it assesses method
cohesion, it is correlated to method’s size as well.
This correlation is due to the way the metric is
calculated, ie., the upper limit of the metric
score is the number of combinations by any two
of the statements of method”.

e it takes into account both cohesive and non-
cohesive pairs of statements. Although both
LCOM; and LCOM; conform to the aforemen-
tioned claim (i.e., they assess cohesion and are
correlated to size), LCOM; is a count of only the
non-cohesive pairs of statements. Such a calcula-
tion miss-assesses two methods of different sizes
that have the same number of non-cohesive
statements, but one has a bigger number of co-
hesive statements.

e it is among the top predictors for Long Methods
identification, based on a case study performed
by Charalampidou et al. [14]. We expect that
since the Long Method bad smell and the Extract
Method refactoring are closely related, metrics
that perform well in identifying the one, will be
adequate for the other as well.

Benefit is calculated as the gain of applying the refac-
toring in terms of cohesion. Specifically, we use the worst
case scenario for this calculation, by using the following

6 We note that the numbering of LCOM metrics has been adopted from
the overview by Al Dallal and Briand [1]. LCOMz has been tailored so
as to assess cohesion at method level as follows: LCOM2 =P - Q, if P —
Q 2 0 / otherwise LCOM: = 0, where P is the number of pairs of
statements that do not share variables and Q is the number of pairs of
lines that share variables.

7 LCOM:€ [0, (*9%)], where LOC equals the number of statements
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formula. The rationale for using the MAX function is that
we want to guarantee that none of the resulting methods
has cohesion worse than that of the original method.

Benefiticomz = LCOMz(originar) -
MAX ( LCOM: 2(opportunity), LCOM_ 2(original_after_refactoring) )

secondary_measure_of_benefit: The secondary measure
that we use is method size (in number of statements). To
explain the choice of size as the secondary metric for
comparing opportunities, we use the example of Fig. 9. In
the left hand side of Fig. 9 we denote sets of statements
that are 100% cohesive (i.e., all lines are cohesive to each
other) within the same fill pattern (i.e., first and third sets
of statements are cohesive). Also, we consider that state-
ments with different fill patterns are 100% non-cohesive
(i.e., no variable is shared). In this case, LCOM; for the left
method?® [14] is 38, and we compare two Extract Method
opportunities: (Oppl) which extracts the block of 4 LoC,
and (Opp2) which extracts the block of 2 LoC. We note
that the extracted methods are totally cohesive and are
not shown in the Figure. The remaining method from
applying (Oppl) is a method with an LCOM; value equal
to 10, whereas the remaining method of (Opp2) is a
method with an LCOM; value equal to 20. Therefore, the
benefit from extracting a larger number of statements (of
same cohesion) is higher. Although this example de-
scribes an extreme scenario, the effect is similar in other
cases.

. 2 statements

\\\\\\" opp.1
& 4 statements —

3 statements

statements

| 3 statements

2 statements

Opp.2

FHHHHH 2 statements )

2 statements

1 3 statements

Fig. 9: Extract Method Benefit

After the grouping is completed, the created groups of
opportunities are sorted based on the
ry measure of benefit. Similarly to grouping, if
there is no significant difference between the primary
suggestions of two groups, the larger Extract Method
opportunity is prioritized. An illustrative example of the
aforementioned process is presented below.

prima-

For example, consider the method of Fig. 2. By applying
the Identification of candidate Extract Meth-
od opportunities part of the SEMI algorithm, we
ended up with an opportunity list of 11 candidate refac-
torings, as presented in Table III. The first column of Ta-
ble III is a simple identifier for the Extract Method can-
didate, the second column refers to the involved state-

8 Although LCOM: has been originally introduced at the class level by
Chidamber and Kemerer [16], in this study we used the method-level
definition as tailored by Charalampidou et al. [14]. In particular,
LCOM: is calculated as LCOM: = P, where P is the number of pairs
of statements that do not share variables.
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ments (line numbers), the third column is the prima-
ry measure of benefit thatis achieved by extracting
the specified statements, whereas the last column repre-
sents the size (in number of statements) of the candidate
Extract Method. For the sake of illustration, let's suppose
that we use the default grouping parameters (described
earlier in Section 3.2)

TABLE III. Initial extract method opportunities

. Primar .
opportunity bene fii, size
1 002 to 032 35 22
2 002 to 034 0 24
3 003 to 032 49 21
4 003 to 034 14 23
5 004 to 031 46 20
6 010 to 031 60 16
7 013 to 022 68 9
8 014 to 022 63 8
9 017 to 020 29 4
10| 017 to 021 29 5
11| 029 to 031 11 3

The grouping algorithm selects two opportunities of the
aforementioned opportunity list and checks if they satis-
fy the grouping criteria (i.e., based on max_size_difference
and min_overlap). For this first step we select opportuni-
ties 1 & 2 as shown in Table IV.

TABLE IV. Comparison of Extract Method Opportunities

Opportunity I:;E:;;f size
[1] 002t0032 | 35 | 22 |
2| 002 to 034 0 24 )
3| 003to 032 49 21
4| 003 to 034 14 23
5| 004 to 031 46 20
6| 010 to 031 60 16
7| 013 to 022 68 9
8| 014to022 63 8
9| 017t0020 29 4
10| 017 to 021 29 5
11| 029 to 031 11 3

By checking opportunities 1 and 2 we can observe that
they satisfy the grouping criteria since difference_in_size =
0.09 (i.e., 2/22) < max_size_difference (0.2) and overlap =
0.91 (i.e., 22/24)> min_overlap (0.1). Thus opportunities 1
and 2 can create a group of opportunities. The next step
is to find which opportunity will be the primary sugges-
tion of the group. The current difference between the two
opportunities, in terms of Benefit.com: is 1.00 (i.e., (35 - 0)
/ 35) > 0.01, which means that we need to compare the
two  opportunities based on  their  prima-
ry_measure_of benefit. Therefore, and since Benefiticom of
opportunity 1 has a higher value compared to the Bene-



CHARALAMPIDOU ET AL.: EXTRACT METHOD REFACTORING OPPORTUNITIES BY APPLYING THE SINGLE RESPONSIBILITY PRINCIPLE

fitrcome of opportunity 2, opportunity 1 will be the pri-
mary suggestion of the group, and will “include” oppor-
tunity 2 as an alternative. For opportunities 1 and 3 the
same criteria (max_size_difference and overlap) are met
and thus, they can form a group. The current difference
between the two clusters, in terms of Benefiticomo, is 0.28
> 0.01. Therefore, in this case, and since opportunity 3
has a greater Benefiticoms, it will be the primary sugges-
tion of the group and will “absorb” opportunity 1 and its
existing alternatives.

Next, by comparing opportunity 3 to opportunities 4
and 5, we can inspect that they both satisfy the grouping
criteria and are also included as alternatives of oppor-
tunity 3. Opportunity 3 will thus be the primary sugges-
tion with opportunities 1, 2, 4 and 5 as alternatives, as
shown in Table V.

TABLE V. Grouping of Extract Method Opportunities

opportunity I:;E?flg size
3| 003to032 49 21
1 002 to 032 35 22
2 002 to 034 0 24
4 003 to 034 14 23
5 004 to 031 46 20
6| 010to031 60 16
7| 013 to 022 68 9
8| 014to022 63 8
9| 017 to 020 29 4
10| 017 to 021 29 5
11| 029 to 031 11 3

The reason that we choose to store alternatives of Extract
Method opportunities is to help software engineers in
identifying slightly deviating opportunities. For exam-
ple, suppose a Long Method of 600 statements, in such a
method suppose a primary suggestion starting at state-
ment 100 and finishing in statement 180. When the soft-
ware engineer inspects the suggested refactoring, he/she
notices that one functionality starts at statement 100, fin-
ishes near 180, but not exactly there. In that case, he/she
can go through the alternatives and easily identify the
most accurate source code part that offers the complete
functionality.

The next comparison is between opportunities 3 and 6,
which however does not satisfy one of the grouping cri-
teria, namely difference_in_size = 0.22 (ie, 11/49) >
max_size_difference = 0.2. Therefore, these two opportuni-
ties cannot be grouped. This is also the result of the com-
parison of opportunity 3 with opportunities 7 to 11. The
next step of the algorithm is to select the next opportuni-
ty that does not participate in any group and repeat the
process. If we apply the same steps on the remaining
opportunities and the sorting based on the primary bene-
fit, the final result will be five groups of opportunities as
shown in Table VL.

TABLE VI. Final Set of Extract Method Opportunities

. Primar .
opportunity bene fii’ size
7 013 to 022 68 9
8 014 to 022 63 8
6 010 to 031 60 16
3 003 to 032 49 21
5 004 to 031 46 20
1 002 to 032 35 22
4 003 to 034 14 23
2 002 to 034 0 24
10| 017 to 021 29 5
9 017 to 020 29 4
11| 029 to 031 11 3

4  INDUSTRIAL CASE STUDY

In this section we present the design and the results of
the industrial case study, which aimed at assessing if the
extract method opportunities identified by SEMI, can be
linked to specific functionalities. The case study has been
performed within a large company producing printers,
in the Netherlands.

4.1 Case Study Design

The goal of this case study, expressed with a GQM for-
mulation [7], is to analyze the SEMI approach for the pur-
pose of evaluation, with respect to its ability to (a) accurate-
ly identify the functionalities of the original method, and (b)
efficiently rank the candidate Extract Method opportunities
based on their extraction benefit, from the viewpoint of soft-
ware engineers in industry. This case study is designed and
reported according to the linear-analytic structure tem-
plate suggested by Runeson et al. [36]. In particular in
the next sections we present the four parts of our re-
search design, i.e., research questions (see Section 4.1.1),
case selection (see Section 4.1.2), data collection (see Sec-
tion 4.1.3), and analysis (see Section 4.1.4).

4.1.1 Research Questions

According to the above-mentioned goal we have derived
two research questions (RQ) that will guide the case
study design and the reporting of the results:

RQs: Is the proposed approach able to accurately identify the
functionalities in a given method?

This research question will explore the recall and preci-
sion rates [18]. Specifically, first we assess whether the
approach has successfully identified all functionalities
offered by the methods under study (i.e., the percentage
of functionalities identified); and second the precision of
the identification (i.e., the percentage of the identified
Extract Method opportunities that match a specific func-

tionality).

RQy: Are the candidate refactorings, as proposed by the ap-
proach, ranked according to practitioners’ perception of
the benefit of applying those refactorings?
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This research question will explore the efficiency of the
sorting part of the approach, based on the benefit ob-
tained from extracting the candidate refactoring. The
benefit is measured in terms of LCOM.. The sorting algo-
rithm should be able to prioritize the Extract Method
opportunities that concern a specific functionality (which
would constitute a coherent new method), among a
number of candidates.

4.1.2 Case Selection

This study is a holistic multiple case study that has been
conducted in a large company producing printers in the
Netherlands. In this study as cases and corresponding
units of analysis we consider the Long Methods. As case
study participants we selected three software engineers
that are currently working on improving the under-
standability of the explored methods.

In particular we have been provided with two Long
Methods (for confidentiality reasons named as M; and
M,). M consists of 408 lines of code and is responsible
for preparing an image for printing, whereas M> consists
of 642 lines of code and is responsible for processing the
image while printing.

4.1.3 Data Collection

Collected Data. To answer the research questions men-
tioned in Section 4.1.1, we collected the following data
items for each method:

e A list of the blocks of code that provide a specific
functionality, based on the expert opinion of the
participants. This list of functionalities is going to be
used as the gold-standard for assessing the preci-
sion and recall of the SEMI approach (onwards re-
ferred to as set of functionalities).

o A sorted list of candidate refactorings (i.e., blocks of
code) with respect to the benefit that can be ob-
tained when these blocks are extracted as separate
methods, based on the expert opinion of the partici-
pants (onwards referred to as sorted refactoring op-
portunities). The list of candidate refactorings oppor-
tunities (before sorting) has been obtained from
SEMI to the two Long Methods of the company.

Collection Process. To collect the data required for our
study, we conducted a workshop with three industrial
practitioners, working for the company. The participants
have been involved in the original construction and/or
maintenance of the source code of the company, and
more specifically with methods M; and M,. The work-
shop was composed of two parts:

o Structured interviews. According to [36] structured
interviews consist basically of closed questions and
can be similar to questionnaire-based surveys. For
the needs of our study, we asked a set of closed
questions (in some cases followed by an open ques-
tion for explanation purposes). Due to the technical
nature of the questions, the participants received
the questions on paper and they were asked to
write down their answers after working on the re-
spective tasks. The researchers were present during
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the whole process, so the method can be compared
to a supervised questionnaire-based survey [34].
The presence of the researchers in the room aimed
at eliminating the disadvantages of simply distrib-
uting a questionnaire, like the lack of clarifications.

e Focus group. During the focus group the answers
provided in the first part were discussed, giving the
opportunity to clarify potentially different points of
view or disagreements between the participants.
The focus group could not bias the participants, be-
cause it was conducted at the end of the workshop,
after the participants had submitted their completed
questionnaires. The main goal of the focus group
was to discuss and finalize starting and ending
points of statement clusters that provide functional-
ities. For example, one engineer might have sug-
gested that a specific functionality starts on state-
ment 72 and another that the same functionality
starts on statement 75. In this case, only one starting
point was assigned to the cluster.

As preparation for the workshop we applied the pro-
posed approach using as input the source code of meth-
ods M1 and Mp. Therefore, two sets of ranked candidate
Extract Method opportunities have been identified (a set of
33 Extract Method opportunities for M1 and a set of 25
for M2). The questions of both interviews and the focus
group regarded the functionalities existing in the meth-
ods, the accuracy and completeness of the candidate re-
factorings, and the importance of extracting them to new
methods.

Collecting the Set of Functionalities: First we asked the par-
ticipants to identify as many functionalities as possible in
the source code of M; and M, as well as the parts of the
code that implement these functionalities. With this task
we aimed at exploring if all functionalities have been
identified by our approach (RQ1). In particular, the par-
ticipants identified eight functionalities for M, and six
functionalities for M,. The extracted functionalities are
listed below:

e M1: (a) Fill swath entry, (b) Prepare plane, (c) Ex-
tract mask, (d) Mask swath, (e) Fill working bulff-
er, (f) Update swath position, (g) Perform nozzle
failure correction, and (h) Column reduction

e M2: (a) Calculate Y-offset, (b) Y-correction, (c) Ro-
tate, (d) Update dot counter, (e) Determine array
range, and (f) Scramble swath

Collecting the Sorted Refactoring Opportunities: Next, we
provided the participants of the case study with a shuf-
fled subset of the aforementioned Extract Method oppor-
tunities® and asked the participants to assign a score
(1=min-5=max) based on the benefit of extracting each of
the candidate methods into a new method. The benefit is
evaluated based on two components: (a) the extent to
which the approach identifies a complete functionality

9  We were not able to provide practitioners with the whole set of
refactoring opportunities (96 for M1 and 65 for My, including their
alternatives), due to time limitation. For selecting the 21 extract
method opportunities we randomly selected opportunities from all
parts of the list (7 from first 1/3 of the ranked list, and so on).
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and (b) the design benefit gained from the extraction'.
These two components of the scale are based on the two
pillars of the proposed approach: each extract method
opportunity should correspond to one functionality
(compliance to SRP); and it should improve the design
quality of the resulting system (the enhancement of qual-
ity is a basic advantage that should be offered by any
refactoring [17]). The used scale is described as follows:

1. No Benefit (Not a functionality): The part of the
code can’t be mapped to a concrete functionality.

2. Limited Benefit (Not complete functionality): The
part of the code does not provide a functionality
(as a whole), but an adequate part of it.

3. Partial Benefit (Alinost complete functionality):
The part of the code could provide a functionality,
by adding or deleting a small number of lines.

4. Only Functional Benefit (Complete functionality
- No design improvement): The part of the code
provides a functionality, but the benefit of extract-
ing is not clear (e.g., it is highly coupled to the rest
of the method, it is too small/large in size, etc.).

5. Optimal Benefit (Complete functionality - Design
Benefit): The part of the code provides a function-
ality and its extraction as a different method pro-
vides benefits for the design of the system.

With this task we aimed at investigating the efficiency of
the ranking approach, which is responsible for prioritiz-
ing the Extract Method opportunities with respect to
their benefit for extraction (RQy). The ranking of the op-
portunities for the two methods is presented in Table VII.
We note that each opportunity is assigned an id, com-
posed by the method name and the number of the op-
portunity (i.e. O1.1.is the first opportunity of method My).

For assessing the evaluators’ agreement, we used in-

ter-rater reliability calculated through the intra-class cor-
relation coefficient (ICC) [18]. The reliability for M1 has
been calculated as 0.81 and as 0.29 for M2. The low relia-
bility score for M2 suggests that the three reviewers ex-
pressed different opinions on the proposed ranking. A
possible interpretation for this is the large size of M, (ap-
prox. 200 lines more than M1), which hindered its under-
standing, rendering the evaluation of refactoring oppor-
tunities more difficult. Thus, refactoring M2 has proven
to be challenging even for experienced software engi-
neers, with expertize on the specific method. For this
reason, specifically for M2, we decided to consider only
the opinion of the most experienced reviewer. The work-
shop organization and the questions used in the inter-
views and focus group are presented in the Appendix.

4.1.4 Data Analysis

In this section, we present the data analysis process that
has been used for answering the research questions de-
scribed in Section 4.1.1.

10 The term design benefit has been intentionally provided to the partic-
ipants in such an abstract form, since we were not aiming at a spe-
cific quality attribute, but only to the generic feeling of the software
engineer, on whether the design would improve after the refactor-
ing.

TABLE VII. Sorted Refactoring Opportunities

Method and |Mean Score| Method and | Mean Score

Opportunity (SD) Opportunity (SD)

M1 | O11 | 5.00(0.00) | M2 | O21 4.33(1.15)
O1.2 | 5.00 (0.00) 022 3.67 (2.31)
O13 | 5.00 (0.00) 023 3.67 (1.15)
O14 | 4.67 (0.58) 024 3.67(1.15)
O15 | 4.67(0.58) 025 3.33(0.58)
016 | 4.33(1.15) O26 3.33 (2.08)
O17 | 4.33(0.58) O27 3.33(0.58)
O18 | 4.33(0.58) 028 3.33(2.08)
019 | 4.33(1.15) 029 3.00(2.83)
0110 | 4.33 (1.15) 02.10 3.00(0.00)
O1.11 | 4.00 (1.00) 0211 3.00(2.00)
O1.12 | 4.00 (1.41) O2.12 3.00(2.00)
0113 | 3.00(1.00) 0213 3.00(1.73)
O1.14 | 3.00 (1.00) 02.14 2.67(1.53)
0115 | 2.33 (1.53) 0215 2.33(0.58)
O1.16 | 2.33 (1.53) 0216 | 2.33(1.53)
0117 | 2.33 (1.53) 0217 2.33(1.53)
01.18 | 1.67 (0.58) 0218 2.00(1.00)
0119 | 1.33 (0.58) 02.19 1.67(0.58)
0120 | 1.33 (0.58) 02.20 1.33(0.58)
O1.21 | 1.00 (0.00) 0221 | 1.33(0.58)

Identification Accuracy: For answering RQ; we will use
three well-known metrics: namely F-measure, recall and
precision [18]. All metrics are calculated three times for
every method, by varying the tolerance in the approach.
Specifically, we use the following tolerance values: 1%,
2%, and 3%. We note that although the accurate identifi-
cation of functionalities is desirable there are cases that a
functionality might be approximately identified. Howev-
er, especially in large methods (e.g., 500 lines), pointing
to a functionality with an accuracy of +15 statements (i.e.
3% tolerance) is still expected to be beneficial for the
software engineer. Further increasing the tolerance
would lead to even higher precision and recall; however,
we preferred to be strict in the evaluation of our ap-
proach so as to present a “worst-case scenario”.

Recall is calculated as the fraction of correctly identified
functionalities over the total number of functionalities
that exist in the method according to experts’ opinion
(i.e., eight for M; and six for My). Similarly, precision is
calculated as the ratio of correctly identified functionali-
ties over the total number of identified refactoring op-
portunities (i.e., 33 for M; and 25 for M»).

Ranking Accuracy: For answering RQ», we calculate the
Spearman Rank Correlation between the expert ranking of
refactoring opportunities, presented in Table VII, and the
ranking that the approach offers for the same list of op-
portunities (O1x and Oz as discussed in Section 4.1.3).
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We note that the correlation analysis is only based on the
ranking and not the actual values that are assigned on
the one side from the experts and on the other side from
the approach. Therefore, the difference in nature of the
two assessments (i.e., a scale for evaluators and cohesion
for SEMI) is not biasing the results.

4.2 Results

In this section we present the results of our study orga-
nized by research question. In this section we compare
our results to the literature and provide initial interpreta-
tions. A joint discussion of the results of both case stud-
ies is provided in Section 6.1.

4.2.1 Identification Accuracy (RQ1)

In this section we evaluate the proposed approach with
respect to its accuracy when identifying Extract Method
opportunities. As explained in Section 4.1.4, we will pre-
sent results for each method separately and for three
tolerance values. Therefore, in Table VIII we present the
recall and precision of the SEMI approach for M; and Ma.

TABLE VIII. Approach Accuracy

Total | Tole- | Correct Preci- F-
#Funcs| EMO"! | rance | Func? | Recall | sion | measure
M 8 33 1% 5 62.5% | 15.1% | 24.32%
33 2% 8 100.0% | 24.2% | 38.97%
33 3% 8 100.0% | 24.2% | 38.97%
M, | 6 25 1% 3 33.3% | 12.0% | 17.64%
25 2% 5 83.3% | 20.0% | 32.26%
25 3% 5 83.3% | 20.0% | 32.26%
Total| 14 58 1% 8 57.1% | 13.8% | 22.23%
58 2% 13 92.8% | 22.4% | 36.09%
58 3% 13 92.8% | 22.4% | 36.09%

As it can be observed from Table VIII, the recall rate of
the proposed approach ranges from 57% (i.e., 8 out of the
14 functionalities offered by both methods) to 93 % (i.e.,
13 out of the 14 functionalities offered by both methods).
Precision ranges from approximately 14% to 22%, i.e., the
algorithm identifies 58 Extract Method opportunities,
and through these opportunities 8-13 functionalities (de-
pending on the tolerance) are retrieved. Compared to
related work (i.e., other techniques that aim at the identi-
fication of Extract Method opportunities), the proposed
approach achieves the highest recall rate, since the high-
est recall until now was 63%-75%, achieved by jDeodor-
ant [38]. Concerning studies aiming at feature location,
the recall rate of the proposed approach is comparable to
the one of Antoniol et al. [4] and higher than the recall
rate of the approach of Yosida et al. [41]. With regard to
precision, our approach presents a rather low rate, com-
pared to the highest rates in one study (i.e., jDeodorant
achieves approximately 50% precision), but is compara-
ble to the rest of the studies (see [4], [37]). However, an

11 Total EMO: Total Number of Identified Extract Method Opportunities

12 Correct Func: Correctly located functionalities
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independent evaluation of the Extract Method algorithm
provided by jDeodorant, suggested that its precision rate
is closer to the average precision of similar techniques
(i.e., lower than 10% [37]). We note that such compari-
sons are coarse-grained, in the sense that different da-
tasets have been used in the compared studies. A fair
comparison of the approaches will be provided in Sec-
tion 5, where we present the results of a comparative
case study using a uniform dataset and golden standard
for the involved approaches. Therefore, no interpreta-
tions on the outcome of the comparison are provided in
this section.

A possible interpretation of the lower recall and preci-
sion rates for M, can be the larger size of the method per
se. The difficulty of functionality identification inside
larger methods is also evident by the differences in the
expert responses, as implied by the low reliability rates
(see end of Section 4.1.3). To investigate the scalability of
the proposed approach in Section 5.2.2 we further inves-
tigate the differences of recall and precision rates when
investigating methods of various sizes.

4.2.2 Ranking Accuracy (RQ2)

To evaluate the ability of the approach to rank Extract
Method opportunities, we present the results of the
Spearman correlation test that we performed between
the algorithm ranking, and experts” opinion. The results
shown in Table IX concern the correlation between the
ranking as obtained by our approach and the opinion of
experts as presented in Table VII.

TABLE IX. Raking Accuracy

M1 MZ
Correlation Coefficient 0.479 0.477
Sig. <0.02 <0.02

The results of Table IX suggest that the ranking of-
fered by the approach is moderately correlated with the
ranking based on experts’ opinion [22]'3. Thus, if a soft-
ware engineer starts evaluating the proposed opportuni-
ties by following the suggested order, he/she might be
able to identify all relevant Extract Method opportunities
without exhaustively parsing the list. A similar approach
has been employed also by Silva et al. [37]. We note that,
for the special case of M2 (i.e., low agreement rate among
raters), the correlation of the rankings becomes 0.63, if
we consider, only the opinion of the software engineer
with the highest expertise on the specific method.

Furthermore, the results suggest that the ranking of
candidate extract method opportunities based on the
benefit in terms of cohesion can help improve the identi-
fication accuracy. In particular, we can observe that 93%
of the functionalities have been identified in the Top-33
suggestions concerning Mi, and the Top-25 suggestions
concerning M (see Table VIII). This ability of the ranking
algorithm to reduce the searching space for applying
extract method opportunities, by 63 and 40 opportunities

13 According to Marg et al. [28] a correlation is characterized as strong
if the correlation coefficient ranges from 0.40 to 0.69.
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respectively, leads to an increased precision rate. The
increase of precision by using a ranking/ prioritization of
Extract Method opportunities has also been reported by
Silva et al. [37], and therefore is considered as an ex-
pected finding.

Finally, since we acknowledge that software engineers
would more probably inspect only a limited number of
suggestions (e.g.,, Top-10), we highlight that the ap-
proach is still able of identifying 7 out of 14 industrial
functionalities, with a precision rate of 35% (F-measure:
0.41). Thus, based on F-measure, retaining the Top-10
suggestions from SEMI we achieve the better combina-
tion of precision and recall, compared to retaining Top-
33 and Top-25 suggestions for M1 and M. Summing up,
although the correlation scores in Table IX do not sug-
gest a strong relationship, but only a moderate one, pre-
cision and recall of the approach increases, when parsing
only the top-X extract method refactoring opportunities.
In particular by retaining only the top-10 suggestions for
both methods, SEMI achieves an accuracy of 41% based
on the F-measure, which is increased compared to retain-
ing top-25 and top-33 suggestions (F-measure: 36%).

5 COMPARATIVE CASE STUDY

In this section we present the design and the results of a
case study on open source software projects, which aims
at comparing the accuracy of SEMI to other state-of-the-
art approaches. The case study has been performed on
projects that have already been used in the literature as a
benchmark for extract method identification approaches.

5.1 Case Study Design

The goal of this case study, expressed with a GQM (Goal
Question Metric) formulation [7], is to analyze the SEMI
approach for the purpose of evaluation with respect to: (a)
its ability to accurately identify extract method opportunities,
and (b) the scaling of SEMI’s accuracy when investigating
longer methods from the viewpoint of software engineers.
Similarly to Section 4, this case study is also designed
and reported according to the linear-analytic structure
template suggested by Runeson et al. [36], and the same
sub-section structure is used.

5.1.1 Research Questions

According to the above-mentioned goal we have derived
two research questions (RQs):

RQ:: How does the accuracy of the SEMI approach compare
to other state-of-the art tools/approaches?

SEMI is not the only approach/tool proposed in the lit-
erature for suggesting extract method refactoring oppor-
tunities. Therefore, the aim of this research question is to
compare the accuracy of SEMI to the accuracy of two
state-of-the-art approaches: JDeodorant [37] and JExtract
[38]. We note that we have preferred not to perform the
comparison within the industrial setting presented in
Section 4, because the industrial data could not be made
available, a fact that would weaken the presentation and
the replicability of this case study. To answer this re-

search question we will use the same metrics as in Sec-
tion 4 (i.e., F-measure, recall and precision rates [18]). In
order to be able to provide a fair comparison among the
approaches/tools we execute all of them in the same
software projects/ methods.

RQy:  How does the scalability of the SEMI approach compare
to other state-of-the-art approaches?

All existing approaches for extract method opportunities
identification (including SEMI—as presented in Section
4.2) suffer from either low precision or low recall. In ad-
dition to that, in Section 4.2 we have discussed that the
accuracy of SEMI is slightly decreased when applied to
the longer industrial method. This can be considered as
an expected finding, in the sense that the difficultly of
analyzing a longer method is considered a more complex
task. Thus, an interesting point of investigation is the
scability of a method extraction approach, i.e. the ability
of the approach to retain a certain level of accuracy as the
size of the examined method increases. This research
question aims at assessing the scalability of all the ap-
proaches compared in RQ;, and investigating the ex-
pected decrease in accuracy.

5.1.2 Case Selection

This study is a holistic multiple case study that has been
conducted on five open source software (OSS) projects.
In this study as cases (and therefore also units of analy-
sis) we consider a subset of the OSS projects’” methods.
The selection of methods and projects has been based on
the original studies in which JDeodorant and JExtract
have been evaluated (i.e., [38] and [37] respectively). We
preferred to not limit our investigation to only one of the
two approaches’ benchmarks, so as not to bias our vali-
dation in favor of one of the two approaches. The exam-
ined OSS projects are: (a) Wikidev, (b) MyPlanner, (c)
MyWebMarket, (d) Junit, and (e) JHotDraw.

In total, among the methods of the five projects the au-
thors of the original studies have isolated 132 methods,
in which they have identified 155 extract method oppor-
tunities. To identify the extract method opportunities
Tsantalis et al. (projects: MyPlanner and Wikidev) have
contacted projects’ main developers to get their expert
opinions, whereas Silva et al. used the first author’s opin-
ion for MyWebMarket (he is the developer of the pro-
ject), and artificially created long methods for JUnit and
JHotDraw, by merging methods that were invoked in-
side others (for more details see [39]).

5.1.3 Data Collection

To answer the RQs mentioned in Section 5.1.1, for every
method we have recorded the following data items:
¢ LoC—Method Size in statements.
o Golden Standard — Lines of code to be extracted in a
new method, as suggested either by experts or by
the technique followed by Silva et al. [37].
e Best Matching Opportunity Identified in the Top-5
suggestions of SEMI
e Best Matching Opportunity Identified in the Top-5
suggestions of J[Deodorant
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e Best Matching Opportunity Identified in the Top-5
suggestions of JExtract

We note that we have selected to retain the Top-5 sug-
gested opportunities for all tools, since practitioners are
expected not to investigate all opportunities provided by
the tools. The decision to limit the size of the set with
retained opportunities to five, was driven by our inten-
tion to be as strict as possible while evaluating the exam-
ined approaches/tools.

To collect the data, SEMI and JDeodorant have been
executed with their default parameters, whereas JExtract
has been configured so as to: (a) suggest extract method
opportunities of minimum size of 2 lines, (b) provide
unlimited number of recommendations, and (c) suggest
only the extraction of continuous code fragments. This
configuration has been performed so as to ensure the fair
comparison to the other two tools/approaches. Finally,
to ensure the replicability of our case study, we have
made our dataset and golden standard available online'4.

5.1.4 Data Analysis

In this section we present the data analysis process that
has been followed for answering the research questions
described in Section 5.1.1.

e Identification Accuracy: For answering RQ; we will
use the three metrics used in Section 4, namely F-
measure, recall and precision [18]. Similarly to Sec-
tion 4, all metrics are calculated three times for eve-
ry method, by varying the tolerance of the approach
(1%, 2% and 3%).

e Scalability of the Accuracy: For answering RQ,, we
calculate F-measure, recall and precision for a sub-
set of the benchmark methods, including only the
longest ones. Therefore, we isolated 15 methods
with more than 30 statements'> and compared the
accuracy of the approaches in the complete dataset
(on average approximately 18 LoC/method) with
the accuracy of the approaches in only the longer
ones (on average approximately 58 LoC/method).

5.2 Results

In this section we present the results of our comparative
case study organized by research question. The number
of extract method opportunities identified by each ap-
proach for all projects is presented in Table X.

TABLE X. Identified Opportunities
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for longer methods, whereas the exhaustive approach of
JExtract identifies approximately 55 opportunities for all
methods and approximately 270 opportunities for the
longer methods. Nevertheless, by retaining the Top-5
suggestions from JExtract and SEMI, the number of op-
portunities is limited to 638 and 75 respectively for all
and long methods.

5.2.1 Identification Accuracy (RQ1)

In this section we compare the accuracy of SEMI to state-
of-the-art approaches. Therefore, in Table XI we present
the F-measure, recall and precision of the three examined
approaches for all methods. In Table XI with grey cell
shading we denote the approach that presents the best
accuracy.

TABLE XI. Approach Accuracy (all methods)

Tools Tolerance | Recall | Precision | F-Measure
SEMI 1% 380% | 129% 19,2%
2% 47,0% | 14,6% 22,3%
3% 555% | 18,8% 28,1%
JDeodorant 1% 14,8% | 17,4% 16,0%
2% 184% | 21,1% 19,7%
3% 23,8% | 28,0% 25,7%
JExtract 1% 522% | 12,6% 20,4 %
2% 59.3% | 13,1% 21,5%
3% 619% | 15,0% 24,2%

Based on the results of Table XI, we can observe that
SEMI presents the most accurate approach in terms of F-
measure, whereas JDeodorant in terms of precision and
JExtract in terms of recall. The fact that jDeodorant is
presenting the highest precision rate is probably due to
the conservative strategy in identifying extract method
opportunities, which leads to a low number of false posi-
tives. In particular, the slicing algorithm of jDeodorant
calculates the computational slice of exactly one variable,
without any provision for merging extract method op-
portunities into larger ones. Nevertheless, this strategy
limits recall as well. We note that by considering the
whole list of extract method opportunities suggested by
all tools (not retaining only Top-5 suggestions), JExtract
achieves a recall rate of nearly 96% (with 3% tolerance),
but with a very limited precision (approx. 2%), leading to
an F-measure of 4%. In the same setting SEMI and JDeo-
dorant present a similar F-measure (23% and 25% respec-
tively).

5.2.2 Scalability of the Accuracy (RQ>)

By focusing on only the long methods of our dataset, the
accuracy of the examined tools/approaches is substan-

Tool All Methods | Longer Methods
(132 cases) (15 cases)
SEMI 737 228
JDeodorant 137 28
JExtract 7,612 4,057

From the results of Table X we can observe that the most
conservative tool/approach is JDeodorant that makes on
average 1 suggestion for smaller methods and less than 2

14 http:

15 The intuition that methods with more than 30 lines are expected to be
long has been suggested by Lippert and Roock [27].

www.cs.rug.nl/search/uploads/Resources/TSEdataset.xls

tially differentiated, as presented in Table XIL

TABLE XII. Approach Accuracy in Long Methods

Tools Tolerance | Recall | Precision | F-Measure

SEMI 1% 38,7% | 164% 23,0%
2% 41,9% | 17,9% 25,0%
3% 451% | 19,1% 26,9%
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Tools Tolerance | Recall | Precision | F-Measure
JDeodorant 1% 9,6% | 12,0% 10,7%
2% 129% | 14,3% 13,5%
3% 129% | 16,0% 14,2%
JExtract 1% 16,1% | 6,6% 9,4%
2% 193% | 8,0% 11,3%
3% 193% | 8,0% 11,3%

From the results of Table XII, we can observe that by
focusing only on methods with more than 30 lines of
code, SEMI presents the best precision, recall, and F-
measure for all levels of tolerance. Another, interesting
finding is that SEMI performs very similarly for long and
small methods, in contrast to other approaches/tools. In
particular, by comparing the results of Table XI and Ta-
ble XII, we can observe that in longer methods JDeodor-
ant performs approx. 36% worse in F-measure, whereas
JExtract approx. 51% worse. On the contrary, the recall of
SEMI is decreased by only 9%, the precision increases
17%, and the F-measure increases by 9%.

6 DISCUSSION

6.1 Interpretation of Results

The results of the performed case studies suggest that
the SEMI approach achieves top F-measure rates com-
pared to the state-of-the-art approaches on both Extract
Method opportunities identification (see Section 3.1) and
feature/functionality identification (see Section 3.2). This
result becomes more evident in cases that extract method
opportunities identification is performed on longer
methods (i.e., more than 30 statements). This outcome
suggests that the single responsibility principle can be applied
inside the body of a method. SRP has been originally intro-
duced at the design level and specifically for the extrac-
tion of classes from other larger ones. However, the re-
sults of this study suggest that multiple functionalities
offered by the same method can be identified using the
same approach. The extraction of such sets of statements
to separate methods has been validated as useful by the
experts participating in our case study. In addition to
that, the results strongly suggest that the use of method
body cohesion metrics for identifying Extract Method oppor-
tunities is accurate. In particular, the proposed approach
has in total identified 13 out of 14 functionalities offered
by two very long methods (approx. 500 lines of code)
that we have examined, as indicated by the software en-
gineers working on them (i.e., a recall rate of 92.8%). Fur-
thermore, although the results of our case study suggest
that the proposed approach is not achieving high preci-
sion rates, this is can be explained as follows:

Expected trade-off between precision and recall. In every
classification approach the two measures of accuracy
(i.e., precision and recall) are contradicting. Therefore,
since the goal of this algorithm is to identify as many
functionalities / Extract Method opportunities as possible,
lower precision rate is preferable, in order to achieve top
recall. The same outcome can be observed also in the

study of Antoniol et al. [4], where in order to achieve
100% recall, the precision dropped to 13%. A possible
reason for the improved precision of slicing-based ap-
proaches is that they have a much narrower scope, since
they aim at extracting statements affecting a variable or
in the best case scenario, the entire calculation of a varia-
ble. Such a goal is significantly more bounded than the
selection of arbitrary functionalities involving numerous
variables. Nevertheless, we note that the comparative
case study has revealed that other existing approaches
for extract method opportunities identification suffer
from the same problem. To combine precision and recall
in a single measure that takes into account this trade-off,
we have used F-measure. The results suggest that based
on F-measure, SEMI can handle this trade-off more effi-
ciently compared to other approaches (highest F-
measure rates).

The order of magnitude in the method size. As explained
in Section 2 (see Table I), our industrial case study has
tested SEMI on substantially long methods than any oth-
er approach. Since the size of the problem searching
space increases exponentially with the growth of the
method size, it is expected that the longer the method,
the harder it is to accurately identify all functionalities.
We expect especially precision to be influenced from this
factor since the number of identified opportunities in-
creases in longer methods. Nevertheless, the evidence
obtained by the comparative case study, suggested that
SEMI scales better than existing techniques in terms of
precision, when the size of the method is increasing.

6.2 Reliability of Results

To test if the use of a different cohesion metrics differen-
tiates the previously discussed results, we replicated the
data collection for the industrial case study by using an-
other cohesion metric (namely, Class Cohesion - CC [13])
in the calculation of the primary benefit measure. The
selection of CC has been based on the facts that: (a) it is
the top predictor of the existence of the long method bad
smell [14], and (b) it has different properties compared to
LCOM; in the sense that it is a normalized measure, it is
not correlated to size, and it captures cohesion instead of
its lack. The precision and recall of the proposed ap-
proach when using CC are presented in Table XIIL

TABLE XIllII. Approach Accuracy (Metric: CC)

Total | Tole- | Correct Preci- F-
#Funcs| EMO | rance | Func | Recall | sion |measure
M 8 41 1% 5 62.5% |12.2%(20.41%
42 2% 7 87.5% |16.7% |28.05%
42 3% 8 100.0% [19.0% | 31.93 %
M. 6 72 1% 4 66.6% | 5.6% [10.33%
72 2% 5 83.3% | 6.9% [12.74%
72 3% 5 83.3% | 6.9% [12.74%
Total 14 113 1% 9 64.3% | 7.9% [14.07%
114 2% 12 85.7% [10.5%|18.71%
114 3% 13 92.8% |11.4%(20.31%
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The results suggest that using CC:
e recall is increased (64.3% - 92.8%) and thus pro-
duces top results compared to the state of the art; and
e precision is decreased (7.9% - 11.4%), but is still
comparable to research state of the art (precision
of such approaches is approximately 10%).

6.3 Implications for Researchers & Practitioners

The results of this study are expected to prove useful to
both researchers and practitioners. Concerning practi-
tioners, we expect that the proposed approach and the
corresponding tool (see Section 6.3) will help them to
improve the design-time quality of their code. This im-
provement comes from two characteristics, namely the
generic benefits of Extract Method refactoring and the
benefits of applying the SRP:

o Generic benefits. The refactoring of Long Methods
and the consequent improvement of cohesion,
caused by applying the SEMI approach has been re-
lated to improving quality attributes (e.g., main-
tainability [16] and reusability [6]).

o SRP-based benefits. The Extract Method opportuni-
ties derived based on the Single Responsibility
Principle [29] are expected to provide additional
benefits in terms of modularity. In particular, the
fact that each functionality is going to be encapsu-
lated in a separate method decouples the axes of
change for a specific class [29]. Furthermore, the
enhanced modularity is expected to further boost
reusability, not only in terms of ease in adjusting
the reusable part of the code into the target system
[25], but also in terms of “cleanly” reusing only the
desired code, without needless repetition [29]. Fi-
nally, resolving modularity issues is expected to re-
duce the amount of technical debt'® accumulated in
software systems, since according to Alves et al. [2]
modularity violations and code smells are its most
common indicators.

Regarding researchers, the study led to some interest-
ing implications and future work directions. First, the
benchmark created for our comparative case study can
be useful both in the domain of feature location and re-
factorings identification, which currently lack a set of
methods with identified functionalities/extraction op-
portunities. The provision of this benchmark will enable
the fair comparison of future approaches and reduce
deviations in recall and precision, caused by using dif-
ferent systems as objects. Second, the fact that SRP and
cohesion are successfully tailored to apply at the method
level, opens new research directions on how other prin-
ciples can be transferred to different levels of granularity,
e.g., architecture or code. Finally, the approach can be
tailored to fit the identification of additional refactoring
opportunities. We believe that such a tailoring consti-
tutes an interesting future work, since different refactor-
ing opportunities require completely different identifica-

16 Technical debt is perceived as any compromise made in order to add
business value to software systems (e.g., shrink product time to mar-
ket). More details on technical debt research can be found in [3].
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tion algorithms, checking of preconditions, ranking ap-
proaches and evaluation strategies. For example, even
for refactorings of similar purpose (e.g., extract parts of
the code in different levels of granularity —i.e., extract
methods, extract class, etc.) the required approaches
should be different: in extract class you need to investi-
gate the clusters of methods and attributes that should be
placed in the new class, whereas in the extract method
you need to investigate which lines of code are function-
ally relevant, do not violate AST preconditions, deter-
mine the number of parameters for the new method, etc.
Thus, despite the fact that in both cases a cohesion-based
approach is required, the same approach cannot be di-
rectly transferred from the one code smell to the other.

6.4 Tool Support

The SplitLongMethod tool is comprised of two parts: the
Long Method detector that identifies Long Methods in
large codebases (as presented in our previous work —see
[14]); and the Extract Method opportunities that pre-
sents the identification, grouping and ranking of all pos-
sible Extract Method opportunities identified in a single
Long Method. We note that the user has the option to
freely select the metric that will be used for assessing the
cohesion among statements and prioritizing the Extract
method refactoring opportunities.

Long Method Detector: The tool analyses Java classes
and the results are presented in two components, as
shown in Fig. 10:

o Results Table (see right side of the User Interface
(UD)): Presents method names, the cohesion metric
score, and a suggestion whether the method is in
need of refactoring or not. The methods are ranked
based on the selected metric.

o Heatmap (see left side of the Ul): Visually represents
the same information. The size of each box depends
on the ranking of the method, whereas the color
(binary value) if it needs refactoring or not.

Extract Method Detector. The second part of the tool
(related to the SEMI approach) focuses on a specific
method. The selected method is analyzed and Extract
Method opportunities are identified. After the identifica-
tion of the Extract Method opportunities, the grouping
and ranking algorithm is executed. The obtained groups
of Extract Method opportunities are ranked based on the
selected cohesion metric and are presented in Fig. 11:

e Extract Method Opportunities (left side of the UI):
Lists all the identified extract method opportunities,
and their expected benefit, ranked by benefit.

e Alternatives (center of the UI): Lists all alternatives
(i.e. similar opportunities with minor differences in
terms of starting/ending LoC), for the selected ex-
tract method opportunity, ranked by benefit.

e Source Code (right side of the UI): Highlights the
code of the selected extract method opportunity
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7  THREATS TO VALIDITY

In this section, we present and discuss potential threats
to the validity of our case studies [36]. Internal validity is
not considered, since causal relations are not in its scope.

7.1 Construct Validity

A possible threat to construct validity is related to the
accuracy of approaches that are used to identify and rank

Extract Method opportunities. Such a threat is classified
as construct validity in the sense that inaccurate results
might lead to measuring a different phenomenon than
the one originally intended to investigate.

The proposed algorithm for identifying, grouping,
and ranking Extract Method opportunities is performed
based on the assumption that common method calls and
the use of common objects can indicate a potential rela-
tion between the corresponding statements. Thus, they

19



20

should be taken into account during the clustering pro-
cess, which is performed considering cohesion. This as-
sumption may pose a threat to validity since there are
many definitions of cohesion [12] that do not take such
relationships into account. However, the call of a same
method, even with a different object denotes some simi-
larity between statements, since they are in need of a
same service (i.e., the one provided by the called meth-
od). Following a similar mindset, the use of the same
object calling any method indicates the use of the same
data and thus we can talk about data cohesion [42]. In
addition to that, concerning the accuracy of the selected
cohesion metric (i.e., LCOM)y), it is possible that the use
of a different metric could affect the results of this study.
However, we selected to use LCOM; based on our previ-
ous experience on method level cohesion metrics and
their relation to Long Methods identification [14]. The
main benefit of using LCOMs is its inherent correlation
to both method’s size and cohesion [14].

Moreover, the case study participants may have a dif-
ferent background and experience and thus influence the
choice of selected functionalities and the ranking of re-
factoring opportunities. To avoid this threat, we in-
volved three employees who were all familiar with the
project under investigation. However, it is possible that
participants have a different perspective of the methods,
due to their different roles in the company (i.e., one re-
factorings expert and two developers). To mitigate this
risk, we calculated their agreement rate (see Section 4.1).
Specifically, we observed that concerning the first meth-
od the results show high agreement and thus constitute
reliable results. On the other hand, regarding the second
method the answers of the interviewees were not strong-
ly correlated (but only moderately); this may suggest
that more participants would be needed to obtain fully
reliable results. However, this was not possible due to
resource constraints in our industrial case study. To mit-
igate this threat we explore the ranking efficiency of
SEMI not only based on the aggregated opinion of all
experts but also to the opinion of the most experienced
one. The results suggested that in both cases SEMI is able
to provide a moderate to strong rank correlation.

7.2 Reliability

With regard to reliability, we consider any possible
researchers’ bias, during the data collection and data
analysis process. The design of the study concerning data
collection, does not contain threats, since the material
provided to the participants included the source code of
the company and clusters of code that had been created
automatically by a tool. Additionally, the researchers
themselves were not required to interpret the results at
any point, since the participants were answering the
tasks on paper. Moreover, with respect to the data analy-
sis process, to mitigate any potential threats to reliability,
two researchers were involved in the process, aiming at
double checking the work performed and thus reducing
the chances of reliability threats.
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7.3  External Validity

Concerning external validity, a potential threat to
generalization is the possibility that performing the
study on different methods of different companies might
affect the precision and recall rates. However, we believe
that the selected industrial case, given its size and com-
plexity, represents a realistic industrial system. Never-
theless, acknowledging the fact that this threat exists not
only for this work, but also for all related previous stud-
ies, we emphasize the need for creating a benchmark for
assessing such approaches (see Section 6.2).

Additionally, although the precision and recall of the
proposed approach might change with the use of differ-
ent parameters (e.g., a different cohesion metric in the
calculation of the primary benefit measure), a sample
experimentation (see Table XIII) has shown that these
rates are not significantly influenced. A detailed discus-
sion of these findings can be seen in Section 6.1.

8 CONCLUSION

This study proposes an approach for identifying Ex-
tract Method opportunities in the source code of Long
Methods (namely SEMI), and ranking them according to
the benefit that they yield in terms of cohesion. The pro-
posed approach is based on the Single Responsibility
Principle and its inherent relation to cohesion. Therefore,
the approach identifies the largest possible cohesive sets
of instructions and suggests their extraction.

To evaluate the approach, we conducted two case
studies: (a) using two industrial Long Methods, which
consisted of a total of 1,000 lines of code, and used ex-
perts” opinion as a golden standard, and (b) using open-
source data to compare SEMI to state-of-the-art ap-
proaches/tools. To the best of our knowledge, the indus-
trial case study is the largest one with regard to the size
of the methods investigated. The results of the industrial
case study indicate that the proposed approach can ade-
quately identify functionalities inside the body of long
methods, with high recall rates. In particular, we have
been able to locate (with a +3% tolerance) approximately
90% of functionalities that exist in these methods and
suggest their extraction into different methods. The re-
sults of the comparative case study have indicated that
SEMI outperforms existing approaches in terms of F-
measure (i.e., a combination of precision and recall), and
that it is the only approach that scales (i.e., retains high
levels of F-measure) for methods of different sizes (rang-
ing from 18 - 500 lines of code). In order to ease the
adoption of our approach, we have developed a tool that
automates its application for Java classes. Finally, we
argue that the proposed approach can be useful to practi-
tioners for applying the Extract Method refactoring.
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